
PI : a Parallel in-memory skip list based Index

Zhongle Xie∗, Qingchao Cai∗, H.V. Jagadish+, Beng Chin Ooi∗, Weng-Fai Wong∗
∗National University of Singapore +University of Michigan

∗{xiezhongle, caiqc, ooibc, wongwf}@comp.nus.edu.sg +jag@umich.edu

ABSTRACT
Due to the coarse granularity of data accesses and the heavy
use of latches, indices in the B-tree family are not efficient
for in-memory databases, especially in the context of today’s
multi-core architecture.

In this paper, we present PI, a Parallel in-memory skip
list based Index that lends itself naturally to the parallel
and concurrent environment, particularly with non-uniform
memory access. In PI, incoming queries are collected, and
disjointly distributed among multiple threads for processing
to avoid the use of latches. For each query, PI traverses
the index in a Breadth-First-Search (BFS) manner to find
the list node with the matching key, exploiting SIMD pro-
cessing to speed up the search process. In order for query
processing to be latch-free, PI employs a light-weight com-
munication protocol that enables threads to re-distribute the
query workload among themselves such that each list node
that will be modified as a result of query processing will be
accessed by exactly one thread. We conducted extensive ex-
periments, and the results show that PI can be up to three
times as fast as the Masstree, a state-of-the-art B-tree based
index.

Keywords
Database index, skip list, B-tree, parallelization

1. INTRODUCTION
DRAM has orders of magnitude higher bandwidth and

lower latency than hard disks, or even flash memory for that
matter. With exponentially increasing memory sizes and
falling prices, it is now frequently possible to accommodate
the entire database and its associated indices in memory,
thereby completely eliminating the significant overheads of
slow disk accesses [15, 19, 20, 36, 37]. Non-volatile mem-
ory such as phase-change memory looming on the horizon is
destined to push the envelope further. Traditional database
indices, e.g., B+-trees [12], that were mainly optimized for
disk accesses, are no longer suitable for in-memory databases

.

since they may suffer from poor cache utilization due to their
hierarchical structure, coarse granularity of data access and
poor parallelism.

The integration of multiple cores into a single CPU chip
makes many-core computation a norm today. Ideally, an
in-memory database index should scale with the number of
on-chip cores to fully unleash the computing power. The B+-
tree index, however, is ill-suited for such a parallel environ-
ment. Suppose a thread is about to modify an intermediate
node in a B-tree index. It should first prevent other con-
current threads from descending into the sub-tree rooted at
that node in order to guarantee correctness, thereby forcing
serialization among these threads. Worse, if the root node
is being updated, all of the other threads cannot proceed to
process queries. Consequently, the traditional B-tree index
does not provide the parallelism required for effective use of
the concurrency provided by a many-core environment.

On the other hand, single instruction multiple data (SIMD)
is now supported by almost all modern processors. It en-
ables performing the same computation, e.g., arithmetic op-
erations and comparisons, on multiple data simultaneously,
holding the promise of significantly reducing the time com-
plexity of computation. However, to operate on indices using
SIMD requires a non-trivial rethink since SIMD operations
require operands to be contiguously stored in memory.

The aforementioned issues highlight the need for a new
parallelizable in-memory index, and motivate us to re-examine
the skip list [32] as a possible candidate as the base indexing
structure in place of the B+-tree (or B-tree). Skip list em-
ploys a probabilistic model to build multiple linked lists such
that each linked list consists of nodes selected according to
this model from the list at the next level. Like B+-trees,
the search for a query key in a skip list follows breadth-First
traversal in the sense that it starts from the list at the top
level and moves forward along this level until a node with a
larger key is encountered. Thereupon, the search moves to
the next level, and proceeds as it did in the previous level.
However, since only one node is being touched by the search
process at any time, its predecessors at the same level can
be accessed by another search thread, which means data ac-
cess in the skip list has a finer granularity than the B+-tree
where an intermediate tree node contains multiple keys, and
should be accessed in its entirety. Moreover, with a relax-
ation on the structure hierarchy, a skip list can be divided
vertically into disjoint partitions, each of which can be in-
dividually processed on multi-core systems. Hence, we can
expect the skip list to be an efficient and much more suitable
indexing technique for concurrent settings.

ar
X

iv
:1

60
1.

00
15

9v
1

 [
cs

.D
B

]
 2

 J
an

 2
01

6

It is natural to use latches to implement concurrent ac-
cesses over a given skip list. Latches, however, are costly. In
fact, merely inspecting a latch may require it to be flushed
from other caches, and is therefore costly. Latch modifica-
tion is even more expensive, as it will invalidate the latch
replicas located at the caches of other cores, and force the
threads running on these cores to re-read the latch for in-
spection, incurring significant bandwidth cost, especially in
a Non-Uniform Memory Access (NUMA) architecture where
accessing memory of remote NUMA nodes can be an order
of magnitude slower than that of a local NUMA node.

In this paper, we propose a highly parallel in-memory
database index based on a latch-free skip list. We call it PI,
a Parallel in-memory skip list based Index. In PI, we em-
ploy a fine-grained processing strategy to avoid using latches.
Queries are organized into batches and each batch processed
simultaneously using multiple threads. Given a query, PI
traverses the index in a breadth-first manner to find the
corresponding list node. SIMD instructions are used to ac-
celerate the search process. To handle the case in which two
threads find the same list node for some keys, PI adjusts the
query workload among execution threads to ensure that each
list node that will be modified as a result of query processing
is accessed by exactly one thread, thereby eliminating the
need for latches.

Our main contributions include:

• We propose a latch-free skip list index that shows high
performance and scalability. It serves as an alternative
to tree-like indices for in-memory databases and suits
the many-core concurrent environment due to its high
degree of parallelism.

• We use SIMD instructions to accelerate query process-
ing of the index.

• A set of optimization techniques are employed in the
proposed index to enhance the performance of the in-
dex in many-core environment.

• We conduct an extensive performance study on PI as
well as a comparison study between PI and Masstree [29],
a state-of-the-art index used in SILO [37]. The results
show that PI is able to perform up to more than 3×
better than Masstree in terms of query throughput.

The remainder of this paper is structured as follows. Sec-
tion 2 presents related work. We describe the design and
implementation of PI in Section 3 and 4, respectively, and
develop a mathematical model to analyze PI’s performance
of query processing in Section 5. Section 6 presents the per-
formance study of PI. Section 7 concludes this work.

2. RELATED WORK

2.1 B+-tree
The B+-tree [12] is perhaps the most widely used index in

database systems. However, it has two fundamental prob-
lems which render it inappropriate for in-memory databases
First, its hierarchical structure leads to poor cache utiliza-
tion which in turn seriously restricts its query performance.
Second, it does not suit concurrent environment well due to
its coarse granularity of data access and heavy use of latches.
In order to solve those drawbacks, exploiting cache and re-
moving latches become the core direction for implementing
in-memory B+-trees.

2.1.1 Cache Exploitation
A better cache utilization can substantially enhance the

query performance of B+-trees since reading a cache line
from the cache is much faster than from memory. Soft-
ware prefetching is used in [10] to hide the slow memory
access. Rao et al. [33] presents a cache-sensitive search tree
(CSS-tree), where nodes are stored in a contiguous memory
area such that the address of each node can be arithmeti-
cally computed, eliminating the use of child pointers in each
node. This idea is further applied to B+-trees, and the resul-
tant structure, called the CSB+-tree, is able to achieve cache
consciousness and meanwhile support efficient update. The
relationship between the node size and cache performance
of the CSB+-tree is analyzed in [16]. Masstree [29] is a trie
of B+-trees to efficiently handle keys of arbitrary length.
With all the optimizations presented in [10, 33, 34] enabled,
Masstree can achieve a high query throughput. However,
its performance is still restricted by the locks upon which
it relies to update records. In addition, Masstree is NUMA
agnostic as NUMA-aware techniques have been shown to be
not providing much performance gain [29]. As a result, ex-
pensive remote memory accesses are incurred during query
processing.

