BRAIDED C[∗] **-QUANTUM GROUPS**

SUTANU ROY

Abstract. We propose a general theory of braided quantum groups in the C∗ -algebraic framework. More precisely, we construct braided quantum groups using manageable braided multiplicative unitaries over a regular C[∗]-quantum group. We show that braided C[∗]-quantum groups are equivalent to C[∗]-quantum groups with projection.

1. INTRODUCTION

Let H be a group and let p be an idempotent homomorphism H . This is equivalent to a split exact sequence of groups such that $H \cong K \ltimes G$ where $K = \text{ker}(p)$ and $G = \text{Im}(p)$. C^{*}-quantum groups with projection is a quantum analogue of semidirect product of groups.

In a purely algebraic setting, quantum groups and Hopf algebras are (roughly) synonymous. In [\[10\]](#page-15-0), Radford shows that Hopf algebras with projection correspond exactly to pairs consisting of a Hopf algebra *A* and a Hopf algebra in the monoidal category of *A*-Yetter-Drinfeld algebras.

The image of the projection is again a Hopf algebra *A*. The analogue of the kernel is a Yetter-Drinfeld algebra *B* over *A*. For instance, when $A = \mathbb{C}[\mathbb{Z}]$ then *B* is a *A*-Yetter-Drinfeld algebra if and only if *B* is a Z-graded Z-module. For two Yetter–Drinfeld algebras B_1 and B_2 , the tensor product $B_1 \otimes B_2$ carries a unique multiplication for which it is again a Yetter–Drinfeld algebra; the Yetter–Drinfeld module structure is the diagonal one, which is determined by requiring the embeddings of B_1 and B_2 to be equivariant. The comultiplication on B is a homomorphism to the deformed tensor product $B \boxtimes B$, which turns *B* into a Hopf algebra in the monoidal category of Yetter–Drinfeld algebras.

This suggests that a braided C^{*}-quantum group over a C^{*}-quantum group $\mathbb{G} =$ (A, Δ_A) should be a pair (B, Δ_B) consisting of a G-Yetter-Drinfeld C^{*}-algebra *B* and a nondegenerate *-homomorphism $\Delta_B: B \to \mathcal{M}(B \boxtimes B)$ respecting the G-Yetter-Drinfeld structure. This has been studied in [\[7,](#page-15-1) Section 6] when *A* and *B* both are unital. In the nonunital case, we need to generalise the concept of multiplicative uniatries.

Let H be a separable Hilbert space. A unitary operator $\mathbb{W} : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is *multiplicative* if it satisfies the *pentagon equation*

(1.1)
$$
\mathbb{W}_{23}\mathbb{W}_{12} = \mathbb{W}_{12}\mathbb{W}_{13}\mathbb{W}_{23} \quad \text{in } \mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}).
$$

In [\[1\]](#page-15-2), Baaj and Skandalis used *regularity* of multiplicative unitaries as a basic axiom to construct locally compact quantum groups in C[∗] -algebraic framework. The notion of manageability of multiplicative unitaries, introduced by Woronowicz in [\[16\]](#page-15-3), provides a more general approach to the C[∗] -algebraic theory for locally compact quantum groups or, in short, C[∗] -quantum groups (see Theorem [2.2\)](#page-2-0).

²⁰¹⁰ *Mathematics Subject Classification.* Primary 81R50, 46L89; Secondary 18D10, 46L55.

Key words and phrases. braided C*-quantum group, manageable multiplicative unitary, braided multiplicative unitary, quantum group with projection.

The author was supported by a Fields–Ontario postdoctoral fellowship.

Motivated by [\[1\]](#page-15-2), Bücher and the author, in [\[2\]](#page-15-4), presented a general theory of regular braided quantum groups in the C[∗] -algebraic framework using regular braided multiplicative unitaries.

Let C be a braided monoidal category of separable Hilbert spaces. Thus, for any two objects $\mathcal{L}_1, \mathcal{L}_2 \in \mathcal{C}$ there is a bounded operator $\mathcal{L}_1 \times \mathcal{L}_2 : \mathcal{L}_1 \otimes \mathcal{L}_2 \to \mathcal{L}_2 \otimes \mathcal{L}_1$ that braid diagrams. Assume that $\mathcal{L}_1 \times \mathcal{L}_2$ is unitary for all objects $\mathcal{L}_1, \mathcal{L}_2 \in \mathcal{C}$. For an object $\mathcal{L} \in \mathcal{C}$, a *braided multiplicative unitary* on should be unitary morphism $\mathbb{F} : \mathcal{L} \otimes \mathcal{L} \to \mathcal{L} \otimes \mathcal{L}$ in \mathcal{C} that satisfies a braided version of [\(1.1\)](#page-0-0) (see [\(3.7\)](#page-6-0)).

Our setting is the following: we set $\mathcal C$ to be the corepresentation category of quantum codouble of a C[∗] -quantum group G see [\[7,](#page-15-1) Proposition 3.4 & Section 5. Then a braided multiplicative unitary $\mathbb F$ over $\mathbb G$ is a morphism in this category satisfying braided pentagon equation (see Definition [3.4\)](#page-6-1). Next we recall the notion of manageability from [\[8\]](#page-15-5).

The goal of this article is to construct braided C[∗] -quantum groups (as outlined in the fourth paragraph above) from manageable braided multiplicative unitaries over a regular C[∗] -quantum group G.

Unlike nonbraided case, it is not even clear whether the set B_0 of slices $(\omega \otimes id_{\mathcal{L}})\mathbb{F}$ for $\omega \in \mathbb{B}(\mathcal{L})_*$ forms an algebra. In [\[2,](#page-15-4) Proposition 5], it was shown that B_0 is an algebra whenever $\mathcal C$ is a regularly braided monoidal category: the braiding operator on C is regular in the sense of [\[2,](#page-15-4) Definition 3]. Furthemore, regularity condition on F ensures that $B = B_0^{-\|\cdot\|} \subset \mathbb{B}(\mathcal{L})$ is a C^{*}-algebra and *B* admits a structure of a regular braided C[∗] -quantum group see [\[2,](#page-15-4) Theorem 13]. Because of [\[2,](#page-15-4) Proposition 16] the monoidal category $\mathcal C$ is regularly braided.

It is shown in [\[11\]](#page-15-6) and [\[8\]](#page-15-5), that Radford's theorem can be generalised nicely for manageable multiplicative unitaries. Thus shows that a braided C^{*}-quantum group (B, Δ_B) over a C^{*}-quantum group G gives rise to a C^{*}-quantum group $\mathbb{H} = (C, \Delta_C)$ with projection. As shown in [\[3\]](#page-15-7), for the von Neumann algebraic quantum groups, the analogue of the *B* coincides with the algebra fixed points for the canonical coaction of \mathbb{G} on \mathbb{H} induced by the projection on \mathbb{H} . This is not the case for *B*. As a C[∗] -algebra, *B* should be the generalised fixed point algebra. This is a special case of quantum homogeneous spaces, which is also treated by Vaes [\[15\]](#page-15-8) that needs regularity assumptions on G.

Therefore, it seems that the regularity of $\mathbb G$ turns out to be a natural assumption to construct braided C[∗] -quantum groups from braided multiplicative unitaries.

Let us briefly outline the structure of this article. In Section [2,](#page-1-0) we recall basic necessary preliminaries. In particular, the main results on modular and manageable multiplicative unitaries, that give rise to \mathbb{C}^* -quantum groups [\[16\]](#page-15-3), the notion of Heisenberg and anti-Heisenbegr pairs for C[∗] -quantum groups from [\[6\]](#page-15-9), coactions and corepresentations of C[∗] -quantum groups, results related to Yetter-Drinfeld C^{*}-algebras from [\[7\]](#page-15-1). In Section [2.5](#page-4-0) we gather some important facts of regular C ∗ -quantum groups. After introducing manageable braided multiplicative unitaries we state the main result (see Theorem [3.9\)](#page-7-0) to construct braided C^{*}-quantum groups in Section [3.](#page-6-2) We also construct the big C^* -quantum group $\mathbb H$ in terms of a braided C^* -quantum group (B, Δ_B) over a regular \mathbb{G} . In Section [4,](#page-9-0) we use the quantum version of the Landstad theorem to construct *B* the fixed point algebra for the action of \mathbb{G} on \mathbb{H} induced by the projection. Finally, in Section [5](#page-11-0) we complete the proof of Theorem [3.9.](#page-7-0)

2. Preliminaries

All Hilbert spaces and C[∗] -algebras (which are not explicitly multiplier algebras) are assumed to be separable. For a C^* -algebra A, let $\mathcal{M}(A)$ be its multiplier algebra

and let $\mathcal{U}(A)$ be the group of unitary multipliers of A . For two norm closed subsets *X* and *Y* of a C^{*}-algebra *A* and $T \in \mathcal{M}(A)$, let

$$
XTY := \{xTy : x \in X, y \in T\}^{\text{CLS}}
$$

where CLS stands for the *closed linear span*.

Let \mathfrak{C}^* algebras with nondegenerate $*$ -homomorphisms $\varphi: A \to \mathcal{M}(B)$ as morphisms $A \to B$; let Mor (A, B) denote this set of morphisms.

Let $\mathcal H$ be a Hilbert space. A *representation* of a C^{*}-algebra A is a nondegenerate *-homomorphism $A \to \mathbb{B}(\mathcal{H})$. Since $\mathbb{B}(\mathcal{H}) = \mathcal{M}(\mathbb{K}(\mathcal{H}))$ and the nondegeneracy conditions $A\mathbb{K}(\mathcal{H}) = \mathbb{K}(\mathcal{H})$ and $A\mathcal{H} = \mathcal{H}$ are equivalent, this is the same as a morphism from A to $\mathbb{K}(\mathcal{H})$.

We write Σ for the tensor flip $\mathcal{H} \otimes \mathcal{K} \to \mathcal{K} \otimes \mathcal{H}$, $x \otimes y \mapsto y \otimes x$, for two Hilbert spaces H and K. We write σ for the tensor flip isomorphism $A \otimes B \to B \otimes A$ for two C[∗] -algebras *A* and *B*.

