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ABSTRACT
We present a new method to measure the redshift-dependent galaxy bias by combining
information from the galaxy density field and the weak lensing field. This method is
based on Amara et al. (2012), where they use the galaxy density field to construct a
bias-weighted convergence field κg. The main difference between Amara et al. (2012)
and our new implementation is that here we present another way to measure galaxy
bias using tomography instead of bias parameterizations. The correlation between κg
and the true lensing field κ allows us to measure galaxy bias using different zero-lag
correlations, such as 〈κgκ〉/〈κκ〉 or 〈κgκg〉/〈κgκ〉. This paper is the first that studies
and systematically tests the robustness of this method in simulations. We use the
MICE simulation suite, which includes a set of self-consistent N-body simulations,
lensing maps, and mock galaxy catalogues. We study the accuracy and systematic
uncertainties associated with the implementation of the method, and the regime where
it is consistent with the linear galaxy bias defined by projected 2-point correlation
functions (2PCF). We find that our method is consistent with linear bias at the percent
level for scales larger than 30 arcmin, while nonlinearities appear at smaller scales. We
also find that projection along the redshift direction can cause up to a 5% deviation
between the different galaxy bias estimators. This measurement is a good complement
to other measurements of bias, since it does not depend strongly on σ8 as the 2PCF
measurements. We apply this method to the Dark Energy Survey Science Verification
data in a follow-up paper.
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1 INTRODUCTION

The formation and evolution of the large scale structures
in the Universe is an important tool for cosmology studies.
But since most of the mass in the Universe is in the form
of dark matter, which cannot be directly observed, we need

? E-mail: pujol@ice.cat

to understand the connection between the observable uni-
verse (galaxies and stars) and dark matter. In the ΛCDM
paradigm, structures form in the initial density peaks caus-
ing dark matter to gravitationally collapse and form viri-
alized objects. Galaxies are expected to follow these gravi-
tational potentials (e.g. White & Rees 1978), and because
of this they are tracers of the dark matter density peaks.
The relation between the galaxy and mass distributions can
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be described theoretically with the galaxy bias prescription
(Kaiser 1984; Fry & Gaztanaga 1993; Bernardeau 1996; Mo
& White 1996; Sheth & Tormen 1999; Manera, Sheth &
Scoccimarro 2010; Manera & Gaztañaga 2011). Galaxy bias
allows us to connect the distribution of galaxies with that of
dark matter, and a good knowledge of galaxy bias would be
very important to improve the precision of our cosmological
measurements (Eriksen & Gaztanaga 2015).

Many papers have studied halo and galaxy bias in simu-
lations (Cole & Kaiser 1989; Kravtsov & Klypin 1999; Seljak
& Warren 2004; Angulo, Baugh & Lacey 2008; Faltenbacher
& White 2010; Tinker et al. 2010; Manera & Gaztañaga
2011; Paranjape et al. 2013; Pujol & Gaztañaga 2014; Zent-
ner, Hearin & van den Bosch 2014; Carretero et al. 2015;
Pujol et al. 2015), and the different ways to measure bias
(Kravtsov & Klypin 1999; Bernardeau et al. 2002; Manera
& Gaztañaga 2011; Roth & Porciani 2011; Pollack, Smith
& Porciani 2014; Hoffmann et al. 2015; Bel, Hoffmann &
Gaztañaga 2015). There are also several measurements of
bias in observations where usually the dark matter cluster-
ing is assumed from a model or from simulations (Zehavi
et al. 2011; Coupon et al. 2012; Cacciato et al. 2012; Jullo
et al. 2012; Maŕın et al. 2013; Durkalec et al. 2014; Di Porto
et al. 2014). In most of these studies, however, the results
depend strongly on assumptions of the cosmological param-
eters.

Gravitational lensing is the effect of light deflection due
to the perturbations in the gravitational potential from mass
distribution. It is a powerful tool to measure the mass dis-
tribution in the Universe, since the gravitational potential
is affected by both baryonic and dark matter. Weak lensing
refers to the statistical study of small distortions (around
1%) in the shapes of a large number of galaxies due to this ef-
fect. Several ongoing and future galaxy surveys aim to obtain
large weak lensing data sets that will allow us to better con-
strain cosmology, including the Hyper Suprime-Cam (HSC;
Miyazaki et al. 2006), the Dark Energy Survey (DES; The
Dark Energy Survey Collaboration 2005; Flaugher 2005),
the Kilo Degree Survey (KIDS; de Jong et al. 2013), the
Panoramic Survey Telescope and Rapid Response System
(PanSTARRS; Kaiser et al. 2010), the Large Synoptic Sur-
vey Telescope (LSST; LSST Science Collaboration et al.
2009), Euclid (Laureijs et al. 2011), and Wide-Field Infrared
Survey Telescope (WFIRST; Green et al. 2012). From the
shape of the galaxies one can statistically infer the lensing
fields, which contain information of the projected matter
distribution and can be used to generate 2D and 3D mass
maps (Massey et al. 2007; Van Waerbeke et al. 2013; Vikram
et al. 2015).

The combination of weak lensing and galaxy density in-
formation gives us a powerful handle for measuring galaxy
bias. Amara et al. (2012) used the COSMOS field to mea-
sure galaxy bias by reconstructing a bias-weighted shear
map from the galaxy density field. The galaxy bias is esti-
mated from the zero-lag cross correlation between this bias-
weighted shear map from the galaxy density field and the
shear measured from galaxy shapes. Different parameteriza-
tions of bias are used to measure constant, non-linear and
redshift-dependent bias. In this paper we explore and extend

the method from Amara et al. (2012). We analyze whether
the galaxy bias measured with our method is consistent with
the linear bias obtained from the projected 2-point correla-
tion functions (2PCF). We find that our method can be af-
fected by different parameters in the implementation such as
redshift binning, the redshift range used, angular scales, sur-
vey area and shot noise. Finally, we show how to measure the
redshift-dependent galaxy bias by using tomographic red-
shift binning. Although this method is very similar to the
one presented in Amara et al. (2012), there are few notable
differences. First of all, in Amara et al. (2012) they explore
different smoothing schemes for the density field, while we
explore pixelizing the maps and applying a Top Hat filter. In
Amara et al. (2012) the lensing shear is estimated for each
galaxy, and the bias is measured from the predicted and
measured shear of the galaxies, while we measure galaxy
bias from the generated lensing maps. Finally, Amara et al.
(2012) fit different parametric biases using a wide range of
redshift for the galaxy density field, while here we imple-
ment a tomographic measurement, where we measure bias
in redshift bins by using the density field of galaxies in each
particular bin. We will apply this method to the DES Sci-
ence Verification (SV) data in a second paper (Chang et al.
in prep, hereafter Paper II).

