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STABILITY RESULTS OF A DISTRIBUTED PROBLEM INVOLVING BRESSE SYSTEM

WITH HISTORY AND/OR CATTANEO LAW UNDER FULLY DIRICHLET OR MIXED

BOUNDARY CONDITIONS

FARAH ABDALLAH, MOUHAMMAD GHADER, AND ALI WEHBE

Abstract. In this paper, we study the stability of a one-dimensional Bresse system with infinite memory type
control and/or with heat conduction given by Cattaneo’s law acting in the shear angle displacement. When the
thermal effect vanishes, the system becomes elastic with memory term acting on one equation. Unlike [6], [10],
and [22], we consider the interesting case of fully Dirichlet boundary conditions. Indeed, under equal speed of
propagation condition, we establish the exponential stability of the system. However, in the natural physical
case when the speeds of propagation are different, using a spectrum method, we show that the Bresse system
is not uniformly stable. In this case, we establish a polynomial energy decay rate. Our study is valid for all
other mixed boundary conditions and generalizes that of [6], [10], and [22].

1. Introduction

In this paper, we study the stability of the Bresse system with history and/or heat conduction given by
Cattaneo’s law. This system defined on (0, L)× (0,+∞) takes the following form

(1.1)





ρ1ϕtt − k1 (ϕx + ψ + lw)x − lk3 (wx − lϕ) = 0,

ρ2ψtt − k2ψxx + k1 (ϕx + ψ + lw) −
∫ +∞

0

g (s)ψxx (x, t− s) ds+ δθx = 0,

ρ1wtt − k3 (wx − lϕ)x + lk1 (ϕx + ψ + lw) = 0,

ρ3θt + qx + δψtx = 0,

τqt + βq + θx = 0,

with fully Dirichlet boundary conditions

(1.2)
ϕ (0, ·) = ϕ (L, ·) = ψ (0, ·) = ψ (L, ·) = 0 in R+,

w (0, ·) = w (L, ·) = θ (0, ·) = θ (L, ·) = 0 in R+,

or with Dirichlet-Neumann-Dirichlet-Dirichlet boundary conditions

(1.3)
ϕ (0, ·) = ϕ (L, ·) = ψx (0, ·) = ψx (L, ·) = 0 in R+,

w (0, ·) = w (L, ·) = θ (0, ·) = θ (L, ·) = 0 in R+,

or with Dirichlet-Neumann-Neumann-Dirichlet boundary conditions

(1.4)
ϕ (0, ·) = ϕ (L, ·) = ψx (0, ·) = ψx (L, ·) = 0 in R+,

wx (0, ·) = wx (L, ·) = θ (0, ·) = θ (L, ·) = 0 in R+,

in addition to the following initial conditions

ϕ (·, 0) = ϕ0 (·) , ψ (·,−t) = ψ0 (·, t) , w (·, 0) = w0 (·) , θ(0, ·) = θ0, q(0, ·) = q0,

ϕt (·, 0) = ϕ1 (·) , ψt (·, 0) = ψ1 (·) , wt (·, 0) = w1 (·) in (0, L).

The functions ϕ, ψ, and w model the vertical, shear angle, and longitudinal displacements of the fila-
ment. The functions θ and q model the temperature difference and the heat flux respectively. The coefficients
ρ1, ρ2, ρ3, k1, k2, k3, l, δ, τ, β are positive constants. The integral term represents a history term with
kernel g satisfying the following hypothesis:

Key words and phrases. Bresse system, history and Cattaneo law, indirect polynomial stability, non uniform stability, frequency
domain approach.
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(H) g : R+ → R+ is a non-increasing differentiable function such that lim
s→0

g (s) exists and there exists c > 0

such that

g′ (s) ≤ −cg (s) .

Furthermore, we assume that k̃2 > 0 where k̃2 := k2 − g0, and g0 =

∫ +∞

0

g (s) ds.

Indeed, the condition lim
s→0

g (s) is sufficient near zero and can replace the condition g′ (s) ≥ −c̃g (s) for some

c̃ > 0 considered in [6], [10], and [22]. Therefore, in this paper, hypothesis (H) is an improved condition on the
kernel function appearing in the history term.

When δ = 0, decoupling occurs and the thermal effect in system (1.1) vanishes. Consequently, the study of
the stability of system (1.1) is reduced to the study of the Bresse system without heat conduction but with
an infinite memory type control acting only in the shear angle displacement. The Bresse system is usually
considered in studying elastic structures of the arcs type (see [11]). It can be expressed by the equations of
motion

ρ1ϕtt = Qx + lN
ρ2ψtt = Mx −Q

ρ1wtt = Nx − lQ

where
N = k3 (wx − lϕ)
Q = k1 (ϕx + ψ + lw)

M = k2ψx −
∫ +∞

0

g (s)ψx (x, t− s) ds

are the stress strain relations for elastic behavior. Here ρ1 = ρA, ρ2 = ρI, k1 = k′GA, k3 = EA, k2 = EI, l =
R−1 where ρ is the density of the material, E is the modulus of elasticity, G is the shear modulus, k′ is the
shear factor, A is the cross-sectional area, I is the second moment of area of the cross-section, and R is the
radius of curvature. ϕ, ψ, and w are the vertical, shear angle, and longitudinal displacements. The kernel g
represents the memory effect acting only on the shear displacement. We note that when R → ∞, then l → 0
and the Bresse model reduces to well-known Timoshenko beam equations.

Hago et al. in [10] showed that the Timoshenko system with history type damping is not exponentially
stable under Cattaneo’s law, while under Fourier’s law, an exponential stability can be only attained once the
speeds are equal. Moreover, no decay rate has been discussed if the speeds are different. This result has been
recently improved by Fatori et al in [6], where an exponential stability is obtained with Cattaneo’s law if and
only if a new condition on the wave speed of propagation is verified. Otherwise, an optimal energy decay rate
of type 1√

t
is obtained. Santos et al. in [22] extend the results of [6] and [10] to the Bresse system with only

one infinite memory type damping and under mixed boundary conditions. They first proved that the system
is exponentially stable if and only if the three waves propagate with the same speed. Moreover, when at least
two waves propagate with the same speed, a polynomial energy decay rate was established but this case has
only a mathematical sense. Therefore, these results are very interesting but not complete. Indeed, from one
hand, in the important physical natural case when the three waves have distinct speeds, no decay is discussed
by Santos et al. On the other hand, the used techniques in all previously cited papers can not be adapted to
prove the lack of exponential stability and to establish a polynomial decay rate in the interesting and difficult
case of fully Dirichlet boundary conditions.

The purpose of this paper is to study the Bresse system in the presence of history type and/or heat conduction
given by Cattaneo’s law acting in the shear angle displacement equation and under fully Dirichlet or mixed
boundary conditions. We limit our attention to the case of fully Dirichlet boundary conditions since our study
can be easily adapted to the other mixed boundary conditions. Besides the mathematical case when all the
speeds are equal, we treat the interesting physical case when the three waves all propagate with different speeds.
In fact, from the physical interpretation, we remark that the speeds of propagation of the three waves given
by ρ1

k1

, ρ2

k2

, and ρ1

k3

are all distinct. Our study is divided into two main parts. First, we study the stability
of the elastic Bresse system with only one memory type damping under fully Dirichlet boundary conditions.
When the speeds of the waves are all equal, we ensure the exponential decay found in [22]. On the contrary,
using a spectrum method we prove the lack of uniform stability. Moreover, when only two waves propagate
with the same speed, using a frequency domain approach combining with a multiplier method, we establish the
energy decay rate of type 1

t . Finally, in the interesting physical case, when the whole three waves propagate

with different speeds, we prove an energy decay rate of type 1√
t
(see Theorem 2.20 and Theorem 2.21). In these
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cases, we conjecture the optimality of the energy decay rate. Next, we adapt the study of the stability of the
elastic Bresse system (2.1) to the thermo-elastic Bresse system (1.1).

Last but not least, in addition to the previously cited papers, we rapidly recall some previous studies done
on the Bresse system. The stability of the elastic Bresse system with different kind of damping has been
studied in [13], [23], [5], [1], [17], [7], [8] and [16] . Guesmia et al. in [8] considered Bresse system with infinite
memories acting in the three equations of the system. They established asymptotic stability results under some
conditions on the relaxation functions regardless the speeds of propagation. Furthermore, thermal stabilization
of the Bresse system has been studied in [7], [13], [16]. In [13], Liu and Rao considered the Bresse system
with two thermal dissipation laws. The results of [13] are improved by Fatori and Rivera in [7] where they
studied the stability of Bresse system with one distributed temperature dissipation law operating on the angle
displacement equation. Recently, Najdi and Wehbe in [16] extended and improved the results of [7] when the
thermal dissipation is locally distributed.

This paper is organized as follows: In Section 2.1, we prove the well-posedness of system (2.1) with fully
Dirichlet boundary conditions. In Section 2.2, we prove the strong stability of the system in the lack of the
compactness of the resolvent of the generator. In Section 2.3, we prove the exponential stability of the system
on condition that the waves propagate with equal speeds. In Section 2.4, we prove that the Bresse system
considered with fully Dirichlet boundary conditions is non-uniformly stable when the speeds of the propagation
of the waves are different. More precisely, we consider the reduced Timchenko system with fully Dirichlet
boundary conditions and prove that an infinite number of eigenvalues approach the imaginary axis. In Section
2.5, if the waves propagate with different speeds, we prove the polynomial stability of the system. Indeed, if
only two of the waves propagate with equal speeds, we prove a faster polynomial decay rate. Finally, in Section
3, we adapt the results to the thermo-elastic Bresse system (1.1).

2. Elastic Bresse system with one memory type control

In this section, we study the stability of Bresse system with only one infinite memory damping acting in
the equation about the shear angle displacement under fully Dirichlet boundary conditions (our study can be
easily adapted to other mixed boundary conditions). The system is governed by the following partial differential
equations:

(2.1)





ρ1ϕtt − k1 (ϕx + ψ + lw)x − lk3 (wx − lϕ) = 0,

ρ2ψtt − k2ψxx + k1 (ϕx + ψ + lw) +

∫ +∞

0

g (s)ψxx (x, t− s) ds = 0,

ρ1wtt − k3 (wx − lϕ)x + lk1 (ϕx + ψ + lw) = 0,

with the following boundary conditions:

(2.2) ϕ (0, t) = ϕ (L, t) = ψ (0, t) = ψ (L, t) = w (0, t) = w (L, t) = 0,

and the following initial conditions:

ϕ (·, 0) = ϕ0 (·) , ψ (·,−t) = ψ0 (·, t) , w (·, 0) = w0 (·) ,
ϕt (·, 0) = ϕ1 (·) , ψt (·, 0) = ψ1 (·) , wt (·, 0) = w1 (·) .

Remark 2.1. The mixed boundary conditions make the calculations easier because they do not introduce point-
wise terms when we apply the multiplicative techniques. However, in the case of fully Dirichlet boundary
conditions, the calculations are more complicated because the boundary terms does not vanish.

2.1. Well-posedness of the problem. In this part, using a semi-group approach, we establish well-posedness
result for the system (2.1)-(2.2) under condition (H) imposed into the relaxation function. For this purpose,
similar to [4] and [15], we introduce the new variable

(2.3) η (x, t, s) := ψ (x, t) − ψ (x, t− s) , in (0, L)× R+ × R+.



4 FARAH ABDALLAH, MOUHAMMAD GHADER, AND ALI WEHBE

Then, system (2.1)-(2.2) becomes

(2.4)





ρ1ϕtt − k1 (ϕx + ψ + lw)x − lk3 (wx − lϕ) = 0,

ρ2ψtt −
(
k2 −

∫ +∞

0

g (s) ds

)
ψxx + k1 (ϕx + ψ + lw) −

∫ +∞

0

g (s) ηxxds = 0,

ρ1wtt − k3 (wx − lϕ)x + lk1 (ϕx + ψ + lw) = 0,

ηt + ηs − ψt = 0,

with the boundary conditions

(2.5)
ϕ (0, ·) = ϕ (L, ·) = ψ (0, ·) = ψ (L, ·) = w (0, ·) = w (L, ·) = 0 in R+,

η (0, ·, ·) = η (L, ·, ·) = 0 in R+ × R+,

η (·, ·, 0) = 0 in (0, L)× R+,

and initial conditions

(2.6)
ϕ (·, 0) = ϕ0 (·) , ψ (·,−t) = ψ0 (·, t) , w (·, 0) = w0 (·) ,
ϕt (·, 0) = ϕ1 (·) , ψt (·, 0) = ψ1 (·) , wt (·, 0) = w1 (·) ,
η0 (·, s) := η (·, 0, s) = ψ0 (·, 0)− ψ0 (·, s) in (0, L) , s ≥ 0.