2.1. **Multiplicative unitaries and quantum groups.** Let \mathcal{H} be a Hilbert space. A multiplicative unitary $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is *manageable* if there are a strictly positive operator *Q* on H and a unitary $\widetilde{W} \in \mathcal{U}(\overline{H} \otimes H)$ with $W^*(Q \otimes Q)W = Q \otimes Q$ and

(2.1)
$$
(x \otimes u \mid \mathbb{W} \mid z \otimes y) = (\overline{z} \otimes Qu \mid \widetilde{\mathbb{W}} \mid \overline{x} \otimes Q^{-1}y)
$$

for all $x, z \in \mathcal{H}$, $u \in \mathcal{D}(Q)$ and $y \in \mathcal{D}(Q^{-1})$ (see [\[16,](#page-15-3) Definition 1.2]). Here $\overline{\mathcal{H}}$ is the conjugate Hilbert space, and an operator is *strictly positive* if it is positive and self-adjoint with trivial kernel. The condition $\mathbb{W}^*(Q \otimes Q)\mathbb{W} = Q \otimes Q$ means that the unitary W commutes with the unbounded operator $Q \otimes Q$.

Theorem 2.2 ([\[14,](#page-15-10) [16\]](#page-15-3)). Let H be a separable Hilbert space and $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ a *manageable multiplicative unitary. Let*

(2.3)
$$
A := \{ (\omega \otimes id_{\mathcal{H}}) \mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_* \}^{\text{CLS}},
$$

(2.4)
$$
\hat{A} := \{ (\mathrm{id}_{\mathcal{H}} \otimes \omega) \mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_* \}^{\mathrm{CLS}}.
$$

- (1) *A* and \hat{A} are separable, nondegenerate C^* -subalgebras of $\mathbb{B}(\mathcal{H})$.
- (2) $\mathbb{W} \in \mathcal{U}(\hat{A} \otimes A) \subseteq \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ *. We write* \mathbb{W}^A *for* \mathbb{W} *viewed as a unitary multiplier of* $\hat{A} \otimes A$ *and call it* reduced bicharacter.
- (3) *The map* $\Delta_A(a) := \mathbb{W}(a \otimes 1_{\mathcal{H}}) \mathbb{W}^*$ *defines a unique morphism* $A \to A \otimes A$ *satisfying*

(2.5)
$$
(\mathrm{id}_{\hat{A}} \otimes \Delta_A)W^A = W_{12}^A W_{13}^A \quad in \ \mathcal{U}(\hat{A} \otimes A \otimes A).
$$

Moreover, Δ_A *is* coassociative:

(2.6)
$$
(\Delta_A \otimes id_A)\Delta_A = (id_A \otimes \Delta_A)\Delta_A,
$$

and satisfies the cancellation conditions*:*

(2.7)
$$
\Delta_A(A)(1_A \otimes A) = A \otimes A = (A \otimes 1_A)\Delta_A(A).
$$

(4) *There is a unique ultraweakly continuous, linear anti-automorphism* R*^A of A with*

(2.8)
$$
\Delta_A R_A = \sigma(R_A \otimes R_A) \Delta_A,
$$

where
$$
\sigma(x \otimes y) = y \otimes x
$$
. It satisfies $R_A^2 = id_A$.

A C^{*}-quantum group \mathbb{G} is a pair (C, Δ_C) consisting of a C^{*}-algebra *C* and an element $\Delta_C \in \text{Mor}(C, C \otimes C)$ constructed from a modular or managebale multiplicative unitary W. Then we say $\mathbb{G} = (C, \Delta_C)$ is generated by W. We do not need Haar weights.

The *dual* multiplicative unitary is $\widehat{\mathbb{W}} := \Sigma \mathbb{W}^* \Sigma \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$, where $\Sigma(x \otimes y) =$ *y* ⊗ *x*. It is modular or manageable if W is. The C^{*}-quantum group $\widehat{G} = (\hat{A}, \hat{\Delta}_A)$ generated by $\widehat{\mathbb{W}}$ is the *dual* of \mathbb{G} . Its comultiplication is characterised by

(2.9)
$$
(\hat{\Delta}_A \otimes \mathrm{id}_A) W^A = W^A_{23} W^A_{13} \quad \text{in } \mathcal{U}(\hat{A} \otimes \hat{A} \otimes A).
$$

2.2. **Heisenberg pairs.** Let $\mathbb{G} = (A, \Delta_A)$ be a C^{*}-quantum group. Let $\widehat{\mathbb{G}} =$ $(\hat{A}, \hat{\Delta}_A)$ be its dual, and $W^A \in \mathcal{U}(\hat{A} \otimes A)$ be the reduced bicharacter.

A pair of representations $(\pi, \hat{\pi})$ of A and \hat{A} on a Hilbert space H is a G-Heisenberg *pair* if and only if

(2.10)
$$
W_{\hat{\pi}3}^A W_{1\pi}^A = W_{1\pi}^A W_{13}^A W_{\hat{\pi}3}^A \quad \text{in } \mathcal{U}(\hat{A} \otimes \mathbb{K}(\mathcal{H}) \otimes A).
$$

Here $W_{1\pi}^A := ((id_{\hat{A}} \otimes \pi)W^A)_{12}$ and $W_{\hat{\pi}3}^A := ((\hat{\pi} \otimes id_A)W^A)_{23}$. Theorem [2.2](#page-2-0) ensures the existance of a faithful G-Heisenberg pairs and [\[12,](#page-15-11) Proposition 3.2] shows that any G-Heisenberg pair is faithful.

Similarly, a pair of representations $(\rho, \hat{\rho})$ of A and \hat{A} on H is a \mathbb{G} -*anti-Heisenberg pair* on H if and only if

(2.11)
$$
W_{1\rho}^A W_{\rho 3}^A = W_{\rho 3}^A W_{13}^A W_{1\rho}^A \quad \text{in } \mathcal{U}(\hat{A} \otimes \mathbb{K}(\mathcal{H}) \otimes A).
$$

Let $\overline{\mathcal{H}}$ be the conjugate Hilbert space to the Hilbert space \mathcal{H} . The *transpose* of an operator $x \in \mathbb{B}(\mathcal{H})$ is the operator $x^{\mathsf{T}} \in \mathbb{B}(\overline{\mathcal{H}})$ defined by $x^{\mathsf{T}}(\overline{\xi}) := \overline{x^*\xi}$ for all $\xi \in \mathcal{H}$. The transposition is a linear, involutive anti-automorphism $\mathbb{B}(\mathcal{H}) \to \mathbb{B}(\overline{\mathcal{H}})$. Let R_A and \hat{R}_A be the unitary antipodes of \mathbb{G} and $\hat{\mathbb{G}}$, respectively. A pair of representations $(\pi, \hat{\pi})$ of *A* and \hat{A} on \mathcal{H} is a G-Heisenberg pair if and only if the the pair of representations $(\rho, \hat{\rho})$ of *A* and \hat{A} on $\overline{\mathcal{H}}$, defined by

(2.12)
$$
\rho(a) := (R_A(a))^{\mathsf{T}}, \quad \hat{\rho}(\hat{a}) := (\hat{R}_A(\hat{a}))^{\mathsf{T}},
$$

is a G-anti-Heisenberg pair on $\overline{\mathcal{H}}$ (see [\[6,](#page-15-9) Lemma 3.4]). This shows that the set of G-Heisenberg pairs and G-anti-Heisenberg pairs are in bijective correspondance.

2.3. **Corepresentations.**

Definition 2.13. A (right) *corepresentation* of \mathbb{G} on a Hilbert space \mathcal{L} is a unitary $U \in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes A)$ with

(2.14)
$$
(\mathrm{id}_{\mathbb{K}(\mathcal{L})}\otimes\Delta_A)U=U_{12}U_{13}\qquad\text{in }\mathcal{U}(\mathbb{K}(\mathcal{L})\otimes A\otimes A).
$$

Let $U^1 \in \mathcal{U}(\mathbb{K}(\mathcal{L}_1) \otimes A)$ and $U^2 \in \mathcal{U}(\mathbb{K}(\mathcal{L}_2) \otimes A)$ be corepresentations of \mathbb{G} . An element $t \in \mathbb{B}(\mathcal{L}_1, \mathcal{L}_2)$ is called an *intertwiner* if $(t \otimes 1_A)U^1 = U^2(t \otimes 1_A)$. The set of all intertwiners between U^1 and U^2 is denoted $Hom(U^1, U^2)$. This gives corepresentations a structure of W[∗] -category (see [\[14,](#page-15-10) Sections 3.1–2]).

The *tensor product* of two corepresentations $U^{\mathcal{L}_1}$ and $U^{\mathcal{L}_2}$ is defined by

(2.15)
$$
U^1 \oplus U^2 := U_{13}^1 U_{23}^2 \quad \text{in } \mathcal{U}(\mathbb{K}(\mathcal{L}_1 \otimes \mathcal{L}_2) \otimes A).
$$

Routine computations show the following: $U^1 \oplus U^2$ is a corepresentation; \oplus is associative; and the trivial 1-dimensional representation is a tensor unit. Thus corepresentations form a monoidal W^{*}-category, which we denote by $\mathfrak{Corep}(\mathbb{G})$; see [\[14,](#page-15-10) Section 3.3] for more details.

2.4. **Coactions.**

Definition 2.16. A *continuous* (*right*) *coaction* of \mathbb{G} on a C^{*}-algebra *C* is a morphism $\gamma: C \to C \otimes A$ with the following properties:

(1) γ is injective;

(2) γ is a comodule structure, that is,

$$
(2.17) \qquad (\mathrm{id}_C \otimes \Delta_A)\gamma = (\gamma \otimes \mathrm{id}_A)\gamma;
$$

(3) *γ* satisfies the *Podleś condition*:

(2.18)
$$
\gamma(C)(1_C \otimes A) = C \otimes A.
$$

We call (C, γ) a $\mathbb{G}\text{-}C^*$ -*algebra*. We often drop γ from our notation.

