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Abstract

Fellows, Guo, Moser and Niedermeier [JCSS2011] proved a generalization
of Nemhauser and Trotter’s theorem, which applies to Bounded-Degree

Vertex Deletion (for a fixed integer d ≥ 0, to delete k vertices of the input
graph to make the maximum degree of it ≤ d) and gets a linear-vertex kernel
for d = 0 and 1, and a superlinear-vertex kernel for each d ≥ 2. It is still
left as an open problem whether Bounded-Degree Vertex Deletion

admits a linear-vertex kernel for each d ≥ 3. In this paper, we refine the
generalized Nemhauser and Trotter’s theorem and get a linear-vertex kernel
for each d ≥ 0.

Keywords: Kernelization, Fixed-Parameter Tractable, Graph Algorithms,
Graph Theory, Graph Decomposition, Bounded-Degree Vertex Deletion

1. Introduction

Vertex Cover, to find a minimum set of vertices in a graph such
that each edge in the graph is incident on at least one vertex in this set,
is one of the most fundamental problems in graph algorithms, graph the-
ory, parameterized algorithms, theories of NP-completeness and many oth-
ers. Nemhauser and Trotter [22] proved a famous theorem (NT-Theorem)
for Vertex Cover.

Theorem 1. [NT-Theorem] For an undirected graph G = (V,E) of n =
|V | vertices and m = |E| edges, there is an O(

√
nm)-time algorithm to com-

pute two disjoint vertex subsets C and I of G such that for any minimum
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vertex cover K ′ of the induced subgraph G[V \ (C ∪ I)], K ′∪C is a minimum
vertex cover of G and

|K ′| ≥ |V \ (C ∪ I)|
2

.

This theorem provides a polynomial-time algorithm to reduce the size of
the input graph by possibly finding partial solution. It turns out that NT-
Theorem has great applications in approximation algorithms [5, 17, 19] and
parameterized algorithms [7, 2]. We can see that V \ I is a 2-approximation
solution and G[V \ (C ∪ I)] is a 2k-vertex kernel of the problem taking the
size of the solution as the parameter k. Lokshtanov et al. [21] also apply
NT-Theorem to branching algorithms for Vertex Cover and some other
related problems. Due to NT-Theorem’s practical usefulness and theoret-
ical depth in graph theory, it has attracted numerous further studies and
follow-up work [14, 4, 9, 2]. Bar-Yehuda, Rawitz and Hermelin [4] extended
NT-Theorem for a generalized vertex cover problem, where edges are allowed
not to be covered at a certain predetermined penalty. Fellows, Guo, Moser
and Niedermeier [14] extended NT-Theorem for Bounded-Degree Ver-

tex Deletion.
In this paper, we are interested in Bounded-Degree Vertex Dele-

tion. A d-degree deletion set of a graph G is a subset of vertices, whose
deletion leaves a graph of maximum degree at most d. For each fixed d,
Bounded-Degree Vertex Deletion is to find a d-degree deletion set
of minimum size in an input graph. Bounded-Degree Vertex Dele-

tion and its “dual problem” to find maximum s-plexes have applications in
computational biology [14, 8] and social network analysis [24, 3]. There is a
substantial amount of theoretical work on this problem [20, 23, 24], specially
in parameterized complexity [6, 14, 8].

Since Vertex Cover is a special case of Bounded-Degree Vertex

Deletion, we are interested in finding a local optimization theorem similar
to NT-Theorem for Bounded-Degree Vertex Deletion. Fellows, Guo,
Moser and Niedermeier [14] made a great progress toward to this interesting
problem by giving the following theorem.

Theorem 2. [14] For an undirected graph G = (V,E) of n = |V | vertices
and m = |E| edges, any constant ε > 0 and any integer d ≥ 0, there is an
O(n4m)-time algorithm to compute two disjoint vertex subsets C and I of G
such that for any minimum d-degree deletion set K ′ of the induced subgraph
G[V \ (C ∪ I)], K ′ ∪ C is a minimum d-degree deletion set of G, and
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|K ′| ≥ |V \ (C ∪ I)|
d3 + 4d2 + 6d+ 4

for d ≤ 1, and

|K ′|1+ε ≥ |V \ (C ∪ I)|
c

for d ≥ 2,

where c is a function of d and ε.

In this theorem, for d ≥ 2, the number of remaining vertices in V \(C∪I)
is not bounded by a constant times of the solution size |K ′| of G[V \ (C ∪I)].
This is a significant difference between this theorem and the NT-Theorem for
Vertex Cover. In terms of parameterized algorithms, Theorem 2 cannot
get a linear-vertex kernel for Parameterized Bounded-Degree Ver-

tex Deletion (with parameter k being the solution size) for each d ≥ 2.
In fact, in an initial version [15] of Fellows, Guo, Moser and Niedermeier’s
paper, a better result was claimed, which can get a linear-vertex kernel for
Parameterized Bounded-Degree Vertex Deletion for each d ≥ 0.
Unfortunately, the proof in [15] is incomplete. We also note that Chen et
al. [8] proved a 37k-vertex kernel for Bounded-Degree Vertex Dele-

tion for d = 2. However, whether Bounded-Degree Vertex Deletion

for each d ≥ 3 allows a linear-vertex kernel is not known. In this paper, based
on Fellows, Guo, Moser and Niedermeier’s work [15], we close the above gap
by proving the following theorem for Bounded-Degree Vertex Dele-

tion.