The energy of system (2.4)-(2.5) is given by

(2.7)

E (t) =
1

2

{∫ L

0

(
ρ1 |ϕ|2 + ρ2 |ψt|2 + ρ1 |wt|2 + k1

∣∣ϕx + ψ2 + lw
∣∣2 + k̃2 |ψx|2

)
dx

+k3

∫ L

0

|wx − lϕ|2 dx+

∫ L

0

∫ +∞

0

g (s) |ηx|2 dxds
}
.

Then a straightforward computation gives

(2.8) E′ (t) =
1

2

∫ L

0

∫ +∞

0

g′ (s) |ηx|2 dsdx ≤ 0.

Thus, the system (2.4)-(2.5) is dissipative in the sense that its energy is non increasing with respect to the time
t. Now, we define the energy space H by

H =
(
H1

0 (0, L)
)3 ×

(
L2 (0, L)

)3 × L2
g

(
R+, H

1
0

)

where L2
g

(
R+, H

1
0

)
denotes the Hilbert space endowed with the inner product

(
η1, η2

)
g
=

∫ L

0

∫ +∞

0

g (s) η1x (x, s) η
2
x (x, s) dsdx.

The energy space H is endowed with the following norm

(2.9)

‖U‖2H = ‖(v1, v2, v3, v4, v5, v6, v7)‖2H
= ρ1

∥∥v4
∥∥2 + ρ2

∥∥v5
∥∥2 + ρ1

∥∥v6
∥∥2 + k1

∥∥v1x + v2 + lv3
∥∥2 + k̃2

∥∥v2x
∥∥2

+k3
∥∥v3x − lv1

∥∥2 +
∥∥v7
∥∥2
g

where ‖ · ‖ and ‖ · ‖g denote the norms of L2 (0, L) and L2
g

(
R+, H

1
0

)
respectively.

Next, we define the linear operator A in H by

D (A) =

{
U ∈ H | v1, v3 ∈ H2 (0, L) , v4, v5, v6 ∈ H1

0 (0, L) , v
7
s ∈ L2

g

(
R+, H

1
0

)
,

v2 +
∫ +∞
0 g (s) v7ds ∈ H2 (0, L) ∩H1

0 (0, L) , v
7 (x, 0) = 0

}
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and

(2.10) A




v1

v2

v3

v4

v5

v6

v7




=




v4

v5

v6

ρ−1
1

(
k1
(
v1x + v2 + lv3

)
x
+ lk3

(
v3x − lv1

))

ρ−1
2

(
k̃2v

2
xx − k1

(
v1x + v2 + lv3

)
+
∫ +∞
0

g (s) v7xxds
)

ρ−1
1

(
k3
(
v3x − lv1

)
x
− lk1

(
v1x + v2 + lv3

))

v5 − v7s




for all U =
(
v1, v2, v3, v4, v5, v6, v7

)T ∈ D (A). If U = (ϕ, ψ,w, ϕt, ψt, wt, η)
T
is the state of (2.4)-(2.5), then

the Bresse beam system is transformed into a first order evolution equation on the Hilbert space H:

(2.11)

{
Ut = AU,
U (0) = U0

where

U0 (x) =
(
ϕ0 (x) , ψ0 (x, 0) , w0 (x) , ϕ1 (x) , ψ1 (x) , w1 (x) , η

0 (x, ·)
)T
.

Remark 2.2. It is easy to see that there exists a positive constant k′0 such that

(2.12) k1 ‖ϕx + ψ + lw‖2 + k̃2 ‖ψx‖2 + k3 ‖wx − lϕ‖2 ≤ k′0

(
‖ϕx‖2 + ‖ψx‖2 + ‖wx‖2

)
.

On the other hand, under hypothesis (H), as k̃2 > 0, we can show by a contradiction argument the existence of

a positive constant k0 such that, for any (ϕ, ψ,w) ∈
(
H1

0 (]0, L[)
)3
,

(2.13) k0

(
‖ϕx‖2 + ‖ψx‖2 + ‖wx‖2

)
≤ k1 ‖ϕx + ψ + lw‖2 + k̃2 ‖ψx‖2 + k3 ‖wx − lϕ‖2.

Therefore, the norm on the energy space H given in (2.9) is equivalent to the usual norm on H.

Proposition 2.3. Under hypothesis (H), the operator A is m-dissipative in the energy space H.

Proof. For all U ∈ D (A), by a straight forward calculation, we have

(2.14) ℜ (〈AU,U〉H) =
1

2

∫ L

0

∫ +∞

0

g′ (s)
∣∣v7x
∣∣2 dsdx.

As g is non-increasing we get that A is dissipative. Now let F =
(
f1, f2, f3, f4, f5, f6, f7

)T ∈ H, we prove the
existence of

U =
(
v1, v2, v3, v4, v5, v6, v7

)T ∈ D (A)

unique solution of the equation

−AU = F.

Equivalently, we have the following system

− v4 = f1,(2.15)

−v5 = f2,(2.16)

−v6 = f3,(2.17)

−k1
[
v1x + v2 + lv3

]
x
− lk3

[
v3x − lv1

]
= ρ1f

4,(2.18)

−k̃2v2xx + k1
[
v1x + v2 + lv3

]
−
∫ +∞

0

g (s) v7xxds = ρ2f
5,(2.19)

−k3
[
v3x − lv1

]
x
+ lk1

[
v1x + v2 + lv3

]
= ρ1f

6,(2.20)

v7s − v5 = f7.(2.21)

From (2.21) and (2.16), we can determine

(2.22) v7 (x, s) = −sf2 (x) +

∫ s

0

f7 (x, τ) dτ.
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It is clear that v7 (x, 0) = 0 and v7s ∈ L2
g

(
R+, H

1
0

)
. To prove that v7 ∈ L2

g

(
R+, H

1
0

)
let T, ǫ > 0 be arbitrary.

Using hypothesis (H), we have

(2.23)

∫ T

ǫ

g (s)
∥∥v7x
∥∥2 ds ≤ −1

c

∫ T

ǫ

g′ (s)
∥∥v7x
∥∥2 ds

≤ −g (T )
c

∥∥v7x (·, T )
∥∥2 + g (ǫ)

c

∥∥v7x (·, ǫ)
∥∥2 + 2

c

∫ T

ǫ

g (s)ℜ
{∫ L

0

v7xv
7
xsdx

}
ds.

Using the hypothesis on g and the fact that v7 (x, 0) = 0, then as T → +∞ and ǫ→ 0, we obtain from (2.23)

∫ +∞

0

g (s)
∥∥v7x
∥∥2 ds ≤ 2

c

∫ +∞

0

g (s)ℜ
{∫ L

0

v7xv
7
xsdx

}
ds

≤ 1

2

∫ +∞

0

g (s)
∥∥v7x
∥∥2 ds+ 2

c2

∫ +∞

0

g (s)
∥∥v7sx

∥∥2 ds.

It follows that ∫ +∞

0

g (s)
∥∥v7x
∥∥2 ds ≤ 4

c2

∫ +∞

0

g (s)
∥∥v7sx

∥∥2 ds < +∞.

Therefore v7 ∈ L2
g

(
R+, H

1
0

)
. Now, inserting (2.22) in (2.18)-(2.20), we get

(2.24)





−k1
[
v1x + v2 + lv3

]
x
− lk3

[
v3x − lv1

]
= ρ1f

4,

−k2v2xx + k1
[
v1x + v2 + lv3

]
= ρ2f

5 +

∫ +∞

0

g (s)

(
−sf2 (x) +

∫ s

0

f7 (x, τ) dτ

)

xx

ds,

−k3
[
v3x − lv1

]
x
+ lk1

[
v1x + v2 + lv3

]
= ρ1f

6,

where k2 = k2 −
∫ +∞
0

e−sg (s) ds > 0.

Using Lax-Milgram Theorem (see [18]), we deduce that (2.24) admits a unique solution in
(
H1

0 (0, L)
)3
. Thus,

using (2.22) and classical regularity arguments, we conclude that −AU = F admits a unique solution U ∈ D (A)
and 0 ∈ ρ(A). Since D(A) is dense in H then, by the resolvent identity, for small λ > 0, we have R(λI−A) = H
(see Theorem 1.2.4 in [14]) and A is m-dissipative in H. The proof is thus complete. �

Thanks to Lumer-Phillips Theorem (see [14, 18]), we deduce that A generates a C0-semigroup of contraction
etA in H and therefore problem (2.4)-(2.5) is well-posed. Then we have the following result:

Theorem 2.4. Under hypothesis (H), for any U0 ∈ H, problem (2.11) admits a unique weak solution

U ∈ C (R+;H) .

Moreover, if U0 ∈ D (A) , then

U ∈ C (R+;D (A)) ∩ C1 (R+;H) .

2.2. Strong stability of the system. In this part, we use a general criteria of Arendt-Batty in [2] to show
the strong stability of the C0-semigroup etA associated to the Bresse system (2.4)-(2.5) in the absence of the
compactness of the resolvent of A. Our main result is the following theorem:

Theorem 2.5. Assume that (H) is true. Then, the C0-semigroup etA is strongly stable in H; i.e, for all
U0 ∈ H, the solution of (2.11) satisfies

lim
t→+∞

∥∥etAU0
∥∥
H = 0.

For the proof of Theorem 2.5, we need the following two lemmas.

Lemma 2.6. Under hypothesis (H), we have

(2.25) ker (iλ −A) = {0} for all λ ∈ R.

Proof. From Proposition 2.3, we deduce that 0 ∈ ρ (A). We still need to show the result for λ ∈ R∗. Suppose

that there exists a real number λ 6= 0 and U =
(
v1, v2, v3, v4, v5, v6, v7

)T ∈ D (A) such that

(2.26) AU = iλU.
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Then, we have

ℜ (〈AU,U〉H) =
1

2

∫ L

0

∫ +∞

0

g′ (s)
∣∣v7x
∣∣2 dsdx = 0.

Due to hypothesis (H), it follows that
∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = 0.

This implies that

v7 = 0.

Now equation (2.26) is equivalent to

v4 = iλv1,(2.27)

v5 = iλv2,(2.28)

v6 = iλv3,(2.29)

k1
[
v1x + v2 + lv3

]
x
+ lk3

[
v3x − lv1

]
= iρ1λv

4,(2.30)

k̃2v
2
xx − k1

[
v1x + v2 + lv3

]
= iρ2λv

5,(2.31)

k3
[
v3x − lv1

]
x
− lk1

[
v1x + v2 + lv3

]
= iρ1λv

6,(2.32)

v5 = 0.(2.33)

Using equations (2.33), (2.28), (2.31) and the fact that v2, v5 ∈ H1
0 (0, L), we get

(2.34) v2 = v5 = 0 and v1x + lv3 = 0.

Inserting (2.27), (2.29) and (2.34) into equations (2.30) and (2.32), we get

−k3v1xx +
(
ρ1λ

2 − l2k3
)
v1 = 0,

k3v
3
xx +

(
ρ1λ

2 + l2k3
)
v3 = 0,

v1(0) = v1(L) = v3(0) = v3(L) = 0.

By direct calculation, we deduce that v1 = v3 = 0 and therefore U = 0. The proof is thus complete. �

Lemma 2.7. Under hypothesis (H), iλ −A is surjective for all λ ∈ R.

Proof. Since 0 ∈ ρ (A). We still need to show the result for λ ∈ R∗. For any

F =
(
f1, f2, f3, f4, f5, f6, f7

)T ∈ H, λ ∈ R
∗,

we prove the existence of

U =
(
v1, v2, v3, v4, v5, v6, v7

)T ∈ D (A)

solution of the following equation

(iλ −A)U = F.

Equivalently, we have the following system

iλv1 − v4 = f1,(2.35)

iλv2 − v5 = f2,(2.36)

iλv3 − v6 = f3,(2.37)

ρ1iλv
4 − k1

[
v1x + v2 + lv3

]
x
− lk3

[
v3x − lv1

]
= ρ1f

4,(2.38)

ρ2iλv
5 − k̃2v

2
xx + k1

[
v1x + v2 + lv3

]
−
∫ +∞

0

g (s) v7xxds = ρ2f
5,(2.39)

ρ1iλv
6 − k3

[
v3x − lv1

]
x
+ lk1

[
v1x + v2 + lv3

]
= ρ1f

6,(2.40)

iλv7 + v7s − v5 = f7.(2.41)

From (2.41) and (2.36), we have

v7s + iλv7 = iλv2 − f2 + f7.