Similarly, a *left coaction* of \mathbb{G} on *C* is an injective morphism $\gamma: C \to A \otimes C$ satisfying a variant of [\(2.17\)](#page-3-0) and the Podleś condition [\(2.18\)](#page-4-1).

In this article the we reserve the word "coaction" for right coaction.

A morphism $f: C \to D$ between two G-C^{*}-algebras (C, γ) and (D, δ) is G-equi*variant* if $\delta \circ f = (f \otimes id_A) \circ \gamma$. Let Mor^G (C, D) be the set of G-equivariant morphisms from *C* to *D*. Let \mathfrak{C}^* alg(\mathbb{G}) be the category with \mathbb{G} - \mathbb{C}^* -algebras as objects and G-equivariant morphisms as arrows.

Definition 2.19. A *covariant representation* of (C, γ, A) on a Hilbert space H is a pair (U, φ) consisting of a corepresentation $U \in \mathcal{U}(\mathbb{K}(\mathcal{H}) \otimes A)$ and a representation $\varphi: C \to \mathbb{B}(\mathcal{H})$ that satisfy the covariance condition

(2.20)
$$
(\varphi \otimes id_A) \circ \gamma(c) = U(\varphi(c) \otimes 1_A)U^* \quad in \mathcal{U}(\mathbb{K}(\mathcal{H}) \otimes A)
$$

for all $c \in C$. A covariant representation is called *faithful* if φ is faithful.

Faithful covariant representations always exist by [\[6,](#page-15-9) Example 4.5].

2.5. **Regularity for quantum groups and corepresentations.** Let $\mathbb{G} = (A, \Delta_A)$ be the C[∗] -quantum group generated by a manageable multiplictive unitary W. Let $\hat{\mathbb{G}} = (\hat{A}, \hat{\Delta}_A)$ be its dual, and let $W^A \in \mathcal{U}(\hat{A} \otimes \hat{A})$ be the reduced bicharacter. Define

$$
\mathcal{C} := \{ (\mathrm{id}_{\mathcal{H}} \otimes \omega)(\Sigma \mathbb{W}) \mid \omega \in \mathbb{B}(\mathcal{H})_* \}^{\mathrm{CLS}}.
$$

The multiplicative unitary $W \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is *regular* if $\mathcal{C} = \mathbb{K}(\mathcal{H})$, see [\[1,](#page-15-2) Definition 3.3]. By virtue of [\[1,](#page-15-2) Proposition 3.2 (b) & Proposition 3.6], this is equivalent to

(2.21)
$$
(\hat{A} \otimes 1_A)W^A(1_{\hat{A}} \otimes A) = \hat{A} \otimes A.
$$

Now W^A does not depend on the multiplicative unitary generating \mathbb{G} , see [\[14,](#page-15-10) Theorem 5(3). Therefore, regularity is a property of the the quantum group \mathbb{G} and not of a particular multiplicative unitary W used to construct it.

Moreover, [\[1,](#page-15-2) Proposition A.3] shows that the regularity property of \mathbb{G} passes to its corepresentations. More precisely, if $\mathbb G$ is regular then every corepresentation $U \in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes A)$ of G is also regular in the following sense:

(2.22)
$$
(\mathbb{K}(\mathcal{L}) \otimes \mathrm{id}_A) \mathrm{U}(\mathbf{1}_{\mathbb{K}(\mathcal{L})} \otimes A) = \mathbb{K}(\mathcal{L}) \otimes A.
$$

We claim that Equation [\(2.22\)](#page-4-2) is equivalent to

(2.23)
$$
(1_{\mathbb{K}(\mathcal{L})}\otimes A)\mathrm{U}(\mathbb{K}(\mathcal{L})\otimes\mathrm{id}_A)=\mathbb{K}(\mathcal{L})\otimes A.
$$

The contragradient of a corepresentation $U \in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes A)$ is defined by $U^c :=$ $U^{\text{T} \otimes R_A} \in \mathcal{U}(\mathbb{K}(\overline{\mathcal{L}}) \otimes A)$, see [\[14,](#page-15-10) Proposition 10]. Here a^{R_A} denotes $R_A(a)$ for $a \in A$. Regularity of G implies

$$
(\mathbb{K}(\overline{\mathcal{L}}) \otimes \mathrm{id}_A) \mathrm{U}^c(1_{\mathbb{K}(\overline{\mathcal{L}})} \otimes A) = \mathbb{K}(\overline{\mathcal{L}}) \otimes A.
$$

Since, $\mathsf{T} \otimes \mathsf{R}_A : \mathbb{K}(\overline{\mathcal{L}}) \otimes A \to \mathbb{K}(\mathcal{L}) \otimes A$ is an anti-multiplicative involution, it maps the last Equation to [\(2.23\)](#page-4-3).

A similar argument replacing the transpose by the unitary antipode R_A and using $(\hat{R}_A \otimes R_A)W^A = W^A$ (see [\[14,](#page-15-10) Lemma 40]), shows that Equation [\(2.21\)](#page-4-4) is equivalent to

(2.24)
$$
(1_{\hat{A}} \otimes A)W^A(\hat{A} \otimes 1_A) = \hat{A} \otimes A.
$$

The dual of a regular quantum group is again regular. Therefore, [\(2.24\)](#page-4-5) is also equivalent to

(2.25)
$$
(1_A \otimes \hat{A})\widehat{W}^A(A \otimes 1_{\hat{A}}) = A \otimes \hat{A}.
$$

2.6. **Twisted tensor products of Yetter-Drinfeld C*-algebras.**

Definition 2.26 ([\[9,](#page-15-12) Definition 3.1]). A *G*-*Yetter-Drinfeld* C^{*}-algebra is a triple $(C, \gamma, \hat{\gamma})$ consisting of a C^{*}-algebra *C* along with coactions $\gamma: C \to C \otimes A$ and $\hat{\gamma}$: $C \to C \otimes \hat{A}$ of G and \hat{G} that satisfy the *Yetter-Drinfeld* compatibility condition

(2.27)
$$
(\widehat{\gamma} \otimes id_A)\gamma(c) = (W_{23}^A)\sigma_{23}((\gamma \otimes id_{\hat{A}})\widehat{\gamma}(c)) (W_{23}^A)^* \text{ for all } c \in C.
$$

Example 2.28. Let $\mathbb{G} = (A, \Delta_A)$ be a regular C^{*}-quantum group. Then $\theta: A \to$ $A \otimes \hat{A}$ define by $\theta(a) := \sigma(W^*(1_{\hat{A}} \otimes a)W)$ for $a \in A$ is a coaction of $\hat{\mathbb{G}}$ on A , and (A, Δ_A, θ) is a G-Yetter-Drinfeld C^{*}-algebra (see [\[9,](#page-15-12) Section 3]).

Let $\mathcal{YD}\mathfrak{C}^*$ alg(G) be the category with G-Yetter-Drinfeld C^* -algebras as objects and G- and $\hat{\mathbb{G}}$ -equivariant morphisms as arrows.

Next we briefly recall the monodial structure on $\mathcal{YD}\mathfrak{C}^*$ alg(\mathbb{G}).

Let $U^1 \in \mathcal{U}(\mathbb{K}(\mathcal{L}_1) \otimes A)$ and $V^2 \in \mathcal{U}(\mathbb{K}(\mathcal{L}_2) \otimes \hat{A})$ be corepresentations of \mathbb{G} and $\hat{\mathbb{G}}$ on \mathcal{L}_1 and \mathcal{L}_2 , respectively. The proof of [\[6,](#page-15-9) Theorem 4.1] shows that there exists a unique $Z \in \mathcal{U}(\mathcal{L}_1 \otimes \mathcal{L}_2)$ such that

(2.29)
$$
U_{1\pi}^1 V_{2\hat{\pi}}^2 Z_{12} = V_{2\hat{\pi}}^2 U_{1\pi}^1 \quad \text{in } \mathcal{U}(\mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{H})
$$

for any G-Heisenberg pair $(\pi, \hat{\pi})$ on H. Define $\frac{\mathcal{L}_2 \times \mathcal{L}_1}{\mathcal{L}_2 \otimes \mathcal{L}_1} \to \mathcal{L}_1 \otimes \mathcal{L}_2$ by $\mathcal{L}_2 \times \mathcal{L}_1 := Z \circ \Sigma$, and $\mathcal{L}_1 \times \mathcal{L}_2 : \mathcal{L}_1 \otimes \mathcal{L}_2 \to \mathcal{L}_2 \otimes \mathcal{L}_1$ by $\mathcal{L}_1 \times \mathcal{L}_2 := \Sigma \circ Z^*$.

Let $(C_1, \gamma_1, \hat{\gamma}_1)$ and $(C_2, \gamma_2, \hat{\gamma}_2)$ be G-Yetter-Drinfeld C^{*}-algebras. Without loss of generality, assume that (U^i, φ_i) be a faithful covariant representation of (C_i, γ_i) on \mathcal{L}_i and $(V^i, \hat{\varphi}_i)$ be a faithful covariant representation of $(C_i, \hat{\gamma}_i)$ for $i = 1, 2$, respectively.

Define faithful representations of j_1 and j_2 of C_1 and C_2 on $\mathcal{L}_1 \otimes \mathcal{L}_2$ by

$$
(2.30) \t j_1(c_1) := \varphi_1(c_1) \otimes 1_{\mathcal{L}_2}, \t j_2(c_2) := \frac{\mathcal{L}_2 \times \mathcal{L}_1(\varphi_2(c_2) \otimes 1_{\mathcal{L}_1})^{\mathcal{L}_1} \times \mathcal{L}_2}{\mathcal{L}_2}
$$

Theorem 2.31 ([\[6,](#page-15-9) Lemma 3.20, Theorem 4.3, Theorem 4.9])**.** *The subspace*

$$
C_1 \boxtimes C_2 := j_1(C_1) j_2(C_2) \subset \mathbb{B}(\mathcal{L}_1 \otimes \mathcal{L}_2)
$$

 i *s* a nondegenerate C^* -subalgebra. The crossed product $(C_1 \boxtimes C_2, j_1, j_2)$, up to equiva*lence, does not depend on the faithful covariant representations* (U^i, φ_i) and (V^i, φ_i) *for* $i = 1, 2$ *.*

We call $C_1 \boxtimes C_2$ the *twisted tensor product* of C_1 and C_2 .