Theorem 3. [Our result] For an undirected graph G = (V,E) of n = |V |
vertices and m = |E| edges and any integer d ≥ 0, there is an O(n5/2m)-time
algorithm to compute two disjoint vertex subsets C and I of G such that for
any minimum d-degree deletion set K ′ of the induced subgraph G[V \(C∪I)],
K ′ ∪ C is a minimum d-degree deletion set of G and

|K ′| ≥ |V \ (C ∪ I)|
d3 + 4d2 + 5d+ 3

.

From this version of the generalized Nemhauser and Trotter’s theorem, we
can get a (d3+4d2+5d+3)k-vertex kernel for Bounded-Degree Vertex

Deletion parameterized by the size k of the solution, which is linear in k for
any constant d ≥ 0. There is no difference between the cases that d ≤ 1 and
d ≥ 2 anymore. For the special case that d = 0, our theorem specializes a
3k-vertex kernel for Vertex Cover, while Theorem 2 provides a 4k-vertex
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kernel and NT-Theorem provides a 2k-vertex kernel. For the special case that
d = 1, our theorem provides a 13k-vertex kernel and Theorem 2 provides a
15k-vertex kernel. For the special case that d = 2, our theorem obtains a
37k-vertex kernel, the same result obtained by Chen et al. [8].

Recently, Dell and van Melkebeek [12] showed that unless the polynomial-
time hierarchy collapses, Parameterized Bounded-Degree Vertex Dele-

tion does not have kernels consisting of O(k2−ǫ) edges for any constant ǫ > 0,
which implies that linear size would be the best possible bound on the num-
ber of vertices in any kernel for this problem. It has also been proved by
Fellows, Guo, Moser and Niedermeier [14] that when d is not bounded, Pa-
rameterized Bounded-Degree Vertex Deletion is W[2]-hard. Then
unless FPT=W[2], it is impossible to remove d from the size function of any
kernel of this problem. These two hardness results also imply that our result
is ‘tight’ in some sense.

The framework of our algorithm follows that of Fellows, Guo, Moser and
Niedermeier’s algorithm [14]. But we still need some new and nontrivial ideas
to get our result. For the purpose of presentation, we will define a decomposi-
tion, called ‘d-bounded decomposition’ to prove Theorem 3 and construct our
algorithms. This decomposition can be regarded as an extension of the crown
decomposition for Vertex Cover [1, 10], but more sophisticated. To com-
pute C and I in Theorem 3, we will change to compute a proper d-bounded
decomposition. Some similar ideas in construction of crown decompositions
as in Fellows, Guo, Moser and Niedermeier’s algorithm for Theorem 2 [14] are
used to construct our decomposition. The detailed differences between our
and previous algorithms will be addressed in Section 4. Before introducing
the decompositions, we first give the notation system in this paper.

2. Notation system

Let G = (V,E) stand for a simple undirected graph with a set V of
n = |V | vertices and a set E of m = |E| edges. For simplicity, we may
denote a singleton set {v} by v. For a vertex subset V ′, a vertex in V ′ is
denoted by V ′-vertex. The graph induced by V ′ is denoted by G[V ′]. We also
use N(V ′) to denote the set of vertices in V \V ′ adjacent to some vertices in
V ′ and let N [V ′] = N(V ′) ∪ V ′. The vertex set and edge set of a graph G′

are denoted by V (G′) and E(G′), respectively. A bipartite graph with two
parts of vertices A and B and edge set EH is denoted by H = (A,B,EH).
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For an integer d′ ≥ 1, a star with d′ + 1 vertices is called a d′-star. For
d′ > 1, the unique vertex of degree > 1 in a d′-star is called the center of the
star and all other degree-1 vertices are called the leaves of the star. For a
1-star, any vertex can be regarded as a center and the other vertex as a leaf.
A star with a center v is also called a star centered at v. For two disjoint
vertex sets V1 and V2, a set of stars is from V1 to V2 if the centers of the stars
are in V1 and leaves are in V2. A ≤d

′-star is a star with at most d′ leaves.
A d′-star packing (resp., ≤d

′-star packing) is a set of vertex-disjoint d′-stars
(resp., ≤d

′-stars).
For each d ≥ 0, a d-degree deletion set of a graph is a subset of vertices

the deletion of which makes the maximum degree of the remaining graph at
most d. We use α(G) to denote the size of a minimum d-degree deletion set
of a graph G.

Next, we introduce the decomposition techniques in Section 3 and then
describe and analyze our algorithms in Section 4.

3. The decomposition techniques

Crown decomposition is a powerful tool to obtain kernels for Vertex

Cover. This technique was firstly introduced in [1] and [10] and found to
be very useful in designing kernelization algorithms for Vertex Cover and
related problems [2, 9, 26].