2.1.2 Latch and Parallelizability
There have been many works trying to improve the perfor-

mance of the B+-tree by avoiding latches or enhancing par-
allelizability. The Blink-tree [24] is an early attempt towards
enhancing the parallelizability of B+-trees by adding to each
node, except the rightmost ones, an additional pointer point-
ing to its right sibling node so that a node being modified
does not prevent itself from being read by other concurrent
threads. However, Lomet [28] points out that the deletion
of nodes in Blink-trees can incur a decrease in performance
and concurrency, and addresses this problem through the
use of additional state information and latch coupling. Bra-
ginsky and Petrank present a lock-free B+-tree implemented
with single-word CAS instructions [8]. To achieve a dynamic
structure, the nodes being split or merged will be frozen, but
search operations are still allowed to perform against such
frozen nodes.

Due to the overhead incurred by latches, a latch-free B+-
tree has also attracted some attention. Sewall et al. pro-
pose a latch-free concurrent B+-Tree, named PALM [35],
which adopts bulk synchronous parallel (BSP) model to pro-
cess queries in batches. Queries in a batch are disjointly
distributed among threads to eliminate the synchronization
among them and thus the use of latches. FAST [21] uses the
same model, and achieves twice query throughput as PALM
at a cost of not being able to make updates to the index
tree. The Bw-tree [26], developed for Hekaton [15, 25], is
another latch-free B-tree which manages its memory layout
in a log-structured manner and is well-suited for flash solid
state disks (SSDs) where random writes are costlier than
sequential ones.

2.2 CAS Instruction and Skip List
Compare-and-swap (CAS) instructions are atomic oper-

ations introduced in the concurrent environment to ease
the implementation of synchronization primitives, such as
semaphores and mutexes. Herlihy proposes a sophisticated
model to show that CAS instructions can be used in imple-
menting wait-free data structures [17]. These instructions

are not the only means to realize concurrent data structures.
Brown et al. also present a new set of primitive operations
for the same purpose [9].

Skip lists [32] are considered to be an alternative to B+-
trees. Compared with B+-trees, a skip list has approxi-
mately the same average search performance, but requires
much less effort to implement. In particular, even a latch-
free implementation, which is notoriously difficult for B+

trees, can be easily achieved for skip lists by using CAS
instructions [18]. Crain et al. propose new skip list algo-
rithms [14] to avoid contention on hot spots. Abraham et
al. combine skip lists and B-trees for efficient query process-
ing [2]. In addition, skip lists can also be integrated into dis-
tributed settings. Aspnes and Shah present Skip Graph [4]
for peer-to-peer systems, a novel data structure leveraging
skip lists to support fault tolerance.

As argued earlier, skip lists are more parallelizable than
B+-trees because of the fine-grained data access and relaxed
structure hierarchy. However, näıve linked list based imple-
mentation of skip lists have poor cache utilization due to
the nature of linked lists. In PI, we address this problem
by separating the Index Layer from the Storage Layer such
that the layout of the Index Layer is optimized for cache
utilization and hence enables an efficient search of keys.

2.3 Single Instruction Multiple Data
Single Instruction Multiple Data (SIMD) processing has

been extensively used in database research to boost the per-
formance of database operations. Chhugani et al. [11] show
how the performance of mergesort, a classical sort algorithm,
can be improved, when equipped with SIMD. Similarly, it
has been shown in [38, 6, 5] that the SIMD-based imple-
mentation of many database operators, including scan, ag-
gregation, indexing and join, perform much better than its
non-SIMD counterpart.

Recently, tree-based in-memory indices leveraging SIMD
have been proposed to speed up query processing [21, 35].
FAST [21], a read only binary tree, can achieve an extremely
high throughput of query processing as a consequence of
SIMD processing and enhanced cache consciousness enabled
by a carefully designed memory layout of tree nodes. An-
other representative of SIMD-enabled B+-trees is PALM [35],
which overcomes the FAST’s limitation of not being able to
support updates at the expense of decreased query through-
put.

2.4 NUMA-awareness
NUMA architecture opens up opportunities for optimiza-

tion in terms of cache coherence and memory access, which
can significantly hinder the performance if not taken into de-
sign [27] [7]. Since accessing the memory affiliated with re-
mote (non-local) NUMA nodes is substantially costlier than
accessing local memory, the major direction for NUMA-
aware optimization is to reduce the accesses of remote mem-
ory, and meanwhile keep load balancing among NUMA nodes [31].
Many systems have been proposed with NUMA aware op-
timizations. ERIS [22] is an in-memory storage engine which
employs an adaptive partitioning mechanism to realize NUMA
topology and hence reduce remote memory accesses. ATra-
Pos [30] further avoids commutative synchronizations among
NUMA nodes during transaction processing.

There are also many efforts devoted to optimizing database
operations with NUMA-awareness. Albutiu et al. propose a

NUMA-aware sort-merge join approach, and leverage prefetch-
ing to further enhance the performance [3]. Lang et al. ex-
plore how various implementation techniques for NUMA-
aware hash join [23]. Li et al. study data shuffling algo-
rithms in the context of NUMA architecture [7].

3. INDEX DESCRIPTION
In a traditional skip list, since nodes with different heights

are dynamically allocated, they do not reside within a con-
tiguous memory area. Non-contiguous storage of nodes causes
cache misses during key search and limits the exploitation of
SIMD processing, which requires the operands to be stored
within a contiguous memory area. We shall elaborate on
how PI overcomes these two limitations and meanwhile achieves
latch-free query processing.

3.1 Structure
Like a typical skip list, PI also consists of multiple levels

of sorted linked lists. The bottommost level is a list of data
nodes, whose definition is given in Definition 1; an upper-
level list is composed of the keys randomly selected with
a fixed probability from those contained in the linked list
of the next lower level. For the sake of expression, these
composing linked lists are logically separated into two layers:
the storage layer and the index layer. The storage layer is
merely the linked list of the bottommost level, and the index
layer is made up of the remaining linked lists.

Definition 1. A data node α is a triplet

(κ, p,Γ)

where κ is a key, p is the pointer to the value associated
with κ, and Γ is the height of κ, representing the number of
linked lists where key κ is present. We say a key κ ∈ S if
there exists a data node α in the storage layer of the index,
S, such that α.κ = κ.

The difference between a traditional skip list and PI lies in
the index layer. In a traditional skip list, the node of a com-
posing linked list of the index layer contains only one key. In
contrast, a fixed number of keys are included in a list node
of the index layer, which we shall call an entry hereafter.
The reason for this arrangement of keys is that it enables
SIMD processing, which requires operands to be contigu-
ously stored. An instance of PI with four keys in an entry
is shown in Figure 1, where three different operations are
collectively processed by two threads, which are represented
by the two arrows colored purple and green, respectively.

Given an initial dataset, the index layer can be constructed
in a bottom up manner. We only need to scan the storage
layer once to fill the high-level entries as well as the asso-
ciated data structure, i.e., routing table, which will be dis-
cussed in the next section in detail. This construction pro-
cess is O(n) where n is the number of records at the storage
level, typically taking less than 0.2s for 16M records when
running on a 2.0 GHz CPU core. Further, the construction
process can be parallelized, and hence can be sped up using
more computing resources.

3.2 Queries and Algorithms
PI, like most indexing structures, supports three types of

queries, namely search, insert and delete. Their detailed
descriptions are as follows, and an abstraction of them is
further given in Definition 2.

Storage

Layer

Index

Layer

HEAD

Entry 6

1 8 14 …

Entry 7

28 … … …

Entry 8

100 112 132 …

Entry 9

… …

Entry 3

1 14 28 …

Entry 4

100 … … …

Entry 5

… … … …

Entry 1

28 112 … …

Entry 2

… … … …

Q
1

Q
1

Query1: Search(8)Q1

Q3

Query2: Delete(28)Q2

Query3: Insert(102)

Q
2

Level 2

Level 3

Level 4

Partition
Partition
(node 2)

1 … 8 2814 … … … 100 112 … … TAIL

102

Level 1

PartitionCore 1 Core 2

Node 1

Node 3 Node 4

Node 2

memory

memory

memory

memory

Figure 1: An instance of PI

• Search(κ): if there exists a data node α in the index
with α.κ = κ, α.p will be returned, and null otherwise.

