1601.00163v1 [cs.DF] 2 Jan 2016

arxXiv

A Parameterized algorithm for Bounded-Degree
Vertex Deletion

Mingyu Xiao*

School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China
myxiao@gmail.com

Abstract. The d-bounded-degree vertex deletion problem, to delete at
most k vertices in a given graph to make the maximum degree of the re-
maining graph at most d, finds applications in computational biology, so-
cial network analysis and some others. It can be regarded as a special case
of the (d+ 2)-hitting set problem and generates the famous vertex cover
problem. The d-bounded-degree vertex deletion problem is NP-hard for
each fixed d > 0. In terms of parameterized complexity, the problem
parameterized by k is W[2]-hard for unbounded d and fixed-parameter
tractable for each fixed d > 0. Previously, (randomized) parameterized
algorithms for this problem with running time bound O*((d 4 1)*) are
only known for d < 2. In this paper, we give a uniform parameterized
algorithm deterministically solving this problem in O*((d+1)*) time for
each d > 3. Note that it is an open problem whether the d’-hitting set
problem can be solved in O*((d’ — 1)*) time for d’ > 3. Our result an-
swers this challenging open problem affirmatively for a special case. Fur-
thermore, our algorithm also gets a running time bound of O*(3.0645")
for the case that d = 2, improving the previous deterministic bound of
O*(3.24%).

Key words. Parameterized algorithms, Graph algorithms, Bounded-
degree vertex deletion, Hitting set

1 Introduction

The d-bounded-degree vertex deletion problem is a natural generation of the
famous vertex cover problem, which is one of the best studied problems in com-
binatorial optimization. An application of the d-bounded-degree vertex deletion
problem in computational biology is addressed by Fellows et. al. [5]: A clique-
centric approach in the analysis of genetic networks based on micro-array data
can be modeled as the d-bounded-degree vertex deletion problem. In fact, its
“dual problem”— the s-plex problem was introduced in 1978 by Seidman and
Foster [12] and it becomes an important problem in social network analysis

now [IJ.

* Supported by NFSC of China under the Grant 61370071.

http://arxiv.org/abs/1601.00163v1

The d-bounded-degree vertex deletion problem is also extensively studied in
theory, especially in parameterized complexity. It has been shown that the prob-
lem parameterized by the size k of the deletion set is W[2]-hard for unbounded d
and fixed-parameter tractable for each fixed d > 0 [5]. Betzler et. al. [2] also stud-
ied the parameterized complexity of the problem with respect to the treewidth
tw of the graph. The problem is FPT with parameters & and tw and W[2]-hard
with only parameter tw. Fellows et. al. [5] generated the NT-theorem for the
vertex cover problem to the d-bounded-degree vertex deletion problem, which
can imply a linear vertex kernel for the problem with d = 0,1 and a polyno-
mial vertex kernel for each fixed d > 2. A linear vertex kernel for the case that
d = 2 was developed in [4]. Recently, a refined generation of the NT-theorem
was proved [I5], which can get a linear vertex kernel for each fixed d > 0.

In terms of parameterized algorithms, the case that d = 0, i.e., the vertex
cover problem, can be solved in O*(1.2738%) time now [3]. When d = 1, the
problem is known as the P3 vertex cover problem. Tu [I3] gave an O*(2%)-
time algorithm and the running time bound was improved to O*(1.882%) by Wu
recently [I4]. When d = 2, the problem is known as the co-path/cycle problem.
For this problem, there is an O*(3.24%)-time deterministic algorithm [4] and an
O*(3%)-time randomized algorithm [6]. For d > 3, a simple branch-and-reduce
algorithm that tries all d + 2 possibilities for a (d + 1)-star in the graph gets
the running time bound of O*((d + 2)¥). In fact, the d-bounded-degree vertex
deletion problem can be regarded as a special case of the (d + 2)-hitting set
problem and the latter problem has been extensively studied in parameterized
algorithms [TTI7I8I9]. For a graph G, we regard each vertex in the graph as an
element and each (d + 1)-star as a set of size d + 2 (a vertex of degree dy > d
will form (dcfﬁl) sets). Then the d-bounded-degree vertex deletion problem in
G becomes an instance of the (d + 2)-hitting set problem. There are several
parameterized algorithms for the d’-hitting set problem running in O*((d’ — 1+
¢)F) time [11/9], where 0 < ¢ < 1 is a function of d’~!. It leaves as an interesting
open problem whether the d’-hitting set problem can be solved in O*((d’ — 1)¥)
time. Note that it is marked in [9] that “(d’ — 1)* seems an unsurpassable lower
bound”. By using fastest algorithms for the (d + 2)-hitting set problem, we can
get an algorithm with running time bound of O*((d + 1 + ¢o)*) with 0 < ¢p < 1
for each fixed d.