The twisted tensor product $C_1 \boxtimes C_2$ carries diagonal coactions of G and \hat{G} defined by

Then $(C_1 \boxtimes C_2, \gamma_1 \bowtie \gamma_2, \hat{\gamma}_1 \bowtie \hat{\gamma}_2)$ is again a G-Yetter-Drinfeld C^{*}-algebra.

Theorem 2.34. $(\mathcal{YD} \mathfrak{C}^* \mathfrak{alg}(\mathbb{G}), \boxtimes)$ *is a monoidal category.*

This theorem has been proved in [\[9,](#page-15-12) Section 3] in the presence of Haar weights on \mathbb{G} and in [\[7,](#page-15-1) Section 5] in the general framework of modular multiplicative unitaries.

Let $\mathbb{G} = (A, \Delta_A)$ be a C^{*}-quantum group. Let $\widehat{\mathbb{G}} = (\hat{A}, \hat{\Delta}_A)$ be its dual and W \in $U(\hat{A} \otimes A)$ be the reduced bicharacter.

The *quantum codouble* $\mathfrak{D}(\mathbb{G})^{\widehat{\ }} = (\hat{\mathcal{D}}, \Delta_{\hat{\mathcal{D}}})$ of \mathbb{G} is defined by $\hat{\mathcal{D}} := A \otimes \hat{A}$ and

$$
\sigma^{\mathbf{W}}: A \otimes \hat{A} \to \hat{A} \otimes A, \qquad a \otimes \hat{a} \to \mathbf{W}(\hat{a} \otimes a) \mathbf{W}^*,
$$

$$
\Delta_{\hat{D}}: \hat{\mathcal{D}} \to \hat{\mathcal{D}} \otimes \hat{\mathcal{D}}, \qquad a \otimes \hat{a} \mapsto \sigma_{23}^{\mathbf{W}}(\Delta_A(a) \otimes \hat{\Delta}_A(\hat{a})),
$$

for $a \in A$, $\hat{a} \in \hat{A}$. We may generate $\mathfrak{D}(\mathbb{G})^{\frown}$ by a manageable multiplicative unitary by $[12,$ Theorem 4.1]. So it is a C^{*}-quantum group.

Let $\mathcal L$ be a Hilbert space. A pair of corepresentations (U, V) of $\mathbb G$ and $\hat{\mathbb G}$ on $\mathcal L$ is corepresentations is called $\mathfrak{D}(\mathbb{G})$ ⁻*compatible* if they satisfy the following *Drinfeld compatibility* condition:

(3.1)
$$
V_{12}U_{13}W_{23} = W_{23}U_{13}V_{12} \text{ in } \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes \hat{A} \otimes A),
$$

Let $(\pi, \hat{\pi})$ be the G-Heisenberg pair on $\mathcal H$ associated to the manageable multiplicative unitary $W \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$, that is, $(\hat{\pi} \otimes \pi)W^A = W$. Define $\hat{V} \in \mathcal{U}(\hat{A} \otimes \mathbb{K}(\mathcal{L}))$, $\mathbb{U}, \mathbb{V} \in \mathcal{U}(\mathcal{L} \otimes \mathcal{H})$ and $\hat{\mathbb{V}} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{L})$ by

$$
\hat{V} := \sigma(V^*), \quad \mathbb{U} := (\mathrm{id}_{\mathcal{L}} \otimes \pi)U, \quad \mathbb{V} := (\mathrm{id}_{\mathcal{L}} \otimes \hat{\pi})V, \quad \hat{V} := \Sigma V^* \Sigma = (\hat{\pi} \otimes \mathrm{id}_{\mathcal{L}})\hat{V}.
$$

Then the Equations [\(2.29\)](#page-5-0) and [\(3.1\)](#page-6-3) for U and V are equivalent to

(3.2)
$$
Z_{13} = \hat{\mathbb{V}}_{23} \mathbb{U}_{12}^* \hat{\mathbb{V}}_{23}^* \mathbb{U}_{12} \quad \text{in } \mathcal{U}(\mathcal{L} \otimes \mathcal{H} \otimes \mathcal{L});
$$

(3.3)
$$
\mathbb{U}_{23}\mathbb{W}_{13}\hat{\mathbb{V}}_{12}=\hat{\mathbb{V}}_{12}\mathbb{W}_{13}\mathbb{U}_{23} \text{ in } \mathcal{U}(\mathcal{H}\otimes\mathcal{L}\otimes\mathcal{H}).
$$

As proved in [\[7,](#page-15-1) Theorem 5.4], for any $\mathfrak{D}(\mathbb{G})$ -pair (U,V) on $\mathcal L$ the unitary $\mathcal L \times \mathcal L :=$ $Z \circ \Sigma$ is a braiding.

Definition 3.4. Let (U, V) be a $\mathfrak{D}(\mathbb{G})$ -compatible corepresentation on a Hilbert space \mathcal{L} . A *braided multiplicative unitary on* \mathcal{L} *over* \mathbb{G} *relative to* (U, V) is a unitary $\mathbb{F} \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$ with the following properties:

(1) F is *invariant* with respect to the right corepresentation $U \oplus U := U_{13}U_{23}$ of \mathbb{G} on $\mathcal{L} \otimes \mathcal{L}$:

(3.5)
$$
U_{13}U_{23}\mathbb{F}_{12} = \mathbb{F}_{12}U_{13}U_{23} \text{ in } \mathcal{U}(\mathbb{K}(\mathcal{L}\otimes \mathcal{L})\otimes A);
$$

(2) F is *invariant* with respect to the corepresentation $V \oplus V := V_{13}V_{23}$ of $\hat{\mathbb{G}}$ on $\mathcal{L} \otimes \mathcal{L}$:

(3.6)
$$
V_{13}V_{23}\mathbb{F}_{12} = \mathbb{F}_{12}V_{13}V_{23} \text{ in } \mathcal{U}(\mathbb{K}(\mathcal{L}\otimes\mathcal{L})\otimes\hat{A});
$$

(3) F satisfies the *braided pentagon equation*

(3.7)
$$
\mathbb{F}_{23}\mathbb{F}_{12} = \mathbb{F}_{12}({}^{\mathcal{L}}\!\times\!\mathcal{L})_{23}\mathbb{F}_{12}({}^{\mathcal{L}}\!\times\!\mathcal{L})_{23}\mathbb{F}_{23} \text{ in } \mathcal{U}(\mathcal{L}\otimes\mathcal{L}\otimes\mathcal{L});
$$

here the braiding $\mathcal{L} \times \mathcal{L} \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$ and $\mathcal{L} \times \mathcal{L} = (\mathcal{L} \times \mathcal{L})^*$ are defined as $\mathcal{L} \times \mathcal{L} =$ *Z*Σ for the flip Σ , $x \otimes y \mapsto y \otimes x$, and the unique unitary $Z \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$ that satisfies [\(3.2\)](#page-6-4).

From now onwards we fix the $\mathfrak{D}(\mathbb{G})$ -pair (U, V) on $\mathcal L$ and say that $\mathbb F$ *is a braided multiplicative unitary over* G.

The *contragradient* of $U \in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes A)$ is defined by $U^c := (T \otimes R_A)U \in$ $\mathcal{U}(\mathbb{K}(\overline{\mathcal{L}}) \otimes A)$, see [\[14,](#page-15-10) Proposition 10]. There is a unique unitary $\widetilde{Z} \in \mathcal{U}(\overline{\mathcal{L}} \otimes \mathcal{L})$ satisfying

$$
\mathrm{U}^c_{1\pi} \mathrm{V}_{2\hat{\pi}} \widetilde{Z}_{12} = \mathrm{V}_{2\hat{\pi}} \mathrm{U}^c_{1\pi} \qquad \text{in } \mathcal{U}(\overline{\mathcal{L}} \otimes \mathcal{L} \otimes \mathcal{H}).
$$

Definition 3.8. Let $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ be a manageable multiplicative unitary generating $\mathbb{G} = (A, \Delta_A)$, let *Q* is strictly positive operator in the definition of the manageability of W, and let Z , \widetilde{Z} be as above. A braided multiplicative unitary $\mathbb{F} \in \mathcal{U}(\mathcal{L}\otimes\mathcal{L})$ over \mathbb{G} is *manageable* if there are a strictly positive operator Q' on \mathcal{L} and a unitary $\widetilde{\mathbb{F}} \in \mathcal{U}(\overline{\mathcal{L}} \otimes \mathcal{L})$ such that

$$
\mathbb{U}(Q' \otimes Q)\mathbb{U}^* = Q' \otimes Q, \quad \mathbb{V}(Q' \otimes Q)\mathbb{V}^* = Q' \otimes Q, \quad \mathbb{F}(Q' \otimes Q')\mathbb{F}^* = Q' \otimes Q',
$$

and

$$
(x \otimes u \mid Z^* \mathbb{F} \mid y \otimes v) = (\overline{y} \otimes Q'(u) \mid \widetilde{\mathbb{F}} \widetilde{Z}^* \mid \overline{x} \otimes (Q')^{-1}(v))
$$

for all $x, y \in \mathcal{L}, u \in \mathcal{D}(Q')$ and $v \in \mathcal{D}((Q')^{-1})$.

Now we state the main result of this article.