The paper is organized as follows. In §2 we give an
overview of the theory for our analysis. In §3 we present
the method used to measure bias from the galaxy density
and weak lensing fields and the numerical effects associated
with the implementation of the method. In §4 we present
the results of the different tests and the final measurement
of redshift-dependent galaxy bias. We finally close in §5 with
discussion and conclusions.

2 THEORY

2.1 Galaxy Bias

The distribution of galaxies traces that of dark matter, and
one of the common descriptions for this relation is galaxy
bias, which relates the distribution of galaxies with that of
dark matter. There are several ways to quantify galaxy bias
(Bernardeau et al. 2002; Manera & Gaztañaga 2011; Roth
& Porciani 2011; Hoffmann et al. 2015; Bel, Hoffmann &
Gaztañaga 2015), and one of the most common ones is from
the ratio of the 2PCFs of galaxies and dark matter:

ξg(r) = b2(r)ξ(r), (1)

where b(r) is the galaxy bias, and ξg(r) and ξ(r) are
the scale-dependent galaxy and matter 2PCFs respectively,
which are defined as:

ξg(r12) = 〈δg(r1)δg(r2)〉, ξ(r12) = 〈δ(r1)δ(r2)〉. (2)

where δg = (ρg − ρ̄g)/ρ̄g is the density fluctuation of galax-
ies (ρg is the galaxy number density), and δ = (ρ − ρ̄)/ρ̄ is
the density fluctuation of dark matter (ρ is the dark mat-
ter density). As can be seen from this equation, galaxy bias
generally depends on the scale r12 (defined as the distance
between r1 and r2). However, it has been shown that at
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sufficiently large scales in the linear bias regime, bias is con-
stant (e.g. Manera & Gaztañaga 2011).

Bias can also be defined from the projected 2PCFs:

ωg(Θ) = b2(Θ)ω(Θ), (3)

where ωg(Θ) and ω(Θ) refer to the projected 2PCF of galax-
ies and dark matter respectively. This definition of bias will
be used in the analysis of this paper. In this case, the bias
dependence is on angle Θ instead of distance r.

In the local bias model approach (Fry & Gaztanaga
1993), the density field of galaxies is described as a function
of its local dark matter density, so that δg = F [δ]. We can
express this relation as a Taylor series:

δg = b0 + b1δ +
b2
2
δ2 + ... =

∞∑
i=0

bi(z)δ
i, (4)

where bi are the coefficients of the Taylor expansion. In the
linear regime, δ � 1, and as b0 = 0 because 〈δg〉 = 〈δ〉 = 0,
then the equation becomes:

δg = b1δ (5)

According to Manera & Gaztañaga (2011), at large
scales this definition of bias is consistent with the bias ob-
tained from the 2PCFs: for r12 & 40h−1 Mpc, b from equa-
tion (1) is indeed constant and equivalent to b1 from equa-
tion (5). This b1 can then be measured from the different
zero-lag correlations between δg and δ:

b1 =
〈δgδ〉
〈δδ〉 (6)

b1 =
〈δgδg〉
〈δgδ〉

(7)

b1 =

√
〈δgδg〉
〈δδ〉 (8)

Although these relations appear to measure the same pa-
rameter b1, the results can be affected by the stochasticity
in the relation between δg and δ, that can come from differ-
ent effects, such as the intrinsic stochasticity of bias and the
projection effects.

Galaxy bias from equations (6-8) depend on the
smoothing angular scale θ used to measure δ and δg. For
small angle θ nonlinearities in the relation between δ and
δg appear, and b1 is no longer consistent with equation (3).
The relation between both scales of bias Θ and θ is complex,
since the smoothing of δ and δg involves the correlations of
all the scales below θ. However, in the linear and local regime
bias is constant in both θ and Θ and then all the estimators
can be compared.

2.2 Weak Lensing

Weak gravitational lensing (see e.g. Bartelmann & Schneider
2001; Refregier 2003) measures the small changes of galaxy
shapes and brightnesses due to the foreground mass distribu-
tion in the line-of-sight of the (source) galaxies. By studying

this effect statistically, assuming that (lensed) galaxies are
randomly oriented in the absence of lensing, one can infer the
mass distribution in the foreground of these source galaxies.
As the light distortion is affected by gravity, weak lensing
allows us to measure the total mass distribution, including
baryonic and dark matter.

The gravitational potential Φ of a given density distri-
bution δ can be defined as:

∇2Φ =
3H2

0 Ωm
2a

δ, (9)

where H0 and Ωm are the Hubble parameter and the mat-
ter density today, and a is the scale factor assuming a spa-
tially flat Universe. Assuming General Relativity and no
anisotropic stress, the lensing potential for a given source
at position (θ, χs) is given by the weighted line-of-sight pro-
jection of Φ:

ψ (θ, χs) = 2

∫ χs

0

dχ
χ(χs − χ)

χs
Φ (θ, χ), (10)

where θ is the angular position on the sky, χ refers to the
comoving radius and χs is the comoving distance to the
sources. The distortion of the source galaxy images can be
described by the convergence κ and shear γ fields that are
defined as:

κ =
1

2
∇2ψ, (11)

γ = γ1 + iγ2 =
1

2
(ψ,11 − ψ,22) + iψ,12, (12)

where ψ,ij = ∂i∂jψ. Focusing on the convergence field, com-
bining equations (9), (10) and (11) we obtain:

κ(θ, χs) =
3H2

0 Ωm
2c2

∫ χs

0

dχ
χ(χs − χ)

χs

δ(θ, χ)

a(χ)
≡ K[δ] (13)

For simplicity, we define q(χ) as the lensing kernel of the
integral of δ at χ:

q(χ, χs) =
3H2

0 Ωm
2c2

χ(χs − χ)

χsa(χ)
(14)

so that

κ(θ, χ) =

∫ χs

0

q(χ, χs)δ(θ, χ)dχ. (15)

Note that κ corresponds to a weighted integral of the matter
density fluctuations in the line-of-sight of the source galax-
ies.

3 METHOD

3.1 Simulation

For the analysis we use the MICE Grand Challenge sim-
ulation (Fosalba et al. 2015a,b; Crocce et al. 2015b), an
N-body simulation of a ΛCDM cosmology with the fol-
lowing cosmological parameters: Ωm = 0.25, σ8 = 0.8,
ns = 0.95, Ωb = 0.044, ΩΛ = 0.75, h = 0.7. It has a
volume of (3.072h−1 Gpc)3 with 40963 particles of mass
2.927 × 1010 h−1 M�. The galaxy catalogue has been run
according to a Halo Occupation Distribution (HOD) and a
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SubHalo Abundance Matching (SHAM) prescriptions (Car-
retero et al. 2015). The parameters of the model have been
fitted to reproduce clustering as a function of luminosity
and colour from the Sloan Digital Sky Survey (Zehavi et al.
2011), as well as the luminosity function (Blanton et al.
2003, 2005a) and colour-magnitude diagrams (Blanton et al.
2005b). We use the MICECATv2 catalogue, an extension of
the publicly available MICECATv1 catalogue1. The galaxy
catalogue is complete for i < 24 from z = 0.07 to z = 1.4.
The catalogue also contains the lensing quantities (γ1, γ2

and κ) at the position of each galaxy, calculated from the
dark matter field with a resolution of Nside=8192 in healpix
(corresponding to a pixel size of ∼ 0.43 arcmin), so the lens-
ing quantities of the galaxies do not have shape noise.