In this paper, we design a uniform algorithm for the d-bounded-degree vertex
deletion problem, which achieves the running time bound of O* ((d+1)*) for each
d > 3. Although our problem is a special case of the (d 4 2)-hitting set problem,
the above bound is not easy to reach. We need a very careful analysis and some
good graph structural properties. It is also worthy to mention that our algorithm
also works on the case that d = 2 and runs in O*(3.096%) time, improving the
previous deterministic bound of O*(3.24%) [4] and comparable with the previous
nondeterministic bound of O*(3%) [6].

2 Preliminaries

Let G = (V, E) be a simple undirected graph, and X C V be a subset of vertices.
The subgraph induced by X is denoted by G[X], and G[V'\ X] is written as G\ X.
We may simply use v to denote the set {v} of a single vertex v. Let N(X) denote
the set of neighbors of X, i.e., the vertices in V' \ X adjacent to a vertex z € X,
and denote N(X)U X by N[X]. The degree d(v) of a vertex v is defined to be
|N(v)|. A graph of maximum degree p is also called a degree-p graph. For an
integer ¢ > 1, a star with ¢ + 1 vertices is called a g-star. A set S of vertices is
called a d-deletion set of a graph G, if G\ S has maximum degree at most d.
In our problem, we want to find a d-deletion set of size at most k in a graph.
Formally, our problem is defined as following.

d-BOUNDED-DEGREE VERTEX DELETION

Instance: A graph G = (V, E) and two nonnegative integers d and k.
Question: To decide whether there is a subset S C V of vertices such that
|S| < k and the induced graph G[V'\ S| has maximum degree at most d.

In the above definition, S is also called a solution set.

2.1 Some basic properties

The following lemmas are basic structural properties used to design branching
rules in our algorithms.

Lemma 1. Let v be a vertex of degree > d+ 1 in a graph G. Any d-deletion set
contains either v or d(v) — d neighbors of v.

A vertex v dominates a vertex u if all vertices of degree > d + 1 in N[u] are
also in N[v]. Note that in this definition, we do not require N[u] C Nv].

Lemma 2. If a vertex v of degree > d + 1 dominates a neighbor u of it, then
there is a minimum d-deletion set containing at least one vertex in N[v]\ {u}.

Proof. Since v is of degree > d + 1, any d-deletion set S contains at least
one vertex in N[v]. Assume that S contains only w in N[v]. We can see that
S' = SU{v}\ {u} is still a d-deletion set and |S’| < |S|. Thus, the lemma holds.

O

Lemma 3. If a vertex u dominates a vertex v of degree > d + 1, then there is
a minimum d-deletion set containing at least one neighbor of v.

Proof. Since u dominates v and v is of degree > d + 1, we know that « is a
neighbor of v. Any d-deletion set S contains at least one vertex in N[v] since it is
of degree > d+1. Assume that SNN[v] = {v}. We can see that S’ = SU{u}\{v}
is a d-deletion set containing a neighbor of v and |S’| < |S|. Thus, the lemma
holds. ad

If there is a vertex of degree > d + 1 dominating a neighbor of it or being
dominated by another vertex, we say that the graph has a proper domination.
Note that if a vertex u of degree > d + 1 has at most one neighbor v of degree
> d+1, then v is dominated by v and then there is a proper domination. In fact
we have:

Lemma 4. If a graph has no proper domination, then each vertex of degree
>d+1 in it has at least two nonadjacent neighbors of degree > d + 1.

2.2 Branch-and-search algorithms

Our algorithm is a typical branch-and-search algorithm. In our algorithm, we
search a solution for an instance by recursively branching on the current in-
stance into several smaller instances until the instances become trivial instances.
Each simple branching operation creates a recurrence relation. Assume that the
branching operation branches on an instance with parameter k into [branches
such that in the i-th branch the parameter decreases by at least a;. Let C'(k)
denote the worst size of the search tree to search a solution to any instance with
parameter k. We get a recurrence relation [

Ok) < C(k —a1) + Ok —az) + -+ C(k — a) + 1.

The largest root of the function f(x) =1 — Eé:l x~% is called the branching
factor of the recurrence relation. Let e be the maximum branching factor among
all branching factors in the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an instance with parameter k
is given by O(a*). More details about the analysis and how to solve recurrences
can be found in the monograph [I0].