• Insert(κ, p): if there exists a data node α in the
index with α.κ = κ, update the this data node by
replacing α.p with p; otherwise insert a new data node
(κ, p,Γ) into the storage layer, where Γ is drawn from
a geometrical distribution with a specified probability
parameter.

• Delete(κ): if there exists a data node α in the index
with α.κ = κ, remove this data node from the storage
layer and return 1; otherwise return null.

Definition 2. A query, denoted by q, is a triplet

(t, κ, [p])

where t and κ are the type and key of q, respectively, and if t
is insert, p provides the pointer to the new value associated
with key κ.

We now define the query set Q in Definition 3. There
are two points worth mentioning in this definition. First,
the queries in a query set are in non-decreasing order of
the query key k, and the reason for doing so will be elabo-
rated in Section 3.2.4. Second, a query set Q only contains
point queries, and we will show how such a query set can be
constructed and leveraged to answer range queries in Sec-
tion 3.2.5.

Definition 3. A query set Q is given by

Q = {qi|1 ≤ i ≤ N}

where N is the number of queries in Q, qi is a query defined
in Definition 2, and qi.κ ≤ qj .κ iff i < j.

Definition 4. For a query q, we define the corresponding
interception, Iq, as the data node with the largest key among
those in {α|α.Γ > 1, α.κ ≤ q.κ}.

PI accepts a query set as input, and employs a batch
technique to process the queries in the input. Generally,
batch processing may increase the latency of query process-
ing, as queries may need to be buffered before being pro-
cessed. However, since batch processing can significantly

Algorithm 1: Query processing

Input : S, PI index
Q, query set
t1, ..., tNT

, NT threads
Output: R, Result Set

1 R = ∅;
2 for i = 1 → NT do
3 Qi = partition(Q,N);

4 /* traverse the index layer to get interceptions */
5 foreach Thread ti do
6 Πi = traverse(Qi, S);

7 waitTillAllDone();
8 /* redistribute query workload */
9 for i = 1 → NT do

10 redistribute(Πi, Qi, i);

11 /* query execution */
12 foreach Thread ti do
13 Ri = execute(Πi, Qi);

14 waitTillAllDone();
15 R = ∪Ri;
16 return R;

improve the throughput of query processing, as shown in
Section 6.2, the average processing time of queries are not
much affected.

The detailed query processing of PI is given in Algorithm 1.
First, the query set Q is evenly partitioned into disjoint sub-
sets according to the number of threads, and the i-th subset
is allocated to thread i for processing (line 3). The ordered
set of queries allocated to a thread is also a query set defined
in Definition 3, and we call it a query batch in order to dif-
ferentiate it from the input query set. Each thread traverses
the index layer and generates for each query in its query
batch an interception which is defined in Definition 4 (line
5 and 6). After this search process, the resultant intercep-
tions are leveraged to adjust query batches among execution
threads such that each thread is able to safely execute all
the queries assigned to it after the adjustment (line 9 and
10). Finally, each thread individually executes the queries
in its query batch (line 12 and 13). The whole procedure
is exemplified in Figure 1, where three queries making up a
query set are collectively processed by three threads. Fol-
lowing the purple arrows, thread 1 traverses downwards to

Algorithm 2: Traversing the index layer

Input : S, PI index
Q, query batch

Output: Π, interception set
1 Π = ∅;
2 foreach q ∈ Q do
3 enext = getTopEntry(S);
4 vb = _simd_load(q.κ);
5 while isStorageLayer(enext) == false do
6 va = _simd_load(enext);
7 mask = _simd_compare(va, vb);
8 /* Rnext is the routing table of enext */
9 enext = findNextEntry(enext,mask,Rnext);

10 Π = Π ∪ {enext};

11 return Π;

fetch the data node with key 8 and delete the data node
with key 26 in storage layer, and thread 2 moves along with
the green arrows to insert the data node with key 102.

3.2.1 Traversing the Index Layer
Algorithm 2 shows how the index layer is traversed to

find the interceptions for queries. For each query key, the
traversal starts from the top level of the index layer and
moves forward along this level until an entry containing a
larger key is encountered, upon which it moves on to the
next level and proceeds as it does in the previous level. The
traversal terminates when it is about to leave the bottom
level of the index layer, and records the first data node that
will be encountered in the storage layer as the interception
for the current query.

We exploit Single Instruction, Multiple Data (SIMD) pro-
cessing to accelerate the traversal. In particular, multiple
keys within an entry can be simultaneously compared with
the query key using an simd compare instruction, which
significantly reduces the number of comparisons, and this
is the main reason we put multiple keys in each entry. In
our implementation, keys in an entry exactly occupy a whole
SIMD vector, and can be loaded into an SIMD register using
a single simd load instruction.

Since each simd compare instruction compares multiple
keys in an entry, the comparison result can be diversified,
and hence an efficient way to determine the next entry to
visit for each comparison result is needed. To this end, we
generate a routing table for each entry during the construc-
tion of PI. For each possible result of SIMD comparison,
the routing table contains the address of the next entry to
visit. Figure 2(a) gives an example of SIMD comparison. As
shown in this figure, each SIMD comparison leads to a 4-bit
mask, representing five potential results indicated by the red
arrows shown in Figure 2(c). This mask is then indexed into
the routing table, which is also shown in Figure 2(b), to find
the next entry for comparison.

3.2.2 Redistribute Query Workload
Given the interception set output by Algorithm 2, a thread

can find for each allocated query q the data node with the
largest key that is less than or equal to q.κ by walking along
the storage layer, starting from Iq. However, it is possible
that two queries allocated to two adjacent threads have the
same interception, leading to contention between the two
threads. To handle this case, we slightly adjust the query
workload among the execution threads such that each inter-

a1 a2 a3 a4

b1 b2 b3 b4

va

vb

mask

 mi = (ai >= bi) ? 1 : 0

m1 m2 m3 m4

32bit 32bit 32bit 32bit

 1bit 1bit 1bit 1bit

(a) SIMD comparison

mask Next

1000 …

1100 …

1110 4

1111 3

(b) Routing table for Entry 1

Entry 3

1 14 28 …

Entry 4

100 … … …

Entry 1

28 112 … …

Q
1

Query1: Search(8) Q1

Q3 Query3: Insert(102)

1111 1110 1100 1000

Entry 2

… … … … 0000

(c) Routing process for Entry 1

Figure 2: Querying with a routing table

Algorithm 3: Redistribute query workload

Input : Q = {q1, q2, ...}, query batch
Π = {Iq1 , Iq2 , ...}, interception set
Tlast, last execution thread
Tnext, next execution thread

1 /* exchange the key of the first interception*/
2 sendKey(Tlast, Iq1 .κ);
3 κ = recvKey(Tnext);
4 /* wait for the adjustment from last thread */
5 Q′ = recvQuery(Tlast), Q = Q′ ∪Q;
6 foreach q ∈ Q′ do
7 /* Iq is same as Iq1*/
8 Π = Iq1 ∪ Π

9 Q′ = ∅;
10 for i = |Q| → 1 do
11 if Iqi .κ = κ then
12 Q′ = Q′ ∪ {qi}, Q = Q \ {qi},Π = Π \ {Iqi};
13 else
14 break;

15 sendQuery(Tnext, Q′);

ception is exclusively accessed by a single thread, and so are
the data nodes between two adjacent interceptions. To this
end, each thread iterates backward over its interception set
until it finds an interception different from the first inter-
ception of the next thread, and hands over the queries cor-
responding to the iterated interceptions to the next thread.
The details of this process are summarized in Algorithm 3
and exemplified in Figure 3. After the adjustment, a thread
can individually execute the allocated query workload with-
out contending for data nodes with other threads.