3.2 Bias estimation

In this section, we introduce the method used to estimate
galaxy bias from the lensing and density maps of galaxies
in the MICE simulation. It consists on the construction of
a template κg for the lensing map κ from the density dis-
tribution of the foreground galaxies assuming equation (5).
Substituting δ with δg in equation (13) gives:

κg(θ) ' K[δg] =

∫ χs

0

q(χ, χs)δg(θ, χ)dχ (16)

When computing κg numerically, the integral becomes a sum
over all lenses in the foreground of the sources:

κg(θ) =
∑

all lens bins

q̄′δ′g(θ)∆χ′, (17)

where we have split the foreground galaxies into redshift
bins. ∆χ′ refers to each redshift bin width in comoving co-
ordinates, q̄′ is the mean lensing weight that corresponds to
each redshift bin and δ′g(θ) is the galaxy density fluctua-
tion in each redshift bin at position θ, where θ now repre-
sents a pixel in the sky plane. δ′g(θ) is calculated through
δ′g(θ) = (ρ′g(θ)− ρ̄′g)/ρ̄′g, where ρ′g(θ) is the density of galax-
ies projected in the line-of-sight in each redshift bin and po-
sition (pixel) θ. Notice that δ′g(θ) is calculated taking into
account all the galaxies inside the volume of the cell cor-
responding to each pixel and redshift bin. This means that
δ′g(θ) is constant inside the bin, and it corresponds to a pro-
jection of the galaxy density weighted by the volume of the
corresponding cell.

In Figure 1 we show a schematic picture of the effects
of equation (17). Dahsed black line shows q(z, zs), while red
solid line shows q̄′ in redshift bins of ∆z = 0.2. We used
zs = 1.3 for this figure. The blue shaded region represents
δg(z) in a random (just for the example) pixel in the sky
using narrow redshift bins (∆z = 0.05). The blue solid line
represents δ′g for the redshift bins of ∆z = 0.2. Equation
(17) then is equivalent to the integral of the product of the
blue and red solid lines.

Equation (17) is an approximation of (16), that assumes
that the small fluctuations in redshift of δg inside the bins
do not affect the results. It also assumes that the mean of

1 http://cosmohub.pic.es/
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Figure 1. Schematic comparison of equations (16,17). Dahsed

black line shows q(z, zs), while red solid line shows q̄′ from equa-
tion (17) in redshift bins of ∆z = 0.2. The blue shaded region

represents δg(z) using narrow redshift bins (∆z = 0.05). The

blue solid line represents δ′g for the redshift bins of ∆z = 0.2.

q(χ)δg(χ) inside the bins is equivalent to the product of the
means q̄′δ′g(θ). These approximations are correct at large
scales and when q′(χ) and δg(χ) are not correlated.

We focus on the simplest case, where the galaxy bias is
linear, local and redshift-independent. In this case, we can
estimate b from the following zero-lag correlations of κ and
κg:

b =
〈κgκ〉

〈κκ〉 − 〈κNκN 〉 (18)

b =
〈κgκg〉 − 〈κNg κNg 〉

〈κgκ〉
, (19)

where κN and κNg are the sampling and shot-noise correc-
tion factors obtained by randomizing the galaxy positions
and re-calculating κ and κg. κ is obtained from the mean κ
of the galaxies in each pixel. This is affected by the number
of source galaxies in the pixel, causing a noise in 〈κκ〉 that
depends on the angular resolution used, reaching a 10% er-
ror for a pixel size of 5 arcmin. This noise is cancelled by
subtracting 〈κNκN 〉. On the other hand, 〈κgκg〉 is affected
by shot noise, causing an error that increases with the angu-
lar resolution up to a 20% for a pixel size of 5 arcmin. This
noise is cancelled by subtracting 〈κNg κNg 〉. This correction
assumes a Poisson distribution. To test how well this correc-
tion works for this method, we calculated 〈κgκg〉 − 〈κNg κNg 〉
using the dark matter particles instead of galaxies, and we
compared the results with the true 〈κκ〉 maps from the sim-
ulation. We did this with different dilutions (from 1/70 to
1/700) of the dark matter particles, and recover 〈κκ〉 better
than 1% independently on the dilution, indicating that the
shot-noise subtraction is appropriate.

These are the estimators of bias used in this paper. Since
the galaxies used from the MICE simulation do not have
shape noise, the estimators in this analysis are not affected
by shape noise. This is not the case in observations, where

c© 2012 RAS, MNRAS 000, 1–13
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shape noise is the most important source of noise of this
method and needs to be corrected.

To measure the errors on b, we use the Jack-Knife (JK)
method. We divide the area into 16 subsamples. We evaluate
b 16 times excluding each time a different subsample. The
error of b is estimated from the standard deviation of these
16 measurements as:

σ(b) '

√√√√NJK − 1

NJK

NJK∑
i=1

(bi − b̄)2, (20)

where NJK refers to the number of Jack-Knife subsamples
used and bi is the bias measured by excluding the ith sub-
sample. We checked that the error does not change if we
use a different number of subsamples (between 9 and 100)
instead of 16.

Note that we can also measure bias from the following
cross correlations, which was originally used in Amara et al.
(2012):

b =
〈γi,gγi〉

〈γiγi〉 − 〈γNi γNi 〉
(21)

b =
〈γi,gγi,g〉 − 〈γNi,gγNi,g〉

〈γNi,gγNi 〉
, i = 1, 2 (22)

As this is not the focus of the paper, and we can obtain κ
from the simulation, we measure b from equations (18,19) in
this study. However, in observations we measure the shape
of the galaxies, that is directly related to γi. Because of this,
applying this method to data requires a conversion from κg
to γi,g or from γi to κ. We address this issue in Paper II,
where we use conversions based on Kaiser & Squires (1993)
to apply this method to DES SV data. Another aspect to
take into account for data analysis is that since shape noise
is the main source of noise in the measurement, we like to
avoid the terms that involve variance of lensing quantities
〈κκ〉 and 〈γiγi〉, since these terms are the most affected by
shape noise.