3 The idea and organization of the algorithm

Our purpose is to design a branch-and-search algorithm for the d-bounded-degree
vertex deletion problem such that the branching factor of each recurrence relation
with respective to the parameter k is at most d + 1. Lemma [l provides a simple
branching rule: for a vertex d of degree > d + 1, branching by either including v
or each set of d(v) —d neighbors of v to the solution set. We will show that when
d(v) > d+ 2, this simple branching operation is good enough to get a branching
factor < d + 1 for each d > 2 (See Step 1 in Section @]). Thus, we can use this
operation to deal with vertices of degree > d + 2. Lemmal/[I] for a degree-(d + 1)
vertex v can be interpreted as: at least one vertex in N(v) is in a d-deletion set.
This branching operation will only get a branching factor of d + 2 for this case.
But when there is a proper domination in a degree-(d 4+ 1) graph, we still can

! In fact, we may simply write a recurrence relation as C(k) < C(k — a1) + C(k —
az2)+- - -+ C(k—ar). This difference will only affect a constant behind O in the finial
running time.

branch with branching factor d+ 1, since we can ignore one branch by Lemma
and Lemma [3l The detailed analysis is given in Step 2 in Section @l When the
graph is of maximum degree d + 1 and has no proper domination, we need to
use more structural properties.

To find a d-deletion set in a degree-(d + 1) graph is equivalent to find a
vertex subset intersecting N[v] for each degree-(d + 1) vertex v. If there are
some vertices in N[v1] N N[vg] for two degree-(d + 1) vertices v; and vy, some
information may be useful for us to design a good branching rule. Note that for
two adjacent degree-(d + 1) vertices v1 and v, there are at least two vertices in
the intersection of N[v1] and N[vs]. Lemmal guarantees that each degree-(d+1)
vertex has two degree-(d 4+ 1) neighbors if a degree-(d + 1) graph has no proper
domination. So we will focus on adjacent degree-(d + 1) vertices.

We define three relations between two degree-(d + 1) vertices. A pair of ad-
jacent degree-(d + 1) vertices is a good pair if they have at least one and at
most d — 2 common neighbors. A pair of adjacent degree-(d + 1) vertices is a
close pair if they have exactly d — 1 common neighbors. A pair of nonadjacent
degree-(d 4+ 1) vertices is a similar pair if they have the same neighbor set. We
have a good branching rule to deal with good pairs. See Step 3 in Section [l
After dealing with all good pairs, for any pair of adjacent degree-(d+ 1) vertices,
either it is a close pair or the two vertices have no common neighbor. We do not
have a simple branching rule with branching factor d 4+ 1 for these two cases.
Then we change to consider three adjacent degree-(d 4 1) vertices.

Let v1,v2 and v be three degree-(d 4+ 1) vertices such that v, is adjacent to
v1 and v3. We find that the hardest case is that exact one pair of vertices in
{v1,v2,v3} is a close or similar pair, for which we still can not get a branching
factor < d + 1. We call this case a bad case. If no pair of vertices in {v1, vs, v}
is a close or similar pair, we call {v1,v2,v3} a proper triple of degree-(d + 1)
vertices. Our idea is to avoid bad cases and only branch on proper triples.

Consider four degree-(d+1) vertices v1, v, v3 and v4 such that there is an edge
between v; and v;41 for ¢ = 1,2, 3. If at most one pair of vertices in {v1, va, vs, v4}
is a close or similar pair, then at least one of {v1,ve,v3} and {va, vs,vs} will be
a proper triple. Thus the only left cases are that at least two pairs of vertices in
{v1, va, v3,v4} are close or similar pairs. Luckily, we find good branching rules to
deal with them. When both of {v1,v2} and {vs,vs} are close pairs, {v1,v2,vs}
is called a close triple. See Figure [[{a) for an illustration of close triple. Our
algorithm deals with close triples in Step 4 in Section @ When both of {vq, v2}
and {vs,vs} are close pairs, {v1,v2,v3,v4} is called a type-I close quadruple. See
Figure [[[(b) for an illustration of type-I close quadruple. Our algorithm deals
with type-I close quadruples in Step 5 in Section @l When both of {v1,v3} and
{ve,v4} are similar pairs, {v1,va,vs,vs} is called a type-II close quadruple. See
Figure [l(c) for an illustration of type-II close quadruple. Our algorithm deals
with type-II close quadruples in Step 6 in Section @l When {vy,v2,v3,v4} has
one close pair and one similar pair, we can see there is always a close triple in it.
Therefore, we have considered all possible cases. The last step of our algorithm
is then to deal with proper triples.

N@)NN®©,)NN(vy)
N@)NN(,) N@;)NN(,)

(a): Close triple (b): Type-I close quadruple (c): Type-II close quadruple

Fig. 1. Illustrations of some structures

4 The algorithm and its analysis

We are ready to describe the whole algorithm. Our algorithm works for any d > 0
but can only achieve the running time bound of O*((d + 1)*) for each d > 3.
Our algorithm is a recursive algorithm containing seven major steps, each of
which will branch on the current instance into several sub-instances and invoke
the algorithm itself on each sub-instance. Next, we describe these steps. When
we introduce one step, we assume that all pervious steps can not be applied
anymore. For the purpose of presentation, we will analyze the correctness and
running time of each step after describing it.