3.2.3 Query Execution
The query execution process at each thread is demon-

strated in Algorithm 4. For each query q, an execution
thread iterates over the storage layer, starting from the cor-
responding interception, and executes the query against the
data node with the largest key that is less than or equal to

Algorithm 4: Query execution

Input : Q = {q1, q2, ...}, adjusted query batches
Π = {Iq1 , Iq2 , ...}, adjusted interception set

Output: R, result set
1 R = ∅;
2 for i = 1 → |Q| do
3 /* walk along the storage layer, */
4 /* starting from the corresponding interception */
5 node = getNode(qi, Iqi);
6 ri = null;
7 if qi.t == “Search” then
8 if node.κ == qi.κ && !node.Fdel then
9 ri = node.p;

10 else if qi.t == “Insert” then
11 if node.κ == qi.κ then
12 node.p = qi.p;
13 else
14 node = insertNode(node, qi.κ, qi.p,Γ);

15 node.Fdel = false;

16 else
17 if node.κ == qi.κ then
18 node.Fdel = true;

19 R = R ∪ {ri}
20 return R;

q.κ. If the query type is delete, we do not remove the data
node immediately from the storage layer, but merely set
a flag Fdel instead, which is necessary for latch-free query
processing, as we shall explain in Section 3.2.4. For the
search query, the Fdel flag of the resultant data node will
be checked to decide the validity of its pointer. For the
update query, a new data node will be inserted into the
storage layer if the query key does not match that of the
resultant data node. Unlike a typical skip list, PI only allo-
cates a random height for the new node, but does not update
the index layer immediately. With more and more updates
made to the storage layer, the index layer should be updated
accordingly to guarantee the performance of query process-
ing. Currently, a background process monitors the updates
to the storage layer, and asynchronously rebuild the whole
index layer when the number of updates exceeds a certain
threshold. The detail is given in Section 4.3.5.

3.2.4 Naturally Latch-free Processing
It is easy to see that query processing in PI is latch-free.

In the traversal of the index layer, since the access to each
entry is read-only, the use of latches can be avoided at this
stage. For the adjustment of query workload, each thread
communicates with its adjacent threads via messages and
thus does not rely on latches. In addition, each query q al-
located to thread i after the adjustment of query workload
satisfies Iiq1 .κ ≤ q.κ < Ii+1

q1 .κ, where Iiq1 and Ii+1
q1 are the

first element in the interception sets of thread i and i+1, re-
spectively. Consequently, thread i can individually execute
without latches all its queries except those which require
reading Ii+1

q1 or inserting a new node directly before Ii+1
q1 ,

since the data nodes that will be accessed during the execu-
tion of these queries will never be accessed by other threads.
The remaining queries can still be executed without latches
as the first interception of each thread will never be deleted,
as described in Section 3.2.3.

In our algorithm, a query set Q is ordered mainly due

S(100) I(99) S(92) S(90) S(123) S(112) D(102) I(102)

90 97 100 112 130

A100 A97 A90 A90 A112 A112 A100 A100

S: Search
I: Insert
D: delete

𝑞
𝛼𝑠

𝑞
𝛼𝑠

Storage Layer

𝜋𝑖 𝜋j

Figure 3: Interception adjustment

to two reasons. First, cache utilization can be improved by
processing ordered queries in Algorithm 1, since the entries
and/or data nodes to be accessed for a query may have al-
ready been loaded into the cache during the processing of
previous queries. Second, a sorted query set leads to sorted
interception sets (ordered by query key), which is necessary
for interception adjustment and query execution to work as
expected.

3.2.5 Range Query
Range query is supported in PI. Given a set of range

queries (a normal point query defined in Definition 2 is also a
range query with the upper and lower bound of the key range
being the same), we first sort them according to the lower
bound of their key range and then construct a query set de-
fined in Definition 3 using these lower bounds. This query
set is then distributed among a set of threads to find the
corresponding interceptions, as in the case of point queries.
The redistribution of query workload, however, is slightly
different. Denote the first element in the interception set
of thread i, i.e., the interception corresponding to the first
query in the query batch of thread i, by Iiq1 . For each allo-

cated query with a key range of [κs, κe], where κe ≥ Ii+1
q1 ,

thread i partitions it into two queries with the key ranges
being [κs, I

i+1
q1 .κ) and [Ii+1

q1 .κ, κe], respectively, and hands
over the second query to thread i + 1. As in Algorithm 3,
this redistribution process must be performed in the order
of thread id in order to handler the case where the key range
of a range query is only covered by the union of the intercep-
tion sets of three or more threads. After the redistribution
of query workload, each thread then executes the allocated
queries one by one, which is quite straightforward. Start-
ing from the corresponding interception, PI iterates over the
storage layer to find the first data node within the key range,
and then executes the query upon it and each following data
node until the upper bound of the key range is encountered.
The final result of an original range query can be acquired by
combining the result of corresponding partitioned queries.

4. IMPLEMENTATION

4.1 Storage Layout
As we have mentioned, PI logically consists of the index

layer and the storage layer. The index layer further com-
prises multiple levels, each containing the keys appearing
at that level. Keys at the same level are organized into
entries to exploit SIMD processing, and each entry is associ-
ated with a routing table to guide the traversal of the index
layer. For better cache utilization, entries of the same level
are stored in a contiguous memory area. The storage layer
of PI is implemented as a typical linked list of data nodes to
support efficient insertions. Since entries contained in each
level of the index layer are stored compactly in a contigu-

ous memory area, PI cannot immediately update the index
layer upon the insertion/deletion of a data node with height
h > 1. Currently, we implement a simple strategy to realize
these deferred updates. Once the number of insertions and
deletions exceeds a certain threshold, the entire index layer
is rebuilt from the storage layer in a bottom-up manner.
Although this strategy seems to be time-consuming, it is
highly parallelizable and the rebuilding process can thus be
shortened by using more threads. Specifically, each thread
can be assigned a disjoint portion of the storage layer and
made responsible to construct the corresponding part of the
index layer. The final index layer can then be obtained by
simply concatenating these parts level by level.

4.2 Parallelization and Serializability
We focus on two kinds of parallelization in the imple-

mentation, i.e., data-level parallelization and scale-up paral-
lelization. It is also worth noting that serializability should
be guaranteed in the parallel process.

Data-level parallelization is realized through the use of
SIMD instructions during the traversal of the index layer.
As mentioned before, in our implementation, each entry con-
tains multiple keys, and their comparison with the query key
can be done using a single SIMD comparison instruction,
which substantially accelerates the search process of inter-
ceptions. Moreover, SIMD instructions can be introduced in
sorting the query set Q to improve the performance. In our
implementation, we use Intel Intrinsic Library to implement
SIMD related functions.

We exploit scale-up parallelization provided in multi-core
systems by distributing the query workload among different
cores such that the execution thread running at each core
can independently process the queries assigned to it. Serial-
izability issues may arise as a result of coexistence of search
and update queries in one batch, and we completely elim-
inate these issues by ensuring that only one thread takes
charge of each data node at any time.

4.3 Optimization

4.3.1 NUMA-aware Optimization
The hierarchical structure of a modern memory system,

such as multiple cache levels and NUMA (Non-Uniform Mem-
ory Access) architecture, should be taken into consideration
during query processing. In our implementation, we orga-
nize incoming queries into batches, and process the queries
batch by batch. The queries within one batch are sorted
before processing. In this manner, cache locality can be ef-
fectively exploited, as the search process for a query key is
likely to traverse the entries/data nodes that have just been
accessed during the search of the previous query and thus
have already been loaded into the cache.

A NUMA architecture is commonly used to enable the
performance of a multi-core system to scale with the num-
ber of processors/cores. In a NUMA architecture, there
are multiple interconnected NUMA nodes, each with sev-
eral processors and its own memory. For each processor,
accessing local memory residing in the same NUMA node is
much faster than accessing remote memory of other NUMA
nodes. It is thus extremely important for a system running
over a NUMA architecture to reduce or even eliminate re-
mote memory access for better performance.

