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Abstract Thermal transport coefficients are independent of the specific micro-
scopic expression for the energy density and current from which they can be de-
rived through the Green-Kubo formula. We discuss this independence in terms of
a kind of gauge invariance resulting from energy conservation and extensivity, and
demonstrate it numerically for a Lennard-Jones fluid, where different forms of the
microscopic energy density lead to different time correlation functions for the heat
flux, all of them, however, resulting in the same value for the thermal conductivity.
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It has long been thought that the inherent indeterminacy of any quantum
mechanical expression for the energy density would hinder the evaluation of ther-
mal transport coefficients from equilibrium ab-initio molecular dynamics (AIMD),
using the Green-Kubo (GK) formalism [1,2,3,4]. In classical molecular dynam-
ics (CMD) this goal is achieved by decomposing the total energy of an extended
system into localized atomic contributions and by deriving from this decomposi-
tion an explicit (and allegedly unique) expression for the energy flux. While the
calculation of thermal transport coefficients from equilibrium AIMD has been suc-
cessfully addressed by some of us in a recent work [5], the question still remains as
to whether the expression for the energy flux currently used in CMD is uniquely
defined and, in the negative, how is it that different definitions of the energy flux
would lead to the same value for the thermal conductivity. In this paper we show
that different equivalent definitions for the atomic energies in a classical system
lead to different expressions for the macroscopic energy flux, and demonstrate
numerically in the case of a Lennard-Jones fluid that these expressions result in
the same value for the thermal conductivity, as evaluated from equilibrium CMD
through the GK formula. This finding is then rationalized in terms of a kind of
gauge invariance of heat transport coefficients, resulting from energy conservation
and extensivity.

According to the GK formalism [1,2,3,4], the heat conductivity κ of an isotropic
material can be expressed in terms of the auto-correlation function of the macro-
scopic heat flux, Jq(t), as:

κ =
1

3V kBT 2

∫ ∞
0
〈Jq(t) · Jq(0)〉dt, (1)

where brackets 〈·〉 indicate canonical averages, kB is the Boltzmann constant, and
V and T are the system volume and temperature, respectively. The heat flux is
the macroscopic average of the heat current density, which is in turn defined as
the non-convective component of the energy current density. Atoms in solids can
be assumed to not diffuse, while in one-component and molecular fluids convective
energy transport can be disregarded because of momentum conservation. Because
of this, in the following we assume that energy and heat currents coincide.

In CMD the macroscopic energy flux is expressed in terms of suitably defined
atomic energies whose sum yields the total energy of the system. For the sake of
simplicity, we restrict our attention to one-component systems held together by
pair potentials, in which case the atomic energies can be defined as [6]:

εI(R,V) =
1

2
MV 2

I +
1

2

∑
J 6=I

v(|RI −RJ |), (2)

where M is the atomic mass, R
.
= {RI} and V

.
= {VI} are atomic coordinates

and velocities, respectively, v(R) is the inter-atomic pair potential, and the indices
I and J run over all the atoms in the system. Using standard manipulations [6],
the macroscopic energy flux can be obtained from Eq. (2) as:

Je =
∑
I

εIVI +
1

2

∑
I,J 6=I

(VI · FIJ )(RI −RJ ), (3)

where FIJ = −∇v(|RI −RJ |) is the force exerted by atom J on atom I. It is of-
ten implicitly assumed that the well-definedness of thermal transport coefficients
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Ω₁ Ω₂ E(Ω1 ∪Ω2) = E(Ω1) + E(Ω2) +W12

?
= E(Ω1) + E(Ω2)

Fig. 1 The energy of an isolated system is the sum of the energies of its subsystems (as
defined when they are isolated as well) plus the interaction among them, W , whose magnitude
scales as the area of the interface, depicted in red. When defining the energies of individual
subsystems, E, W has to be arbitrarily partitioned among them.

would stem from the uniqueness of the decomposition of the system’s total energy
into localized, atomic, contributions. This assumption is manifestly incorrect, as
any decomposition leading to the same value for the total energy as Eq. (2) should
be considered as legitimate. The difficulty of partitioning a system’s energy into
subsystems’ contributions is illustrated in Fig. 1, which depicts a system made of
two interacting subsystems. When defining the energy of each of the two susbsys-
tems, an arbitrary decision has to be made as to how the interaction energy is
partitioned. In the case depicted in Fig. 1, for instance, the energy of each of the
two subsystems can be defined as E(Ωi) = E(Ωi) + 1