Step 1 (Vertices of degree > d + 2)
If there is a vertex v of degree > d + 2 in the graph, we branch on v into

14 (d(dv()vz d) branches according to Lemma [l by either including v or each set of

d(v) — d neighbors of v to the solution set.

In the branch where v is included to the solution set, we delete v from the
graph and decrease the parameter k by 1. In the branch where a set N’ C N(V)
of d(v) — d neighbors of v are included to the solution set, we delete N’ from
the graph and decrease the parameter k by d(v) — d. For this operation, we get
a recurrence relation

d(v)

Clk)y<Clk-1)+ <d(v) B

) - €l = () =).)
Let v denote the branching factor of ().

Lemma 5. If d(v) —d > 2, the branching factor v of {dl) satisfies that

14+v2d2 +6d+5
v < 5 : (2)

Proof. Let vy = 124 +6d+5 Vzd;%d%. To prove Lemma [l we will prove that C(k) =
O(%’j) by using the substitution method. First of all, directed computation
shows that for any d(v) > d + 2 and d > 0 it holds that (d(v))’ys_(d(v)_d) <

d(v)—d
d(v) k—(d(v)—d—1),
(d(v)(—d—l)’yd :

d(v k—(d(v)—d) d v k—(d(v)—d—1)
(d(v()zd)”Yd (1)

d(v)] k—(d(v)—d) < d(v)! k—(d(v)—d—1)

< Taw-daa W”M
€ gma < ah
PN d+1 1+¢m

d(v)— d —
= ﬂ 1+\/2d2+6d+ (By d(v) > d +2)
< d < NorzEs 6d +5

Assume that for some constant ¢ > 0 it holds that C'(k') < ¢yt for all &' < k.
We show that it also holds for &' = k:

Ck) < Ok = 1) + (400 g) - Clk — (d(v) = d))

<c- ’75 ! -l- (, (U()”)d) c- ”ys (d(v)—d) (By the assumption)
<c 'Yd (d+2) 5 2 (By the above inequality)
=" 2(+(“3))

= cyk. (By 4 = 1+\/2d;+6d+5)

O
Some concrete upper bounds of « are listed in Table[Il In fact, it is easy to
verify that v < d + 1 for d > 2.

Table 1. The value of ~

d=0|d=1|d=2|d=3|d=4|d=5|d=10|d =50 |d =100
v|1.6181(2.3028| 3 |3.7016|4.4052|5.1098|8.6395|36.9177|72.2722

After Step 1, the graph has maximum degree d + 1.

Step 2 (Proper dominations)

If a vertex v of degree > d + 1 is dominated by a vertex u (or dominates a
neighbor u of it), we branch on v into d(v) branches by including each vertex in
N(v) (or N[v]\ {u}) to the solution set. The correctness of this step is based on
Lemma 2] and Lemma Bl

In each branch, a vertex is included to the solution set and k decreases by 1.
Vertex v is of degree d + 1 since the graph has maximum degree at most d + 1
after Step 1. We get a recurrence relation

O(k) < d(v)-Clk—1) = (d+1)- Ok — 1),

the branching factor of which is d + 1.

Step 3 (Good pairs of degree-(d + 1) vertices)
Recall that a pair of adjacent degree-(d+1) vertices is a good pair if they have
at least one and at most d —2 common neighbors. we use the following branching

rule to deal with a good pair {v1,ve}. Let NT = (N(vy) N N(v2)) U {v1, v},
Ny = N(v;)\NT and N2 = N(v2)\ NT. Assume that v; and ve have x common
neighbors. Note that for any d-degree deletion set S’, if S’ does not contain
any vertex in N1, then S’ contains at least one vertex in N; and one vertex
in Ny. We branch into |[NT| + |N1||Na| = (x + 2) + (d — z)? branches. In the
first [N | branches each vertex in N is included to the solution set; and in the
last |N1|| V2| branches each pair of vertices in Ny and Nz are included to the
solution set. In each branch, if z vertices are included to the solution set, then
the parameter k in this branch decreases by z. This branching operation gives a
recurrence relation

Ck) < (x+2) - Clk—1)+ (d—z)>- C(k —2),

the branching factor of which is

1
5(2+a;+\/5g;2—8d:z:+4d?+4:z:+4).

It is easy to verify that when 1 < z < d — 2, the branching factor is at most
d+1.