3.3 Implementation

In Figure 2, we illustrate our procedure. We used a ∼ 900
square degree area from the MICE simulation corresponding
to 0◦ < RA < 30◦ and 0◦ < DEC < 30◦. The top panel
shows the convergence map κ, located at z ' 1. The mid-
dle panel shows the constructed convergence template, κg,
derived via equation (17). Both maps have been smoothed
using a circular top hat filter of 50 arcmin radius. We can
see that κg is a biased version of κ at large scales. In the
bottom panel we show the scatter plot of κ versus κg, using
pixels of 7 arcmin of side in each map. The bias b shown in
the plot is estimated via equation (18), and the error corre-
sponds to the Jack-Knife errors from equation (20). In red,
we show a line crossing the origin and with the slope corre-
sponding to this estimated bias. We have checked that the
b value derived from the zero-lag statistics is in agreement
with a linear fit to the scatter plot at the 0.1% level. This is
another indication that we are in the linear regime, where
we can assume equation (5).
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Figure 2. Comparison of κ vs κg . Top panel shows the κ field
from the source galaxies within 0.9 < z < 1.1 and using a Top
Hat filter of 50 arcmin of radius. Middle panel shows κg obtained
from equation (17), using the same smoothing scheme. Bottom
panel shows the comparison between κg and κ for the pixels of

the maps, with the specified bias and error obtained. The red line
corresponds to a line crossing the origin and its slope corresponds
to b. It is consistent with the linear fit of the distribution of the

points.
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We note that the expression for the bias from equations
(18,19) assumes equation (5). However, κ is a projection of δ
in the line-of-sight weighted by the lensing kernel, as well as
κg. Thus, the relation between κ and κg is a constant that
comes from the redshift dependence of bias weighted by the
redshift dependence of the lensing kernel. Hence, the bias
obtained in this example is a weighted mean of galaxy bias
as a function of redshift. But we can take this dependence
into account to measure bias at different redshifts using to-
mography as we explain in §3.5 below.

3.4 Numerical effects and parameters

There are different parameters that can affect our implemen-
tation presented in §3.2. We have studied in which regime
our method is valid, or consistent with the linear bias from
equation (3), and what are the dependences when it is not
valid. With this, we can either calibrate our results or re-
strict to the regimes where our bias measurement is carried
out. Here we describe the main numerical effects and our
choice of parameters for our implementation.

Catalogue selection

We used an area of 0o < RA,DEC < 30o. This is the same
area we used for the fiducial bias measurements from equa-
tion (3), so that our comparison of both bias is not affected
by differences in area or sample variance. This area is similar
to DES Y1 data, so this study can be seen as an estimation
of the theoretical limitations of this method on DES Y1.

We apply a magnitude cut for the foreground galaxies of
i < 22.5, to be able to compare it with measurements in the
DES SV data (Crocce et al. 2015a, Paper II). However, other
selections can be done for this method, such us selecting
galaxies by colour or luminosity, in order to measure colour
and luminosity dependent bias, that would give information
about galaxy formation and evolution.

Redshift bin width

We use redshift bins of ∆z = 0.2 for the foreground galaxies.
In this analysis we use the true redshift from the simulation,
but in data this method would be also affected by photo-z
errors.

For the choice of ∆z we need to take into account two
effects. On one side, the use of wide redshift bins would
mean losing information from the small scale fluctuations of
δg in the line-of-sight, since we project the galaxies in the
same bin to measure δg. We have seen that this produces
a deviation in the value of galaxy bias that is larger than
5% for ∆z > 0.2, and it can be larger than 10% for ∆z >
0.3. We explore this in Figure (5) and in §4.1. We take this
effect into account when we estimate bias in tomographic
bins at the end of the paper. When we have photo-z errors,
the redshift binning effect is not as important as for the
ideal case. If the photo-z errors dominate, the dilution of
the small scale fluctuations come from the photo-z errors,
and the redshift binning does not affect much. We address
the effects of photo-z errors in Paper II.

On the other hand, the use of narrow redshift bins re-
quires a smoothing of the estimation of ρ̄g(z). If we calculate
ρ̄g for each redshift bin alone, for narrow bins ρ̄g(z) is af-
fected by the structure fluctuation in each particular redshift
bin, and this causes a smoothing in the final estimation of δg.
Some smoothing of ρ̄g in redshift is needed to avoid this ef-
fect when using narrow bins. This is relevant for ∆z < 0.03.

Angular scale

To generate the maps we pixelize the sky using a si-
nusoidal projection (which consists on redefining RA as
(RA − 15) cos(DEC) in order to obtain a symmetric map
with pixels of equal area) with an angular resolution of 50
arcmin, so that the area of the pixels is (50 arcmin)2. Then
galaxies are projected in different redshift bins according to
their true redshift.

The bias estimated from this method is not necessarily
consistent with the bias from equation (3) at small scales.
These two methods are only expected to agree at large
scales, in the linear bias regime. Moreover, this method
requires a projection in the line-of-sight, so that different
scales (weighted differently according to the lensing kernel)
are mixed for the same angular scale. However, we have seen
that bias is constant for angular scales larger than Θ & 30 ar-
cmin, meaning that linear scales are dominant in this regime.
In Figure 3 we show the agreement of galaxy bias between
equations (3) and (6-8) when we use a pixel scale of 50 ar-
cmin, as a visual example of this.

Smoothing

An alternative way to calculate the maps in a given smooth-
ing scale is possible by using small pixels and applying a
smoothing kernel of the corresponding scale to these pix-
els, instead of directly using large pixels. This smoothing
scheme has two advantages. First of all, the area that can
be used is optimized, since the pixels affected by the edges
are only the closest to the mask (see Fig. 2 of Paper II).
This is important for small areas and irregular masks. The
other advantage of this scheme is that the maps produced
give also a good visual image of the structures and how the
field changes in the sky. However, the JK estimator has to
be rescaled to obtain the correct errors, since neighbour JK
subsamples are correlated due to the smoothing kernel. We
address this in Paper II.

The results for a given scale are equivalent using this
smoothing scheme or just enlarging the pixels, so in this pa-
per we do not use any smoothing kernel in order to avoid the
need of calibrating the JK estimator. For irregular masks,
as in Paper II, smoothing allows to optimize the area used,
and because of this we apply a smoothing kernel into very
small pixels.

Exceptionally, in Figure 2 we apply the second scheme,
and we use pixels of 7 arcmin and we apply a Top Hat filter
of 50 arcmin to smooth the field. We do this only in this
figure in order to have a better visibility of the structures
of the maps and the shape of the area used. For the rest of
the analysis of the paper, we use pixels of 50 arcmin and no
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smoothing kernel afterwards. We then obtain the values of
bias, and we do not need to rescale the JK errors obtianed.