Definition 1. [Crown Decomposition] A crown decomposition of a graph
G is a partition of the vertex set of G into three sets I, C and J such that
(1) I is an independent set,
(2) there are no edges between I and J , and
(3) there is a matching M on the edges between I and C such that all vertices
in C are matched.

See Figure 1(a) for an illustration for crown decompositions. In some refer-
ences, I 6= ∅ is also required in the definition of crown decompositions. Here
we allow I = ∅ for the purpose of presentation. It is known that

Lemma 1. [1] Let (I, C, J) be a crown decomposition of G. Then (I, C) sat-
isfies the local optimality condition in Theorem 1, i.e., K ′∪C is a minimum
vertex cover of G for any minimum vertex cover K ′ of the induced subgraph
G[V \ (I ∪ C)].
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By this lemma, we can reduce the instance of Vertex Cover by removing
I ∪ C of a crown decomposition. There are some methods that find certain
crown decompositions of a graph and result in a linear-vertex kernel for
Vertex Cover [2].

�

�

�

�……

(b): A 3-bounded decomposition

� � � � ��� � � �

……� ……

�

�

(a): A crown decomposition

� � � ��� � �

Figure 1: Decompositions

In this paper, we will use d-bounded decomposition, which extends the
definition of crown decompositions and Lemma 1. Let A and B be two
disjoint vertex subsets of a graph G. A full d′-star packing from A to B is
a set of |A| vertex-disjoint d′-stars with centers in A and leaves in B. The
third item in Definition 1 means that there is a full 1-star packing from C to
I. We define the following decomposition.

Definition 2. [d-Bounded Decomposition] A d-bounded decomposition
of a graph G = (V,E) is a partition of the vertex set of G into four sets I,
C, T and J such that
(1) any vertex in I ∪ T is of degree ≤ d in the induced subgraph G[V \ C],
(2) there are no edges between I and J , and
(3) there is a full (d+ 1)-star packing from C to I.

An illustration for d-bounded decompositions is given in Figure 1(b). We
have the following Lemma 2 for d-bounded decompositions. This lemma can
be derived from the lemmas in [14], although d-bounded decomposition is
not formally defined in [14].

Lemma 2. Let (I, C, T, J) be a d-bounded decomposition of G. Then (I, C)
satisfies the local optimality condition in Theorem 3, i.e., K ′ ∪ C is a mini-
mum d-degree deletion set of G for any minimum d-degree deletion set K ′ of
the induced subgraph G[V \ (I ∪ C)].
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Proof. First, we show that K ′∪C is a d-degree deletion set of G. If there is
vertex v0 of degree ≥ d+1 in G[V \ (K ′ ∪C)], then v0 should be a J-vertex,
since any vertex in I ∪ T is of degree ≤ d after removing C by the definition
of the decomposition. Note that no J-vertex is adjacent to an I-vertex. Then
v0 would also be a vertex of degree ≥ d + 1 in G[V \ (K ′ ∪ C ∪ I)], which
implies a contradiction that K ′ is not a d-degree deletion set of G[V \(I∪C)].
So no vertex of degree ≥ d+ 1 exists in G[V \ (K ′ ∪ C)].

Next, we prove the minimality. Let D be an arbitrary minimum d-degree
deletion set of G. Let D1 = D∩ (I ∪C) and D2 = D∩ (T ∪J). Since there is
a full (d + 1)-star packing from C to I, we know that any d-degree deletion
set contains at least |C| vertices in the (d+1)-star packing. So we have that

|D1| ≥ |C|.
Set D2 is a d-degree deletion set of G[V \ D1] and set K ′ is a minimum
d-degree deletion set of G[V \ (I ∪ C)]. Note that D1 ⊆ I ∪ C and then
G[V \ (I ∪ C)] is an induced subgraph of G[V \D1]. So it holds that

|D2| ≥ |K ′|.
Therefore, |K ′ ∪ C| = |K ′|+ |C| ≤ |D1|+ |D2| = |D|. ✷

By Lemma 2, we can reduce an instance by removing I ∪ C if the graph
has a d-bounded decomposition (I, C, T, J). This is the main idea how we
get Theorem 3 and kernels for our problem. Here arises a problem how to
find a d-bounded decomposition (I, C, T, J) of a graph such that I 6= ∅ if it
exists. First, we give a simple observation.

Observation 1. Let R be a set of vertices v such that any vertex in N [v]
is of degree ≤ d. Then (I = R,C = ∅, T = N(R), J = V \ (I ∪ T )) is a
d-bounded decomposition of G.

By Lemma 2 and Observation 1, we can reduce an instance by removing
from the graph the set B of vertices v such that any vertex in N [v] is of
degree ≤ d. For more general cases, in this paper we will show that

Theorem 4. For a given graph G = (V,E) and an integer d ≥ 0, there
is a special d-degree deletion set X of G with |X| ≤ (d + 2)α(G) such that

if |V \ X| > (d+1)(d2+3d+1)
d+2

|X|, then G admits a d-bounded decomposition
(I, C, T, J) with I 6= ∅. The special d-degree deletion set X and d-bounded
decomposition (I, C, T, J) can be found in O(n3/2m) time.