Step 4 (Close triples of degree-(d + 1) vertices)

Recall that a pair of adjacent degree-(d+1) vertices is a close pair if they have
exactly d — 1 common neighbors. The formal definition of close triple is that: the
set of three degree-(d+ 1) vertices vy, v2 and vs is called a close triple if {vy, v}
and {vg,v3} are two close pairs and v; and vs are not adjacent. According
to the definition of close triples, we can see that N(vi) N N(v2) N N(vs) =
N(v2) \ {v1,vs}. For a close triple {v, v2,v3}, we observe the following. Vertex
vy (resp., v3) is adjacent to a degree -(d+1) vertex vy € N|vg] (resp., vq4 & N[vz])
by Lemma [Let Ny = Nlvg] \ {vi,v3}. For any d-degree deletion set §’, if
SN N; =0, then S’ contains either v; and a vertex in {vs,v4} (since S’ must
contain a vertex in N[vs] and a vertex in N[vs]) or vz and a vertex in {vg,v1}
(since S’ must contain a vertex in N[vs] and a vertex in N[vi]). Then we can
branch by either including each vertex in N5~ to the solution set or including each
of {v1,v3}, {v1,v4} and {wg,v3} to the solution set. This branching operation
gives a recurrence relation

Ck)<(d—1)-C(k—1)+3-Ck—2),

the branching factor of which is

%(d—1+\/d2—4d+13).

It is easy to verify that when d > 2, the branching factor is less than d + 1.

Step 5 (Type-I close quadruples of degree-(d + 1) vertices)
A set of four degree-(d + 1) vertices {v1,va,v3,v4} is called a type-I close
quadruple if {v1, va, v, v4} induces a cycle or a path of 4 vertices, and {v1,v2} and

{vs,v4} are two close pairs. Let Nj; = N(v1) NN (v2) and N3y = N(v3) NN (va).
When the graph has no proper dominations, good pairs or close triples, it holds
that Ny, N Ngy = 0.

Let S’ be an arbitrary d-degree deletion set. Our branching rule for type-I
close quadruples is different for the cases whether {v1, va, v3,v4} induces a cycle
or a path.

Case 1. {v1,v2,v3,v4} induces a cycle of 4 vertices: We consider the following
different subcases.

Case 1.1. S’ N{v1,v2,v3,v4} = 0: Then S’N N5 # 0 and S’ N Ny, # (. For
this case, we included each pair of vertices in N;3 and N, to the solution set to
create |Np5||N3y| = (d — 1)? branches, each of which decreases k by 2.

Case 1.2. 5" N{v1,v2,v3,v4} = {v1} or ' N {v1,va,v3,v4} = {v2}: Then
S"N N3y # 0, otherwise no vertex in N[vz] or N[vs] would be in S’ and then
S’ would not be a d-degree deletion set. Furthermore, if S’ N {vy,va,v3,v4} =
{va2}, then 8"\ {va} U{v1} is still a d-degree deletion set of the same size, since
Nlvg] \ N[v1] = {vs}, vs is adjacent to all vertices in N3, and S’ N N3, # 0. So
for this case, we include {vi,z} to the solution set for each z € N3, to create
|Nsy| = d — 1 branches, each of which decreases k by 2.

Case 1.3. S’ N {v1,v2,v3,v4} = {vs} or §' N {v1,v2,v3,v4} = {va}: Then
S'N N5 # 0. For the same reason, we include {vs, z} to the solution set for each
x € Ny, to create [Nj,| = d — 1 branches, each of which decreases k by 2.

Case 1.4. |S'N{v1,v2,v3,v4}| > 2: Then S"\ {v1, v, v3,v4} U{v1,v3} is a d-
degree deletion set of size not greater than that of S’, since N[{v1,v2,vs,v4}] C
N[{v1,v3}]. For this case, we can simply include {v1,v3} to the solution set.

The branching operation gives a recurrence relation

C(k)g(d—1)2-C(k—2)+(d—1)-C(k—2)+(d—1)-C(k—2)+C(k—2()3)
=d*-C(k -2),

the branching factor of which is d < d + 1.

Case 2. {v1,v2,v3,v4} induces a path of 4 vertices: Let {vo} = N(v1)\ N[v2]
and {vs} = N(v4) \ NJvs], where it is possible that vg = vs. We observe the
following different cases.

Case 2.1. S’ does not contain any vertex in N;5 U Ng;: Then S’ contains
at least one vertex in {vg,v1,v2} and at least one vertex in {vs,v4,vs}, since
S’ must contain at least one vertex in N[v;] and at least one vertex in N[vy].
If |S" N {v1,v2,vs,v4} > 2, then S” = S\ {v1,v9,v3,v4} U {v1,v4} is still a
d-degree deletion set with |S”| < |S7|, since N[{vi,vs,vs,v4}] C N[{v1,va}].
Otherwise, it holds either S’ N {vg,v1,v2} = {vo} or S’ N{vs,v4,v5} = {vs}. If
S'N{wvg,v1,v2} = {vp}, then vz € S’ since S’ must contain at least one vertex in
Nlvg]. If 8" N{vs,va,v5} = {vs}, then v € S’ since S’ must contain at least one
vertex in N[vs]. So for this case, we conclude that there is a solution contains one
of {v1,v4}, {vo,v3} and {vz,vs}. In our algorithm, we generate three branches
by including each of {v1, v4}, {vo,v3} and {va, v5} to the solution set. In each of
the three branches, the parameter k decreases by 2.