Edge effects

We use a limited area and we project the sky to obtain the
maps. When we pixelize the map with a definite pixel scale,
due to the projection and the shape of the area used, part
of the pixels in the edges are partially affected by the edges.
We exclude these pixels from the analysis.

When a smoothing kernel is applied to the pixelized
map, the pixels that are close to the edges are also affected
by them. We exclude the pixels whose distance to the edges
is smaller than the smoothing radius.

Source redshift

We estimate the κ field at z ' 1.3 by calculating the mean
κ of the source galaxies with 1.2 < z < 1.4 in each pixel.
The redshift range used ensures we have enough density of
galaxies to correctly calculate κ.

Theoretically one should take into account the redshift
distribution of the source galaxies so that each galaxy con-
tributes to κg with its position χs. However, approximating
these galaxies to a plane in their mean position at z ' 1.3
causes less than a 1% effect.

Foreground galaxy redshift range

Equation (17) is strongly dependent on the redshift range
used for the foreground galaxies. If we use only a partial
redshift range for the construction of κg, the values of κg
obtained have a lower amplitude, since in the sum we are
missing the contribution coming from the unused redshift
range. Moreover, as bias depends on redshift, using a wide
redshift range for the foreground galaxies involves averaging
this redshift dependent bias in the final result. However,
this can be corrected for and used to obtain the bias in
tomographic bins, as discussed in §3.5.

We use single redshift bins of ∆z = 0.2 for the fore-
ground galaxies in the range of 0.2 < z < 1.2 to estimate
the bias in each of these bins. This produces a galaxy bias
estimation of 5 points in the whole redshift range available
(for this method) in the simulation.

3.5 Redshift dependence

This method involves an integral (or a sum in practice) along
the redshift direction, and because of this the bias obtained
is a weighted average of the redshift dependent bias. How-
ever, we can estimate galaxy bias in a given redshift bin
if we restrict the calculation to the foreground galaxies in
that redshift bin, assuming that bias does not change sig-
nificantly in the bin. If this is the case, we can measure the
redshift-dependent bias using tomographic redshift bins.

Since κg is obtained from the contribution of all the
galaxies in front of the sources, if we restrict the redshift
range for the calculation of κg we need to renormalize the

result by taking into account the contribution from the un-
used redshift range. Here is a description of the correction
that we apply to estimate redshift dependent bias using to-
mographic bins.

Taking into account the sum from equation (17), and
using δ instead of δg, we have:

κ(θ) =
∑

all lens bins

q̄′δ′(θ)∆χ′, (23)

where we remind the reader that q̄′ is the weak-lensing ef-
ficiency kernel of each bin. If we only use the foreground
galaxies (or the dark matter field) in a single redshift bin
between comoving coordinates χmin and χmax, then we call
this partial convergence field κ′, where

κ′(θ) = q̄′∆χ′δ̄′ = q̄′∆χ′
∫
dχp′(χ)δ(θ, χ), (24)

and

q̄′ =

∫ χmax

χmin

dχ
q(χ)

∆χ
. (25)

∆χ = χmax − χmin, and p′(χ) is the radial selection func-
tion (constant for the dark matter field in comoving coordi-
nates, since the dark matter density is constant in these
coordinates), normalized to 1 and restricted to the bin
χmin < χ < χmax. To simplify the notation, when the limits
are not specified in the integral, the integral will go through
the whole range between 0 and ∞. Note that, as p′(χ) = 0
for all χ outside the bin, only the range χmin < χ < χmax
contributes to the integral in equation (24), and p′(χ) im-
plies a projection inside the bin. The factor q̄′ appears to be
outside the integral

∫
dχp′(χ)δ(θ, χ) when working in bins.

This is exact for infinitely thin bins, and is also correct if
q(χ) is not correlated with p′(χ)δ(χ) inside the bin. So, to
summarize, the expression from equation (24) is affected by
the projection in the bin, and the correlation between q(χ)
and p′(χ)δ(χ).

For our purpose we are interested in the factors 〈κ′κ〉,
〈κ′κ′〉 and 〈κκ〉 to be able to measure galaxy bias in to-
mographic redshift bins. According to these definitions, to-
gether with equation (15), we have:

κ′κ(Θ) = q̄′∆χ′
∫
p′(χ1)dχ1

∫ χs

0

dχ2q(χ2)ξ(r12) (26)

κ′κ′(Θ) = (q̄′∆χ′)2

∫
p′(χ1)dχ1

∫
dχ2p

′(χ2)ξ(r12) (27)

κκ(Θ) =

∫ χs

0

q(χ1)dχ1

∫ χs

0

q(χ2)dχ2ξ(r12), (28)

with r2
12 = χ2

1 + χ2
2 + 2χ1χ2 cos θ, ξ(r12) is the 2PCF and Θ

is the angular separation.
The quantities we are interested in are the ratios:

f1 =
〈κ′κ〉
〈κκ〉 (29)

and

f2 =
〈κ′κ′〉
〈κ′κ〉 (30)
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For the general case,

〈κAκB〉 =
4π

π2R4

∫ R

0

dr1r1

∫ R

0

dr2r2

∫ π

0

dηωAB(Θ), (31)

where Θ2 = r2
1 +r2

2−2r1r2 cos η, κA and κB can be κ, κ′, κg
or κ′g, η is the angular separation between the vectors r1 and
r2 and ω(Θ) is the two-point angular correlation function of
the two fields A and B, defined as

ωAB(Θ) =

∫ ∞
0

dχA

∫ ∞
0

dχBq(χA)q(χB)p′(χA)p′(χB)ξAB(r),

(32)
where p′(χA,B) are the corresponding selection functions of
the fields A and B, and ξAB(r) is the 3D two-point cross-
correlation function, that in this case corresponds to the
dark matter ξ(r).

Equations (29,30) can be obtained analytically and they
are weakly dependent on cosmology (the only dependence
comes from the ratios between the lensing kernels). Equa-
tions (29,30) describe the contribution of these zero-lag cor-
relations of κ in a given redshift bin for the dark matter
field. As the dark matter field has a bias of 1 by definition,
using the galaxies instead of the dark matter field to com-
pute these equations would give b′f1,2 instead of f1,2 , where
b′ is the galaxy bias in the redshift bin used (assuming that
galaxy bias is constant inside the redshift bin). Then, to es-
timate galaxy bias in these bins, we need to obtain the bias
from equations (18,19) using only the galaxies of these bins,
and then rescale the bias according to the values of f1 (or
f2) as described here:

b′ =
1

f1

〈κ′gκ〉
〈κκ〉 − 〈κNκN 〉 (33)

b′ =
1

f2

〈κ′gκ′g〉 − 〈κ′g
N
κ′g
N 〉

〈κ′gκ〉
, (34)

where κ′g and κ′g
N

are obtained from the galaxies in a given
redshift bin.