2 (1± γ)W12, where E(Ωi) are
the energies of the two isolated subsystems, W12 their interaction energy, and γ

an arbitrary constant. In the thermodynamic limit, when the energy of any rele-
vant subsystem is much larger than the interaction between any pairs of them, the
value of the γ constant is irrelevant. When it comes to definining energy densities
(i.e. energies of infinitesimal portions of a system) or atomic energies, instead, the
magnitude of the interaction between different susbsystems is comparable to the
their energies, which become therefore intrinsically ill-defined.

As a specific example, we consider the following definition for the atomic en-
ergies [7]:

εΓI (R,V) =
1

2
MIV

2
I +

1

2

∑
J 6=I

v(|RI −RJ |)(1 + ΓIJ ), (4)

where ΓIJ = −ΓJI is any antisymmetric matrix. As the inter-atomic potential
appearing in Eq. (4) is symmetric with respect to the atomic indices, it is clear
that the sum of all the atomic energies does not depend on Γ , thus making any
choice of Γ equally permissible. This trivial observation has deep consequences
on the theory of thermal fluctuations and transport, because the value of the
macroscopic energy flux, instead, depends explicitly on Γ , thus making one fear
that the resulting transport coefficients would depend on Γ as well. Using the same
manipulations that lead from Eq. (2) to Eq. (3), for any choice of the Γ matrix in
Eq. (4), a corresponding expression for the macroscopic energy flux can be found,
reading [7]:

JΓe = Je +
1

2

∑
I,J 6=I

ΓIJ [v(|RI −RJ |)VI − (VI · FIJ )(RI −RJ )] . (5)

In order to illustrate this state of affairs, we have performed CMD simula-
tions for a fluid of identical atoms, interacting through a Lennard-Jones potential:

v(R) = 4ε
[(
σ
R

)12 − ( σR)6] at density-temperature conditions ρ = 0.925σ−3 and
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Fig. 2 Time correlation functions of the modified macroscopic energy flux, as defined in Eq.
(5), for different definitions of the Γ matrix (see text). The “0” line refers to the original
definition (i.e. Γ = 0), whereas the label “1” and “2” correspond to the two definitions of
the Γ matrix given in Eq. (6). The parameters used are γ1 = 10 and γ2 = 2.5. Error bars,
as estimated by standard block analysis, are smaller than the thickness of the lines. Units are
Lennard-Jones units (M = σ = ε = 1).

T = 1.86ε/kB , using cubic simulation cells containing 256 atoms in the iso-choric
microcanonical ensemble, (NV E) [8]. In Fig. 2 we display the macroscopic energy-
flux autocorrelation function corresponding to different choices of the Γ matrix
in Eqs. (4) and (5). The Γ matrices have been constructed in two different ways,
according to the prescriptions:

ΓIJ =



1

2
(AIJ −AJI)

where the matrix elements of A are
drawn from a uniform deviate in the
[0, γ] interval.

(1)

0,+γ,−γ according to whether I = J , I > J , or
I < J .

(2)

(6)

Fig. 2 clearly shows that the 〈JΓe (t) · JΓe (0)〉 correlation functions dramatically
depend on the Γ matrices in Eqs. (4) and (5). Notwithstanding, the integrals of all
these time correlation functions tend to the same limit at large integration times,
as displayed in Fig. 3.

In order to get insight into this remarkable invariance property, let us inspect
the difference between the generalized flux in Eq. (5) and the standard expression
of Eq. (3):

∆JΓe = JΓe − Je =
d

dt

1

4

∑
I,J 6=I

ΓIJ v(|RI −RJ |)(RI −RJ ). (7)

We see that the two different expressions for the macroscopic energy flux differ
by a total time derivative. In the following, we will show that this is a conse-
quence of energy conservation and extensivity and a sufficient condition for the
corresponding thermal conductivity to coincide.
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Fig. 3 Integral of the time correlation functions displayed in Fig. 2, multiplied by the prefactor
appearing in the GK relation, Eq. (1), as a function of the upper limit of integration. Units
are Lennard-Jones units (see caption to Fig. 2). The barely visible shaded area surrounding
each line is an indication of the error bars, as estimated by standard block analysis.