Case 2.2. S’ does not contain any vertex in Nj, but contain some vertex
in Ny,: Since S" N N{vi] # 0, we know that S’ contains at least one vertex in

{vo,v1,v2}. If vg € S, then S” = S’ \ {v2} U {v1} is still a d-degree deletion
set. The reason relies on that N[vs] \ N[vi] = {vs}, vs is adjacent to each
vertex in Ny, and S” contains at least one vertex in Ns,. So for this case,
there is a solution contains one vertex in {vg,v;}. In our algorithm, we create
2|N3,| = 2(d — 1) branches by including to the solution each pair of vertices x
and y such that « € {vo,v1} and y € N3,. In each of the 2(d — 1) branches, the
parameter k decreases by 2.

Case 2.3. S’ does not contain any vertex in N5, but contain some vertex in
Ni,: For the same reason in Case 2, there is a solution contains one vertex in
{v4,vs5}. In our algorithm, we create 2| N 5| = 2(d — 1) branches by including to
the solution each pair of vertices z and y such that = € {v4,v5} and y € Np;. In
each of the 2(d — 1) branches, the parameter k decreases by 2.

Case 2.4. S’ contains some vertex in N7, and some vertex in N;,: For this
case, Our algorithm simply generates | N5||N5,| = (d—1)? branches by including
to the solution each pair of vertices and y such that x € N, and y € N3;. In
each of the (d — 1)? branches, the parameter k decreases by 2.

The above branching operation gives a recurrence relation

Ck)<3C(k—=2)+2(d—1)-Ck—=2)+2(d—1)-Clk—2)+ (d—1)*-C(k —
=d(d+2)-C(k-2),

the branching factor of which is \/d(d + 2) < d + 1.

Step 6 (Type-II close quadruples of degree-(d + 1) vertices)

Two nonadjacent degree-(d 4+ 1) vertices are similar if they have the same
neighbor set. A set of four degree-(d+ 1) vertices {v1, va, v3,v4} is called a type-
IT close quadruple if {vi,v3} and {ve,v4} are two similar pairs and there is
an edge between v; and v;41 for i = 1,2,3. Note that there must be an edge
between vy and vy since {v1,v3} is a similar pair. So as a type-II close quadruple,
{v1,v9,v3,v4} always induces a cycle of 4 vertices.

Let {v1,v2,v3,v4} be a type-II close quadruple. We use N5 to denote N (vq)\
{vo,v4} and Ny, to denote N(vz) \ {v1,vs}. Note that it holds N3 N Ny = 0,
if we assume that there is no good pairs or close triples. Let S’ be a d-degree
deletion set. We consider the following different subcases.

Case 1. S’ N {v1,v2,v3,v4} = 0: Then S" N Ny # 0 and S’ N Ny, # 0. For
this case, we included each pair of vertices in N3 and Ny, to the solution set to
create |N13||Ngy| = (d — 1)? branches, each of which decreases k by 2.

Case 2. S’ N {v1,va,v3,v4} = {v1} or S’ N {v1,v2,v3,v4} = {vz}: Then
S" N Ni; # 0, otherwise S’ would not be a d-degree deletion set since no vertex
in N[vs] or N[v1] is in S’. Furthermore, if S’ N {v1,v9,v3,v4} = {v3}, then
S'\ {vs} U{v1} is still a d-degree deletion set of the same size. So for this case,
we include {v1,z} to the solution set for each x € Ny; to create [Njg| =d—1
branches, each of which decreases k by 2.

Case 3. S’ N {v1,va,v3,v4} = {w2} or S’ N {v1,v2,v3,v4} = {vs}: Then
S’N Ny, # 0. For the same reason, we include {vs, 2} to the solution set for each
x € Ny, to create |[Ny,| = d — 1 branches, each of which decreases k by 2.

10

Case 4. |5’ N {v1,v2,v3,v4} > 2: Then 8" \ {v1,v2,v3,v4} U {v1,v2} is
a d-degree deletion set of size not greater than S’, since N[{v1,v2,vs,v4}] C
N[{v1,v2}]. For this case, we can simply include {v1,v2} to the solution set.
The branching operation gives a recurrence relation

Ch)<(d=1)2-Ck=2)+d-1)-Clk—2)+(d—1)-C(k—2)+ C(k — 2)
=d? C(k-2),

the branching factor of which is d < d + 1.

Step 7 (Proper triples of degree-(d + 1) vertices)
A set of three degree-(d + 1) vertices {v1,va,v3} is called a proper triple if
{v1, v2, v3} induces a path and no pair of vertices in {v1, va, v3} is close or similar.