It follows that

(2.42) v7 (x, s) =
(
1− e−iλs

)
v2 (x) +

i

λ

(
1− e−iλs

)
f2 (x) +

∫ s

0

eiλ(τ−s)f7 (x, τ) dτ.
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From (2.35)-(2.37), we have

(2.43) v4 = iλv1 − f1, v5 = iλv2 − f2, v6 = iλv3 − f3.

Inserting (2.42) and (2.43) in (2.38)-(2.40), we get

(2.44)





−λ2v1 − k1ρ
−1
1

[
v1x + v2 + lv3

]
x
− lk3ρ

−1
1

[
v3x − lv1

]
= h1,

−λ2v2 − k̆2ρ
−1
2 v2xx + k1ρ

−1
2

[
v1x + v2 + lv3

]
= h2,

−λ2v3 − k3ρ
−1
1

[
v3x − lv1

]
x
+ lk1ρ

−1
1

[
v1x + v2 + lv3

]
= h3,

where

k̆2 = k2 −
∫ +∞

0

e−iλsg (s) ds,

and 



h1 = f4 + iλf1, h3 = f6 + iλf3,

h2 = f5 + iλf2 +
i

λ
ρ−1
2

∫ +∞

0

(
1− e−iλs

)
g (s) dsf2

xx + ρ−1
2

∫ +∞

0

g (s)

∫ s

0

eiλ(τ−s)f7
xxdτds.

Define the operators

Lv =




−k1ρ−1
1

(
v1x + v2 + lv3

)
x
− lk3ρ

−1
1

(
v3x − lv1

)

−k̆2ρ−1
2 v2xx + k1ρ

−1
2

(
v1x + v2 + lv3

)

−k3ρ−1
1

(
v3x − lv1

)
x
+ lk1ρ

−1
1

(
v1x + v2 + lv3

)



, ∀ v =

(
v1, v2, v3

)T ∈
(
H1

0 (0, L)

)3

.

Using Lax-Milgram theorem, it is easy to show that L is an isomorphism from (H1
0 (0, L))

3 onto (H−1 (0, L))3.

Let v =
(
v1, v2, v3

)T
and h =

(
h1, h2, h3

)T
, then we transform system (2.44) into the following form

(2.45) v − λ2L−1v = L−1h.

Using the compactness embeddings from L2(0, L) into H−1(0, L) and from H1
0 (0, L) into L2(0, L) we deduce

that the operator L−1 is compact from L2(0, L) into L2(0, L). Consequently, by Fredholm alternative, proving
the existence of v solution of (2.45) reduces to proving the injectivity of the operator Id − λ2L−1. Indeed, if

ṽ =
(
ṽ1, ṽ2, ṽ3

)T ∈ Ker(Id− λ2L−1), then we have λ2ṽ − Lṽ = 0. It follows that

(2.46)





−ρ1λ2ṽ1 − k1
[
ṽ1x + ṽ2 + lṽ3

]
x
− lk3

[
ṽ3x − lṽ1

]
= 0,

−ρ2λ2ṽ2 − k̆2ṽ
2
xx + k1

[
ṽ1x + ṽ2 + lṽ3

]
= 0,

−ρ1λ2ṽ3 − k3
[
ṽ3x − lṽ1

]
x
+ Ik1

[
ṽ1x + ṽ2 + lṽ3

]
= 0.

Now, it is easy to see that if (ṽ1, ṽ2, ṽ3) is a solution of system (2.46) then the vector Ṽ defined by Ṽ =(
ṽ1, ṽ2, ṽ3, iλṽ1, iλṽ2, iλṽ3,

(
1− e−iλs

)
ṽ2
)T

belongs to D(A) and we have iλṼ −AṼ = 0. Therefore, by Lemma

2.6, we get Ṽ = 0 and so Ker(Id−λ2L−1) = {0}. Thanks to Fredholm alternative, the equation (2.45) admits a

unique solution v = (v1, v2, v3) ∈
(
H1

0 (0, L)
)3
. Thus, using (2.42), (2.43) and a classical regularity arguments,

we conclude that (iλ −A)U = F admits a unique solution U ∈ D (A). The proof is thus complete. �

Proof of Theorem 2.5. Following a general criteria of Arendt-Batty in [2], the C0−semigroup etA of con-
tractions is strongly stable if A has no pure imaginary eigenvalues and σ(A)∩ iR is countable. By Lemma 2.6,
the operator A has no pure imaginary eigenvalues and by Lemma 2.7, R(iλ−A) = H for all λ ∈ R. Therefore,
the closed graph theorem of Banach implies that σ(A) ∩ iR = ∅. The proof is thus complete.

Remark 2.8. Using a multiplier method, Santos et al. in [22] established the strong stability of Bresse system
with only one infinite memory damping. Their study is only available for one dimensional case. In Theorem 2.5,
our approach can be generalized to multi-dimensional spaces. In addition, our condition (H) on the relaxation
function g is weaker than that used in [22].

Remark 2.9. We mention [20] for a direct approach of the strong stability of Kirchhoff plates in the absence
of compactness of the resolvent.
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2.3. Exponential stability in the case k1

ρ1

= k2

ρ2

and k1 = k3. In this part, under hypothesis (H), we prove

the exponential stability of the Bresse system (2.1)-(2.2) provided that

(2.47)
k1

ρ1
=
k2

ρ2
and k1 = k3.

Our main result in this part is the following stability estimate:

Theorem 2.10. Assume that (2.47) is satisfied. Under hypothesis (H), the C0-semigroup etA is exponentially
stable, i.e, there exist constants M ≥ 1, and ǫ > 0 independent of U0 such that

∥∥etAU0
∥∥
H ≤Me−ǫt

∥∥U0
∥∥
H , t ≥ 0.

According to [9] and [19], we have to check if the following conditions hold,

iR ⊆ ρ (A) (H1),

and

sup
λ∈R

∥∥∥(iλId−A)−1
∥∥∥
L(H)

= O (1) (H2).

Condition iR ⊆ ρ (A) is already proved in Lemma 2.6 and Lemma 2.7. We will prove condition (H2) by a
contradiction argument. Suppose that there exist a sequence of real numbers (λn)n, with |λn| → +∞, and a
sequence of vectors

(2.48) Un =
(
v1n, v

2
n, v

3
n, v

4
n, v

5
n, v

6
n, v

7
n

)T ∈ D (A) with ‖Un‖H = 1

such that

(2.49) iλnUn −AUn =
(
f1
n, f

2
n, f

3
n, f

4
n, f

5
n, f

6
n, f

7
n

)T → 0 in H.
That we detail as

iλnv
1
n − v4n = h1n,(2.50)

iλnv
2
n − v5n = h2n,(2.51)

iλnv
3
n − v6n = h3n,(2.52)

ρ1λ
2
nv

1
n + k1

[(
v1n
)
x
+ v2n + lv3n

]
x
+ lk3

[(
v3n
)
x
− lv1n

]
= h4n,(2.53)

ρ2λ
2
nv

2
n + k̃2

(
v2n
)
xx

− k1
[(
v1n
)
x
+ v2n + lv3n

]
+

∫ +∞

0

g (s)
(
v7n
)
xx
ds = h5n,(2.54)

ρ1λ
2
nv

3
n + k3

[(
v3n
)
x
− lv1n

]
x
− lk1

[(
v1n
)
x
+ v2n + lv3n

]
= h6n,(2.55)

iλnv
7
n +

(
v7n
)
s
− iλnv

2
n = h7n,(2.56)

where 



h1n = f1
n, h

2
n = f2

n, h
3
n = f3

n, h
7
n = f7

n − f2
n,

h4n = −ρ1
(
f4
n + iλnf

1
n

)
, h5n = −ρ2

(
f5
n + iλnf

2
n

)
, h6n = −ρ1

(
f6
n + iλnf

3
n

)
.

In the following we will check the condition (H2) by finding a contradiction with (2.48) such as ‖Un‖H = o(1).
For clarity, we divide the proof into several lemmas. From now on, for simplicity, we drop the index n.

Lemma 2.11. Assume that hypothesis (H) is verified. Then we have

(2.57)

∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o (1) .

Proof. Taking the inner product of (2.49) with U in H. Then, using (2.14) and the fact that U is uniformly
bounded in H, we get

(2.58)
1

2

∫ L

0

∫ +∞

0

g′ (s)
∣∣v7x
∣∣2 dsdx = ℜ (AU,U)H = −ℜ (iλU −AU,U)H = o (1) .

Using condition (H) into (2.58), we obtain the desired asymptotic equation (2.57). Thus the proof is complete.
�

Lemma 2.12. Assume that hypothesis (H) is verified. Then we have

(2.59)

∫ L

0

∣∣v2x
∣∣ dx = o (1) and

∫ L

0

∣∣λv2
∣∣2 dx = o (1) .



10 FARAH ABDALLAH, MOUHAMMAD GHADER, AND ALI WEHBE

Proof. Multiplying (2.56) by v2 in L2
g

(
R+, H

1
0

)
. Then, using the fact that

∥∥v2
∥∥2
g
= g0

∥∥v2x
∥∥2, v2x is uniformly

bounded in L2(0, L), f2 converges to zero in H1
0 (0, L) and f

7 converges to zero in L2
g

(
R+, H

1
0

)
, we get

(2.60) g0
∫ L

0

∣∣v2x
∣∣2 dx =

∫ L

0

∫ +∞

0

g (s) v7xv
2
xdsdx+

1

iλ

∫ L

0

∫ +∞

0

g (s) v7xsv
2
xdsdx+

o(1)

λ
.

Using by parts integration, condition (H) and the fact that v7 (x, 0) = 0, we get

1

iλ

∫ L

0

∫ +∞

0

g (s) v7xsv
2
xdsdx = − 1

iλ

∫ L

0

∫ +∞

0

g′ (s) v7xv
2
xdsdx.

Then, applying Holder’s inequality in L2(0, L) and L2(0,+∞) and using (2.58) and the fact that v2x is uniformly

bounded in L2(0, L) and lim
s→0

√
g (s) exists, it follows that

(2.61)

∣∣∣∣∣
1

λ

∫ L

0

∫ +∞

0

g (s) v7xsv
2
xdsdx

∣∣∣∣∣ ≤
lim
s→0

√
g (s)

|λ|

(∫ L

0

∫ +∞

0

−g′ (s)
∣∣v7x
∣∣2 dsdx

)1/2 ∥∥v2x
∥∥ =

o(1)

λ
.

Using Lemma 2.11 and the fact that v2x is uniformly bounded in L2(0, L), we get

(2.62)

∣∣∣∣∣

∫ L

0

∫ +∞

0

g (s) v7xv
2
xdsdx

∣∣∣∣∣ = o (1) .

Using equation (2.61) and (2.62) in equation (2.60), we get the first asymptotic estimate of (2.59). Now,

multiplying (2.54) by v2 in L2(0, L). Then, using the fact that v2 is uniformly bounded in L2(0, L), f2

converges to zero in H1
0 (0, L) and f

5 converges to zero in L2 (0, L), we get

(2.63)

ρ2λ
2

∫ L

0

∣∣v2
∣∣2 dx = k̃2

∫ L

0

∣∣v2x
∣∣2 dx+

∫ L

0

∫ +∞

0

g (s) v7v2dsdx

+k1

∫ L

0

(
v1x + v2 + lv3

)
v2dx+ o (1) .

Using Lemma 2.11, the first estimation of (2.59) and the fact that v1x is uniformly bounded in L2(0, L),∥∥v2
∥∥ = o(1), v2, v3 converge to zero in L2 (0, L) in equation (2.63) we obtain the second asymptotic estimate

of (2.59). Thus the proof is complete. �

Lemma 2.13. Assume that hypothesis (H) is verified. If ‖U‖H = o (1), on (α, β) ⊂ (0, L) then ‖U‖H = o (1)
on (0, L).

Proof. From Lemma 2.12, we have ‖v2x‖ = o (1) and ‖λv2‖ = o (1). Therefore, we only need to prove the same
results for v1 and v3. Let φ ∈ H1

0 (0, L) be a given function. We proceed the proof in two steps.

(1) Multiplying equation (2.53) by 2φv1x in L2(0, L) and use Dirichlet boundary conditions to get

(2.64)

−ρ1
∫ L

0

φ′
∣∣λv1

∣∣2 dx− k1

∫ L

0

φ′
∣∣v1x
∣∣2 dx

+2ℜ
{
k1

∫ L

0

φv2xv
1
xdx+ l (k1 + k3)

∫ L

0

φv3xv
1
xdx− l2k3

∫ L

0

φv1v1xdx

}

= −2ρ1ℜ
{∫ L

0

φf4v1xdx− i

∫ L

0

(
φ′f1 + φf1

x

)
λv1dx

}
.

From (2.48) and (2.50)-(2.52), we remark that

(2.65)
∥∥v1
∥∥ = O

(
1

λ

)
,
∥∥v2
∥∥ = O

(
1

λ

)
,
∥∥v3
∥∥ = O

(
1

λ

)
.

