
ar
X

iv
:1

60
1.

00
16

1v
1 

 [
gr

-q
c]

  2
 J

an
 2

01
6

January 5, 2016 1:41 WSPC Proceedings - 9.75in x 6.5in main page 1

1

Wormholes as a cure for black hole singularities

Gonzalo J. Olmo1,2, D. Rubiera-Garcia3, and A. Sanchez-Puente1
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Using exactly solvable models, it is shown that black hole singularities in different electri-
cally charged configurations can be cured. Our solutions describe black hole space-times
with a wormhole giving structure to the otherwise point-like singularity. We show that
geodesic completeness is satisfied despite the existence of curvature divergences at the
wormhole throat. In some cases, physical observers can go through the wormhole and in
other cases the throat lies at an infinite affine distance.
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1. Introduction

One of the most problematic predictions of Einstein’s theory of General Relativity

(GR) is the possibility of generating space-time singularities in processes of grav-

itational collapse. The notion of singularity in gravitational theories is a subtle

issue1–4 that, nonetheless, is sometimes simplified identifying them with the blow

up of certain scalar or tensorial quantities. However, space-time singularities are

more a conceptual problem than a technical one5. The difficulties that they entail

are more related with our ability to describe the world than with the possibility of

obtaining an absurdly large numerical prediction (curvature divergences). In fact,

a space-time is regarded as singular when there exist time-like or null geodesics

which are incomplete6. Incomplete geodesics are those that cannot be extended to

arbitrarily large values of their affine parameter in the past or in the future of a

given event.

Given that in a curved space-time freely falling observers, which follow geodesic

paths, are the analogous of inertial observers in Minkowski space and that they

communicate with one another through light signals, the possibility of incomplete

geodesics implies that observers and/or signals can be created or destroyed, limiting

in this way our ability to describe physical processes. If in a given region physical

observers and/or signals are not well defined, then there is no possibility of describ-

ing what physical processes are taking place there. This is the actual problem with

space-time singularities, that a complete physical description is impossible where

the space-time breaks down7.

The singularity theorems8–12 confirm that space-time singularities are unavoid-

able in GR once trapped surfaces are formed, which can occur under very reasonable
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physical conditions. Thus, if a way out of this problem exists, it must lie beyond

the domain of GR. In this sense, in a series of recent works13–15, we have addressed

the question of space-time singularities from a different geometrical perspective.

Extensions of GR have been considered assuming that the background geometry

is not necessarily Riemannian in the sense that metric and affine structures could

be a priori independent16. This geometrical approach is justified because the con-

tinuum limit of condensed matter systems with a defected microstructure requires

the use of metric-affine geometry for a proper description17. Space-time singulari-

ties could somehow be interpreted as defects in a hypothetical microstructure and

metric-affine geometry could be of help to deal with such defects. This approach

is also useful to explore the role that new geometric structures could play at very

high energies.

Thus, our starting point will be the formulation of well-known gravity theo-

ries beyond GR on top of an a priori non-Riemannian background. The imple-

mentation of this idea is rather simple, as the so-called Palatini formalism does

it straightaway. In the Palatini approach, metric and connection are regarded as

independent geometric entities, and the variation of the action is carried out in-

dependently with respect to those fields. Thus, though the Palatini variation is

sometimes regarded in the literature as a trick to derive the field equations of GR,

it actually has deep conceptual implications because a priori it breaks the Rieman-

nian constraint ∇µgαβ = 0 and allows the field equations to determine how the

metric and the independent connection relate to each other. In the particular case

of GR, the field equations for the connection naturally lead to the compatibility

condition ∇µgαβ = 0. In other theories, however, this relation does not hold, which

has a deep impact on the resulting dynamics.

A natural question that arises when one deals with an independent connection

is how it couples to the matter fields. In order to be as conservative as possible,

we limit ourselves to follow the prescriptions imposed by the Einstein equivalence

principle, which is very well supported experimentally. For this reason, we assume

that only the metric couples directly to the matter, being all the other gravitational

fields (the connection in this case) part of the gravity Lagrangian only. This is

the same that one does, for instance, in scalar-tensor theories, where the scalar

field is part of the gravitational action and does not couple directly to the matter

fields. The scalar field and the matter help generate the metric but only the metric

acts on the matter fields. In our case, the connection plays an active role in the

determination of the metric by inducing nonlinear terms of the matter fields in the

metric field equations. It is these nonlinearities that generate new dynamics and

modify the solutions at very high energy densities. When the matter fields are

absent (vacuum), the field equations boil down to those of GR and the connection

coincides with the Levi-Civita connection of the metric16. Thus, only in scenarios

with matter fields do these Palatini theories generate new dynamics.