Theorem 3.9. Let $\mathbb{F} \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$ be a manageable braided multiplicative unitary *over a regular* C^* -quantum group $\mathbb{G} = (A, \Delta_A)$. Let

(3.10)
$$
B := \{ (\omega \otimes id_{\mathcal{L}}) \mathbb{F} \mid \omega \in \mathbb{B}(\mathcal{L})_* \}^{\text{CLS}}
$$

- (1) *B* is a nondegenerate C^* -subalgebra of $\mathbb{B}(\mathcal{L})$;
- (2) *The morphisms* $\beta \in \text{Mor}(B, B \otimes A)$ *and* $\hat{\beta} \in \text{Mor}(B, B \otimes \hat{A})$ *defined by*

(3.11)
$$
\beta(b) := \mathrm{U}(b \otimes 1)\mathrm{U}^*, \qquad \hat{\beta}(b) := \mathrm{V}(b \otimes 1)\mathrm{V}^*
$$

 \hat{C} *are coactions of* $\mathbb G$ *and* $\hat{\mathbb G}$ *on* B *and* $(B, \beta, \widehat{\beta})$ *is a* $\mathbb G$ -Yetter-Drinfeld C^* -algebra; (3) $\mathbb{F} \in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes B);$

- *Let* $j_1, j_2 \in \text{Mor}(B, B \boxtimes B)$ *are the canonical morphisms described by* [\(2.30\)](#page-5-1)*.*
	- (4) *The map* $\Delta_B(b) := \mathbb{F}(b \otimes 1_{\mathcal{H}})\mathbb{F}^*$ *defines a unique morphism* $B \to B \boxtimes B$ *that is* G*- and* Gˆ *-equivariant and satisfies*

(3.12)
$$
(\mathrm{id} \otimes \Delta_B)\mathbb{F} = (\mathrm{id}_{\mathcal{L}} \otimes j_1)\mathbb{F}(\mathrm{id}_{\mathcal{L}} \otimes j_2)\mathbb{F} \quad in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes B \boxtimes B).
$$

Moreover, Δ_B *is coassociative,*

(3.13)
$$
(\mathrm{id}_B \boxtimes \Delta_B) \Delta_B = (\Delta_B \boxtimes \mathrm{id}_B) \Delta_B,
$$

and satisfies

(3.14)
$$
j_1(B)\Delta_B(B) = B \boxtimes B = \Delta_B(B)j_2(B).
$$

We resume the proof of Theorem [3.9](#page-7-0) in the next section.

Definition 3.15. The pair (B, Δ_B) in Theorem [3.9](#page-7-0) is called a *braided* C^{*}-quantum *group* over G. We say (B, Δ_B) is generated by F.

Let $\mathbb{H} = (C, \Delta_C)$ be a C^* quantum group and let $(\eta, \hat{\eta})$ be a \mathbb{H} -Heisenberg pair on a Hilbert space \mathcal{H}_η . An element $P \in \mathcal{U}(\hat{C} \otimes C)$ is called a *projection* on H if it satisfies the following conditions:

(1) P is a bicharacter:

(3.16)
$$
(\hat{\Delta}_C \otimes \mathrm{id}_C)P = P_{23}P_{13} \qquad (\mathrm{id}_{\hat{C}} \otimes \Delta_C)P = P_{12}P_{13},
$$

(2) P is an idempotent endomorphism of H :

(3.17)
$$
P_{\hat{\eta}3}P_{1\eta} = P_{1\eta}P_{13}P_{\hat{\eta}3} \quad \text{in } \mathcal{U}(\hat{C} \otimes \mathbb{K}(\mathcal{H}_{\eta}) \otimes C).
$$

Clearly, $(\hat{\eta} \otimes \eta)P \in \mathcal{U}(\mathcal{H}_\eta \otimes \mathcal{H}_\eta)$ is a mutliplicative unitary and it is manageable, see [\[11,](#page-15-6) Proposition 3.36].

By virtue of [\[11,](#page-15-6) Theorem 6.15 $\&$ 6.16], a manageable braided multiplicative unitary $\mathbb{F} \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$ over \mathbb{G} gives rise to a C^{*}-quantum group $\mathbb{H} = (C, \Delta_C)$ generated by a manageable multiplicaitive unitary $\mathbb{W}^C \in \mathcal{U}(\mathcal{H} \otimes \mathcal{L} \otimes \mathcal{H} \otimes \mathcal{L})$ defined by

(3.18) $\mathbb{W}^C := \mathbb{W}_{13} \mathbb{U}_{23} \hat{\mathbb{V}}_{34}^* \mathbb{F}_{24} \hat{\mathbb{V}}_{34} \quad \text{in } \mathcal{U}(\mathcal{H} \otimes \mathcal{L} \otimes \mathcal{H} \otimes \mathcal{L}).$

Furthermore, the unitary $\mathbb{P} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{L} \otimes \mathcal{H} \otimes \mathcal{L})$ defined by

(3.19)
$$
\mathbb{P} := \mathbb{W}_{13} \mathbb{U}_{23} \quad \text{in } \mathcal{U}(\mathcal{H} \otimes \mathcal{L} \otimes \mathcal{H} \otimes \mathcal{L}).
$$

is a projection on H with the image $\mathbb{G} = (A, \Delta_A)$ see [\[11,](#page-15-6) Propositon 2.36 & Theorem 6.17].

Thus, a braided C^{*}-quantum group (B, Δ_B) over a regular C^{*}-quantum group G gives rise to a C^{*}-quantum group $\mathbb{H} = (C, \Delta_C)$ with projection. Therefore, it is important to encode (C, Δ_C) in terms of (A, Δ_A) and (B, Δ_B) to construct new examples of C[∗] -quantum groups. In the compact case, that is when *A* and *B* are unital, this has been already done in [\[7,](#page-15-1) Theorem 6.7]. We shall extend this result for locally compact case.

Regularity of \mathbb{G} gives $A \in \mathcal{YD}\mathfrak{C}^*$ alg(\mathbb{G}) and by Theorem [3.9\(](#page-7-0)2) $B \in \mathcal{YD}\mathfrak{C}^*$ alg(\mathbb{G}). Therefore, $A \boxtimes B := (A \otimes 1_{\mathcal{L}}) \hat{V}^*(1_{\mathcal{H}} \otimes B) \hat{V}$ as shown in [\[7,](#page-15-1) Page 19]. Here we have supressed the faithful representations of A and B on H and \mathcal{L} , respectively.

For any $x \in A \boxtimes B \boxtimes B$ the map

(3.20)
$$
x \to \mathbb{W}_{12} \mathbb{U}_{23} \hat{\mathbb{V}}_{34}^* x_{124} \hat{\mathbb{V}}_{34} \mathbb{U}_{23}^* \mathbb{W}_{12}^*
$$

defines an injective morphism $\Psi: A \boxtimes B \boxtimes B \to A \boxtimes B \otimes A \boxtimes B$ (see [\[7,](#page-15-1) Proposition (6.5) .

Theorem 3.21. *Let* $C = A \boxtimes B$ *and define* $\Delta_C \in \text{Mor}(C, C \otimes C)$ *by* $\Delta_C :=$ $\Psi \circ (\text{id}_B \boxtimes \Delta_B)$. Then (C, Δ_C) is the C^{*}-quantum group generated by \mathbb{W}^C in [\(3.18\)](#page-8-0).

Proof. For any $c \in A \boxtimes B \subset \mathbb{B}(\mathcal{H} \otimes \mathcal{L})$

$$
\Delta_C(c) = \Psi \circ (\mathrm{id}_B \boxtimes \Delta_B)(c) = \Psi(\mathbb{F}_{23}(c \otimes 1_c) \mathbb{F}_{23}^*)
$$

=
$$
\mathbb{W}_{12} \mathbb{U}_{23} \hat{\mathbb{V}}_{34}^* \mathbb{F}_{24}(c \otimes 1_{\mathcal{H} \otimes \mathcal{L}}) \mathbb{F}_{24}^* \hat{\mathbb{V}}_{34} \mathbb{U}_{23}^* \mathbb{W}_{12}^* = (\mathbb{W}^C)(c \otimes 1)(\mathbb{W}^C)^*
$$

Therefore, we only need to show

$$
A \boxtimes B = \{ (\omega \otimes \omega' \otimes \mathrm{id}_{\mathcal{H} \otimes \mathcal{L}}) \mathbb{W}^C \mid \omega \in \mathbb{B}(\mathcal{H})_* , \omega' \in \mathbb{B}(\mathcal{L})_* \}^{\text{CLS}}.
$$

Let $L = \{ (\omega \otimes \omega' \otimes \mathrm{id}_{\mathcal{H} \otimes \mathcal{L}}) \mathbb{W}^C \mid \omega \in \mathbb{B}(\mathcal{H})_* , \omega' \in \mathbb{B}(\mathcal{L})_* \}^{\text{CLS}}.$

Using (2.3) we get

$$
L = \{ (\omega \otimes \omega' \otimes \mathrm{id}_{\mathcal{H}\otimes\mathcal{L}}) \mathbb{W}_{13} \mathbb{U}_{23} \hat{\mathbb{V}}_{34}^* \mathbb{F}_{24} \hat{\mathbb{V}}_{34} \mid \omega \in \mathbb{B}(\mathcal{H})_*, \omega' \in \mathbb{B}(\mathcal{L})_* \}^{\mathrm{CLS}} = \{ (\omega' \otimes \mathrm{id}_{\mathcal{H}\otimes\mathcal{L}}) (1 \otimes a \otimes 1) \mathbb{U}_{12} \hat{\mathbb{V}}_{23}^* \mathbb{F}_{13} \hat{\mathbb{V}}_{23} \mid \omega' \in \mathbb{B}(\mathcal{L})_*, a \in A \}^{\mathrm{CLS}}
$$

For $\omega' \in \mathbb{B}(\mathcal{L})_*$ and $\xi \in \mathbb{K}(\mathcal{L})$ define $\omega' \cdot \xi \in \mathbb{B}(\mathcal{L})_*$ by $\omega' \cdot \xi(y) := \omega'(\xi y)$. Replacing ω' by $\omega' \cdot \xi$ in the last expression gives