PI evenly distributes data nodes among available NUMA

NODE 1

Thread 1 Thread 2 Thread 3 Thread 4

Thread 7Thread 6Thread 5Thread 4

NODE 2

(a) Uniform query workload

NODE 1

Thread 1 Thread 2 Thread 3

Thread 7Thread 6Thread 5Thread 4

NODE 2

Thread 8

(b) Skewed query workload

Figure 4: Self-adjusted threading

nodes such that the key ranges corresponding to the data
nodes allocated to each NUMA node are disjoint. One or
more threads will then be spawned at each NUMA node
to build the index from the data nodes of the same NUMA
node, during which only local memory accesses are incurred.
As a result, for each NUMA node, there is a separate index,
which can be used to independently answer queries falling
in the range of its key set. Each incoming query will be
routed to the corresponding NUMA node, and get processed
by the threads spawned in that node. In this way, there is
no remote memory access during query processing, which
will translate into significantly enhanced query throughput,
as shown in the experiments. Moreover, the indices at dif-
ferent NUMA nodes also collectively improve the degree of
parallelism since they can be used to independently answer
queries. This idea of parallelism is aptly illustrated in Fig-
ure 1, where two threads are spawned in the first NUMA
node and the other three nodes can have multiple threads
running in parallel as well.

4.3.2 Load Balancing
It can be inferred from Algorithm 3 that PI ensures the

data nodes between two adjacent interceptions are handled
by the same thread. As long as the queried keys of a batch
are not limited to a very short range, PI is able to distribute
the query workload evenly among multiple threads (within
a NUMA node) due to the fact that queries of a batch are
sorted and the way we partition the queries. However, it
is more likely that the load among multiple NUMA nodes
is unbalanced, which occurs when most incoming queries
should be answered by the data nodes located at a sin-
gle NUMA node. To address this problem, we use a self-
adjusted threading mechanism. In particular, when a query
batch has been partitioned and each partitioned sub-query
has been assigned to the corresponding NUMA node, we
spawn threads in each NUMA node to process its allocated
queries such that the number of threads in each NUMA
node is proportional to the number of queries assigned to it.
Consequently, a NUMA node that has been allocated more
queries will also spawn more threads to process queries. An
example and its further explanation on the threading mech-
anism are given in Section 4.3.3.

4.3.3 Self-adjusted threading
In this section, we shall elaborate on our self-adjusted

threading mechanism, which allocates threads among NUMA
nodes for query processing such that query performance can
be maximized within a given budget of computing resource.
As mentioned in Section 4.3.2, if there are several NUMA
nodes available, PI will allocate the data nodes among them,
build a separate index in each NUMA node from its allo-
cated data nodes, and route arriving queries to the NUMA
node with matching keys in order not to incur expensive re-
mote memory accesses. Given the query workload at each
NUMA node, our mechanism dynamically allocates execu-
tion threads among NUMA nodes such that the number of
threads running on each NUMA node is proportional to its
query workload, i.e., the number of queries routed to it.
In the cases where a NUMA node has used up its hard-
ware threads, our mechanism will offload part of its query
workload to other NUMA nodes with available computing
resource.

4.3.4 Group Query Processing and Prefetching
Since entries at the same level of the index are stored in

a contiguous memory area, it is thus more convenient (due
to fewer translation lookaside buffer misses) to fetch entries
of the same level than to fetch entries locating at different
levels. In order to realize this location proximity, instead of
processing queries one by one, PI organizes the queries of a
batch into multiple query groups, and processes all queries
in a group simultaneously. At each level of the index layer,
PI traverses along this level to find the first entry at the next
level to compare with and then moves downward to the next
lower level to repeat this process.

Moreover, this way of group query processing naturally
calls for the use of prefetching. When the entry to be com-
pared with at the next level is located for a query, PI issues a
prefetch instruction for this entry before turning to the next
query. Therefore, the requested entries at the next level may
have already been loaded into L1 cache before the compari-
son between them and the queried keys, thereby overlapping
the slow memory latency.

4.3.5 Background Updating
We use a daemon thread running in background to update

index layer. If the number of update operations meets a pre-
defined threshold, the daemon thread will start rebuilding
the index layer. The rebuilding of the index layer is fairly
straightforward. The daemon thread traverses the storage
layer, put the key of each valid data node with height > 1
encountered into an array sequentially, and updates the as-
sociated route table with the address of this data node. The
new index layer will be put into use after all running threads
complete the processing of current query batch, and mean-
while the old index layer will be discarded.

5. PERFORMANCE MODELING
In this section, we develop a performance model for query

processing of PI. The symbols used in our analysis are sum-
marized in Table 1.

5.1 Key Search

Table 1: Notations for Analysis
Symbol Description
H index height
P probability parameter
M number of keys contained in an entry
L memory access latency
N number of the initial data nodes
R ratio of insert queries
Se entry size
Sn data node size
Sl size of a cache line
Sc size of the last level cache
Tc time to read a cache line

from the last level cache

The key search process is to locate the data node with
matching key at Storage Layer. The time spent in this pro-
cess is dominated by the number of entries and data nodes
that need to be read for key comparison.

Given the number of initial data nodes, N , the height
of PI, H, is about d− logP Ne. At each level of PI, the
number of keys between two adjacent ones that also appear
at a higher level follows a geometric distribution, and has
an expected value of 1/P . Therefore, the average number
of entries needed to compare with at each level of the index
layer is approximately d 1+P

2PM
e, where 1+P

2P
is the average

number of keys that need to be compared with. The number
of cache lines that need to be read at each level is thus
dSe
Sl
ed 1+P

2PM
e. Consequently, the total number of cache lines

during the traversal of the index layer is (H−1)dSe
Sl
ed 1+P

2PM
e.

This is however a slight over-estimate, since the top levels of
the index layer may already have been read into L1 cache.

When the interception has been located in the storage
layer for a given query, the search process proceeds by it-
erating over the data nodes from the one contained in the
interception until the node with matching key is encoun-
tered. The number of data nodes scanned during this phase
is about half of the number of data nodes contained be-
tween two adjacent ones with their key appearing at the
index layer, which is given by d 1+P

2PM
e, and the number of

cache lines read during this stage is dSn
Sl
ed 1+P

2PM
e.

The number of data nodes read during the scanning of the
storage layer is not affected by the delete queries because of
the PI query processing strategy. However, insert queries
do impact this number. Assuming insert queries are uni-
formly distributed among the storage layer, and the aggre-
gate number of insert and delete queries does not exceed the
threshold upon which the rebuilding of the index layer will
be triggered. The number of data nodes during key search

process will become (1+iR/N)(1+P)
2P

, where i is the number
of queries that have been processed, and R is the ratio of
insert queries among the processed i queries.

In our implementation, the probability of key elevation, P ,
is 0.25 as suggested in [32], and each entry contains 4 keys,
each being a 32-bit float number. Therefore, the size of each
entry, Se, is 4*(4+8)=48 bytes, where the additional 8 bytes
for each key is required by route table to determine the next
entry to compare. Each data node occupies 20 bytes: 4
bytes are used for key, and the other 16 bytes compose two
pointers, one pointing to the value, e.g., a tuple in a database

m
em

o
ry

C1

L1

L3

C2 C3 C4 C5 C6

L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2

Input/Output Hub

Input/Output Hub

QPI

QPI
Cores(2GHz)

L1 Cache(32KB)
L2 Cache(256KB)L3 Cache(18MB)

Local Memory(128GB)

m
em

o
ry

C1

L1

L3

C2 C3 C4 C5 C6

L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2

m
em

o
ry

C1

L1

L3

C2 C3 C4 C5 C6

L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2

m
em

o
ry

C1

L1

L3

C2 C3 C4 C5 C6

L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2

Figure 5: CPU architecture for the experiments

table, and the other for the next data node. Consider an
instance of PI with 512K keys. Its size can be computed by
20 ∗ 512K + 1/3 ∗ 48 ∗ 512K = 18M , and the whole index
can be kept in the last level cache of most servers (e.g. the
one we use for the experiments). Therefore, the processing
of each search/delete query fetches about 12 cache lines, 9
for the index layer and 3 for the storage layer. The total
time cost is thus 12Tc, where Tc is the time to read a cache
line from the last level cache.

5.2 Rebuilding the Index Layer
For the sake of simplicity, we only focus on the indices

with a lot of data nodes, in which case the data nodes are
unlikely to be cached, and hence require to be read from
memory during the rebuilding of the index layer. In addi-
tion, a data node occupies 48 bytes, as mentioned in last
section, and hence can be fetched within a single memory
access, which normally brings a 64-byte cache line into the
cache. Therefore, for an index with N data nodes, scanning
the storage layer costs a time of NL. In addition, there are
NP/(1−P) entries and routing tables that need to be writ-
ten back into memory, which costs another 2NP/(1 − P)
memory accesses. Therefore, the total time of rebuilding
the index layer can be approached by (1 + P)NL/(1 − P).
However, with more threads participating in the rebuild-
ing process, this time can be reduced almost linearly before
bounded by memory bandwidth.