Then, using equation (2.65), Lemma 2.12 and the facts that v1x, λv
1 are uniformly bounded in L2(0, L),

f1 converges to zero in H1
0 (0, L), f

4 converges to zero in L2(0, L) in (2.64), we get

(2.66) − ρ1

∫ L

0

φ′
∣∣λv1

∣∣2 dx− k1

∫ L

0

φ′
∣∣v1x
∣∣2 dx+ 2l (k1 + k3)ℜ

{∫ L

0

φv3xv
1
xdx

}
= o (1) .
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Similarly, multiplying equation (2.55) by 2φv3x in L2(0, L), we get

(2.67) − ρ1

∫ L

0

φ′
∣∣λv3

∣∣2 dx− k3

∫ L

0

φ′
∣∣v3x
∣∣2 dx− 2l (k1 + k3)ℜ

{∫ L

0

φv1xv
3
xdx

}
= o (1) .

Adding (2.66) and (2.67), we get

(2.68) ρ1

∫ L

0

φ′
(∣∣λv1

∣∣2 +
∣∣λv3

∣∣2
)
dx+ k1

∫ L

0

φ′
∣∣v1x
∣∣2 dx+ k3

∫ L

0

φ′
∣∣v3x
∣∣2 dx = o (1) .

(2) Let ǫ > 0 such that α+ ǫ < β and define the cut-off function ς1 in C1 ([0, L]) by

0 ≤ ς1 ≤ 1, ς1 = 1 on [0, α] and ς1 = 0 on [α+ ǫ, L] .

Take φ = xς1 in (2.68) and use the fact that ‖U‖H = o (1) on (α, β), we get

(2.69) ρ1

∫ α

0

∣∣λv1
∣∣2 dx + ρ1

∫ α

0

∣∣λv3
∣∣2 dx+ k1

∫ α

0

∣∣v1x
∣∣2 dx+ k3

∫ α

0

∣∣v3x
∣∣2 dx = o (1) .

Using Lemmas 2.11 and 2.12, in (2.69), we get

‖U‖H = o (1) on (0, α).

Similarly, by symmetry, we can prove that ‖U‖H = o (1) on (β, L) and therefore

‖U‖H = o (1) on (0, L).

Thus the proof is complete. �

In the sequel, let 0 < α < β < L and consider the function ς ∈ C1 ([0, L]) such that 0 ≤ ς ≤ 1, ς = 1 on
[α+ ǫ, β − ǫ] ⊂ [0, L] and ς = 0 on [0, α] ∪ [β, L]. Our aim is to prove that ‖U‖H = o (1) on [α, β] and so by
Lemma 2.13, we get ‖U‖H = o (1) on (0, L) contradicting (2.48).

Lemma 2.14. Suppose that hypothesis (H) and (2.47) are satisfied. Then we have

(2.70)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o (1) , and

∫ L

0

ς
∣∣λv1

∣∣2 dx = o (1) .

Proof. We show the first estimation of (2.70). We proceed in two main steps.

(1) Our first aim is to show that

(2.71)

k1

k2

∫ L

0

ς
∣∣v1x
∣∣2 dx+

(
ρ2

k2
− ρ1

k1

)
ℜ
{∫ L

0

λ2v2xςv
1dx

}

+ℜ
{
ρ1λ

2

k1k2

∫ L

0

(
g0v2x −

∫ +∞

0

g (s) v7xds

)
ςv1dx

}
= o (1) .

Multiplying (2.54) by ςv1x in L2(0, L) and using by parts integration. Then, using Lemmas 2.11, 2.12
and the facts that v1x, λv

1 are uniformly bounded in L2(0, L), f2 converges to zero in H1
0 (0, L), f

5

converges to zero in L2(0, L), we get

(2.72)

k1

∫ L

0

ς
∣∣v1x
∣∣2 dx+ ρ2λ

2

∫ L

0

ςv2xv
1dx

+

∫ L

0

(
k̃2v

2
x +

∫ +∞

0

g (s) v7xds

)
ςv1xxdx = o (1) .

Furthermore, multiplying (2.53) by ς
k1

(
k̃2v2x +

∫ +∞
0

g (s) v7xds
)
in L2(0, L) and using by parts integra-

tion. Then, using Lemmas 2.11, 2.12 and the facts that v3x, λv
1 are uniformly bounded in L2(0, L), f1

converges to zero in H1
0 (0, L), f

4 converges to zero in L2(0, L), we get

(2.73)

ρ1λ
2

k1

∫ L

0

(
k̃2v2x +

∫ +∞

0

g (s) v7xds

)
ςv1dx+

∫ L

0

(
k̃2v2x +

∫ +∞

0

g (s) v7xds

)
ςv1xxdx

+
iρ1
k1

∫ L

0

(
λ

∫ +∞

0

g (s) v7xds

)
ςf1dx = o (1) .
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Subtracting (2.72) from (2.73) and take the real part of the resulting equation, we get

(2.74)

k1

∫ L

0

ς
∣∣v1x
∣∣2 dx−ℜ

{
ρ1λ

2

k1

∫ L

0

(
k̃2v2x +

∫ +∞

0

g (s) v7xds

)
ςv1dx

}

+ℜ
{
ρ2λ

2

∫ L

0

ςv2xv
1dx− iρ1

k1

∫ L

0

(
λ

∫ +∞

0

g (s) v7xds

)
ςf1dx

}
= o (1) .

From (2.56), we have

(2.75) λv7x − iv7xs − λv2x = −ih7x, in L2
g

(
R+, L

2
)
.

Multiplying (2.75) by ςf1 in L2
g

(
R+, L

2
)
and using by parts integration. Then, using hypothesis (H),

Lemmas 2.11, 2.12 and the facts that f1, f2 converge to zero in H1
0 (0, L), f

7 converges to zero in
L2
g(R+;H

1
0 (0, L)), we get

(2.76)

∫ L

0

(
λ

∫ +∞

0

g (s) v7xds

)
ςf1dx = −i

∫ L

0

(∫ +∞

0

g′ (s) v7xds

)
ςf1dx

−g0
∫ L

0

λv2
(
ς ′f1 + ςf1

x

)
dx+ ig0

∫ L

0

f2
xςf

1dx− i

∫ L

0

∫ +∞

0

g(s)f7
xςf

1dx = o (1) .

Finally, inserting (2.76) in (2.74) and using the fact that k̃2 = k2 − g0, we get (2.71).
(2) Our next aim is to prove

(2.77) k1

∫ L

0

ς
∣∣v1x
∣∣2 dx + λ2k2

(
ρ2

k2
− ρ1

k1

)∫ L

0

ςv2xv
1dx = o (1) .

Multiplying (2.75) by
ρ1

k1
λςv1 in L2

g

(
R+, L

2
)
and using by parts integration. Then, using hypothesis

(H), Lemma 2.11, and the facts that λv1 is uniformly bounded in L2(0, L), f2 converges to zero in
H1

0 (0, L), f
7 converges to zero in L2

g(R+;H
1
0 (0, L)), we get

(2.78)

ρ1λ
2

k1k2

∫ L

0

∫ +∞

0

g (s) v7xςv
1dsdx = −i ρ1

k1k2

∫ L

0

∫ +∞

0

g′ (s) v7xςλv
1dsdx

+
ρ1λ

2

k1k2
g0
∫ L

0

v2xςv
1dx− i

ρ1

k1k2

∫ L

0

∫ +∞

0

g (s) (f7
x − f2

x)ςλv
1dsdx = o (1) .

Adding (2.71) and (2.78), we deduce (2.77).
(3) Finally, using condition (2.47) in (2.77), we get the first estimation of (2.70). Moreover, multiplying

(2.53) by ςv1 in L2 (0, L) , using (2.48), (2.49), (2.65), and the first estimation of (2.70), we can easily
prove that ∫ L

0

ς
∣∣λv1

∣∣2 dx = o (1) .

Thus the proof is complete. �

Lemma 2.15. Assume that hypothesis (H) and (2.47) are satisfied. Then

(2.79)

∫ L

0

ς
∣∣v3x
∣∣2 dx = o (1) and

∫ L

0

ς
∣∣λv3

∣∣2 dx = o (1) .

Proof. Multiplying (2.53) by ςv3x in L2(0, L) and using by parts integration. Then, using Lemmas 2.12, 2.14
and the facts that f1 converges to zero in H1

0 (0, L), f
4 converges to zero in L2(0, L), we get

(2.80) ρ1

∫ L

0

λ2v1ςv3xdx+ l (k1 + k3)

∫ L

0

ς
∣∣v3x
∣∣2 dx− k1

∫ L

0

v1xςv
3
xxdx = o (1) .

Moreover, multiplying (2.55) by ςv1x in L2(0, L) and using by parts integration. Then, using Lemmas 2.12, 2.14
and the facts that λv3 is uniformly bounded in L2(0, L), f3 converges to zero in H1

0 (0, L), f
6 converges to zero

in L2(0, L), we get

(2.81) − ρ1

∫ L

0

λ2v3xςv
1dx+ k3

∫ L

0

v1xςv
3
xxdx = o (1) .



STABILITY RESULTS OF A DISTRIBUTED PROBLEM INVOLVING BRESSE SYSTEM 13

Take the real part of the sum of (2.80) and (2.81). Then, using the fact that k1 = k3, we get

(2.82)

∫ L

0

ς
∣∣v3x
∣∣2 dx = o (1) .

Next, if we multiplying (2.55) by ςv3 in L2 (0, L), then from (2.65), (2.82) and Lemma 2.14, we deduce that

ρ1

∫ L

0

ς
∣∣λv3

∣∣2 dx = o (1) .

Thus the proof is complete. �

Proof of Theorem 2.10 Using Lemma 2.11, Lemma 2.12, Lemma 2.14, and Lemma 2.15, we get ‖U‖H = o (1)
on [α+ ǫ, β − ǫ]. Hence, by Lemma 2.13, we get ‖U‖H = o (1) on [0, L] which contradicts (2.48). Therefore,
(H2) holds and so, by [9] and [19], we deduce the exponential stability of the system (2.4)-(2.5) propagating
with equal speeds.

Remark 2.16. It is easy to see that our technique used for the proof of the exponential stability of the Bresse
system under fully Dirichlet boundary conditions is also valid under mixed boundary conditions.

2.4. Lack of exponential stability with different speed. In this part, our goal is to show that the elastic
Bresse system (2.4)-(2.5) with fully Dirichlet boundary conditions is not exponentially stable if the speeds
of propagation of the waves are different. In particular, we consider the case when l → 0; i.e, when (2.4)-
(2.5) reduces to the Timoshenko system (2.83)-(2.84) with ρ1

k1

6= ρ2

k2

. In fact, when the speeds of propagation

are different, if mixed Dirichlet-Neumann boundary conditions are considered in system (2.4) instead of fully
Dirichlet boundary conditions, then we can easily show that the system is not exponentially decaying. Indeed,
similar to [1], [16], [6], [10], and [22], the idea is to find a sequence of (λn)n ⊆ R with |λn| −→ +∞ and a
sequence of vectors (Un)n ⊆ D (A) with ‖Un‖H = 1 such that ‖(iλnId−A)Un‖H −→ 0. In the case of Dirichlet-
Neumann-Neumann boundary condition, this approach worked well due to the fact that all eigenmodes are
separable, i.e., the system operator can be decomposed to a block-diagonal form according to the frequency
when the state variables are expanded into Fourier series. However, in the case of fully Dirichlet boundary
conditions, this approach has no success in the literature to our knowledge and the problem is still be open.
Consequently, in this section, we use another approach based on the behavior of the spectrum to prove the lack
of exponential stability of the system mainly in the case when l → 0. For simplicity, in this section, we take
L = 1 so (2.4)-(2.5) reduces to the following Timoshenko system:

(2.83)





ρ1ϕtt − k1 (ϕx + ψ)x = 0,

ρ2ψtt − k̃2ψxx + k1 (ϕx + ψ)−
∫ +∞

0

g (s) ηxxds = 0,

ηt + ηs − ψt = 0,

with the initial conditions

ϕ (·, 0) = ϕ0 (·) , ψ (·,−t) = ψ0 (·, t) ,
ϕt (·, 0) = ϕ1 (·) , ψt (·, 0) = ψ1 (·) ,
η0 (·, s) := η (·, 0, s) = ψ0 (·, 0)− ψ0 (·, s) in (0, 1) , s ≥ 0,

and fully Dirichlet boundary conditions

(2.84)
ϕ (0, ·) = ϕ (1, ·) = ψ (0, ·) = ψ (1, ·) = 0 in R+,

η (0, ·, ·) = η (1, ·, ·) = 0 in R+ × R+,

η (·, ·, 0) = 0 in (0, 1)× R+.