 $L = \{ (\omega' \otimes id_{\mathcal{H} \otimes \mathcal{L}})((\xi \otimes a)\mathbb{U}) \otimes 1_{\mathcal{L}} \hat{\mathbb{V}}_{23}^* \mathbb{F}_{13} \hat{\mathbb{V}}_{23} \mid \omega' \in \mathbb{B}(\mathcal{L})_*, \xi \in \mathbb{K}(\mathcal{L}), a \in A \}^{\text{CLS}}$ We may replace $({\xi \otimes a})\mathbb{U}$ by ${\xi \otimes a}$ for ${\xi \in \mathbb{K}(\mathcal{L})}$, $a \in A$, because $\mathbb{U} \in \mathcal{U}(\mathcal{L} \otimes A)$ and $\mathbb{U} = (\mathrm{id}_{\mathcal{L}} \otimes \pi) \mathbb{U}$. We have

$$
L = \{ (\omega' \otimes id_{\mathcal{H}\otimes \mathcal{L}}) (\xi \otimes a \otimes 1_{\mathcal{L}}) \hat{V}_{23}^* \mathbb{F}_{13} \hat{V}_{23} \mid \omega' \in \mathbb{B}(\mathcal{L})_*, \xi \in \mathbb{K}(\mathcal{L}), a \in A \}^{CLS}
$$

= $\{ (\omega' \otimes id_{\mathcal{H}\otimes \mathcal{L}}) (1_{\mathcal{L}} \otimes a \otimes 1_{\mathcal{L}}) \hat{V}_{23}^* \mathbb{F}_{13} \hat{V}_{23} \mid \omega' \in \mathbb{B}(\mathcal{L})_*, a \in A \}^{CLS}$

Finally using [\(3.10\)](#page-7-1) we obtain

$$
L = \{ (\omega' \otimes id_{\mathcal{H}\otimes \mathcal{L}})(1 \otimes a \otimes 1)\hat{V}_{23}^* \mathbb{F}_{13}\hat{V}_{23} \mid \xi \in \mathbb{K}(\mathcal{L}), a \in A, \omega' \in \mathbb{B}(\mathcal{L})_* \}^{CLS}
$$

= $(A \otimes 1_{\mathcal{L}})\hat{V}^*(1_{\mathcal{H}} \otimes B)\hat{V}.$

4. Slices of braided multiplicative unitaries

Let $\mathbb{H} = (C, \Delta_C)$ be a C * -quantum group and $P \in \mathcal{U}(\hat{C} \otimes C)$ be a projection on $\mathbb H$ with image $\mathbb{G} = (A, \Delta_A)$. Let $\widehat{\mathbb{H}} = (\hat{C}, \hat{\Delta}_C)$ be the dual of \mathbb{H} and $W^C \in \mathcal{U}(\hat{C} \otimes C)$ be the reduced bicharacter.

Theorem 4.1. Assume \mathbb{G} is a regular C^* -quantum group. Let $F := P^*W^C \in$ $U(\hat{C} \otimes C)$. Then

$$
D := \{ (\omega \otimes id_C) \mathcal{F} \mid \omega \in \hat{C}' \}^{\text{CLS}} \subseteq \mathcal{M}(C).
$$

is a C ∗ *-algebra.*

Remark 4.2*.* The C[∗] -algebra *D* in Theorem [4.1](#page-9-1) is independent of the multiplicative unitary generating \mathbb{H} . In other words, *D* depends only on (C, Δ_C) , (A, Δ_A) and $P \in \mathcal{U}(\hat{C} \otimes C).$

The main tool we use to prove Theorem [4.1](#page-9-1) is the Landstad-Vaes theorem for quantum groups.

Let $\gamma: C \to A \otimes C$ be a left coaction of $\mathbb G$ on a C^* -algebra C and let $i: A \to C$ be a morphism. The triple (C, γ, i) is a G-product if *i* is a G-equivariant:

(4.3)
$$
\gamma \circ i = (\mathrm{id}_A \otimes i) \circ \Delta_A.
$$

Let $\widehat{\mathbb{G}} = (\hat{A}, \hat{\Delta}_A)$ be the dual of \mathbb{G} and $W^A \in \mathcal{U}(\hat{A} \otimes A)$ be the reduced bicharacter. Let $(\pi, \hat{\pi})$ be a G-Heisenberg pair on a Hilbert space \mathcal{H} .

Let $X := (\mathrm{id}_{\hat{A}} \otimes i) \mathbb{W}^A \in \mathcal{U}(\hat{A} \otimes C)$. Define $\varphi: C \to \mathbb{K}(\mathcal{H}) \otimes C$ by $\varphi(c) :=$ $X_{\hat{\pi}2}^* \gamma(c)_{\pi 2} X_{\hat{\pi}2}$ for $c \in C$.

Theorem 4.4 (Landstad–Vaes). Assume that $\mathbb{G} = (A, \Delta_A)$ is a regular quan*tum group.* Let (C, γ, i) be a G-product. Then there is a unique C^* -subalgebra D *of* M(*C*) *with the following properties:*

- (1) $D \subseteq \{c \in \mathcal{M}(C) \mid \gamma(c) = 1_A \otimes c\};$
- $(C) \ C = i(A)D;$
- $(A) \hat{A} \otimes D = (\hat{A} \otimes 1)\varphi(D) = (\hat{A} \otimes 1)X^*(1 \otimes D)X$.

The map $\hat{\beta}: D \to \mathcal{M}(D \otimes Z)$ *defined by* $\hat{\beta}(d) := \sigma(\varphi(d))$ *takes values in* $\mathcal{M}(B \otimes \hat{A})$ *and is a (right) coaction of* $\hat{\mathbb{G}}$ *on B, and* $\sigma\varphi$ *defines a* \mathbb{G} *-equivariant isomorphism between* C *and* $B \rtimes A$ *.*

The C^* -algebra D *is called the Landstad-Vaes algebra for the* \mathbb{G} -product (C, γ, i) *.*

This theorem is proved in [\[15,](#page-15-8) Theorem 6.7] if G is a regular locally compact quantum group (see $[4]$) with Haar weights (the conventions in $[15]$ are, however, slightly different), and in $[13]$ in the above generality, assuming only that \mathbb{G} is a regular C[∗] -quantum group generated by a manageable multiplicative unitary.

By [\[8,](#page-15-5) Proposition 2.8] $\mathbb{H} = (C, \Delta_C)$ with projection $P \in \mathcal{U}(\hat{C} \otimes C)$ with image $\mathbb{G} = (A, \Delta_A)$ is equivalent to a pair (i, Δ_L) consisting of morphisms $i: A \to C$ and Δ_L : $C \to A \otimes C$ such that

(1) *i* is a Hopf *-homomorphism: $\Delta_C \circ i = (i \otimes i)\Delta_A$,

(2) Δ_L is a left quantum group homomorphism:

$$
(\mathrm{id}_A \otimes \Delta_C) \circ \Delta_L = (\Delta_L \otimes \mathrm{id}_C) \Delta_C \qquad (\Delta_A \otimes \mathrm{id}_C) \Delta_L = (\mathrm{id}_A \otimes \Delta_L) \Delta_L,
$$

(3) *i* satisfies the following condition:

(4.5)
$$
(\mathrm{id}_A \otimes i) \circ \Delta_A = \Delta_L \circ i.
$$

In particular, Δ_L is a left coaction of \mathbb{G} on *C* by [\[5,](#page-15-15) Lemma 5.8]. Thus (C, Δ_L, i) is a G-product. We shall show that *D* in Theorem [4.1](#page-9-1) is the Landstad-Vaes algebra for the G-product (C, Δ_L, i) .

Before that we prove a technical lemma:

Lemma 4.6. *Let* $(\rho, \hat{\rho})$ *be an* H-anti-Heisenberg pair on a Hilbert space \mathcal{H}_{ρ} *. Define* $X \in \mathcal{U}(\hat{A} \otimes C)$ *by* $X := (\mathrm{id}_{\hat{A}} \otimes i) \mathrm{W}^A$ *. Then*

(4.7)
$$
F_{\hat{\rho}3}X_{13}X_{1\rho}=X_{13}X_{1\rho}F_{\hat{\rho}3} \quad in \ \mathcal{U}(\hat{A}\otimes \mathbb{K}(\mathcal{H}_{\rho})\otimes C).
$$

Proof. Since $(\rho, \hat{\rho})$ is an H-anti-Heisenberg pair,

(4.8)
$$
W_{1\hat{\rho}}^C W_{\rho 3}^C = W_{\rho 3}^C W_{13}^C W_{1\hat{\rho}}^C \quad in \ \mathcal{U}(\hat{C} \otimes \mathbb{K}(\mathcal{H}_{\rho}) \otimes C).
$$

Combining [\(2.5\)](#page-2-2) and [\(4.8\)](#page-10-0) we can show that

(4.9)
$$
(\mathrm{id}_C \otimes \rho) \Delta_C(c) = \sigma(W_{\hat{\rho}^2}^C^*(\rho(c) \otimes 1_C) W_{\rho^2}^C) \quad \text{for } c \in C.
$$

The unitary $X := (\mathrm{id}_{\hat{A}} \otimes i) \mathbf{W}^A \in \mathcal{U}(\hat{A} \otimes C)$ is a bicharacter because *i* is a Hopf *-homomorphism. Hence $(\mathrm{id}_{\hat{A}} \otimes \Delta_C)X = X_{12}X_{13}$ which is equivalent to

(4.10)
$$
X_{1\rho} W_{\rho 3}^C = W_{\rho 3}^C X_{13} X_{1\rho} \quad \text{in } \mathcal{U}(\hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho}) \otimes C)
$$

by [\(4.9\)](#page-10-1). Similarly, replacing Hesienberg pairs by anti-Heisenberg pairs in [\(3.17\)](#page-7-2) gives

$$
P_{1\rho}P_{\hat{\rho}3} = P_{\hat{\rho}3}P_{13}P_{1\rho} \qquad \text{in } \mathcal{U}(\hat{C} \otimes \mathbb{K}(\mathcal{H}_{\rho}) \otimes C).
$$

Notice that $P = (j \otimes i)W^A$. Since *i* and *j* are injective, we apply $j^{-1} \otimes id_{\mathcal{H}_{\rho}} \otimes i^{-1}$ on the both sides and obtain

(4.11)
$$
X_{1\rho} P_{\hat{\rho}3} = P_{\hat{\rho}3} X_{13} X_{1\rho} \quad \text{in } \mathcal{U}(\hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho}) \otimes C).
$$

The following computation finishes the proof:

$$
F_{\hat{\rho}3}X_{13}X_{1\rho} = P_{\hat{\rho}3}^* W_{\hat{\rho}3}^C X_{13}X_{1\rho} = P_{\hat{\rho}3}^* X_{1\rho} W_{\hat{\rho}3}^C = X_{13} X_{1\rho} P_{\hat{\rho}3}^* W_{\hat{\rho}3}^C
$$

= $X_{13} X_{1\rho} F_{\hat{\rho}3}$.