Lemma 6. Let G be a graph of maximum degree d+ 1 for any integer d > 0. If
G has no proper dominations, good pairs, close triples, type-I close quadruples
or type-1I close quadruples, then G has some proper triples.

Proof. First of all, we show that the graph G has two adjacent degree-(d + 1)
vertices which are not a close pair. By Lemma [we know that each degree-
(d+1) vertex v has at least two degree-(d + 1) neighbors v" and v”. At least one
of {v,v'} and {v,v"} is not a close pair otherwise {v,v’,v"”} would form a close
triple.

We vy and vz be two adjacent degree-(d + 1) vertices which are not a close
pair.. By Lemma [again, we know that that v, is adjacent to a degree-(d + 1)
vertex v1 € N[vg] and vs is adjacent to a degree-(d + 1) vertex vy & Nva].

We can see that either {v1,ve,v3} or {va, vs,v4} is a good triple:

Case 1. At least one of {v1, v3} and {ve,v4} is a similar pair: Then {vy, va, v3, v4}
must induce a cycle. For this case, if {v1,v2} or {vs,v4} is still a close pair, then
there would be a close triple; if both of {v1,v3} and {v2,v4} are similar pairs,
then there would be a type-II close quadruple. So there is exact one of {vy,v3}
and {ve,v4} is a similar pair and no close pair, and then one of {v1,vs,vs} or
{va,v3,v4} is a good triple.

Case 2. There is no similar pair in {v1,v2,v3,v4}. If both of {vy,v2} and
{vs,v4} are close pairs, then there would be a type-I close quadruple. So at
most one of {v1,v2} and {vs,v4} is a close pair, and then one of {v1, v, v3} or
{va,v3,v4} is a proper triple. a

For a proper triple {v1,v2,v3} in a graph having none of dominated vertices,
good pairs, close triples, type-I close quadruples and type-II close quadruples,
we have the following properties: N(v;) N N(v2) = 0, N(v2) N N(v3) = 0 and
1< |N(’U1) ﬁN(U3)| <d.

Let Niz = N(v1) N N(v3) \{v2}, Ny = N(v1) \ N(vs), N3~ = N(vs) \ N(v1),
Ny = N(v2) \ {v1,v3} and = = |Ny3|. Since {v1,v3} is not a similar pair, we
know that 0 < z < d — 1. Let S’ be a d-deletion set. To design our branching
rule, we consider the following different cases.

Case 1. vy € S': We simply include vo to the solution set and the parameter
k decreases by 1. For all the remaining cases, we assume that vy & S”.

11

Case 2. vy € S’ and vy, v3 € S': We simply include v; and v3 to the solution
set and the parameter k£ decreases by 2

Case 3. v1,v2 ¢ S’ and vg € S’: For the case, SN (N(vy) \ {v2} # 0. We
create [N (v1)\ {v2}| = d branches by include vs and each vertex in N(v1) \ {v2}
to the solution set and the parameter k in each branch decreases by 2

Case 4. vy,v3 ¢ S’ and vy € S’: For the case, S’ N (N(v3) \ {v2} # 0. We
create |N(vs3) \ {v2}| = d branches by include v; and each vertex in N (v3) \ {va}
to the solution set and the parameter k in each branch decreases by 2

Case 5. v1,v2,v3 € S': Then S’ must contains (i) a vertex in Ny and
(ii) either a vertex in Nz or two vertices from N; and Nj respectively. Our
algorithm generates | Ny ||[Ny3| + | Ny |[|NT [|N5 | = (d — D)z + (d — 1)(d — x)?
branches. Each of the first (d — 1)a branches includes a vertex in N5 and a
vertex in INj; to the solution set and the parameter k decreases by 2. The last
(d —1)(d — z)? branches are generated by including each triple {w; € Ny ,ws €
N; ,ws € N3 } to the solution set, where the parameter k decreases by 3

The above branching operation gives a recurrence relation

Ck)<Ck-1)+Ck—-2)+d-C(k—2)+d-C(k—2)+
(d—1)z-C(k—2)+ (d—1)(d—2z)*-C(k —3) (4)
=Ck—-1)+(2d+1)+(d—1)x)-C(k—2)+ (d—1)(d —)% - C(k — 3),

where 0 <z <d—1.

Lemma 7. When d > 3, the branching factor of ({@) is at most d + 1 for each
0<x<d-1.

Proof. We will prove that C(k) < (d + 1)* by using the substitution method.
Assume that it holds C(k") < (d + 1)*" for all ¥’ < k. We show that it also
holds for k' = k:

C(k) < C(k —)+((2d+1)+(d D) -Ck—2)+ (d—1)(d—z)?-C(k—3)
< d+1D)Er+(2d+ 1)+ (d—Dz)- (d+ 12+ (d—1)(d—2)? - (d+ 1)k
_(d+1)k 3(d+1)2 4+ (2d+ 1)+ (d—Da)(d+1) + (d — 1)(d — x)?).