6. PERFORMANCE EVALUATION
We evaluate the performance of PI on a platform with 512

GB of memory evenly distributed among four NUMA nodes.
Each NUMA node is equipped with an Intel Xeon 7540 pro-
cessor, which supports 128-bit wide SIMD processing, and
has a L3 cache of 18MB and six on-chip cores, each running
at 2 GHz. The CPU architecture is described in Figure 5,
where QPI stands for Intel QuickPath Interconnect. The
operating system installed in the experimental platform is
Ubuntu 12.04 with kernel version 3.8.0-37.

The performance of PI is extensively evaluated from var-
ious perspectives. First, we show the adaptivity of PI’s
performance of query processing by varying the size of the
dataset and batch, and then adjust the number of execu-
tion threads to investigate the scalability of PI. Afterwards,
we study how PI performs in the presence of mixed and

Table 2: Parameter table for experiments
Parameter Value
Dataset size(M) 2, 4, 8, 16, 32, 64, 128, 256
Batch size 2048, 4096, 8192, 16384, 32768
Number of Threads 1, 2, 4, 8, 16, 32
Write Ratio(%) 0, 20, 40, 60, 80, 100
Zipfian parameter θ 0, 0.5, 0.9

 0

 5

 10

 15

 20

 25

 30

 35

 40

2M 4M 8M 16M 32M 64M 128M 256M

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

size of dataset

PI_insert
PI_search
Masstree_insert
Masstree_search

Figure 6: Query throughput vs dataset size

skewed query workloads, and finally examine PI’s perfor-
mance with respect to range query. For comparison, the
result of Masstree [29] under the same experiment setting is
also given, whenever possible. We choose Masstree as our
baseline mainly due to its high performance and maturity
which is evidenced by its adoption in a widely recognized
system, namely SILO [37]. The Masstree code we use is
retrieved from github [1], and its returned results are con-
sistent with (or even better than) those presented in the
original paper [29], as shown in the following sections.

If not otherwise specified, we use the following default
settings for the experiments. The key length is four bytes.
There are eight execution threads running on the four NUMA
nodes, and the number of threads running on each node is
proportional to the query workload for this node, as men-
tioned in Section 4.1. Three datasets, each with a different
number of keys, are used. The small and medium datasets
have 2M and 16M keys, respectively, and the large dataset
has 128M keys. The index built from the dataset are evenly
distributed among the four NUMA nodes. Each NUMA
node holds a separate index accounting for approximately
1/4 of the keys in the dataset. All the parameters for the
experiments are summarized in Table 2, where the default
value is underlined when applicable.

The query workload is generated from Yahoo! Cloud Serv-
ing Benchmark (YCSB) [13], and the keys queried in the
workload follow a zipfian distribution with parameter θ = 0,
i.e., a uniform distribution. A query batch, i.e., the set
of queries allocated to a thread after partitioning in Al-
gorithm 1, contains 8192 queries, and a discussion on how
to tune this parameter is given in Section 6.2. The whole
index layer is asynchronously rebuilt after a fixed number
(15% of the original dataset size) of data nodes have been
inserted/deleted into/from the index.

6.1 Dataset Size
Figure 6 shows the processing throughput of PI and Masstree

for search and insert queries. For this experiment, we vary
the number of keys in the dataset from 2M to 256M, and ex-

amine the query throughput for each dataset size. The whole
index and query workload is evenly distributed among the
four NUMA nodes, and there are two threads running over
each NUMA node to process queries.

From Figure 6, one can see that the throughput for both
search and insert experiences a moderate decrease as the
dataset size increases from 2M to 64M, and then becomes
relatively stable for larger dataset sizes. This variation trend
in the throughput is natural. For the dataset with 2M keys,
as we have explained in Section 5, the entire index can be
accommodated in the last level caches of the four NUMA
nodes, and the throughput is hence mainly determined by
the latency to fetch the entries and data nodes from the
cache. As the dataset size increases, more and more entries
and data nodes are no longer able to reside in the cache and
hence can only be accessed from memory, resulting in higher
latency and lower query throughput.

The throughput of insert queries of PI is not as high as
that of search queries. The reason is two-fold. First, as
insert queries are processed, more and more data nodes are
inserted into the storage layer of the index, resulting in an
increase in the time to iterate over the storage layer. Second,
the creation of data nodes leads to the eviction of entries
and data nodes from the cache, and a reduced cache hit
rate. This also explains why the performance gap between
insert and search queries gradually shrinks with the size of
dataset.

As can be observed from Figure 6, the throughput of
both search and insert queries in Masstree is much less than
that of PI. In particular, PI is able to perform 34M search
queries or 29M insert queries in one second when the index
can be accommodated in the cache, which are respectively
five and four times more than the corresponding through-
put Masstree achieves for the same dataset size. For larger
datasets, PI can still consistently perform at least 1.5x and
1x better than Masstree in terms of the search throughput
and insert throughout, respectively.

6.2 Batch Size
We now examine the effect of the size of query batches, on

the throughput of PI. For this experiment, the three default
datasets, i.e., the small, medium and large datasets with
2M, 16M and 128M keys, respectively, are used.

Figure 7 shows the result of query throughput with respect
to query batch size for the three datasets. It can be seen that
the size of query batches indeed affects query throughput. In
particular, as the size of query batch increases, the through-
put first undergoes a moderate increase. This is due to the
fact that the queries contained in a batch are sorted based
on the key value, and a larger batch size implies a better uti-
lization of CPU caches. In addition, there is an interception
adjustment stage between key search and query execution in
the processing of each query batch, whose cost only depends
on the number of running threads, and thus is similar across
different batch sizes. Consequently, with more queries in a
single batch, the number of interception adjustments can be
reduced, which in turn translates into an increase in query
throughput.

Figure 7 also demonstrates that the effect of batch size
exerting on query throughput is more significant for smaller
datasets than for larger datasets. The reasons are as follows.
For query batches of the same size, the processing time in-
creases with the size of dataset, as we have already shown in

 0

 10

 20

 30

 40

 50

1024 2048 4096 8192 16384 32768

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

size of batch

search(2M)
search(16M)
search(128M)
insert(2M)
insert(16M)
insert(128M)

Figure 7: Query throughput vs batch size

Figure 6. Therefore, for smaller datasets, the additional time
spent in interception adjustment and warming up the cache,
which is similar across the three datasets, plays a more im-
portant role than for larger datasets. As a result, smaller
datasets benefit more from the increase in query batch size
than larger datasets do. It can be seen from Figure 7 that PI
performs reasonably well under the default setting of 8192
for batch size, but there still remains space of performance
improvement for small datasets. Hence, there is no one-size-
fits-all optimal setting for batch size, and we leave behind
the automatic determination of optimal batch size as future
work.

6.3 Scalability
Figure 8 shows how the query throughput of PI and of

Masstree varies with the number of execution threads. The
threads and the index are both evenly distributed among the
four NUMA nodes. For the case in which there are n < 4
execution threads, threads and the whole index are evenly
distributed among the same number of NUMA nodes which
are randomly selected from the available four. We use the
three datasets, i.e., 2M, 16M and 256M respectively, for this
experiment.

It can be seen from Figure 8 that apparently, both PI and
Masstree can get their query throughput to increase signif-
icantly with more computing resources, but there exists a
substantial gap in the rate of improvement between PI and
Masstree, especially in the cases with a small number of
threads. In PI, when the number of threads changes from 1
to 4, the throughput undergoes a super-linear increase. This
is because when the number of threads is no larger than 4,
the whole index is evenly distributed among the same num-
ber of NUMA nodes. Consequently, the index size, i.e., the
number of entries and data nodes, halves when the number
of threads doubles. With a smaller index size, cache can
be more effectively utilized, leading to an increased single-
thread throughout, and hence a super-linear increase in ag-
gregate throughout. Since smaller indices are more cache
sensitive than larger ones, they benefit more from the in-
crease of the number of threads in terms of the throughput
of query processing, as can be observed from Figure 8.