4 RESULTS

4.1 Testing

In this study we test our method against a fiducial galaxy
bias. For this, we measure ω(Θ) and ωg(Θ) of dark matter
and galaxies in the simulation for different redshift bins,
using the same area and galaxies that we use for our method.
We also estimate bias from the definitions in equations (6-8)
in the same simulation to study the consistency between the
different bias definitions.

In Figure 3 we compare different estimations of
galaxy bias from the MICE Simulation, using an area of
0o < RA, DEC < 30o. The solid cyan line represents
the bias definition from equation (3). We measure ω(Θ) and
ωg(Θ) as a function of the angular scale, and to obtain the
bias we fit the ratio as constant between 6 and 60 arcmin.
The angular correlation function involves different comov-
ing scales for different redshifts, and then fixing the same
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Figure 3. Comparison of different definitions of bias. Solid cyan

line shows the bias as defined in equation (3). The dashed black,

dash-dotted green and dotted red lines show bias according to the
different definitions from equations (6-8).

angular scales for the galaxy bias implies a mix of physi-
cal scales. However, for large enough scales, bias is constant
and is not affected by this. We have checked that bias is con-
stant at these scales and in all redshift bins, an indication
that we are in the linear regime. The galaxy bias obtained
from equations (6-8) are shown in dashed black line, dotted
red line and dash-dotted green line as specified in the legend.
This has been calculated in each redshift bin by pixelating
δ and δg in pixels of area (50 arcmin)2 using redshift bins
of ∆z = 0.2. The agreement between the solid cyan and the
dashed black lines confirms that linear bias from ω(Θ) con-
verges to local bias at large scales. On the other hand, the
differences in the different expressions of equations (6-8) im-
plies a noise between δg and δ that affects our estimations
of bias. The differences between these estimators can also
be seen as an indirect measurement of this noise, that can
come from stochasticity or other effects as projections and
pixelization. We see that the same effect appears when using
equation (37) to estimate galaxy bias, and this can be ex-
plained by the projection effect due to the redshift binning,
as discussed below in Figures 4 and 5. We take into account
this effect to estimate tomographic bias in §4.2.

For testing purposes, we construct here the bias-
corrected κg map, κ̂g, defined as:

κ̂g(θ) =
∑

all lens bins

q′
δ′g(θ)

b′
∆χ′, (35)

where b′, or b(z), corresponds to the linear bias that can be
obtained from equations (3) or (6-8). In analogy with equa-
tions (18,19), we can calculate the corresponding normalized
bias between the κ̂g and κ fields:

b̂ =
〈κ̂gκ〉

〈κκ〉 − 〈κNκN 〉 (36)

b̂ =
〈κ̂gκ̂g〉 − 〈κNg κNg 〉

〈κ̂gκ〉
. (37)
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Figure 4. Normalized bias from the zero-lag cross correlations

of κ and κg as a function of the angular smoothing scale, nor-

malized by the redshift dependent bias from different estimators.
Dashed red line shows 〈κ̂gκ〉/〈κκ〉, where κ̂g has been obtained

normalizing κg by the bias from equation (3). The solid red line
shows the same, but normalizing κg from the bias obtained from

〈δgδ〉/〈δδ〉. For the dashed blue line, 〈κ̂gκ̂g〉/〈κ̂gκ〉 has been ob-

tained by normalizing κ̂g by bias from equation (3). The solid
blue line shows the same, but normalizing κ̂g by the bias from

〈δgδg〉/〈δgδ〉

Under this definition, b̂ = 1 suggests that this method is
measuring linear bias, since it is basically assuming equation
(5).

Figure 4 shows how the estimator b̂ changes as a func-
tion of the angular scale, defined by the pixel scale, us-
ing different estimators of b̂ and b(z). For the dashed red
and blue lines we used b(z) from equation (3) to obtain
b̂ from 〈κ̂gκ〉/〈κκ〉 and 〈κ̂gκ̂g〉/〈κ̂gκ〉 respectively (we omit
the 〈κNκN 〉 factors for visual simplicity). We can see that
the measurements are constant for Θ > 30 arcmin, mean-
ing that we are in the linear regime in these scales. How-
ever, there is a 5% difference between the two estimators
at large scales (at small scales nonlinearities appear and the
difference is larger). This can be interpreted from Figure (3),
where we see that the estimators 〈δgδ〉/〈δδ〉 and 〈δgδg〉/〈δgδ〉
are slightly different. In fact, 〈κ̂gκ〉/〈κκ〉 is indirectly mea-
suring 〈δgδ〉/〈δδ〉, which is consistent with bias from equa-
tion (3) (at the 1% level), while 〈κ̂gκ̂g〉/〈κ̂gκ〉 is indirectly
measuring 〈δgδg〉/〈δgδ〉, which is slightly higher than bias
from equation (3). If we use b = 〈δgδ〉/〈δδ〉 for the bias nor-
malization of 〈κ̂gκ〉/〈κκ〉 (shown in the solid red line) and
b = 〈δgδg〉/〈δgδ〉 for the bias normalization of 〈κ̂gκ̂g〉/〈κ̂gκ〉
(shown in the solid blue line), then both estimations are
consistent, as expected. As in Figure 3 for b, the difference
between both estimators of b̂ coming from this test can be
seen as an indication (and a measurement) of the noise in
the relation between δg and δ, giving a factor of 5%.

In order to go deeper in the analysis of these numerical
effects and see whether these differences between both es-
timators come from the intrinsic relation between δg and δ
or from numerical systematics, we constructed the following
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Figure 5. bm, defined in equations (39,40), as a function of the

redshift bin width used, ∆z, for the two bm estimators.

template κm:

κm(θ) =

N∑
i=0

q′δ′(θ)∆χ′, (38)

which corresponds to the same exact calculation than equa-
tion (17) for κg, but using dark matter particles instead of
galaxies. This field κm is expected to reproduce κ exactly
except for the numerical differences between the method and
how the original κ is obtained, which basically come from the
redshift binning and projection discussed below equations
(17,25). In order to avoid noise in the κ map, we use κT ,
defined as the true map directly obtained from the high res-
olution map of the simulation (see Gaztanaga & Bernardeau
1998; Fosalba et al. 2008, 2015b), and calculated the bias of
these two estimators of κ as:

bm =
〈κmκT 〉
〈κTκT 〉

(39)

bm =
〈κmκm〉 − 〈κNmκNm〉

〈κmκT 〉
, (40)

that should give bm = 1 if there are no numerical systemat-
ics.