In this case, the energy space H reduces to

H1 =
(
H1

0 (0, 1)
)2 ×

(
L2 (0, 1)

)2 × L2
g

(
R+, H

1
0

)

and the generator A becomes the operator A1 defined by

D (A1) =

{
U = (v1, v2, v3, v4, v5)T ∈ H1 | v1 ∈ H2 (0, 1) , v3, v4 ∈ H1

0 (0, 1) , v
5
s ∈ L2

g

(
R+, H

1
0

)
,

v2 +
∫ +∞
0 g (s) v5ds ∈ H2 (0, 1) ∩H1

0 (0, 1) , v
5 (x, 0) = 0

}
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and

(2.85) A1U =




v3

v4

ρ−1
1 k1

(
v1x + v2

)
x

ρ−1
2

(
k̃2v

2
xx − k1

(
v1x + v2

)
+
∫ +∞
0

g (s) v5xxds
)

v2 − v5s




for all U =
(
v1, v2, v3, v4, v5

)T ∈ D (A1) .

Throughout this part, in addition to hypothesis (H), we assume that

(H′)
ρ1

k1
6= ρ2

k2
and |g′′ (s)| ≤ c2g (s) for some c2 > 0.

Theorem 2.17. Under hypothesis (H) and (H′), system (2.83)-(2.84) is not uniformly stable in the energy
space H1.

For the proof of Theorem 2.17, we aim to show that an infinite number of eigenvalues of A1 approach the
imaginary axis which prevents the Timoshenko system (2.83)-(2.84) from being exponentially stable. First
we determine the characteristic equation satisfied by the eigenvalues of A1. For this aim, Let λ ∈ C be an

eigenvalue of A1 and let U =
(
v1, v2, v3, v4, v5

)T ∈ D(A1) be an associated eigenvector such that ‖U‖H1
= 1.

Then

v3 = λv1,(2.86)

v4 = λv2,(2.87)

k1
(
v1x + v2

)
x
= ρ1λv

3,(2.88)

k̃2v
2
xx − k1

(
v1x + v2

)
+

∫ +∞

0

g (s) v5xxds = ρ2λv
4,(2.89)

v4 − v5s = λv5.(2.90)

From (2.90) and (2.87), we have

v5s + λv5 = λv2.

Integrating this equation and using the fact that v5 (x, 0) = 0, we get

(2.91) v5 = v2
(
1− e−λs

)
.

Inserting (2.91), (2.86)-(2.87) in (2.88)-(2.89), we get

k1

ρ1

(
v1x + v2

)
x
= λ2v1,(2.92)

k2
ρ2
v2xx − k1

ρ2

(
v1x + v2

)
= λ2v2,(2.93)

where k2 = k2 −
∫ +∞

0

g (s) e−λsds. Equivalently, we have

(2.94)





v2xxxx −
(
ρ2

k2
+
ρ1

k1

)
λ2v2xx +

ρ1ρ2

k1k2
λ2
(
λ2 +

k1

ρ2

)
v2 = 0,

v2 (ζ) = 0, v2xxx (ζ)−
ρ2

k2
λ2v2x (ζ) = 0, ζ = 0, 1.

The solution of (2.94) is given by

v2 (x) =
4∑

j=1

cje
rjx,
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where cj ∈ C for all 1 ≤ j ≤ 4 and




r1 = λ

√√√√√
(

ρ2

k
2

+ ρ1

k1

)
+

√(
ρ2

k
2

− ρ1

k1

)2
− 4ρ1

k
2
λ2

2
, r2 = −r1,

r3 = λ

√√√√√
(

ρ2

k
2

+ ρ1

k1

)
−
√(

ρ2

k
2

− ρ1

k1

)2
− 4ρ1

k
2
λ2

2
, r4 = −r3.

The boundary conditions in (2.94) can be expressed by

MC = 0

where

M =




1 1 1 1
er1 e−r1 er3 e−r3

f (r1) −f (r1) f (r3) −f (r3)
f (r1) e

r1 −f (r1) e−r1 f (r3) e
r3 −f (r3) e−r3


 , C =




c1
c2
c3
c4


 ,

and f (r) = r3 − ρ2

k
2

rλ2. For shortness, denote by f (r1) = f1 and f (r3) = f3. Then

(2.95)





f1 =
r1λ

2

2



(
ρ1

k1
− ρ2

k2

)
+

√(
ρ2

k2
− ρ1

k1

)2

− 4ρ1
k2λ

2


 ,

f3 =
r3λ

2

2



(
ρ1

k1
− ρ2

k2

)
−
√(

ρ2

k2
− ρ1

k1

)2

− 4ρ1
k2λ

2


 ,

and

(2.96)





(f1 + f3)
2
= λ6

ρ1

k1

(
ρ1

k1
− ρ2

k2

)2

− λ4
ρ1

k2

(
3ρ1
k1

− ρ2

k2

)
+ 2λ4

ρ1

k2

√
ρ1ρ2

k1k2

(
1 +

k1

ρ2λ2

)
,

(f1 − f3)
2
= λ6

ρ1

k1

(
ρ1

k1
− ρ2

k2

)2

− λ4
ρ1

k2

(
3ρ1
k1

− ρ2

k2

)
− 2λ4

ρ1

k2

√
ρ1ρ2

k1k2

(
1 +

k1

ρ2λ2

)
.

Therefore, using (2.95) and (2.96), we get

det (M) = −2 (f1 − f3)
2
cosh (r1 + r3) + 2 (f1 + f3)

2
cosh (r1 − r3)− 8f1f3

= −4λ6
ρ1

k1

(
ρ1

k1
− ρ2

k2

)2

sinh (r1) sinh (r3) + 4λ4
ρ1

k2

(
3ρ1
k1

− ρ2

k2

)
sinh (r1) sinh (r3)

−8λ4
ρ1

k2

√
ρ1ρ2

k1k2

(
1 +

k1

ρ2λ2

)
cosh (r1) cosh (r3)− 8λ4

ρ1

k2

√
ρ1ρ2

k1k2

(
1 +

k1

ρ2λ2

)
.

Equation (2.94) admits a non trivial solution if and only if det (M) = 0; i.e, if and only if the eigenvalues of A1

are roots of the function F defined by:

(2.97)

F (λ) =
λ6

k1

(
ρ1

k1
− ρ2

k2

)2

sinh (r1) sinh (r3)−
λ4

k2

(
3ρ1
k1

− ρ2

k2

)
sinh (r1) sinh (r3)

+
2λ4

k2

√
ρ1ρ2

k1k2

(
1 +

k1

ρ2λ2

)
cosh (r1) cosh (r3) +

2λ4

k2

√
ρ1ρ2

k1k2

(
1 +

k1

ρ2λ2

)
.

Lemma 2.18. Let λ ∈ C be an eigenvalue of A1. Then ℜ(λ) is bounded.

Proof. Multiplying (2.92) and (2.93) by −ρ1ϕ, and −ρ2ψ respectively, and integrating their sum, we get

ρ1 ‖λϕ‖2 + ρ2 ‖λψ‖2 + k1 ‖ϕx + ψ‖2 + k2 ‖ψx‖2 − ‖ψx‖2
∫ +∞

0

g (s) e−λsds = 0.
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Since ‖U‖H1
= 1 then ρ1 ‖λϕ‖2 + ρ2 ‖λψ‖2 + k1 ‖ϕx + ψ‖2 + k2 ‖ψx‖2 and ‖ψx‖2 are bounded. Therefore

(2.98)

∫ +∞

0

g (s) e−λsds < +∞.

Hence,

lim
s→+∞

g (s) e−ℜ(λ)s = 0.

Since A1 is dissipative in H1 then ℜ(λ) ≤ 0 and consequentially there exists constant a > 0 such that

−a ≤ ℜ(λ) < 0

and hence the proof is complete. �

Proposition 2.19. Assume that hypothesis (H) and (H′) are satisfied. Then, there exist n0, n
′
0 ∈ N sufficiently

large such that

(2.99) σ (A1) ⊃ σ̃0 ∪ σ̃1,

where σ̃0 ∪ σ̃1 is the set of eigenvalues of the operator A1 such that

(2.100) σ̃1 =
{
λ̃
(0)
j , λ̃

(1)
j

}
j∈J

, σ̃0 =
{
λ(0)n , λ

(1)
n′

}
n, n′ ∈ Z

|n| ≥ n0, |n′| ≥ n′
0

, σ̃0 ∩ σ̃1 = ∅,

where J is a finite set. Moreover, λ
(0)
n and λ

(1)
n are simple and satisfies the following asymptotic behavior

(2.101) λ(0)n = inπ

√
k2

ρ2
− g (0)

2k2
+ o (1), ∀ |n| ≥ n0

and

(2.102) λ
(1)
n′ = in′π

√
k1

ρ1
+ o (1), ∀ |n′| ≥ n′

0.

Proof. The proof is divided into three steps. Step 1 and Step 2 furnish an asymptotic development of the
characteristic equation for large λ. Step 3 gives a limited development of the large eigenvalues λ.
Step 1. In this step, we prove the following asymptotic behavior estimate

(2.103)
1

k2
=

1

k2
+
g (0)

k22λ
+O

(
1

λ2

)
.

Indeed, integration by parts yields

(2.104) k2 = k2 −
∫ +∞

0

g (s) e−λsds = k2 −
g (0)

λ
− g′ (0)

λ2
− 1

λ2

∫ +∞

0

g′′ (s) e−λsds.

From hypothesis (H′), since |g′′ (s)| ≤ c2g (s), then

(2.105)

∣∣∣∣
∫ +∞

0

g′′ (s) e−λsds

∣∣∣∣ ≤ c2

∫ +∞

0

g (s) eℜ(λ)sds.

on the other hand, since
∫ 1

0

∫ +∞

0

g (s) |ηx|2 ds dx < +∞,

then, from (2.91) and (2.105), we get

(2.106)

∫ +∞

0

g′′ (s) e−λsds = O (1) .

Finally, (2.104) and (2.106) yield (2.103).
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Step 2. In this step, we furnish an asymptotic development of the function F (λ) for large λ. Assume that
ρ1

k1

6= ρ2

k2

, then we have

(2.107)





r1 = λ

√√√√ ρ2

k2

+ ρ1

k1

+
∣∣∣ ρ2

k2

− ρ1

k1

∣∣∣
2

+
ρ2g (0)

2
√
2k22

1 + sign
(

ρ2

k2

− ρ1

k1

)

√
ρ2

k2

+ ρ1

k1

+
∣∣∣ ρ2

k2

− ρ1

k1

∣∣∣
+O

(
1

λ

)
,

r3 = λ

√√√√ ρ2

k2

+ ρ1

k1

−
∣∣∣ ρ2

k2

− ρ1

k1

∣∣∣
2

+
ρ2g (0)

2
√
2k22

1− sign
(

ρ2

k2

− ρ1

k1

)

√
ρ2

k2

+ ρ1

k1

−
∣∣∣ ρ2

k2

− ρ1

k1

∣∣∣
+O

(
1

λ

)
,

where sign
(

ρ2

k2

− ρ1

k1

)
=

∣∣∣ ρ2

k2

− ρ1

k1

∣∣∣
ρ2

k2

− ρ1

k1

. If sign
(

ρ2

k2

− ρ1

k1

)
= 1, then (2.107) is equivalent to

(2.108)





r1 = λ

√
ρ2

k2
+
g (0)

2k2

√
ρ2

k2
+O

(
1

λ

)
,

r3 = λ

√
ρ1

k1
+O

(
1

λ

)
.

If sign
(

ρ2

k2

− ρ1

k1

)
= −1, then (2.107) is equivalent to

(2.109)





r1 = λ

√
ρ1

k1
+O

(
1

λ

)
.

r3 = λ

√
ρ2

k2
+
g (0)

2k2

√
ρ2

k2
+O

(
1

λ

)
.

In the sequel, we suppose that (2.108) holds since the analysis follows similarly. Now, inserting (2.108) in (2.97)
and using Lemma 2.18, we get

(2.110) F (λ) =
λ6

k1

(
ρ1

k1
− ρ2

k2

)2

sinh (r1) sinh (r3) +O(λ5).

Step 3. In this step, we perform a limited development of of the large eigenvalues of the operator A1. Let λ
be a large eigenvalue of A1, then from (2.110), λ is large root of the following asymptotic equation

(2.111) h(λ) = h0 (λ) +O

(
1

λ

)
= 0,

where h0 (λ) = sinh (r1) sinh (r3) . Now, we prove that

h0 (λ) = 0 if and only if r1 = inπ and r3 = in′π, n, n′ ∈ Z.