In the next section, we construct an algorithm to prove this theorem.
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4. Algorithms

We first introduce an algorithm to find d-bounded decompositions of
graphs, based on which we can easily get an algorithm for the generaliza-
tion of NT-theorem in Theorem 3.

4.1. The algorithm for decompositions

First of all, we give the main idea of our algorithm to find a d-bounded
decomposition (I, C, T, J) of a graph G = (V,E). It contains three major
phases.
Phase 1: find a partition (X, Y ) of the vertex set V such that the maximum
degree in G[Y ] is at most d.
Phase 2: find two subsets C ′ ⊆ X and I ′ ⊆ Y satisfying Basic Condition:
there is a full (d+1)-star packing from C ′ to I ′ and there is no edge between
I ′ and X \ C ′.
Phase 3: iteratively move some vertices out of I ′ and some vertices out of
C ′ to make (I ′, C ′, T ′ = N(I ′) \ C ′, J ′ = V \ (I ′ ∪ C ′ ∪ T ′)) a d-bounded
decomposition.

In fact, the first two phases of our algorithm are almost the same as that
of Fellows, Guo, Moser and Niedermeier’s algorithm [14]. However, in Phase
3, our algorithm uses a different method to compute I ′ and C ′. This is critical
for us to get an improvement.

Phase 1. For Phase 1, we can find a maximal (d+1)-star packing S and let
X = V (S). By the maximality of S, we know thatX is a d-degree deletion set
and G[Y ] has no vertex of degree > d. Then the partition (X, Y ) satisfies the
condition in Phase 1. In order to obtain a good performance, our algorithm
may not use an arbitrary maximal (d+ 1)-star packing S. When we obtain
a new (d + 1)-star packing S ′ such that |S ′| > |S| in our algorithm, we will
update X by letting X = V (S ′).

Phase 2. After obtaining (X, Y ) in Phase 1, our algorithm finds two special
sets C ′ ⊆ X and I ′ ⊆ Y in Phase 2. To find C ′ and I ′ satisfying Basic
Condition, we need to find a special ≤(d + 1)-star packing from X to Y ,
which can be computed by the algorithms for finding maximum matchings
in bipartite graphs. Note that the idea of computing ≤(d+ 1)-stars from X

and Y has been used to solve some other problems in references [25, 16, 11].
We consider the bipartite graph H = (X, Y, EH) with edge set EH being

the set of edges between X and Y in G, and are going to find a ≤(d+1)-star

8



packing from X to Y in H . Note that a Y -vertex no adjacent to any vertex
in X will become a degree-0 vertex in H . We construct an auxiliary bipartite
graph H ′ = (X1 ∪X2 ∪ . . .Xd+1, Y, E

′
H), where each Xi (i = 1, 2, . . . , d + 1)

is a copy of X and a vertex vi ∈ Xi is adjacent to a vertex u ∈ Y if and only
if the corresponding vertex v ∈ X is adjacent to u in H . For a vertex v ∈ X ,
we may use vi to denote its corresponding vertex in Xi.

We find a maximum matching M ′ in H ′ by using an O(n1/2m)-time algo-
rithm [13, 18]. Let M be the set of edges in H corresponding to the matching
M ′, i.e., an edge uv (u ∈ Y and v ∈ X) of H is in M if and only if uvi is in
M ′ for some vi corresponding to v. Edges in M are called marked and others
are called unmarked. Since M ′ is a matching in H ′, we have that |M | = |M ′|.
The set of marked edges in H forms a ≤(d + 1)-star packing S≤d+1. This is
the ≤(d+ 1)-star packing we are seeking for. It is also easy to observe that

Lemma 3. Graph H has a ≤(d + 1)-star packing containing t edges if and
only if H ′ has a matching of size t.

Next, we analyze some properties of S≤d+1 and find C ′ and I ′ satisfying
Basic Condition based on these properties.

Let Sd+1 denote the set of (d+ 1)-stars in S≤d+1. An X-vertex in a star
in Sd+1 is fully tagged. Then X ∩ V (Sd+1) is the set of fully tagged vertices.
A Y -vertex is untagged if it is adjacent to at least one vertex in X in H but
not contained in any star in S≤d+1. A path P in H that alternates between
edges not in M and edges in M is called an M-alternating path. Please see
Figure 2 for an illustration of these definitions.
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�

Figure 2: An illustration for I ′ and C′, where thick edges are marked edges, v1 and v2 are
fully tagged vertices, u1 and u5 are untagged vertices, and u1v1u4v2u6 is an M -alternating
path

Lemma 4. If there is an M-alternating path P from an untagged vertex
u ∈ Y to a vertex v ∈ X in H, then v is fully tagged.
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Proof. Note that the edge incident on u in P , which can be regarded as
the first edge in P , is unmarked, and P contains odd number of edges since
u ∈ Y and v ∈ X . According to the definition of M-alternating paths, we
know that P contains more unmarked edges than marked edges. Replacing
M ∩ E(P ) by E(P ) \M in M produces M0. If v is not fully tagged, then
M0 still can form a ≤(d+1)-star packing in H . By Lemma 3, there will be a
matching of size |M0| > |M ′| in H ′, contradicting to the maximality of M ′.
So v is fully tagged. ✷