Proof of Theorem [4.1](#page-9-1). By [\[5,](#page-15-15) Theorem 5.5], there is a bicharacter $\chi \in \mathcal{U}(\hat{C} \otimes A)$ such that

(4.12)
$$
(\mathrm{id}_{\hat{C}} \otimes \Delta_L)W^C = \chi_{12}W_{13}^C \qquad \text{in } \mathcal{U}(\hat{C} \otimes A \otimes C).
$$

The unitary $\hat{P} := \sigma(P^*) \in \mathcal{U}(C \otimes \hat{C})$ is a projection on $\hat{\mathbb{H}}$. This defines an injective Hopf *-homomorphism $j: \hat{A} \to \hat{C}$ such that $P = (j \otimes i)W^A$. As proved in [\[8,](#page-15-5) Proposition 2.8], $\chi := (j \otimes id_A)W^A \in \mathcal{U}(\hat{C} \otimes A)$ is the bicharacter satisfying [\(4.12\)](#page-10-2).

Equation [\(4.5\)](#page-9-2) gives

(4.13)
$$
(\mathrm{id}_{\hat{C}} \otimes \Delta_L)P = (j \otimes \Delta_L \circ i)W^A = (j \otimes \mathrm{id}_A \otimes i)((\mathrm{id}_{\hat{A}} \otimes \Delta_A)W^A) = (j \otimes \mathrm{id}_A \otimes i)(W^A_{12}W^A_{13}) = \chi_{12}P_{13}.
$$

Equation [\(4.12\)](#page-10-2) and the previous computation give

$$
(\mathrm{id}_{\hat{C}} \otimes \Delta_L)\mathrm{F} = (\mathrm{id}_{\hat{C}} \otimes \Delta_L)(\mathrm{P}^*\mathrm{W}^C) = \mathrm{P}_{13}^*\chi_{12}^*\chi_{12}\mathrm{W}_{13}^C = \mathrm{F}_{13}.
$$

Taking slices on the first leg gives $D \subseteq \{c \in \mathcal{M}(C) \mid \Delta_L(c) = 1_A \otimes c\}$, the first condition in Theorem [4.4.](#page-9-3)

Now $\chi = (j \otimes id_A)W^A \in \mathcal{U}(\hat{C} \otimes A)$ and $P = (id_{\hat{C}} \otimes i)\chi \in \mathcal{U}(\hat{C} \otimes C)$. Therefore,

$$
(\hat{C}\otimes i(A))P = (id_{\hat{C}}\otimes i)((\hat{C}\otimes A)\chi) = \hat{C}\otimes i(A).
$$

The following computation gives the second condition in Theorem [4.4:](#page-9-3)

$$
i(A)D = i(A)\{(\omega \otimes id_C)F \mid \omega \in \hat{C}'\}^{CLS}
$$

= $\{(\omega \otimes id_C)((\hat{C} \otimes i(A))F) \mid \omega \in \hat{C}'\}^{CLS}$
= $\{(\omega \otimes id_C)((\hat{C} \otimes i(A))PF) \mid \omega \in \hat{C}'\}^{CLS}$
= $\{(\omega \otimes id_C)((\hat{C} \otimes i(A))W^C) \mid \omega \in \hat{C}'\}^{CLS}$
= $\{(\omega \otimes i(A))W^C) \mid \omega \in \hat{C}'\}^{CLS}$
= $i(A)C = C.$

Let $(\rho, \hat{\rho})$ be an H-anti-Heisenberg pair on a Hilbert space \mathcal{H}_{ρ} . Since ρ is faithful, (4.14) $D = \{ (\omega \otimes id_C) F_{\hat{\rho}2} \mid \omega \in \mathbb{B}(\mathcal{H}_{\rho})_* \}^{\text{CLS}}.$

Recall $X \in \mathcal{U}(\hat{A} \otimes C)$ from Lemma [4.6.](#page-10-3) Equation [\(4.14\)](#page-11-1) gives

 $(\hat{A} \otimes 1_C)X_{12}^*(1_{\hat{A}} \otimes D)X_{12} = \{(\hat{A} \otimes \omega \otimes id_C)(X_{13}^*\mathbb{F}_{\hat{\rho}3}X_{13}) \mid \omega \in \mathbb{B}(\mathcal{H}_{\rho})_*\}^{\text{CLS}}.$ Now Lemma [4.6](#page-10-3) gives

$$
(\hat{A}\otimes 1_C)X_{12}^*(1_{\hat{A}}\otimes D)X_{12} = \{(\hat{A}\otimes \omega\otimes id_C)(X_{1\rho}F_{\hat{\rho}3}X_{1\rho}^*)\mid \omega\in \mathbb{B}(\mathcal{H}_{\rho})_*\}^{\text{CLS}}.
$$

 $\text{Now } (\hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho}))X_{1\rho} = (\hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho})\rho(A))X_{1\rho} = \hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho})\rho(A) = \hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho}).$ This implies

$$
(\hat{A} \otimes 1_C) X_{12}^*(1_{\hat{A}} \otimes D) X_{12}
$$

= {($\hat{A} \otimes \omega \otimes \text{id}_C$)($X_{1\rho}F_{\hat{\rho}3}X_{1\rho}^*\$) | $\omega \in \mathbb{B}(\mathcal{H}_{\rho})_*$ }^{CLS}
= {($\text{id}_{\hat{A}} \otimes \omega \otimes \text{id}_C$)((($\hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho})X_{1\rho}$) $\otimes \text{id}_C$) $F_{\hat{\rho}3}X_{1\rho}^*\$) | $\omega \in \mathbb{B}(\mathcal{H}_{\rho})_*$ }^{CLS}
= {($\hat{A} \otimes \omega \otimes \text{id}_C$) $(F_{\hat{\rho}3}X_{1\rho}^*\$) | $\omega \in \mathbb{B}(\mathcal{H}_{\rho})_*$ }^{CLS}
= {($\text{id}_{\hat{A}} \otimes \omega \otimes \text{id}_C$) $(F_{\hat{\rho}3}((\hat{A} \otimes \text{id}_{\mathcal{H}_{\rho}})X_{1\rho}^*(1_{\hat{A}} \otimes \mathbb{K}(\mathcal{H}_{\rho})) \otimes 1_C)$) | $\omega \in \mathbb{B}(\mathcal{H}_{\rho})_*$ }^{CLS}.

The regularity condition [\(2.24\)](#page-4-5) implies

 $(\hat{A} \otimes \text{id}_{\mathcal{H}_{\rho}})X_{1\rho}^{*}(1_{\hat{A}} \otimes \mathbb{K}(\mathcal{H}_{\rho})) = (\hat{A} \otimes \text{id}_{\mathcal{H}_{\rho}})X_{1\rho}^{*}(1_{\hat{A}} \otimes \rho(A)\mathbb{K}(\mathcal{H}_{\rho})) = \hat{A} \otimes \mathbb{K}(\mathcal{H}_{\rho}).$ This completes the proof

$$
(\hat{A}\otimes 1_C)X_{12}^*(1_{\hat{A}}\otimes D)X_{12}=\{(\hat{A}\otimes \omega\otimes id_C)\mathbf{F}_{\hat{\rho}3}\mid \omega\in \mathbb{B}(\mathcal{H}_{\rho})_*\}^{\text{CLS}}=\hat{A}\otimes D.\square
$$

5. Construction of braided C*-quantum groups

Throughut this section we follow the same notations, assumptions and definitions that we introduced and used in Section [3.](#page-6-2)

In this section we shall prove Theorem [3.9.](#page-7-0) We shall eventually use Theorem [4.1](#page-9-1) for the the C^{*}-quantum group $\mathbb{H} = (C, \Delta_C)$ generated by \mathbb{W}^C defined in [\(3.18\)](#page-8-0) with projection $\mathbb P$ defined by [\(3.19\)](#page-8-1) with the image $\mathbb G = (A, \Delta_A)$, which is a regular C^* -quantum group. Therefore we must indentify *i* and Δ_L in order to view C as a G-product.

Lemma 5.1. *Let* $(\pi, \hat{\pi})$ *be a* G-Heisenberg pair on H. There is a faithful represen*tation* $\hat{\rho}$: $\hat{A} \to \mathbb{B}(\mathcal{H} \otimes \mathcal{L})$ *such that* $(\hat{\rho} \otimes \pi)W^A = \mathbb{W}_{12}\mathbb{U}_{13} \in \mathcal{U}(\mathbb{K}(\mathcal{H} \otimes \mathcal{L} \otimes \mathcal{H}))$.

Proof. Let $(\eta, \hat{\eta})$ be a G-anti-Heisenberg pair on a Hilbert space \mathcal{H}_n . Hence the corepresentation condition [\(2.14\)](#page-3-1) for U is equivalent to

$$
U_{1\eta}W_{\hat{\eta}3}^A = W_{\hat{\eta}3}^A U_{13}U_{1\eta} \quad \text{in } \mathcal{U}(\mathbb{K}(\mathcal{L}\otimes\mathcal{H}_{\eta})\otimes A),
$$

by [\(4.10\)](#page-10-4). Applying σ_{12} on both sides and rearranging gives

(5.2)
$$
\hat{\mathrm{U}}_{\eta 2}^* \mathrm{W}_{\hat{\eta} 3}^A \hat{\mathrm{U}}_{\eta 2} = \mathrm{W}_{\hat{\eta} 3}^A \mathrm{U}_{23} \quad \text{in } \mathcal{U}(\mathbb{K}(\mathcal{H}_\eta \otimes \mathcal{L}) \otimes A).
$$

Here $\hat{U} := \sigma(U^*) \in \mathcal{U}(A \otimes \mathbb{K}(\mathcal{L}))$. This yields a representation $\hat{\rho}'$ defined by $\hat{\rho}'(\hat{a}) \coloneqq \hat{\mathrm{U}}_n^*$ $\frac{1}{2}$ $\eta_2(\hat{\eta}(a) \otimes 1)\hat{U}_{\eta_2}$. Since $\hat{\eta}$, $\hat{\pi}$ are faithful by [\[12,](#page-15-11) Proposition 3.2], we may define $\hat{\rho}(\hat{a}) := (\hat{\pi} \circ \hat{\eta}^{-1} \otimes \mathrm{id}_{\mathcal{L}}) \circ \hat{\rho}'(\hat{a})$. This faithful representation satisfies $(\hat{\rho} \otimes \pi) W^A = W_{12} U_{13}$ by [\(5.2\)](#page-11-2).