Indeed, Suppose that

r1 = inπ, and r3 6= in′π, n, n′ ∈ Z.

Then

M =




1 1 1 1
(−1)

n
(−1)

n
er3 e−r3

f1 −f1 f3 −f3
(−1)

n
f1 − (−1)

n
f1 f3e

r3 −f3e−r3


 .

Using Gaussian elimination, M is equivalent to the following matrix, denoted by

(2.112) M̃ =




1 1 1 1
0 0 er3 − (−1)

n
e−r3 − (−1)

n

f1 −f1 f3 −f3
0 0 f3 (e

r3 − (−1)n) −f3 (e−r3 − (−1)n)


 .

Hence, {
(er3 − (−1)n) c3 + (e−r3 − (−1)n) c4 = 0

f3 (e
r3 − (−1)

n
) c3 − f3 (e

−r3 − (−1)
n
) c4 = 0.
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From (2.95), we can check that f1 6= 0 and f3 6= 0 for λ large enough. Since r3 6= in′π for all n′ ∈ Z, then

c3 = c4 = 0.

From (2.112), we have {
c1 + c2 = 0
f1c1 − f1c2 = 0.

Since f1 6= 0, we get
c1 = c2 = 0 and v2 = 0

which is a contradiction with ‖U‖H1
= 1. Similarly if

r1 6= inπ and r3 = in′π, n, n′ ∈ Z

we get v2 = 0. We conclude that

h0(λ) = 0 ⇔ r1 = inπ and r3 = in′π, n, n′ ∈ Z.

Then from asymptotic equation (2.108), the large roots of h0 satisfy the following asymptotic equations

(2.113) µ(0)
n = inπ

√
k2

ρ2
− g (0)

2k2
+ O

(
1

n

)
, ∀ |n| ≥ n0

and

(2.114) µ
(1)
n′ = in′π

√
k1

ρ1
+O

(
1

n

)
, ∀ |n′| ≥ n′

0.

Next, with the help of Rouché’s Theorem and using the asymptotic equation (2.111), it is easy to see that the

large roots of h, λ
(0)
n and λ

(1)
n , are closed to those of h0. Thus the proof is complete.

�

Proof of Theorem 2.17 From Proposition 2.19, the operator A1 has two branches of eigenvalues, the energy

corresponding to the first branch λ
(0)
n decays exponentially and the energy corresponding to the second branch

of eigenvalues λ
(1)
n′ has no exponential decaying. Therefore the total energy of the Timoshenko system (2.83)-

(2.84) has no exponential decaying when ρ1

k1

6= ρ2

k2

. The proof is thus complete.

2.5. Polynomial stability in the general case. In this part, we prove that the system (2.4)-(2.5) is poly-
nomially stable if (2.47) is not satisfied. We prove the following Theorems.

Theorem 2.20. Under hypothesis (H), if

(2.115)
ρ1

k1
6= ρ2

k2
and k1 6= k3,

then there exists c > 0 such that for every U0 ∈ D (A), we have

(2.116) E (t) ≤ c√
t

∥∥U0
∥∥2
D(A)

, t > 0.

Theorem 2.21. Under hypothesis (H), if

(2.117)
ρ1

k1
6= ρ2

k2
and k1 = k3,

then there exists c > 0 such that for every U0 ∈ D (A), we have

(2.118) E (t) ≤ c

t

∥∥U0
∥∥2
D(A)

, t > 0.

Since iR ⊆ ρ (A) , then for the proof of Theorem 2.20 and Theorem 2.21, according to [3] (see also [12]), we
still need to prove that

sup
λ∈R

∥∥∥(iλId−A)
−1
∥∥∥
L(H)

= O
(
|λ|l
)

(H3),

where l = 4 if condition (2.115) holds and l = 2 if condition (2.117) holds. By a contradiction argument,
suppose there exist a sequence of real numbers (λn)n, with λn → +∞, and a sequence of vectors

(2.119) Un =
(
v1n, v

2
n, v

3
n, v

4
n, v

5
n, v

6
n, v

7
n

)T ∈ D (A) with ‖Un‖H = 1

such that

(2.120) λln (iλnUn −AUn) =
(
f1
n, f

2
n, f

3
n, f

4
n, f

5
n, f

6
n, f

7
n

)T → 0 in H.
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Equivalently, we have

iλnv
1
n − v4n = h1n,(2.121)

iλnv
2
n − v5n = h2n,(2.122)

iλnv
3
n − v6n = h3n,(2.123)

ρ1λ
2
nv

1
n + k1

[(
v1n
)
x
+ v2n + lv3n

]
x
+ lk3

[(
v3n
)
x
− lv1n

]
= h4n,(2.124)

ρ2λ
2
nv

2
n + k̃2

(
v2n
)
xx

− k1
[(
v1n
)
x
+ v2n + lv3n

]
+

∫ +∞

0

g (s)
(
v7n
)
xx
ds = h5n,(2.125)

ρ1λ
2
nv

3
n + k3

[(
v3n
)
x
− lv1n

]
x
− lk1

[(
v1n
)
x
+ v2n + lv3n

]
= h6n,(2.126)

iλnv
7
n +

(
v7n
)
s
− iλnv

2
n = h7n,(2.127)

where 



λlnh
1
n = f1

n, λ
l
nh

2
n = f2

n, λ
l
nh

3
n = f3

n, λ
l
nh

7
n = f7

n − f2
n,

λlnh
4
n = −ρ1

(
f4
n + iλnf

1
n

)
, λlnh

5
n = −ρ2

(
f5
n + iλnf

2
n

)
, λlnh

6
n = −ρ1

(
f6
n + iλnf

3
n

)
.

In the following we will check the condition (H3) by finding a contradiction with (2.119) such as ‖Un‖H = o(1).
For clarity, we divide the proof into several lemmas. From now on, for simplicity, we drop the index n. From
(2.121)-(2.123), we remark that

(2.128)
∥∥v1
∥∥ = O

(
1

λ

)
,
∥∥v2
∥∥ = O

(
1

λ

)
,
∥∥v3
∥∥ = O

(
1

λ

)
.

Therefore, from (2.124)-(2.126), we remark that

(2.129)
∥∥v1xx

∥∥ = O (λ) ,

∥∥∥∥v
2
xx +

∫ +∞

0

g (s) v7xxds

∥∥∥∥ = O (λ) ,
∥∥v3xx

∥∥ = O (λ) .

Lemma 2.22. Let l ≥ 0. Under hypothesis (H), we have

(2.130)

∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o

(
1

λl

)
.

Proof. Taking the inner product of (2.120) with U in H. Then, using (2.14) and the fact that U is uniformly
bounded in H, we get

(2.131)
1

2

∫ L

0

∫ +∞

0

g′ (s)
∣∣v7x
∣∣2 dsdx = ℜ (〈AU,U〉H) = −ℜ (〈iλU −AU,U〉H) = o

(
1

λl

)
.

Using condition (H) in (2.131), we get
∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o

(
1

λl

)
.

Thus the proof is complete. �

Lemma 2.23. Let l ≥ 0. Under hypothesis (H), we have

(2.132)

∫ L

0

∣∣v2x
∣∣2 dx = o

(
1

λ
l
2

)
.

Proof. Multiplying (2.127) by v2 in L2
g

(
R+, H

1
0

)
. Then, using the fact that

∥∥v2
∥∥2
g
= g0

∥∥v2x
∥∥2, v2x is uniformly

bounded in L2(0, L), f2 converges to zero in H1
0 (0, L) and f

7 converges to zero in L2
g

(
R+, H

1
0

)
, we get

(2.133) g0λ

∫ L

0

∣∣v2x
∣∣2 dx = λ

∫ L

0

∫ +∞

0

g (s) v7xv
2
xdsdx− i

∫ L

0

∫ +∞

0

g (s) v7xsv
2
xdsdx+ o

(
1

λl

)
.

From equation (2.119) and Lemma 2.22, we get

(2.134) λ

∫ L

0

∫ +∞

0

g (s) v7xv
2
xdsdx = o

(
1

λ
l
2
−1

)
.

Applying by parts integration, Holder’s inequality in L2(0, L) and L2(0,+∞). Then, using (2.131), the fact

that v2x is uniformly bounded in L2(0, L) and lim
s→0

√
g (s) exists, we get

(2.135)

∣∣∣∣∣

∫ L

0

∫ +∞

0

g (s) v7xsv
2
xdsdx

∣∣∣∣∣ ≤ lim
s→0

√
g (s)

(∫ L

0

∫ +∞

0

−g′ (s)
∣∣v7x
∣∣2 dsdx

)1/2 ∥∥v2x
∥∥ = o

(
1

λ
l
2

)
.
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Inserting (2.134) and (2.135) into (2.133), we deduce the estimation of (2.132). Thus the proof is complete. �

Lemma 2.24. Let l ≥ 0. Under hypothesis (H), we have

(2.136)

∫ L

0

∣∣v2x
∣∣2 dx = o

(
1

λl

)
.

Proof. Let lN =
l

2

N∑

k=0

1

2k
. Since lim

N→+∞
lN = l, it is enough to prove by induction on N ∈ N that

(2.137)

∫ L

0

∣∣v2x
∣∣2 dx = o

(
1

λlN

)
.

When N = 0, estimation (2.137) holds by Lemma 2.23. Suppose that (2.137) holds for N − 1; i.e,

(2.138) λlN−1

∫ L

0

∣∣v2x
∣∣2 dx = o (1) .

Multiplying (2.127) by λlN v2 in L2
g

(
R+, H

1
0

)
. Then using the fact that

∥∥v2
∥∥2
g
= g0

∥∥v2x
∥∥2, v2x is uniformly

bounded in L2(0, L), f2 converges to zero in H1
0 (0, L) and f

7 converges to zero in L2
g

(
R+, H

1
0

)
, we get

(2.139)

λlN g0
∫ L

0

∣∣v2x
∣∣2 dx =

∫ L

0

∫ +∞

0

g (s)λ
l
2 v7xλ

lN− l
2 v2xdsdx

− i

λ

∫ L

0

∫ +∞

0

g (s)λ
l
2 v7xsλ

lN− l
2 v2xdsdx+ o

(
1

λl+1−lN

)
.

Using the fact that lN − l
2 = lN−1

2 , Lemma 2.22, (2.135) and (2.138), we get

λlN
∫ L

0

∣∣v2x
∣∣2 dx = o (1) .

Thus the proof is complete. �

Lemma 2.25. Let 2 ≤ l ≤ 4. Under hypothesis (H), we have

(2.140)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λ
l
2
−1

)
,

where ς is the cut-off function defined in Section 2.3.

Proof. Since l ≥ 2, from Lemma 2.22 and Lemma 2.24 we have

(2.141)

∫ L

0

∣∣v2x
∣∣2 = o

(
1

λ2

)
and

∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o

(
1

λ2

)
.

Multiplying (2.125) by ςv1x in L2 (0, L). Then, using (2.128) , (2.141), and the fact that v1x is uniformly bounded
in L2(0, L), f2 converges to zero in H1

0 (0, L), f
5 converges to zero in L2 (0, L), we get we get

(2.142)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o (1) .

Next, multiplying (2.125) by λ
l
2
−1ςv1x in L2 (0, L). Then using the fact that v1x is uniformly bounded in L2(0, L),

f2 converges to zero in H1
0 (0, L) and f

5 converges to zero in L2 (0, L), we get

−k1λ
l
2
−1

∫ L

0

ς
∣∣v1x
∣∣2 dx− ρ2

∫ L

0

ςλ
l
2 v2xλv

1dx− ρ2

∫ L

0

ς ′λ
l
2 v2λv1dx

−
∫ L

0

λ
l
2

(
k̃2v

2
x +

∫ +∞

0

g (s) v7xds

)
ςλ−1v1xxdx−

∫ L

0

λ
l
2
−1

(
k̃2v

2
x +

∫ +∞

0

g (s) v7xds

)
ς ′v1xdx

−k1
∫ L

0

λ
l
2
−1
(
v2 + lv3

)
ςv1xdx = o

(
1

λ
l
2

)
.

Since l ≤ 4, due to (2.128), we have

λ
l
2
−1

∫ L

0

(
v2 + lv3

)
dx = O(1).
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From (2.119), (2.120), (2.128), (2.142), Lemma 2.22, and Lemma 2.24 we obtain (2.140). Thus the proof is
complete. �

Lemma 2.26. Let 2 ≤ l ≤ 4. Under hypothesis (H), we have

(2.143)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λl−2

)
, and

∫ L

0

ς
∣∣v1
∣∣2 dx = o

(
1

λl

)
.