Next, we are going to set C ′ and I ′. If there is no untagged vertex, let
C ′ = ∅. Otherwise let C ′ be the set of X-vertices connected with at least
one untagged vertex by an M-alternating path in H . Let X ′ = X \ C ′. Let
Y ′ be the set of Y -vertices that is a leaf of a ≤(d + 1)-star in S≤d+1 that is
centered at a vertex in X ′, and I ′ = Y \ Y ′.

Lemma 5. The two sets C ′ and I ′ obtained above satisfy Basic Condition.

Proof. By the definition of C ′ and Lemma 4, we know that all vertices in
C ′ are fully tagged. Any leaf of a star centered at a vertex in C ′ will not be
in Y ′ since each vertex in Y is in at most one star in S≤d+1. Then we know
that the set of stars in S≤d+1 centered at vertices in C ′ is a full (d+ 1)-star
packing from C ′ to I ′.

Next, we show that there is no edge between I ′ and X ′ = X \C ′. Assume
to the contrary that there is an edge uv between I ′ and X ′, where u ∈ I ′ and
v ∈ X ′. The vertex u cannot be an untagged vertex, otherwise if v is fully
tagged then v would be included to C ′ by the definition of C ′, and if v is not
fully tagged then uv could be added to M to obtain a matching of larger size.
So u is a leaf of a (d+ 1)-star in S≤d+1 centered at a vertex v0 ∈ C ′ and v0u

is an M-edge in H . We can find an M-alternating path P from an untagged
vertex u0 to u in H . There is an M-alternating path P ′ from an untagged
vertex u0 to v0 according to the definition of C ′. If P ′ passes u then let P be
the subpath of P ′ from u0 to u. Otherwise we let P be the path adding v0u

to the end of P ′. Then P is an M-alternating path from an untagged vertex
u0 to u. Let P ∗ be the path adding uv to the end of P . We can see that
P ∗ is still an M-alternating path, which is from an untagged vertex u0 to a
J ′-vertex v. However, according to the definition of C ′, v should be included
to C ′. For any case, there is a contradiction.

So C ′ and I ′ satisfy Basic Condition. ✷
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Input: A graph G = (V,E) and a partition (X, Y ) of the vertex set V .
Output: Two sets C ′ ⊆ X and I ′ ⊆ Y satisfying the Basic Condition.

1. Compute the bipartite graph H and the auxiliary bipartite graph H ′.

2. Compute a maximum matching M ′ in H ′ and the corresponding edge
set M and the ≤(d+ 1)-star packing S≤d+1 in H .

3. Let C ′ be ∅ if there is no untagged vertex, and the set of X-vertices
connected with at least one untagged vertex by an M-alternating path
in H otherwise. Let X ′ ← X \C ′. Let Y ′ be the set of Y -vertices each
of which is a leaf of a ≤(d + 1)-star centered at a vertex in X ′ and let
I ′ ← Y \ Y ′.

4. Return (C ′, I ′).

Figure 3: Algorithm basic(G,X, Y )

We describe the above progress to compute C ′ and I ′ as an algorithm
basic(G,X, Y ) in Figure 3, which will be used as a subalgorithm in our
main algorithm. Step 1 of basic(G,X, Y ) takes linear time and H ′ has O(n)
vertices and O(m) edges since d is a constant. Step 2 takes O(n1/2m) time
to compute a maximum matching M ′ in the bipartite H ′. In Step 3, C ′ can
be computed in linear time by contracting all untagged vertices into a single
vertex and using BFS. Therefore,

Lemma 6. Algorithm basic(G,X, Y ) runs in O(n1/2m) time.

Note that all untagged vertices will be in I ′. So if the size of Y is large,
for example |Y | > (d + 1)|X|, we can guarantee that there is always some
untagged vertices and the set I ′ returned by basic(G,X, Y ) is not an empty
set.

Phase 3. After obtaining (C ′, I ′) from Phase 2, we look at the partition
P = (I ′, C ′, T ′ = N(I ′) \ C ′, J ′ = V \ (I ′ ∪ C ′ ∪ T ′)). Since there is no edge
between I ′ and X ′ = X \C ′, we know that T ′ ⊆ Y and X ′ ⊆ J ′. Then there
is no edge between I ′ and J ′. The partition P satisfies Conditions (2) and (3)
in Definition 2 for d-bounded decompositions. Next, we consider Condition

11



(1). Let G∗ = G[V \ C ′]. Any vertex in I ′ is of degree ≤ d in G∗, because
G[Y ] = G[V \X ] has maximum degree ≤ d and I ′-vertices are not adjacent
to any vertex in X \ C ′. Although T ′ = N(I ′) \ C ′ ⊆ Y , vertices in T ′ is
possible to be of degree > d in G∗. In fact, we only know that each vertex
in T ′ is of degree ≤ d in G[Y ]. But in G∗, every T ′-vertex is adjacent to
some vertices in X ′ = X \ C ′ and thus can be of degree > d. So Condition
(1) may not hold. We will move some vertices out of C ′ and I ′ to make the
decomposition satisfying Condition (1).