When the number of threads continues to increase, the in-
crease rate in query throughput of PI gradually slows down,
but is still always better than or equal to that of Masstree.
This flattening can be attributed to the adjustment of in-
terceptions which take place when there are more than one
thread servicing the queries in a NUMA node. And since the
cost of interception adjustment only depends on the number

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

of Threads

PI_insert
PI_search
Masstree_insert
Masstree_search

(a) dataset size = 2M

 0

 10

 20

 30

 40

 50

 0 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

of Threads

PI_insert
PI_search
Masstree_insert
Masstree_search

(b) dataset size = 16M

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

of Threads

PI_insert
PI_search
Masstree_insert
Masstree_search

(c) dataset size = 128M

Figure 8: Query throughput vs thread number

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(M

 q
u
e
ri
e
s
/s

e
c
)

Write Ratio(%)

PI(2M)
PI(16M)
PI(128M)

MassTree(2M)
MassTree(16M)
MassTree(128M)

Figure 9: Query throughput of mixed workloads

of threads, it is same across the indices with different sizes,
and hence accounts for a larger fraction of query process-
ing time for smaller indices. This also explains why query
throughput of smaller indices drops faster than that of larger
ones.

6.4 Mixed Query Workload
In order to thoroughly profile the performance of PI, we

study how it behaves in the presence of query workload con-
sisting of various types of queries. As before, we conduct
this experiment over three default datasets (2M, 16M and
128M). The query workload consists of keys following a uni-
form distribution, and the entire index layer is rebuilt once
a specified number (15% of dataset size) of data nodes have
been inserted into the index.

Figure 9 shows the result when the ratio of insert queries
increases from 0% to 100%. For each ratio, the number of
queries issued to the index is such that the index layer is
rebuilt for the same number as for other ratios. As shown
in Figure 9, with the increase of updates in the query work-
load, the throughput of PI undergoes a slight decrease as a
result of more data nodes in storage layer being traversed,
demonstrating PI’s capability in processing uniform query
workload. Masstree also experiences a similar variance trend
in the query throughput.

6.5 Resistance to Skewness
In this section, PI’s performance of query processing is

explored in the presence of query skewness. As before, there
are eight threads running over the four NUMA nodes, and
three datasets with default sizes (2M, 16M and 128M) are
used. The skewness in query workload is realized via vary-
ing the probability parameter, θ, of zipfian distribution for

workload generation. An intuitive impression on the skew-
ness of the query workloads used in this section is given in
Appendix 6.6 .

Figure 10 exhibits the variation in the throughput query
processing with respect to query skewness and update ra-
tio in query workloads. By comparing this figure with Fig-
ure 9, we can observe that query skewness has only a little
impact on the performance of PI in terms of query process-
ing. We attribute this resistance to query skewness of PI
to the self-adjusted threading mechanism presented in Sec-
tion 4.3.2, which dynamically allocates computing resources
among NUMA nodes based on the query load on each node.
In fact, for the query workload with zipfian probability pa-
rameter θ = 0.5, the numbers of threads spawned at four
NUMA nodes are 3, 2, 2 and 1, respectively, and for the
other query workload with θ = 0.9, these numbers become
4, 2, 1 and 1, respectively. For comparison purposes, the
corresponding result measured with the threading mecha-
nism disabled is shown in Figure 11, from which one can see
that the threading mechanism does significantly enhance the
throughput.

It should also be noted that the skewness in query work-
load does not always exert a negative impact on the through-
put. When fed with a workload consisting of pure search
queries against keys following a zipfian distribution with
θ = 0.5, PI is able to achieve a throughput that is even
higher than what is achieved in the case of no query skew-
ness, as shown in Figure 9 and 10(a). This is probably be-
cause in the NUMA node with the most amount of query
load, each of the three spawned thread accesses only an even
restricted portion of the index, and hence can utilize the
cache more efficiently.

6.6 Details on YCSB Workload
Figure 12 shows the variance of skewness in the key distri-

bution of the three YCSB workloads for the experiment of
Section 6.5. In this figure, each circle consists of 100 sectors
separating the whole key space into 100 disjoint ranges with
equal coverage, and the color of a sector represents how fre-
quently the keys within the relative range are queried. Since
the keys in each YCSB workload follow a zipfian distribu-
tion, the workload becomes more skewed with the increase
of probability parameter θ. However, as shown in Figure 10,
the skewness in the query workload rarely affects the perfor-
mance of PI (as well as Masstree) , which is also validated in
Figure 13, where the zipfian parameter in three YCSB query
workloads, each with a different update ratio (0.5, 0.05 and
0, respectively), are varied from 0 to 0.9 to investigate how
PI can adapt to query skewness.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

Write Ratio(%)

PI(2M)
PI(16M)
PI(128M)

MassTree(2M)
MassTree(16M)
MassTree(128M)

(a) θ = 0.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

Write Ratio(%)

PI(2M)
PI(16M)
PI(128M)

MassTree(2M)
MassTree(16M)
MassTree(128M)

(b) θ = 0.9

Figure 10: Query throughput vs query skewness (with self-adjusted threading)

 0

 5

 10

 15

 20

 25

 30

 35

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

Write Ratio(%)

PI(2M)
PI(16M)
PI(128M)

(a) θ = 0.5

 0

 5

 10

 15

 20

 25

 30

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

Write Ratio(%)

PI(2M)
PI(16M)
PI(128M)

(b) θ = 0.9

Figure 11: Query throughput vs query skewness (without self-adjusted threading)

(a) θ = 0 (b) θ = 0.5 (c) θ = 0.9

Figure 12: Key distribution in three YCSB query workloads

6.7 Range Queries
Figure 14 describes how the performance of range queries

varies with granularity, by which we mean the average num-
ber of results (data nodes) returned for a given range query.
In this experiment, only the performance of search queries
is explored, and the same number of query batches, each
with 8192 range queries, are issued for each dataset. For
comparison, the result for point query (granularity = 1) is
also shown in this figure.

It can be observed from Figure 14 that query throughput

decreases with the granularity of range query at a constant
rate for each dataset. Due to the better cache utilization of
the index built from smaller datasets, the query throughput
decreases a little more slowly for smaller datasets than for
larger datasets. For the granularity of 1000, the processing
of each query batch accesses almost 8M of data nodes, which
means there are many data nodes being accessed multiple
times for the small and medium datasets with 2M and 16M
keys, respectively. Hence, the number of slow memory ac-
cesses incurred by reading entries and data nodes is further
reduced by a larger amount for these two datasets than for

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

θ

PI
MassTree

(a) workload A

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

θ

PI
MassTree

(b) workload B

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

θ

PI
MassTree

(c) workload C

Figure 13: Query throughput vs skewness

 0.1

 1

 10

 100

1 10 100 1000

T
h

ro
u

g
h

p
u

t
(M

 q
u

e
ri
e

s
/s

e
c
)

Granularity

2M
16M
128M

Figure 14: Query throughput of range query

the large dataset, and this is the reason to that the search
throughput for the large dataset drops much faster than that
for the other two datasets when the granularity varies from
100 to 1000.

6.8 Effects of Optimizations
We now explore how the optimization techniques such as

SIMD processing, NUMA-aware index partitioning, prefetch-
ing and group query processing, affect the performance of PI.
The impact of organizing queries into batches has already
been studied in Section 6.2, and hence is not discussed here.
The dataset used for this experiment contains 16M keys, and
the other parameters are set to the default sizes.

Figure 15 shows the breakdown of the gap between the
query performance of PI and a typical skip list with none of
the optimizations enabled. By grouping the keys appearing
at higher layers into entries, and leveraging SIMD to sig-
nificantly reduce the number of key comparisons and hence
memory/cache accesses, the throughput of PI can be im-
proved by 1.3x and 1x for search and insert queries, re-
spectively. NUMA-aware operation leads to another huge
performance gain, improving the query throughput by 1.2x
for both kinds of queries. This performance gain is because
our NUMA-aware optimization largely eliminates accessing
the memory of remote NUMA nodes, which is several times
slower than accessing local memory. Group query processing
brings in a slight improvement of 0.05x in query throughput,
and prefetching contributes to the final performance gain
of 0.2x and 0.14x in the throughput of search and insert
queries, respectively.