Proof. Let lN =
l − 2

2

N∑

k=0

1

2k
. Since lim

N→+∞

l − 2

2

N∑

k=0

1

2k
= l − 2, we prove by induction on N ∈ N that

(2.144)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λlN

)
.

If N = 0, estimation (2.144) holds by Lemma 2.25. Suppose that

(2.145) λlN−1

∫ L

0

ς
∣∣v1x
∣∣2 dx = o (1) .

Multiplying (2.124) by λlN−1ςv1 in L2 (0, L) . Then, using the fact that v1 is uniformly bounded in L2(0, L),
f1 converges to zero in H1

0 (0, L) and f
4 converges to zero in L2 (0, L), we get

ρ1λ
lN−1+2

∫ L

0

ς
∣∣v1
∣∣2 dx− k1λ

lN−1

∫ L

0

ς
∣∣v1x
∣∣2 dx+ k1

∫ L

0

λ
lN−1

2

(
ςv2x − ς ′v1x

)
λ

lN−1

2 v1dx

−l (k1 + k3)

∫ L

0

λ
lN−1

2 v3λ
lN−1

2

(
ςv1
)
x
dx− lk3λ

lN−1

∫ L

0

ς
∣∣v1
∣∣2 dx = o

(
1

λl−lN−1

)
.

As lN−1

2 ≤ 1, from (2.128), (2.145) and Lemma 2.24, we obtain

(2.146) λlN−1+2

∫ L

0

ς
∣∣v1
∣∣2 dx = o (1) .

On the other hand, using (2.146) and Lemma 2.24, we get from (2.124) that

(2.147) λ−1+
lN−1

2

∫ L

0

ς
∣∣v1xx

∣∣2 dx = O (1) .

Multiplying (2.125) by λlN ςv1x in L2 (0, L) . Then, using the fact that lN = l−2
2 + lN−1

2 , v1x is uniformly bounded

in L2(0, L), f2 converges to zero in H1
0 (0, L) and f

5 converges to zero in L2 (0, L), we get

−ρ2
∫ L

0

λ
l
2 v2xλ

1+
lN−1

2 ςv1dx− ρ2

∫ L

0

λ
l
2 v2λ1+

lN−1

2 ς ′v1dx− k1λ
lN

∫ L

0

ς
∣∣v1x
∣∣2 dx

−
∫ L

0

λ
l
2

(
k̃2v

2
x +

∫ +∞

0

g (s) v7xds

)
λ−1+

ℓN−1

2

(
ςv1xx + ς ′v1x

)
dx

−k1
∫ L

0

λ
l
2
−1
(
v2 + lv3

)
λ

lN−1

2 ςv1xdx = o

(
1

λl−lN

)
.

Using the fact that 2 ≤ l ≤ 4, (2.120), (2.128), (2.145), (2.146), (2.147), Lemma 2.22, and Lemma 2.24, we get
(2.144). Therefore,

(2.148)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λl−2

)
.

Finally, multiplying (2.124) by λl−2ςv1 in L2 (0, L). Then, using (2.120), (2.128), (2.148), and Lemma 2.24, we
get the second estimation of (2.143). Thus the proof is complete. �

Lemma 2.27. Let 2 ≤ l ≤ 4. Under hypothesis (H), we have

(2.149) l(k1 + k3)

∫ L

0

ς
∣∣v3x
∣∣2 dx+ (k3 − k1)ℜ

{∫ L

0

λςv1xλ
−1v3xxdx

}
= o (1) .
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Proof. Multiplying (2.124) by ςv3x in L2 (0, L). Then, using (2.128), Lemma 2.24, Lemma 2.26, v3x is uniformly
bounded in L2(0, L), f1 converges to zero in H1

0 (0, L) and f
4 converges to zero in L2 (0, L), we get

(2.150) ρ1

∫ L

0

λ2v1ςv3xdx+ l (k1 + k3)

∫ L

0

ς
∣∣v3x
∣∣2 dx− k1

∫ L

0

λςv1xλ
−1v3xx = o (1) .

Multiplying (2.126) by ςv1x in L2 (0, L). Then, using (2.128), Lemma 2.26, v1x is uniformly bounded in L2(0, L),
f3 converges to zero in H1

0 (0, L) and f
6 converges to zero in L2 (0, L), we get

(2.151) − ρ1

∫ L

0

λ2v1ςv3xdx+ k3

∫ L

0

λςv1xλ
−1v3xxdx = o (1) .

Adding (2.150) and (2.151), then take the real part of the resulting equation, we get (2.149). Thus the proof
is complete. �

Proof of Theorem 2.20 If (2.115) hold, take ℓ = 4 in Lemma 2.22, Lemma 2.24, and Lemma 2.26, we get

(2.152)

∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o

(
1

λ4

)
,

∫ L

0

∣∣v2x
∣∣2 dx = o

(
1

λ4

)
.

and

(2.153)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λ2

)
,

∫ L

0

ς
∣∣v1
∣∣2 dx = o

(
1

λ4

)
.

Using (2.153) and (2.129), we get

(2.154)

∫ L

0

λςv1xλ
−1v3xxdx = o (1) .

From Lemma 2.27 and (2.154), we get

(2.155)

∫ L

0

ς
∣∣v3x
∣∣2 dx = o (1) .

Next, multiplying (2.126) by ςv3 in L2 (0, L) . Then, using (2.152), (2.153) , (2.155), v3 is uniformly bounded
in L2(0, L), f3 converges to zero in H1

0 (0, L) and f
6 converges to zero in L2 (0, L), we get

(2.156)

∫ L

0

ς
∣∣v3
∣∣2 dx = o

(
1

λ2

)
.

Finally, using (2.152), (2.153), (2.155) and (2.156), we get ‖U‖H = o (1) , over (α+ ǫ, β − ǫ). Then by applying
Lemma 2.13, we deduce ‖U‖H = o (1) , over (0, L) which contradicts (2.119). This implies that

sup
λ∈R

∥∥∥(iλId−A)
−1
∥∥∥
L(H)

= O
(
λ4
)
.

The result follows from [3].

Proof of Theorem 2.21 If (2.117) hold, take ℓ = 2 in Lemma 2.27, we get directly

(2.157)

∫ L

0

ς
∣∣v3x
∣∣2 dx = o (1) .

Moreover, from Lemma 2.22, Lemma 2.24, and Lemma 2.26, we get

(2.158)

∫ L

0

∫ +∞

0

g (s)
∣∣v7
∣∣2 dsdx = o

(
1

λ2

)
,

∫ L

0

∣∣v2x
∣∣2 dx = o

(
1

λ2

)
.

and

(2.159)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o (1) ,

∫ L

0

ς
∣∣v1
∣∣2 dx = o

(
1

λ2

)
.

Next, multiplying (2.126) by ςv3 in L2 (0, L) . Then, using (2.157), (2.158), (2.159) , v3 is uniformly bounded
in L2(0, L), f3 converges to zero in H1

0 (0, L) and f
6 converges to zero in L2 (0, L), we get

(2.160)

∫ L

0

ς
∣∣v3
∣∣2 dx = o

(
1

λ2

)
.
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Finally, using (2.157), (2.158), (2.159), and (2.160), we get ‖U‖H = o (1) , over (α+ ǫ, β − ǫ). Then by applying
Lemma 2.13, we deduce ‖U‖H = o (1) , over (0, L) which contradicts (2.119). This implies that

sup
λ∈R

∥∥∥(iλId−A)
−1
∥∥∥
L(H)

= O
(
λ2
)
.

The result follows from [3].

3. Thermo-elastic Bresse system with history and Cattaneo law

We can adapt similar analysis done in Section 2 to study the stability of the thermo-elastic Bresse system
(1.1) with various boundary conditions given by (1.2), (1.3) or (1.4). In this section, we consider system (1.1)
with fully Dirichlet boundary conditions given by (1.2) since the analysis of the stability of system (1.1) with
the other boundary conditions follows easily.

After introducing the new variable

η (x, t, s) := ψ (x, t)− ψ (x, t− s) , in (0, L)× R+ × R+,

our system (1.1) takes the form

(3.1)





ρ1ϕtt − k1 (ϕx + ψ + lw)x − lk3 (wx − lϕ) = 0,

ρ2ψtt −
(
k2 −

∫ +∞

0

g (s) ds

)
ψxx + k1 (ϕx + ψ + lw) −

∫ +∞

0

g (s) ηxxds+ δθx = 0,

ρ1wtt − k3 (wx − lϕ)x + lk1 (ϕx + ψ + lw) = 0,

ηt + ηs − ψt = 0,

ρ3θt + qx + δψtx = 0,

τqt + βq + θx = 0,

with the initial conditions

ϕ (·, 0) = ϕ0 (·) , ψ (·,−t) = ψ0 (·, t) , w (·, 0) = w0 (·) ,
ϕt (·, 0) = ϕ1 (·) , ψt (·, 0) = ψ1 (·) , wt (·, 0) = w1 (·) ,
θ (·, 0) = θ0 (·) , q (·, 0) = q0 (·) ,
η0 (·, s) := η (·, 0, s) = ψ0 (·, 0)− ψ0 (·, s) , in (0, L), s ≥ 0,

and fully Dirichlet boundary conditions

ϕ (0, ·) = ϕ (L, ·) = ψ (0, ·) = ψ (L, ·) = 0 in R+,

w (0, ·) = w (L, ·) = θ (0, ·) = θ (L, ·) = 0 in R+,

η (0, ·, ·) = η (L, ·, ·) = 0 in R+ × R+,

η (·, ·, 0) = 0 in (0, L)× R+.

We consider the energy space

H =
(
H1

0 (0, L)
)3 ×

(
L2 (0, L)

)3 × L2
g

(
R+, H

1
0

)
×
(
L2 (0, L)

)2
,

equipped with the norm

‖U‖2H = ‖
(
v1, v2, v3, v4, v5, v6, v7, v8, v9

)
‖2H

= ρ1
∥∥v4
∥∥2 + ρ2

∥∥v5
∥∥2 + ρ1

∥∥v6
∥∥2 + k1

∥∥v1x + v2 + lv3
∥∥2 + k̃2

∥∥v2x
∥∥2

+k3
∥∥v3x − lv1

∥∥2 +
∥∥v7
∥∥2
g
+ ρ3

∥∥v8
∥∥2 + τ

∥∥v9
∥∥2 .

Consider the linear unbounded operator A : D (A) → H defined by

D (A) =

{
U ∈ H | v1, v3 ∈ H2 (0, L) , v4, v5, v6 ∈ H1

0 (0, L) ,

v7s ∈ L2
g

(
R+, H

1
0

)
, v8 ∈ H1

0 (0, L) , v
9 ∈ H1 (0, L) ,

v2 +
∫ +∞
0 g (s) v7ds ∈ H2 (0, L) ∩H1

0 (0, L) , v
7 (x, 0) = 0

}
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and

A




v1

v2

v3

v4

v5

v6

v7

v8

v9




=




v4

v5

v6

ρ−1
1

(
k1
(
v1x + v2 + lv3

)
x
+ lk3

(
v3x − lv1

))

ρ−1
2

(
k̃2v

2
xx − k1

(
v1x + v2 + lv3

)
+
∫ +∞
0

g (s) v7xxds− δv8x

)

ρ−1
1

(
k3
(
v3x − lv1

)
x
− lk1

(
v1x + v2 + lv3

))

v5 − v7s
ρ−1
3

(
−δv5x − v9x

)

τ−1
(
−v8x − βv9

)




,

for all U =
(
v1, v2, v3, v4, v5, v6, v7, v8, v9

)T ∈ D (A) .
Then system (1.1) is equivalent to the Cauchy problem

(3.2)

{
Ut = AU,

U (x, 0) = U0 (x) ,

where

U = (ϕ, ψ,w, ϕt, ψt, wt, η, θ, q)
T

and

U0 (x) =
(
ϕ0 (x) , ψ0 (x, 0) , w0 (x) , ϕ1 (x) , ψ1 (x) , w1 (x) , η

0 (x, .) , θ0(x), q0(x)
)T
.

Note that D(A) is dense in H and that for all U ∈ D (A), we have

(3.3) 〈AU,U〉H =
1

2

∫ L

0

∫ +∞

0

g′ (s)
∣∣v7x
∣∣2 dsdx− β

∫ L

0

∣∣v9
∣∣2 dx.

Consequently, under hypothesis (H), the system becomes dissipative. We can easily adapt the proofs in Subsec-
tion 2.1 and Subsection 2.2 to prove the well-posedness and the strong stability of system (3.1). Furthermore,
similar to [21], we define the following stability number

χ0 =

(
τ − ρ1

ρ3k1

)(
ρ2 −

k2ρ1

k1

)
− τρ1δ

2

ρ3k1
.