Let B be the set of T ′-vertices that are of degree > d in G∗. Note
that any vertex in B is adjacent to some vertices in X . We call vertices
in NI′(B) = N(B) ∩ I ′ bad vertices. Note that B is not an empty set if
and only if NI′(B) is not an empty set. If B = ∅, then Condition (1) holds
directly. For the case that B 6= ∅, i.e., NI′(B) 6= ∅, our idea is to update I ′

by removing NI′(B) out of I ′. However, after moving some vertices out of I ′,
there may not be a full (d+ 1)-star packing from C ′ to I ′ anymore. So after
moving NI′(B) out of I ′ we invoke the algorithm basic(G[C ′∪ I ′], C ′, I ′) for
Phase 2 on the subgraph G[C ′ ∪ I ′] to find new C ′ and I ′, and then check
whether there are new bad vertices or not. We do these iteratively until we
find a d-bounded decomposition, where no bad vertex exists. In the returned
d-bounded decomposition, I ′ and C ′ may become empty. However, we can
guarantee I ′ 6= ∅ when the size of the graph satisfies some conditions. We
analyze this after describing the whole algorithm.

The whole algorithm for decomposition. Our algorithm decomposition(G)
presented in Figure 4 is to compute two subsets of vertices C and I of the
input graph G such that (I, C, T = N(I) \ C, J = V \ (I ∪ C ∪ T )) is a
d-bounded decomposition of G.

Steps 3, 4 and 6 in decomposition(G) are the same steps in basic(G,X, Y ).
Here we add Step 5 into these steps, which is used to update the (d + 1)-
star packing S. In decomposition(G), Steps 1, 2 and 5 are corresponding to
Phase 1, Steps 3, 4 and 6 are corresponding to Phase 2, and Steps 7 and 8 are
corresponding to Phase 3. Note that Step 8 will also invoke basic(G,X, Y ).

Lemma 7. The two vertex sets C and I returned by decomposition(G)
make (I, C, T = N(I) \ C, J = V \ (I ∪ C ∪ T )) a d-bounded decomposition.

Proof. To prove this we only need to show the three conditions in the
definition of d-bounded decomposition. Lemma 5 shows that the initial C ′

and I ′ satisfy Basic Condition. In Step 8, we will update C ′ and I ′ by taking a
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Input: A graph G = (V,E).
Output: Two subsets of vertices C and I such that (I, C, T = N(I)\C, J =
V \ (I ∪ C ∪ T )) is a d-bounded decomposition.

1. Find a maximal (d+ 1)-star packing S in G.

2. X ← V (S) and Y ← V \X .

3. Compute the bipartite graph H and the auxiliary bipartite graph H ′.

4. Compute a maximum matching M ′ in H ′ and the corresponding edge
set M and the ≤(d+ 1)-star packing S≤d+1 in H .

5. Let Sd+1 be the set of (d+ 1)-stars in S≤d+1.
If {|Sd+1| > |S|},
then S ← Sd+1 and goto Step 2.

6. Let C ′ be ∅ if there is no untagged vertex, and be the set of X-vertices
connected with at least one untagged vertex by an M-alternating path
in H otherwise. Let X ′ ← X \ C ′. Let Y ′ be the set of leaves of

≤(d+ 1)-stars in S≤d+1 centered at vertices in X ′ and let I ′ ← Y \ Y ′.

7. Compute the set NI′(B) of bad vertices based on C ′ and I ′.

8. If {NI′(B) 6= ∅},
then I ′ ← I ′ \ NI′(B), (C ′, I ′) ← basic(G[C ′ ∪ I ′], C ′, I ′), and goto
Step 7.

9. Return (C = C ′, I = I ′).

Figure 4: Algorithm decomposition(G)
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subset of each of them. It is clear that there is a full (d+1)-star packing from
C ′ to I ′ after updating them in Step 8, because we still use basic to compute
new C ′ and I ′. There is no edge between I ′ and X \ C ′ after each execution
of Step 8, since Lemma 5 guarantees that the vertices moved out of X ′ in
Step 8 are not adjacent to any vertices in the current I ′. Then C ′ and I ′ in
the whole algorithm always satisfy Basic Condition. Only when NI′(B) = ∅,
i.e., B = ∅, the algorithm will not execute Steps 7 and 8 anymore and stop.
So when the algorithm stops, the decomposition based on C = C ′ and I = I ′

satisfy all the three conditions in the definition of d-bounded decomposition.
✷

Figure 5 illustrates how the algorithm computes. Next we consider the
running time bound of the algorithm and show that it always stops.
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Figure 5: An illustration for how decomposition(G) works, where we use X0 (resp., Y0)
to denote X ′ (resp., Y ′) computed in Step 6, Ni to denote the set of vertices moved out
of I ′ in the ith execution of I ′ ← I ′ \NI′(B) in Step 8, and Xi (resp., Yi) to denote the
set of vertices moved out of C′ (resp., I ′) in the ith execution of (C′, I ′)← basic(G[C′ ∪
I ′], C′, I ′) in Step 8 for each i ≥ 1