7. CONCLUSION AND FUTURE WORK
In this paper, we argue that skip list, due to its high par-

allezability, is a better candidate for in-memory index than

 0

 1

 2

 3

 4

 5

 6

 7

 8

search insert

S
p

e
e

d
u

p
 F

a
c
to

r

origin
+simd
+numa
+group
+prefetch

Figure 15: Effects of optimizations

B+-tree in concurrent environment. Based on this argu-
ment, we propose PI, a cache-friendly, latch-free index that
supports both point query and range query. PI consists of
an index layer, which is in charge of key search, and a stor-
age layer responsible for data retrieval, and the layout of the
index layer is carefully designed such that SIMD processing
can be applied to accelerate key search. The experimental
results show that PI is three times faster than Masstree in
terms of query throughput.

For future work, we seek to implement a finer-grained
mechanism for the rebuilding of the index layer, which is
currently conducted against the whole index layer and thus
not necessary in the presence of skewed queries which only
update a small portion of the index layer. In addition, we
are also exploring applying several other optimizations to
PI. For instance, cache locality can be further enhanced by
pinning the high levels of the index layer in the cache to
prevent them from being evicted in the case of insufficient
cache space, and a large memory page size can reduce the
number of TLB misses incurred by memory accesses.

8. REFERENCES
[1] https://github.com/kohler/masstree-beta.

[2] I. Abraham, J. Aspnes, and J. Yuan. Skip B-trees. In
OPODIS, pages 366–380. 2006.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann.
Massively parallel sort-merge joins in main memory
multi-core database systems. PVLDB,
5(10):1064–1075, 2012.

[4] J. Aspnes and G. Shah. Skip Graphs. TALG, 3(4):37,
2007.

[5] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash
Revisited. PVLDB, 7(1):85–96, 2013.

https://github.com/kohler/masstree-beta

[6] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-Memory Hash Joins on Multi-Core CPUs:
Tuning to the Underlying Hardware. In ICDE, pages
362–373, 2013.

[7] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A case for NUMA-aware contention
management on multicore systems. In PACT, 2010.

[8] A. Braginsky and E. Petrank. A lock-free b+ tree. In
SPAA, pages 58–67, 2012.

[9] T. Brown, F. Ellen, and E. Ruppert. Pragmatic
Primitives for Non-blocking Data Structures. In
PODC, pages 13–22, 2013.

[10] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving
Index Performance through Prefetching. In SIGMOD,
pages 235–246. ACM, 2001.

[11] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey. Efficient Implementation of Sorting on
Multi-Core SIMD CPU Architecture. PVLDB,
1(2):1313–1324, 2008.

[12] D. Comer. Ubiquitous B-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[13] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In SOCC, 2010.

[14] T. Crain, V. Gramoli, and M. Raynal. No Hot Spot
Non-Blocking Skip List. In ICDCS, pages 196–205,
2013.

[15] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server’s Memory-Optimized OLTP
Engine. In SIGMOD, pages 1243–1254, 2013.

[16] R. A. Hankins and J. M. Patel. Effect of Node Size on
the Performance of Cache-Conscious B+-trees. In
SIGMETRICS, volume 31, pages 283–294, 2003.

[17] M. Herlihy. Wait-Free Synchronization. TOPLAS,
13(1):124–149, 1991.

[18] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming, Revised Reprint. Elsevier, 2012.

[19] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. Zdonik, E. P. Jones, S. Madden,
M. Stonebraker, Y. Zhang, et al. H-Store: A
High-Performance, Distributed Main Memory
Transaction Processing System. PVLDB,
1(2):1496–1499, 2008.

[20] A. Kemper and T. Neumann. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System Based
on Virtual Memory Snapshots. In ICDE, pages
195–206, 2011.

[21] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. FAST: Fast Architecture Sensitive Tree
Search on Modern CPUs and GPUs. In SIGMOD,
pages 339–350, 2010.

[22] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich,
D. Molka, and W. Lehner. ERIS: A NUMA-Aware
In-Memory Storage Engine for Analytical Workloads.
PVLDB, 7(14), 2014.

[23] H. Lang, V. Leis, M.-C. Albutiu, T. Neumann, and
A. Kemper. Massively parallel NUMA-aware hash
joins. In IMDM, pages 3–14. 2015.

[24] P. L. Lehman et al. Efficient Locking for Concurrent
Operations on B-trees. TODS, 6(4):650–670, 1981.

[25] J. Levandoski, D. Lomet, S. Sengupta, A. Birka, and
C. Diaconu. Indexing on Modern Hardware: Hekaton
and beyond. In SIGMOD, pages 717–720, 2014.

[26] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
Bw-tree: A B-tree for New Hardware Platforms. In
ICDE, pages 302–313, 2013.

[27] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. M.
Lohman. NUMA-aware algorithms: the case of data
shuffling. In CIDR, 2013.

[28] D. Lomet. Simple, Robust and Highly Concurrent
B-trees with Node Deletion. In ICDE, pages 18–27,
2004.

[29] Y. Mao, E. Kohler, and R. T. Morris. Cache
Craftiness for Fast Multicore Key-Value Storage. In
EuroSys, pages 183–196, 2012.

[30] D. Porobic, E. Liarou, P. Tozun, and A. Ailamaki.
ATraPos: Adaptive transaction processing on
hardware Islands. In ICDE, pages 688–699, 2014.

[31] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and
A. Ailamaki. Scaling up concurrent main-memory
column-store scans: towards adaptive NUMA-aware
data and task placement. PVLDB, 8(12):1442–1453,
2015.

[32] W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. CACM, 33(6):668–676, 1990.

[33] J. Rao and K. A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In VLDB, pages
78–89. Morgan Kaufmann, 1999.

[34] J. Rao and K. A. Ross. Making B+-trees Cache
Conscious in Main Memory. In SIGMOD, pages
475–486, 2000.

[35] J. Sewall, J. Chhugani, C. Kim, N. Satish, and
P. Dubey. PALM: Parallel Architecture-friendly
Latch-Free Modifications to B+ Trees on Many-Core
Processors. PVLDB, 4(11):795–806, 2011.

[36] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh,
and C. Bornhövd. Efficient Transaction Processing in
SAP HANA Database - The End of a Column Store
Myth. In SIGMOD, pages 731–742, 2012.

[37] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy Transactions in Multicore
In-memory Databases. In SOSP, pages 18–32, 2013.

[38] J. Zhou and K. A. Ross. Implementing Database
Operations Using SIMD Instructions. In SIGMOD,
pages 145–156, 2002.

	1 Introduction
	2 Related Work
	2.1 B+-tree
	2.1.1 Cache Exploitation
	2.1.2 Latch and Parallelizability

	2.2 CAS Instruction and Skip List
	2.3 Single Instruction Multiple Data
	2.4 NUMA-awareness

	3 INDEX DESCRIPTION
	3.1 Structure
	3.2 Queries and Algorithms
	3.2.1 Traversing the Index Layer
	3.2.2 Redistribute Query Workload
	3.2.3 Query Execution
	3.2.4 Naturally Latch-free Processing
	3.2.5 Range Query

	4 Implementation
	4.1 Storage Layout
	4.2 Parallelization and Serializability
	4.3 Optimization
	4.3.1 NUMA-aware Optimization
	4.3.2 Load Balancing
	4.3.3 Self-adjusted threading
	4.3.4 Group Query Processing and Prefetching
	4.3.5 Background Updating

	5 Performance Modeling
	5.1 Key Search
	5.2 Rebuilding the Index Layer

	6 Performance Evaluation
	6.1 Dataset Size
	6.2 Batch Size
	6.3 Scalability
	6.4 Mixed Query Workload
	6.5 Resistance to Skewness
	6.6 Details on YCSB Workload
	6.7 Range Queries
	6.8 Effects of Optimizations

	7 conclusion and Future Work
	8 References