In what follows, we will summarize the main results found in recent works15,18,19
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for two different gravity models formulated à la Palatini and coupled to spherically

symmetric matter sources. These models yield black hole solutions with up to two

event horizons, like the Reissner-Nordstrom solution of GR, but with a wormhole

at their center. This last property makes them geodesically complete, including the

naked configurations. Full details on the derivation of the field equations and their

application in spherically symmetric scenarios can be found in those papers and

references therein.

2. Born-Infeld gravity model

Inspired by the Born-Infeld approach to electrodynamics, a Born-Infeld-like grav-

ity theory can be written as14 S = 1
κ2ǫ

∫

d4x
[

√

−|gµν + ǫRµν(Γ)| − λ
√

−|gµν |
]

+

Sm[gµν , ψ], where vertical bars inside the square-root denote determinant, and ǫ

is a small parameter with dimensions of length squared, which for convenience we

write as ǫ = −2l2ǫ . The connection equation can be solved formally in terms of

the Levi-Civita connection of an auxiliary metric whose form is determined by the

space-time metric gµν and a deformation tensor that depends on the matter fields.

Thus, the only dynamical equations to solve are those for the metric. Considering

as matter source a spherically symmetric Maxwell electric field, one finds that the

line element can be written as

ds2 = −A(x)
Ω+

dt2 +
1

A(x)Ω+
dx2 + r2(x)(dθ2 + sin2 θdϕ2) , (1)

where A(x) = 1 − 2M(x)
x , M(x) = M0(1 + δ1G[r(x)]), dG/dz = 1

z4

(1+z4)√
z4−1

,

z = r(x)/rc, M0 and rc are constants, Ω± = 1 ± 1/z4, and r2(x) =
x2+

√
x4+4r4

c

2 .

From this formula, it is apparent that the area of the 2−spheres has a minimum of

magnitude A = 4πr2c at x = 0. This signals the presence of a wormhole, which can

be further supported by studying the properties of the electric flux. In fact, given

that the matter action only considers a free electric field, the wormhole structure

confirms that this solution is a geon in Wheeler’s sense. Thus, this wormhole is sup-

ported by an electric field trapped in the topology, which implies that x ∈]−∞,+∞[.

It is easy to verify that the line element for r ≫ rc recovers the Reissner-

Nordström solution of GR and that the only differences arise for values of order

z = r/rc . 3 (with rc =
√
κqlǫ, and q representing the electric charge). We just

need to focus on the behavior of geodesics in this region to determine if they can

be extended across the wormhole. The geodesic equation for the above line element

takes the form 1
Ω2

+

(

dx
dλ

)2
= E2 − A(x)

Ω+

(

L2

r2(x) − k
)

, where E and L are constants

related to the energy and angular momentum of the test particle, and k = 0,−1 for

null and time-like geodesics, respectively. One can verify that time-like geodesics

never reach the wormhole, in much the same way as they do in GR, where the

singularity is never reached by time-like observers. Null radial geodesics, however,

do reach to the singularity in GR and terminate there (null incompleteness). In
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our case, setting k = 0 and L = 0, one finds that the geodesic equation can be

exactly integrated to yield ±E · λ(x) = 2F 1[− 1
4 ,

1
2 ,

3
4 ;

r4
c

r4 ]r if x ≥ 0, and ±E ·
λ(x) = 2x0 − 2F 1[− 1

4 ,
1
2 ,

3
4 ;

r4
c

r4 ]r if x ≤ 0, where 2F1[a, b, c; y] is a hypergeometric

function, x0 = 2F 1[− 1
4 ,

1
2 ,

3
4 ; 1] =

√
πΓ[3/4]
Γ[1/4] ≈ 0.59907, and the ± sign corresponds

to outgoing/ingoing null rays in the x > 0 region. In Fig.1, one can see that these

geodesics can be smoothly extended across the wormhole (x = 0), confirming their

completeness. Remarkably, at the wormhole throat there exists a generic curvature

divergence which, however, is not an obstacle to having a smooth definition of

geodesics everywhere.