Steps 1 and 2 take only linear time. We have analyzed in basic(G,X, Y )
that Steps 3 and 6 take linear time and Step 4 uses O(n1/2m) time. Each
time when we update S in Step 5, the size of S increases by at least 1 and
the size of S is at most α(G) since each (d + 1)-star contains at least one
vertex in a d-degree deletion set. Therefore, S will be updated by at most
α(G) times and the first six steps of decomposition(G) use O(α(G)n1/2m)
time.

Step 7 takes linear time. When NI′(B) 6= ∅, Step 8 first moves some
vertices out of I ′ in linear time and then updates C ′ and I ′ by calling
basic(G,X, Y ) in O(n1/2m) time. We are interested in how many times
Steps 7 and 8 will be executed.
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For the purpose of presentation, we rewrite the second line of Step 8 as
follows by using different notation:

then I ′0 ← I ′ \NI′(B), (C∗, I∗)← basic(G[C ′ ∪ I ′0], C
′, I ′0), and goto Step 7.

Each time when execute Step 8, we have that

C∗ ⊆ C ′, I∗ ⊆ I ′0 ⊆ I ′ and N(I ′0) \ C ′ ⊆ I ′ \ I ′0.

First we consider the case that C∗ = C ′. Now we have that

N(I∗) \ C∗ = N(I∗) \ C ′ ⊆ N(I ′0) \ C ′ ⊆ I ′ \ I ′0.

Each vertex in I ′ is of degree at most d in G[V \ C ′] by Lemma 5. So any
vertex in N(I∗) \ C∗ is of degree at most d in G[V \ C∗], which means that
there is no bad vertex. We conclude that: if C∗ = C ′, then NI′(B) will be
empty in the next step and Step 8 will not be executed any more.

By this property, we know that only when the size of C ′ decreases the
algorithm is possibly to execute the next iteration of Steps 7 and 8. Initially,
|C ′| ≤ α(G) since each (d + 1)-star contains at least one vertex in a d-
degree deletion set. Therefore, Steps 7,8 and 9 of decomposition(G) run in
O(α(G)n1/2m) time.

In total, decomposition(G) uses O(α(G)n1/2m) = O(n3/2m) time.

Lemma 8. Algorithm decomposition(G) runs in O(n3/2m) time and re-
turns (C, I) such that (I, C, T, J) is a d-bounded decomposition of G, where
T = N(I) \ C and J = V (G) \ (I ∪ C ∪ T ).

Lemma 8 is not enough to prove Theorem 4, because C and I returned
by decomposition(G) may be empty sets. We still need to show that I will
not be empty if the size of the graph G is large (compared to α(G)).

We prove the following lemma to show the size condition.

Lemma 9. Algorithm decomposition(G) returns (C, I) such that

|V \ (C ∪ I)| ≤ (d3 + 4d2 + 5d+ 3)α(G).

Proof. After Step 5, S will not be updated anymore. In our algorithm, we
assume that S is the one after Step 5 and will not change anymore. Note
that C ′ and I ′ are created and updated only after Step 5.
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We let s denote the number of (d + 1)-stars in S. Then s ≤ α(G) and
|X| = (d + 2)s. Recall that S≤d+1 is a ≤(d + 1)-star packing from X to Y

computed in Step 4. Let s0 be the number of (d+1)-stars in S≤d+1. Now we
have s0 ≤ s, otherwise S would have been updated in Step 5.

In Step 6, initially Y ′ is the set of leaves of ≤(d+1)-stars in S≤d+1 centered
at vertices in X ′. We let Y0 = Y ′ in this step. Let r1 be the number of (d+1)-
stars in S≤d+1 centered at some vertex in X ′ and r2 be the number of other
stars in S≤d+1 centered at a vertex in X ′. Then we have that r1 + r2 ≤ |X ′|
and |Y0| = |Y ′| ≤ (d+1)r1 + dr2. This is not the finial size of Y ′, since some
vertices more may be included to Y ′ in Step 8. Let c1 denote the size of C ′

in Step 6. Then we have that c1 + r1 = s0 ≤ s and c1 + r1 + r2 ≤ |X|.
We consider the first execution of Step 8. If NI′(B) 6= ∅, then vertices in

NI′(B) will be moved out of I ′ and then will be included to Y ′. Note that
each vertex has degree at most d in G[Y ], B ⊆ Y ′ ⊆ Y and NI′(B) ⊆ Y .
Then at most |NI′(B)| ≤ d|B| ≤ d|Y ′| ≤ d(d + 1)r1 + d2r2 vertices will be
moved out of I ′. So after executing I ′ ← I ′ \ NI′(B) in Step 8 for the first
time, the number of Y -vertices not in I ′ is at most

|Y0|+ |NI′(B)| ≤ (d+ 1)r1 + dr2 + (d(d+ 1)r1 + d2r2)
= (d+ 1)2r1 + d(d+ 1)r2.