The very possibility of defining an energy current density stems from energy
extensivity and conservation. Energy is extensive: because of this, the energy of
a macroscopic sample of matter of volume Ω can be written as the integral of an
energy density, e(r):

E[Ω] =

∫
Ω
e(r)dr. (8)

Of course, the energy density appearing in Eq. (8) is not uniquely defined, the
only requirement being that its integral over a domain Ω is well defined in the
thermodynamic limit, i.e. two different densities whose integral over a domain
Ω differ by a quantity that scales as the area of the domain boundary should
be considered as equivalent. This equivalence can be expressed by the condition
that two equivalent densities, say e1(r) and e2(r), differ by the divergence of a
(bounded) vector field:

e2(r) = e1(r) +∇ · p(r). (9)

In a sense, two equivalent energy densities can be thought of as different gauges of
the same scalar field.

Energy is also conserved: because of this, for any given gauge of the energy
density, e(r), an energy current density can be defined, je(r, t), so as to satisfy the
continuity equation:

ė(r, t) = −∇ · je(r, t), (10)

where the dot indicates a time derivative. By combining Eqs. (9) and (10) we
see that energy current densities and macroscopic fluxes transform under a gauge
transformation as:

j2(r, t) = j1(r, t)− ṗ(r, t), (11)

J2(t) = J1(t)− Ṗ(t), (12)
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where P(t) =
∫
p(r, t)dr. We conclude that the macroscopic energy fluxes in two

different energy gauges differ by the total time derivative of a vector.

Our previous findings on the energy flux of a system of classical atoms inter-
acting through pair potentials as embodied in Eq. (7) can be recovered by defining
the corresponding energy density as:

e(r) =
∑
I

δ(r−RI)εI . (13)

By taking the first moment of the continuity equation, Eq. (10), with respect to r

and integrating by parts its right-hand side, one sees that the macroscopic average
of the energy current density is the first moment of the time derivative of the
energy density:

Je(t) =

∫
ė(r, t)r dr. (14)

Eq. (14) is ill-defined in periodic boundary conditions essentially for the same
reasons why macroscopic polarization in dielectrics is so [9]. By plugging Eq. (13)
into Eq. (14), using Newton’s equations of motion, and reducing the resulting
expression to a boundary-insensitive form, one easily arrives at the expressions for
the macroscopic energy flux given by Eqs. (3) and (5).

We now show that the energy fluxes of the same system in two different energy
gauges, e1 and e2, thus differing by a total time derivative, as in Eq. (12), result
in the same heat conductivity, as given by the Green-Kubo formula, Eq. (1). Let
us indicate by κ1 and κ2 the thermal conductivities in the two gauges. Using Eq.
(12) and the property that classical time auto-correlation functions are even in
time, one obtains:

κ2 = κ1+

1

6V kBT 2

∫ +∞

−∞

d

dt

(
〈P(−t) · J1(0)〉 − 〈P(t) · J1(0)〉+ 〈P(t) · Ṗ(0)〉

)
dt. (15)

The integral on the right-hand side of Eq. (15) vanishes because the correlation
function of two observables at large time lags factorizes into the product of two
time-independent average values and because the average value of the current J1,
as well as of any total time derivative, vanishes at equilibrium. We conclude that
the heat conductivities computed in different energy gauges coincide, as they must
on physical grounds.

In this paper we have demonstrated that, while the heat flux is inherently
undetermined at the atomic level, the heat conductivity resulting from it through
the Green-Kubo formula is indeed well defined, as any measurable property must
be. This indeterminacy stems from the liberty one has to formally unpack the total
energy of an extended system into localized contributions in an infinite number
of equivalent ways. We believe that this freedom can be exploited to design the
definition of the local energy (be it in terms of atomic energies or energy densities),
so as to optimise the convergence of computer simulations, regarding simulation
length, system size, or both.
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