Directed computation shows that for each d > 3 and 0 < d — 1, it holds
that (d +1)2+ ((2d + 1) + (d — D)z)(d + 1) + (d — 1)(d —) (d + 1)3. Then
C(k) < (d+ 1)k, a

r <
<

4.1 The results

Lemma [0l guarantees that when the graph has a vertex of degree > d + 1, one of
the above seven steps can be applied. When d > 3, the branching factor in each
of the seven steps is at most d 4+ 1. Thus,

Theorem 1. The d-bounded-degree vertex deletion problem for each d > 3 can
be solved in O*((d + 1)*) time.

12

Note that all the seven steps of our algorithm work for d = 2. In the first six
steps, we still can get branching factors at most d + 1 for d = 2. In Step 7, when
d=2and x =d—1=1, @) becomes

Ck)<C(k—1)+6C(k—2)+C(k—3),

which has a branching factor of 3.0645. This is the biggest branching factor in
the algorithm. Then

Theorem 2. The co-path/cycle problem can be solved in O*(3.0645%) time.

Note that previously the co-path/cycle problem could only be solved determin-
istically in O*(3.24%) time [4].

5 Concluding remarks

In this paper, by studying the structural properties of graphs, we show that the
d-bounded-degree vertex deletion problem can be solved in O*((d + 1)) time
for each d > 3. Our algorithm is the first nontrivial parameterized algorithm for
the d-bounded-degree vertex deletion problem with d > 3.

Our problem is a special case of the (d 4 2)-hitting set problem. It is still
left as an open problem that whether the d’-hitting set problem can be solved in
O*((d' — 1)) time. Our result is a step toward to this interesting open problem.
However, our method can not be extended to the d’-hitting set problem directly,
since some good graph structural properties do not hold in the general d’-hitting
set problem.

References

1. B. Balasundaram, S. Butenko, 1.V. Hicks: Clique relaxations in social network
analysis: The maximum k-plex problem. Operations Research 59(1) (2011) 133—
142.

2. N. Betzler, R. Bredereck, R. Niedermeier, J. Uhlmann: On bounded-degree ver-
tex deletion parameterized by treewidth, Discrete Applied Mathematics 160(1-2)
(2012) 53-60.

3. J. Chen, I.A. Kanj, G. Xia: Improved upper bounds for vertex cover, Theoretical
Computer Science 411 (2010) 3736-3756.

4. 7.-Z. Chen, M. Fellows, B. Fu, H. Jiang, Y. Liu, L. Wang, B. Zhu: A linear kernel
for co-path/cycle packing, in: Proceedings of the 6th International Conference on
Algorithmic Aspects in Information and Management (AAIM 10), LNCS 6124,
Springer, (2010) 90-102.

5. M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier: A generalization of
Nemhauser and Trotter’s local optimization theorem. Journal of Computer and
System Sciences 77(2011) 1141-1158.

6. Q. Feng, J. Wang, S. Li, J. Chen: Randomized parameterized algorithms for P»-
Packing and Co-Path Packing problems. J. Comb. Optim. 29(1) (2015) 125-140.

7. H. Fernau: A top-down approach to search-trees: Improved algorithmics for 3-
Hitting Set, Algorithmica 57 (2010) 97-118.

13

10.
11.

12.

13.

14.

15.

H. Fernau: Parameterized algorithms for d-HITTING SET: The weighted case,
Theor. Comput. Sci. 411(16-18) (2010) 1698-1713.

H. Fernau: Parameterized algorithmics for d-Hitting Set, International Journal of
Computer Mathematics 87(14) (2010) 3157-3174.

Fomin, F. V. and Kratsch, D.: Exact Exponential Algorithms, Springer (2010)

R. Niedermeier and P. Rossmanith: An efficient fixed-parameter algorithm for 3-
Hitting Set, J. Discrete Algorithms 1 (2003) 89-102.

S. B. Seidman and B. L. Foster: A graph-theoretic generalization of the clique
concept. Journal of Mathematical Sociology 6 (1978) 139-154.

J. Tu: A fixed-parameter algorithm for the vertex cover P3 problem, Information
Processing Letters 115 (2015) 96-99.

B. Wu: A Measure and Conquer Approach for the Parameterized Bounded Degree-
One Vertex Deletion, In: COCOON 2015, LNCS 9198, (2015) 469-480.

M. Xiao: On a generalization of Nemhauser and Trotter’s local optimization theo-
rem. In: ISAAC 2015, LNCS 9472, (2015) 442-452.

14

	A Parameterized algorithm for Bounded-Degree Vertex Deletion
	Mingyu Xiao