Now we have not analyzed the first execution of (C ′, I ′) ← basic(G[C ′ ∪
I ′], C ′, I ′) in Step 8 yet.

For each i ≥ 1, assume that xi vertices are moved out of C ′ in the ith
execution of (C ′, I ′) ← basic(G[C ′ ∪ I ′], C ′, I ′) in Step 8. Then at most
(d + 1)xi vertices, the set of which is denoted by Yi, are moved out of I ′ in
this operation. In the (i+1)th execution of I ′ ← I ′\NI′(B), at most d(d+1)xi

vertices will be moved out of I ′ since NI′(B) ⊆ N(Yi)∩I ′ ⊆ N(Yi)∩Y . Note
that if the algorithm executes Step 8 only for i iterations, then we simply
assume that 0 vertices will be moved out of I ′ in the (i+ 1)th iteration. In
these two operations – the ith execution of (C ′, I ′)← basic(G[C ′∪I ′], C ′, I ′)
and the (i + 1)th execution of I ′ ← I ′ \ NI′(B), at most (d + 1)2xi vertices
are moved out of I ′.

Finally, the number of Y -vertices not in I = I ′ is at most

y ≤ (d+ 1)2r1 + d(d+ 1)r2 +
∑

i

(d+ 1)2xi.

Note that c1 =
∑

i xi + |C|, c1 + r1 ≤ s = |X|
d+2

and r1 + r2 + c1 ≤ |X|. We
have that
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Input: A graph G = (V,E).
Output: Two subsets of vertices C and I satisfying the conditions in The-
orem 3.

1. C, I ← ∅.

2. Do { (C ′, I ′) ← decomposition(G[V \ (C ∪ I)]), C ← C ∪ C ′ and
I ← I ∪ I ′ }
while I ′ 6= ∅.

3. Return (C, I).

Figure 6: Algorithm BDD(G)

y ≤ (d+ 1)2(r1 + c1 − |C|) + d(d+ 1)(|X| − r1 − c1)

≤ (d+ 1)2 |X|
d+2

+ d(d+ 1)|X|
= (d+1)(d2+3d+1)

d+2
|X|.

This inequality can be used to prove Theorem 4.
The number of X-vertices not in C = C ′ is |X|−|C|. By |X| = (d+2)s ≤

(d+ 2)α(G), we have

|V \ (C ∪ I)| = |X| − |C|+ y

≤ (d+1)(d2+3d+1)
d+2

|X|+ |X|
≤ (d3 + 4d2 + 5d+ 3)α(G).

✷

Lemma 8 and the proof in Lemma 9 imply Theorem 4. The set X after
Step 5 in decomposition(G) is the special d-degree deletion set in Theorem 4.
So decomposition(G) finds the special d-degree deletion set and d-bounded
decomposition in Theorem 4 in O(n3/2m) time.

4.2. The algorithm for Theorem 3

Neither Theorem 4 nor Lemma 9 can get the size condition in Theorem 3
directly. We use the following algorithm in Figure 6 for Theorem 3.

From the second iteration of Step 2 in BDD(G), each execution of I ← I∪I ′
will include at least one new vertex to I. So decomposition(G[V \ (C ∪ I)])
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will be called for at most n + 1 times. Algorithm BDD(G) runs in O(n5/2m)
time. Furthermore, if decomposition(G′ = G[V \(C∪I)]) returns two empty
sets, then by Lemma 9 we have |V (G′)| = |V (G′)\(C∪I)| ≤ (d3+4d2+5d+
3)α(G′). These together with Lemma 8 and Lemma 9 imply Theorem 3.

5. Concluding Remarks

In this paper, we provide a refined version of the generalized Nemhauser-
Trotter-Theorem, which applies to Bounded-Degree Vertex Deletion

and for any d ≥ 0 can get a linear-vertex problem kernel for the problem
parameterized by the solution size. This is the first linear-vertex kernel for
the case that d ≥ 3. Our algorithms and proofs are based on extremal combi-
natorial arguments, while the original NT-Theorem uses linear programming
relaxations [22]. It seems no way to generalize the linear programming re-
laxations used for the original NT-Theorem to Bounded-Degree Vertex

Deletion [14]. A crucial technique in this paper is the d-bounded decom-
position. To find such kinds of decompositions, we follow the ideas to find
crown decompositions [2] and the algorithmic strategy in [14]. However, we
use more ticks and can finally obtain the linear size condition.

As pointed out by Fellows et al. [14], the results for Bounded-Degree

Vertex Deletion in this paper can be modified for the problem of packing
stars. We believe that the new decomposition technique can be used to
get local optimization properties and kernels for more deletion and packing
problems.

Our algorithm obtains a kernel of O(d3k) vertices for Bounded-Degree

Vertex Deletion when d is also part of the input. Another interesting
problem for further study is to investigate the lower bound of the kernel size
for the dependency on d.
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