Theorem 3.1. Under hypothesis (H), if

(3.4) χ0 = 0 and k1 = k3,

then system (3.1) with fully Dirichlet boundary conditions is exponentially stable.

Proof. Similar to Theorem 2.10, we have to check conditions (H1) and (H2). We will prove condition (H2) by
a contradiction argument. Suppose that there exists a sequence of real numbers (λn)n, with |λn| → +∞, and
a sequence of vectors

(3.5) Un =
(
v1n, v

2
n, v

3
n, v

4
n, v

5
n, v

6
n, v

7
n, v

8
n, v

9
n

)T ∈ D (A) with ‖Un‖H = 1

such that

(3.6) iλnUn −AUn =
(
f1
n, f

2
n, f

3
n, f

4
n, f

5
n, f

6
n, f

7
n, f

8
n, f

9
n

)T → 0 in H.
Equivalently, we have

iλnv
1
n − v4n = h1n,(3.7)

iλnv
2
n − v5n = h2n,(3.8)

iλnv
3
n − v6n = h3n,(3.9)

ρ1λ
2
nv

1
n + k1

[(
v1n
)
x
+ v2n + lv3n

]
x
+ lk3

[(
v3n
)
x
− lv1n

]
= h4n,(3.10)

ρ2λ
2
nv

2
n + k̃2

(
v2n
)
xx

− k1
[(
v1n
)
x
+ v2n + lv3n

]
+

∫ +∞

0

g (s)
(
v7n
)
xx
ds− δ

(
v8n
)
x

= h5n,(3.11)

ρ1λ
2
nv

3
n + k3

[(
v3n
)
x
− lv1n

]
x
− lk1

[(
v1n
)
x
+ v2n + lv3n

]
= h6n,(3.12)

iλnv
7
n +

(
v7n
)
s
− iλnv

2
n = h7n,(3.13)

iρ3λnv
8
n + iδλn

(
v2n
)
x
+
(
v9n
)
x

= h8n(3.14)

iτλnv
9
n + βv9n +

(
v8n
)
x

= h9n,(3.15)
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where 



h1n = f1
n, h

2
n = f2

n, h
3
n = f3

n,

h4n = −ρ1
(
f4
n + iλnf

1
n

)
, h5n = −ρ2

(
f5
n + iλnf

2
n

)
, h6n = −ρ1

(
f6
n + iλnf

3
n

)
,

h7n = f7
n − f2

n, h
8
n = ρ3f

8
n + δ

(
f2
n

)
x
, h9n = τf9

n.

In the sequel, for shortness, we drop the index n. Taking the inner product of (3.6) with U in H. Then, using
(3.3), hypothesis (H) and the fact that U is uniformly bounded in H, we get

(3.16)

∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o (1) and

∫ L

0

∣∣v9
∣∣2 dx = o (1) .

Similar to Lemma 2.12, multiplying (3.13) by v2 in L2
g

(
R+, H

1
0

)
. Then, using (3.5) and (3.16), we get

(3.17)

∫ L

0

∣∣v2x
∣∣2 dx = o (1).

Multiplying (3.14) and (3.15) by v8 and v9 respectively in L2 (0, L). Then, using (3.6), (3.16) and (3.17), we
get

(3.18)

∫ L

0

∣∣v8
∣∣2 dx = o (1) .

Multiplying (3.11) by v2 in L2 (0, L). Then, using (3.6) and (3.16)- (3.18), we get

(3.19)

∫ L

0

∣∣λv2
∣∣2 dx = o (1) .

Multiplying (3.10) and (3.11) by ς
k1

(
k̃2v2x +

∫ +∞
0 g (s) v7xds

)
and ςv1x respectively in L2 (0, L). Then, take the

real part of the resulting equation, using (3.6) and (3.16)-(3.18), we get

(3.20) k1

∫ L

0

ς
∣∣v1x
∣∣2 dx+ λ2

(
ρ2 −

ρ1k2

k1

)
ℜ
{∫ L

0

ςv2xv
1dx

}
+ δℜ

{∫ L

0

v8xv
1
xdx

}
= o (1) ,

where ς is the cut-off function defined in Subsection 2.3. Multiplying (3.10), (3.14) , and (3.15) by ρ3τ
ρ1

ςv8 ,

iτλςv1, and ςv1x respectively in L2 (0, L). Then, take the real part of the resulting equation, using (3.6) and
(3.16)-(3.18), we get

(3.21) λ2ℜ
{∫ L

0

ςv2xv
1dx

}
= − ρ3k1

ρ1δτ

(
τ − ρ1

ρ3k1

)
ℜ
{∫ L

0

ςv8xv
1dx

}
+ o (1) .

Inserting (3.21) in (3.20), we get

k1

∫ L

0

ς
∣∣v1x
∣∣2 dx− ρ3k1

ρ1δτ
χ0ℜ

{∫ L

0

v8xv
1
xdx

}
= o (1) .

Using the fact that χ0 = 0, we get

(3.22)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o (1) .

Multiplying (3.10) by ςv1 in L2 (0, L). Then, using (3.6), (3.17) and (3.22), we get

(3.23)

∫ L

0

ς
∣∣λv1

∣∣2 dx = o (1) .

Multiplying (3.10) and (3.12) by ςv3x and ςv1x respectively in L2 (0, L). Then, take the real part of the resulting
equation, using (3.6), (3.16)-(3.17) and (3.22), we get

l (k1 + k3)

∫ L

0

ς
∣∣v3x
∣∣2 dx+ (k3 − k1)ℜ

{∫ L

0

v1xςv
3
xxdx

}
= o (1) .

Using the fact that k1 = k3, we get

(3.24)

∫ L

0

ς
∣∣v3x
∣∣2 dx = o (1) .
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Moreover, multiplying (3.12) by ςv3 in L2 (0, L). Then, using (3.6), (3.17) and (3.22)-(3.24), we get

(3.25)

∫ L

0

ς
∣∣λv3

∣∣2 dx = o (1) .

Finally, using (3.16)-(3.19) and (3.22)-(3.25), we can proceed similar to the proof of Theorem 2.10 to get the
result of Theorem 3.1. �

Note that when τ = 0, Cattaneo’s law turns into Fourier law. In this case, condition (3.4) becomes equivalent
to (2.47). However, if χ0 6= 0 we can adapt the proof of Theorem 2.20 and Theorem 2.21 to show the following
Theorems:

Theorem 3.2. Under hypothesis (H), if

(3.26) χ0 6= 0 and k1 6= k3,

then system (3.1) with fully Dirichlet boundary conditions is polynomially stable with an energy rate of decay
1√
t
, i.e, there exists c > 0 such that for every U0 ∈ D (A), we have

(3.27) E (t) ≤ c√
t

∥∥U0
∥∥2
D(A)

, t > 0.

Theorem 3.3. Under hypothesis (H), if

(3.28) χ0 6= 0 and k1 = k3,

then system (3.1) with fully Dirichlet boundary conditions is polynomially stable with an energy rate of decay
1

t
, i.e, there exists c > 0 such that for every U0 ∈ D (A), we have

(3.29) E (t) ≤ c

t

∥∥U0
∥∥2
D(A)

, t > 0.

Similar to Theorem 2.20 and Theorem 2.21, we have to check (H3) where l = 4 if condition (3.26) holds and
l = 2 if condition (3.28) holds. We will prove condition (H3) by a contradiction argument, suppose there exists
a sequence of real numbers (λn)n, with λn → +∞, and a sequence of vectors

(3.30) Un =
(
v1n, v

2
n, v

3
n, v

4
n, v

5
n, v

6
n, v

7
n, v

8
n, v

9
n

)T ∈ D (A) with ‖Un‖H = 1

such that

(3.31) λln (iλnUn −AUn) =
(
f1
n, f

2
n, f

3
n, f

4
n, f

5
n, f

6
n, f

7
n, f

8
n, f

9
n

)T → 0 in H;

Equivalently, we have

iλnv
1
n − v4n = h1n,(3.32)

iλnv
2
n − v5n = h2n,(3.33)

iλnv
3
n − v6n = h3n,(3.34)

ρ1λ
2
nv

1
n + k1

[(
v1n
)
x
+ v2n + lv3n

]
x
+ lk3

[(
v3n
)
x
− lv1n

]
= h4n,(3.35)

ρ2λ
2
nv

2
n + k̃2

(
v2n
)
xx

− k1
[(
v1n
)
x
+ v2n + lv3n

]
+

∫ +∞

0

g (s)
(
v7n
)
xx
ds− δ

(
v8n
)
x

= h5n,(3.36)

ρ1λ
2
nv

3
n + k3

[(
v3n
)
x
− lv1n

]
x
− lk1

[(
v1n
)
x
+ v2n + lv3n

]
= h6n,(3.37)

iλnv
7
n +

(
v7n
)
s
− iλnv

2
n = h7n,(3.38)

iρ3λnv
8
n + iδλn

(
v2n
)
x
+
(
v9n
)
x

= h8n(3.39)

iτλnv
9
n + βv9n +

(
v8n
)
x

= h9n.(3.40)

where 



λlnh
1
n = f1

n, λ
l
nh

2
n = f2

n, λ
l
nh

3
n = f3

n,

λlnh
4
n = −ρ1

(
f4
n + iλnf

1
n

)
, λlnh

5
n = −ρ2

(
f5
n + iλnf

2
n

)
, λlnh

6
n = −ρ1

(
f6
n + iλnf

3
n

)
,

λlnh
7
n = f7

n − f2
n, λ

l
nh

8
n = ρ3f

8
n + δ

(
f2
n

)
x
, λlnh

9
n = τf9

n.
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In the sequel, for shortness, we drop the index n. Taking the inner product of (3.31) with U in H. Then, using
(3.3), hypothesis (H) and the fact that U is uniformly bounded in H, we get

(3.41)

∫ L

0

∫ +∞

0

g (s)
∣∣v7x
∣∣2 dsdx = o

(
1

λl

)
and

∫ L

0

∣∣v9
∣∣2 dx = o

(
1

λl

)
.

Similar to Lemma 2.24, multiplying (3.38) by v2 in L2
g

(
R+, H

1
0

)
. Then, using (3.31) and (3.41), we get

(3.42)

∫ L

0

∣∣v2x
∣∣2 dx = o

(
1

λl

)
.

From (3.40) and (3.41), we get

(3.43)

∫ L

0

∣∣v8x
∣∣2 dx = o

(
1

λl−2

)
.

Similar to Lemma 2.25 and using (3.43), we can prove that for 2 ≤ l ≤ 4, we have

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λ
l
2
−1

)
,

where ς is the cut-off function defined in Subsection 2.3. Consequently, for 2 ≤ l ≤ 4, we can adapt the proof
of Lemma 2.26 to show that

(3.44)

∫ L

0

ς
∣∣v1x
∣∣2 dx = o

(
1

λl−2

)
and

∫ L

0

ς
∣∣v1
∣∣2 dx = o

(
1

λl

)
.

Finally, multiplying (3.35) and (3.37) by ςv3x and ςv1x respectively in L2 (0, L). Then, take the real part of the
resulting equation, using (3.31), (3.41)-(3.42) and (3.44), we get

(3.45) l(k1 + k3)

∫ L

0

ς
∣∣v3x
∣∣2 dx+ (k3 − k1)ℜ

{∫ L

0

λςv1xλ
−1v3xxdx

}
= o (1) .

Proof of Theorem 3.2 If (3.26) hold, we remark that l = 4 is the optimal value we can choose to get

(3.46)

∫ L

0

λςv1xλ
−1v3xxdx = o (1) .

Therefore, from (3.45) and (3.46), we get

(3.47)

∫ L

0

ς
∣∣v3x
∣∣2 dx = o (1) .

Proceeding similar to the proof of Theorem 2.20, we get the result of Theorem 3.2.

Proof of Theorem 3.2 If (3.28) hold, then (3.45) yields directly (3.47). In this case, we choose l = 2 as the
optimal value of 2 ≤ l ≤ 4. Proceeding similar to the proof of Theorem 2.21, we get the result of Theorem 3.3.

Remark 3.4. Following Theorem 4.1 in [16] the energy of the Bresse system with fully Dirichlet or mixed

boundary conditions decays as
1√
t
if only one thermal dissipation given by Fourier law is considered and

1
3
√
t
if

only one thermal dissipation given by Cattaneo law is considered.

4. Conclusion and open questions

Bresse system (1.1) with dissipative thermal effect given by Cattaneo’s law and history type control is
expected to decay faster than system (2.1) without heat conduction. Nevertheless, Theorem 2.20 and Theorem
3.2 show that the heat dissipation does not affect the rate of energy decay. Consequently, the optimality of
the polynomial decay rate of system (1.1) and the influence of the Cattaneo law on the stability of the system
remain an open problem.
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