We have found that bm behaves as b̂ in our tests, mean-
ing that the differences between the different estimators can
be seen as a measurement of the numerical effects on the
method. In fact, we have found that the differences mainly
come from the projection effect in the redshift bins, as shown
in Figure 5. Here we show the two estimators of bm as a func-
tion of the redshift bin width, ∆z. We use a pixel scale of 50
arcmin, a source redshift of zs = 1 and we use all the dark
matter particles (diluted with respect to the total number
of particles, but this does not affect the result) within z < 1.
We see that the two estimators agree when we use narrow
redshift bins, but the difference between both increases with
∆z. For ∆z = 0.2, the difference is the 5% that we see in
Figure 4 for the galaxies. This test measures the redshift
binning and the projection impacts on this method, and
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Figure 6. Comparison of 〈κ′κ〉/〈κκ〉 between theory (dashed

black line) and simulation (green points). Each value has been

obtained by using redshift bins of ∆z = 0.2 to calculate κ′, and
using a source redshift of zs = 1.3.

can also be used to calibrate the measurements. In fact, f1

and f2 can be used to take into account these projections,
specified by the selection function p′(χ), and the redshift
binning. But in the case of Figures 4 and 5, we use all the
redshift range in the foreground of the sources and we have
not corrected by f1 and f2. In the case of Figure 4, instead
of using f1 and f2, we correct for this effect by using the bias
which is estimated using the same redshift bin width as in
the κ estimates. For narrow redshift bins these corrections
are negligible. In the next section we will apply the f1 and
f2 corrections to the tomographic estimations.

4.2 Redshift dependent bias

In Figure 6 we show a comparison between the theoreti-
cal predictions (in dashed black lines) of f1 and the mea-
surements in the MICE simulation (in green points) of
〈κ̂′gκ〉/〈κκ〉, in 6 different redshift bins of ∆z = 0.2, using
a redshift for the sources of zs = 1.3. Here κ̂′g is obtained
from equation (35) but restricting the galaxies to each bin.
To obtain the values for the simulation, we computed κ̂′g in
the corresponding bins, using b = 〈δgδ〉/〈δδ〉 for the nor-
malization of κg. Then, κ̂′g can be seen as an estimator of κ
obtained from δg/b. We see a good agreement between the-
ory and simulations. Note that the amplitude of f1 is higher
at the intermediate redshifts, due to the contribution of the
lensing kernel, but this curve also reflects effects such as the
projections due to the binning (so the fact that we ignore
that q(χ) and p′(χ)δ(χ) might be correlated inside the bin),
the correlation functions of different distances (so the fact
that 〈κ′κ〉 has a contribution coming from the correlation
between the dark matter distribution inside and outside the
bin) or the redshift dependence of the smoothing scale of
ω(Θ) (different redshifts have different smoothing comov-
ing scales). The final amplitude corresponds to f1, so this
reflects the contribution to b̂ of each of these redshift bins.
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Figure 7. Redshift dependent bias estimated form our method,

shown in red and blue points as specified in the legend. For this we

used tomographic redshift bins of ∆z = 0.2 and a source redshift
of zs = 1.3. The solid cyan line shows linear bias from equation

(3), fitting bias as constant between 6 and 60 arcmin. The dashed
black line shows bias estimated from 〈δgδ〉/〈δδ〉, using the same

redshift bins of ∆z = 0.2. The dash-dotted green line shows bias

estimaed from 〈δgδg〉/〈δgδ〉 in the same redshift bins.

Equations (33,34) give a tool that can be used for tomo-
graphic measurements of galaxy bias, since we can estimate
the bias using different redshift bins of the foreground galax-
ies if we take this correction into account. That is, we can
measure b′ for a given redshift by calculating κ′g in that bin
and using equations (33,34).

Figure 7 shows the estimation of the tomographic bias
using different redshift bins of ∆z = 0.2 for both estimators
from equations (33,34), represented as blue and red points
as specified in the legend. We compare them with the fidu-
cial bias from equations (3,6,7) shown in solid cyan, dashed
black and dash-dotted green lines respectively. We see that
the method we present in this paper gives consistent results
with linear bias. There are some slight differences for the
estimator from equation (7) which, as mentioned above, is
due to the effects of projection and binning. But this effect
is not shown from the tomographic bias obtained from our
method, because we take into account these effect in the fac-
tors f1 and f2. Note also that the two methods, represented
by the red and blue points, give very similar results (apart
from the fourth bin).

We can see that the errors are very large for the highest
redshift bin. This is due to the fact that, due to the lensing
kernel, f1 and f2 are very small, and then the measurements
in this bin are very sensitive to small changes. The best error
bars appear where the lensing kernel is higher, so the poten-
tial of this method is optimal in the maximum of the lensing
kernel. Hence, different source redshifts might be combined
in order to optimize the analysis for all redshifts. In Paper II
we combine the results using multiple redshift bins for the
source galaxies, and we fit the galaxy bias from the com-
bination of these measurements, using both κg and γg and
doing a full-covariance analysis. In this paper we do not ap-
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ply any fit, since we directly measure bias from equations
(33,34) using a fixed source redshift bin.

This study proves that we can use this method to mea-
sure linear bias, since our method is consistent with the
linear bias measured from equation (3). This method has
some advantages with respect to other estimators of bias.
First of all, it can be applied to observations, as discussed in
§4.3. In this case, we do not need to assume a dark matter
distribution, since we can obtain this information from the
weak lensing maps, and hence this method is able to mea-
sure bias from the direct comparison between the galaxy and
dark matter distributions. Moreover, this method does not
depend strongly on σ8, as most of the common methods to
measure bias. However, it depends on Ωm, but it is weakly
dependent on the other cosmological parameters. The com-
bination of this method with other estimators of bias that
depend on σ8 allow us to constrain at the same time bias
and cosmology. Because of this, this method is a very good
complement to other measurements of bias.

4.3 Application to data

When applying this method to data, we need to take into
account other aspects for the measurements. First of all, we
cannot measure κ directly from observations, since the lens-
ing information comes from the ellipticity of the galaxies.
Then, we need to obtain γ from the measured ellipticities,
assuming some shape noise, and then convert γ to κ or κg to
γg to measure bias from equations (18,19) or (21,22). Vikram
et al. (2015) explored the conversion from ellipticities to κ
for the DES SV data, obtaining the largest mass map from
weak lensing ever observed. They also showed the consis-
tency between the mass map and the foreground galaxy dis-
tribution. However, it is important to mention that, since
shape noise is the most important source of uncertainty for
this method in observations, the terms 〈κκ〉 and 〈γγ〉 are
very noisy and need to be avoided for an optimal analysis.

Moreover, for photometric surveys we need to take into
account the photo-z estimation. The uncertainty in the red-
shift of the galaxies causes an smoothing of κg that has to
be calibrated from the understanding of the photo-z errors,
as well as from the distribution of the galaxies in redshift.
This has to be taken into account when defining the selection
functions in the calculation of f1 and f2.

Other aspects from observations, such as the mask and
the shape measurements, can affect our measurements and
must be taken into account. We address these aspects in
Paper II where we measure bias in DES SV using the method
presented here.