Fig. 1. Affine parameter λ(x) as a function of the radial coordinate x for radial null geodesics
(outgoing in x > 0). In the GR case (green dashed curve in the upper right quadrant), λ = x is
only defined for x ≥ 0 (incomplete). For radial null geodesics in our wormhole spacetime (solid
red curve), λ(x) interpolates between the GR prediction and a shifted straight line λ(x) ≈ x+2x0,
with x0 ≈ 0.59907. In this plot E = 1 and the x−axis is measured in units of rc.

3. Quadratic f(R) gravity

Another interesting model, which is perhaps easier to motivate from an effective

field theory perspective, is that defined by the gravity Lagrangian f(R) = R−λR2,

with λ representing some (positive) squared length. In the Palatini approach, f(R)

theories also yield modified dynamics by means of nonlinearities induced by the

matter terms. In this case, however, the dependence on the matter fields is through

the trace of their stress-energy tensor, which prevents the simple case of a Maxwell

field. Given that electromagnetic fields have a trace anomaly at the quantum level,

we can explore its phenomenological impact by considering nonlinear theories of

electrodynamics as matter source. A related example is that of an anisotropic

fluid of the form Tµ
ν = diag[−ρ,−ρ, αρ, αρ] with α a constant. The conservation

equation implies that ρ(x) = C/r(x)2+2α and, therefore, if α = 1, this fluid is

equivalent to the case of a Maxwell electric field. In general, for this fluid to satisfy

the energy conditions, one requires 0 ≤ α ≤ 1. Like in the Born-Infeld case, the
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connection equation can be formally solved in terms of an auxiliary metric, and the

physical line element can be taken as15

ds2 =
1

fR

(

−A(x)dt2 + 1

A(x)
dx2

)

+ r2(x)dΩ2 , (2)

where fR = 1− 1/z2+2α, r = rcz and r2+2α
c ≡ (4λ)κ2(1− α)C. The function r2(x)

is given by solving the relation x2 = r2cz
2(1 − 1/z2+2α), which is plotted in Fig. 2,

showing a wormhole structure.

Like in the Born-Infeld case shown before, the function A(x) can be solved

Fig. 2. (Left) Representation of r(x) in units of rc for α = 1/10, 1/2, 4/5 (blue, green, and orange,
respectively). The dashed lines represent |x|, the GR case, which is quickly recovered for x > 2.
(Right) Outgoing (green) and ingoing (red) null radial geodesics with E = 1 and α = 4/5. Similar
results are found for any other value 0 < α < 1.

analytically and its behavior far from the wormhole throat is essentially coinci-

dent with the corresponding solution of GR for the value of α chosen. Near the

throat, however, the geometry is different, which has an impact on the geodesic

structure. The geodesic equation becomes
(

dx
dλ

)2
= E2f2

R − A(x)fR

(

k + L2

r2(x)

)

.

Here we also find a Reissner-Nordstrom like behavior for time-like trajectories and

null ones with L 6= 0. For null radial geodesics, however, the behavior is dif-

ferent. The exact analytical solution is of the form ±Eλ̃(z) = − z√
1−z−2(α+1)

+

2z 2F1

(

1
2 ,− 1

2(α+1) ; 1− 1
2(α+1) ; z

−2(α+1)
)

. Far away from the throat, we have

±Eλ̃ ≈ z, like in GR, but near the throat, this expression yields ±Eλ̃ ≈
− 1√

2α+2
√
z−1

= − 1
|x̃| (see Fig. 2). The divergence of λ(x) on both limits, when

z → ∞ and when z → 1, implies that null radial geodesics are complete. Inter-

estingly, these wormholes also have curvature divergences at the throat x = 0, but

these results show that they lie beyond the reach of any observer or signal and,

therefore, do not belong to the physical space-time.

4. Summary and conclusions

In this work we have considered the problem of black hole singularities from the per-

spective of extended theories of gravity in metric-affine geometries. We have studied
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two different gravity models and have shown that in both cases the resulting space-

times are geodesically complete despite the existence of curvature divergences. This

is so for configurations with two event horizons, with one (degenerate) horizon, and

with no horizons (naked). The case of naked configurations is particularly relevant

because it puts forward that the cosmic censorship conjecture is unnecessary if the

space-time topology is nontrivial.
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