5 DISCUSSION AND CONCLUSIONS

In this paper we explore a new method to measure galaxy
bias from the combination of the galaxy density and weak
lensing fields. This method is based on Amara et al. (2012),
where they use the galaxy density field to construct a bias-
weighted convergence map κg in the COSMOS field. They
measure different parameterizations of galaxy bias from the

zero-lag correlations of the galaxy shear and a reconstruction
of the shear from the galaxy density field. In this paper
we present a new way to measure tomographic bias from
the zero-lag correlations between the lensing maps and a
reconstruction of the lensing maps from the galaxy density
field. We also study the robustness and the systematics of
this method for the first time.

The implementation of this model is as follows. We con-
struct a template of the convergence field κg at the source
redshift by integrating the density field of the foreground
galaxies in the line-of-sight weighted by the corresponding
lensing kernel as specified in equation (16). We do this for
tomographic bins in the lens distribution. We then compare
to estimates of the matter convergence map κ associated to
the same galaxies in the source redshift bin. We measure
galaxy bias from the smoothed zero-lag cross-correlations
between κ and κg as in equations (18,19). Instead of using
the zero-lag cross-correlation we could also use the 2-point
cross-correlation function.

We use the MICE simulations to study the consistency
of our method by comparing our results with a fiducial
galaxy bias measurement on linear scales. This is obtained
from the ratio between the projected 2PCFs (ω(Θ)) of galax-
ies and dark matter as a function of redshift (see equation
(3)), and fitting a constant galaxy bias between 6 arcmin
and 60 arcmin. We also study local bias from equations (6-
8), making use of the dark matter field of the simulation.
With these comparisons we study the systematics of the
method and the regimes where it is consistent with linear
bias.

There are different systematic effects and numerical de-
pendencies of the method that need to be taken into ac-
count for a correct measurement of linear bias. First of all,
the method is sensitive to the redshift bin width used in the
construction of κg, that have an impact on the galaxy bias
estimators due to the projection effects of the density fields.
This causes differences in the values obtained for the differ-
ent estimators, that can be larger than 5% for ∆z > 0.2 and
larger than 10% for ∆z > 0.3. This has to be taken into
account when measuring κg in wide redshift bins in order
to obtain the correct linear bias. On the other hand, pro-
jecting the source galaxies in a plane have an insignificant
impact on the results. Secondly, the angular smoothing scale
of the field can be affected by nonlinearities for small enough
scales. We find that the measurements are consistent with
linear bias for angular scales of Θ > 30 arcmin, where bias is
constant. Sampling and discreteness noise is also important
and needs to be taken into account (see equations (18,19)).
Finally, we need to exclude from the analysis those pixels
that are affected by the edges of the area used.

A correction must be applied to our estimators if we
only use the foreground galaxies in a given redshift bin for
the construction of κg. This is because the amplitude of κg
is reduced by the fact that we do not use all the information
from the complete redshift range in front of the source red-
shift. We predict theoretically this effect, and we find good
agreement with the measurements, indicating that we can
use this prediction to correct the bias obtained. The theoret-
ical prediction describes the amplitude of the zero-lag corre-
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lations obtained using a given redshift bin for the foreground
dark matter field, that by definition has a bias of 1. We can
measure galaxy bias in that bin from the ratio between the
zero-lag correlations of κ and κg (using the foregroud galax-
ies in that bin) and the theoretical prediction. This provides
a useful tool to do tomography and measure galaxy bias
in single redshift bins. We measure and show the redshift-
dependent bias obtained using this method, and find good
agreement with the redshift-dependent bias from equation
(3).

Other issues associated with observational data must be
addressed if we apply this method to large galaxy surveys
such as the Dark Energy Survey (DES). First of all, we mea-
sure γ instead of κ from the ellipticities of the galaxies, but
we obtain κg from the galaxy density field. Thus, we need
to apply a conversion from κg to γg or from γ to κ in order
to calculate the zero-lag correlations. This conversion is af-
fected by the shape of the mask and the noise of the maps.
Secondly, for photometric surveys we need to account for the
photo-z estimation. The uncertainty on the redshift of the
galaxies causes a smoothing in κg that needs to be corrected
from the photo-z errors and the galaxy redshift distribution.
Other effects in observations include the boundary effects of
irregular masks, that affect the useful area of the analysis,
and shape noise, that causes some of the estimators to be
very noisy. We apply this method to the DES Science Verifi-
cation data in a follow-up paper (Chang et al. in prep). This
method is expected to be significantly better when applied
to larger areas, such as in DES Year 1 (Diehl et al. 2014)
or the 5000 deg2 from the expected total area of the DES
survey.

This paper presents the method, but further studies can
be done. We can explore galaxy bias for different galaxy sam-
ples, e.g. as a function of colour and luminosity. We can also
explore the scale dependence of local bias by studying dif-
ferent angular scales and its nonlinearities, and the redshift
dependence by comparing the tomographic measurements
with parametric redshift-dependent bias based on Amara
et al. (2012). In this paper we have focused on zero-lag cross-
correlations, but we could also use 2-point cross-correlations
as a way to estimate the bias and include the redshift cross-
correlations as a validation test.

The method studied in this paper has several attrac-
tive features. First of all, there is no need to assume a dark
matter distribution to measure bias, since this distribution is
measured from the weak lensing field. This method is then a
direct way to measure local bias by comparing the observed
galaxy and dark matter distributions. Moreover, the method
depends very weakly on σ8 (only in non-linear corrections to
f1 and f2), while other measurements of bias are typically
strongly dependent on σ8. On the other hand, it depends
on Ωm. Hence, a combined analysis of different measure-
ments of galaxy bias, including this method, can be very
useful to constrain better bias and cosmology. Second, the
method can be applied to a situation where galaxies only
cover partially the full redshift range of the lenses. More-
over, the potential of this method will rapidly increase with
the data of present and upcoming surveys, such as the Hy-
per Suprime-Cam (HSC), the Dark Energy Survey (DES),

the Kilo Degree Survey (KiDS), the Large Synoptics Survey
Telescope (LSST), the Wide-Field Infrared Survey Telescope
(WFIRST) and the Euclid mission.
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2002, PhysRep, 367, 1

Blanton M. R. et al., 2003, ApJ, 592, 819
Blanton M. R., Lupton R. H., Schlegel D. J., Strauss M. A.,
Brinkmann J., Fukugita M., Loveday J., 2005a, ApJ, 631,
208

Blanton M. R. et al., 2005b, Aj , 129, 2562
Cacciato M., Lahav O., van den Bosch F. C., Hoekstra H.,
Dekel A., 2012, MNRAS, 426, 566

Carretero J., Castander F. J., Gaztañaga E., Crocce M.,
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