Let us identify *C*, \hat{C} with their images inside $\mathbb{B}(\mathcal{H}\otimes\mathcal{L}\otimes\mathcal{H}\otimes\mathcal{L})$ under the representations obtained from the H-Heisenberg pair that arises from the manageable multiplicative unitary W*^C* in [\(3.18\)](#page-8-0).

Define $\rho(a) := \pi(a) \otimes 1_{\mathcal{L}}$. Then $(\hat{\rho} \otimes \rho) W^A$ is the projection $\mathbb P$ in [\(3.19\)](#page-8-1). Therefore the image of ρ and $\hat{\rho}$ are contained inside the image of *C* and \hat{C} , respectively. The first condition in (3.16) and (2.9) together shows that gives

$$
(\hat{\Delta}_C \circ \hat{\rho} \otimes \rho^{-1} \rho) W^A = (\hat{\Delta}_C \otimes \rho^{-1}) \mathbb{P} = (\mathrm{id} \otimes \rho^{-1}) (\mathbb{P}_{23} \mathbb{P}_{13}) = ((\hat{\rho} \otimes \hat{\rho}) \hat{\Delta}_A \otimes \rho^{-1} \rho) W^A.
$$

Taking slices on the second legs of the bothsides of the last expression shows that ρ is a Hopf ^{*}-homomorphism from \hat{A} to \hat{C} . Similarly, we can show that ρ is a Hopf [∗] -homomorphism from *A* to *C*.

Therefore $\chi := (\hat{\rho} \otimes id_A)W^A \in \mathcal{U}(\mathbb{K}(\mathcal{H} \otimes \mathcal{L}) \otimes A)$ is a bicharacter from $\mathbb H$ to $\mathbb G$ and let Δ_L : $C \to A \otimes C$ be the left quanum groups morphism associated to it. We want to show that the pair (ρ, Δ_L) is the equivalent to the projection P on H. Hence, we only need to verify (4.5) for this pair. Equation (4.13) and (2.5) gives

$$
(\hat{\rho} \otimes \Delta_L \circ \rho)W^A = (\mathrm{id} \otimes \Delta_L)\mathbb{P} = \chi_{12}\mathbb{P}_{13} = (\hat{\rho} \otimes (\mathrm{id} \otimes \rho)\Delta_A)W^A)
$$

Injectivity of $\hat{\rho}$ gives [\(4.5\)](#page-9-2) for (ρ, Δ_L) ; hence (C, Δ_L, ρ) is a G-product.

Proof of Theorem [3.9](#page-7-0). Ad 1. The image of \mathbb{P} is $\mathbb{G} = (A, \Delta_A)$, which is regular by assumption (see Section [2.5\)](#page-4-0). Theorem [4.1](#page-9-1) shows that

$$
D = \{ (\omega \otimes \omega' \otimes id_{\mathcal{K}}) \mathbb{P}^* \mathbb{W}^C \mid \omega \in \mathbb{B}(\mathcal{H})_* , \omega' \in \mathbb{B}(\mathcal{L})_* \}^{\text{CLS}} = \{ (\omega' \otimes id_{\mathcal{H} \otimes \mathcal{L}}) \hat{\mathbb{V}}_{23}^* \mathbb{F}_{13} \hat{\mathbb{V}}_{23} \mid \omega \in \mathbb{B}(\mathcal{L})_* \}^{\text{CLS}}.
$$

is a C[∗] -algebra. Hence so is

$$
B := \{ (\omega' \otimes \mathrm{id}_{\mathcal{L}}) \mathbb{F} \mid \omega \in \mathbb{B}(\mathcal{L})_* \}^{\mathrm{CLS}} \subseteq \mathbb{B}(\mathcal{L})
$$

because $\hat{\mathbb{V}}D\hat{\mathbb{V}}^* = 1_{\mathcal{H}} \otimes B \subseteq \mathbb{B}(\mathcal{H} \otimes \mathcal{L}).$

The second condition in Theorem [4.4](#page-9-3) gives $DC = C$. Also $C\mathbb{K}(\mathcal{H}\otimes\mathcal{L}) = \mathbb{K}(\mathcal{H}\otimes\mathcal{L})$ because *C* is constructed from the manageable multiplicative unitary \mathbb{W}^C in [\(3.18\)](#page-8-0), and $\hat{\mathbb{V}} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{L})$. Therefore,

$$
\hat{\mathbb{V}}^* D \hat{\mathbb{V}} \mathbb{K}(\mathcal{H} \otimes \mathcal{L}) = \hat{\mathbb{V}}^* D C \mathbb{K}(\mathcal{H} \otimes \mathcal{L}) = \hat{\mathbb{V}}^* C \mathbb{K}(\mathcal{H} \otimes \mathcal{L}) = \hat{\mathbb{V}} \mathbb{K}(\mathcal{H} \otimes \mathcal{L}) = \mathbb{K}(\mathcal{H} \otimes \mathcal{L}).
$$

Thus *B* acts nondegenerately on $\mathcal L$ and seperability of $\mathbb B(\mathcal L)_*$ implies *B* is separable.

Ad 2. Define $\hat{\beta}(b) := V(b \otimes 1_{\hat{A}})V^*$ for $b \in B$. Clearly, $\hat{\beta}$ is injective.

We have identified the pair (i, γ) in Theorem [4.4](#page-9-3) with (ρ, Δ_L) . Recall that $(\pi, \hat{\pi})$ is the G-Heisenberg pair on H . The third condition in Theorem [4.4](#page-9-3) gives

$$
\hat{\pi} \otimes D = \hat{\pi}(\hat{A}) \otimes \hat{\mathbb{V}}^*(1 \otimes B)\hat{\mathbb{V}} = (\hat{\pi}(\hat{A}) \otimes 1_{\mathcal{L} \otimes \mathcal{L}})\mathbb{W}_{12}^*\hat{\mathbb{V}}_{23}^*(1_{\mathcal{H}} \otimes 1_{\mathcal{L}} \otimes B)\hat{\mathbb{V}}_{23}\mathbb{W}_{12}.
$$

Now corepresentation condition [\(2.14\)](#page-3-1) for V is equivalent to

$$
\hat{\mathbb{V}}_{23}\mathbb{W}_{12} = \mathbb{W}_{12}\hat{\mathbb{V}}_{13}\hat{\mathbb{V}}_{23} \quad \text{in } \mathcal{U}(\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{L}).
$$

This gives

$$
\hat{\mathbb{V}}_{23}^*(\hat{\pi}(\hat{A}) \otimes 1 \otimes B)\hat{\mathbb{V}}_{23} = \hat{\pi}(\hat{A}) \otimes \hat{\mathbb{V}}^*(1 \otimes B)\hat{\mathbb{V}}
$$
\n
$$
= (\hat{\pi}(\hat{A}) \otimes 1_{\mathcal{L} \otimes \mathcal{L}})\hat{\mathbb{V}}_{23}^*\hat{\mathbb{V}}_{13}^*\mathbb{W}_{12}^*(1_{\mathcal{H}} \otimes 1_{\mathcal{L}} \otimes B)\mathbb{W}_{12}\hat{\mathbb{V}}_{13}\hat{\mathbb{V}}_{23}
$$
\n
$$
= (\hat{\pi}(\hat{A}) \otimes 1_{\mathcal{L} \otimes \mathcal{L}})\hat{\mathbb{V}}_{23}^*\hat{\mathbb{V}}_{13}^*(1_{\mathcal{H}} \otimes 1_{\mathcal{L}} \otimes B)\hat{\mathbb{V}}_{13}\hat{\mathbb{V}}_{23}
$$
\n
$$
= \hat{\mathbb{V}}_{23}^*(\hat{\pi}(\hat{A}) \otimes 1)\hat{\mathbb{V}}^*(1 \otimes B)\hat{\mathbb{V}})_{13}\hat{\mathbb{V}}_{23}.
$$

This is equivalent to

(5.3)
$$
\hat{A} \otimes B = (\hat{\pi}(\hat{A}) \otimes 1_{\mathcal{L}}) \hat{\mathbb{V}}^*(1_{\mathcal{H}} \otimes B) \hat{\mathbb{V}};
$$

this is the Podles^s condition for $\hat{\beta}$. Thus $\hat{\beta} \in \text{Mor}(B, B \otimes A)$ and the corepresentation condition [\(2.14\)](#page-3-1) for V yields [\(2.17\)](#page-3-0) for $\hat{\beta}$

Similarly, $\beta(b) := U(b \otimes 1_A)U^*$ is injective, and it is sufficent to establish the Podleś condition for *β*. Then $(B, \beta, \hat{\beta})$ is a G-Yetter-Drinfeld C^{*}-algebra because $(\mathbb{U}, \hat{\mathbb{V}})$ satisfies the Drinfeld compatibility [\(3.3\)](#page-6-5).

The second condition in Theorem [4.4](#page-9-3) gives $C = \rho(A)D = (\pi(A) \otimes 1_{\mathcal{L}})\hat{\mathbb{V}}^*(1_{\mathcal{H}} \otimes$ $B\grave{W}$.

Let Δ_R : $C \to C \otimes A$ be the right quantum group homomorphism associated to the projection $\mathbb{P} = \mathbb{W}_{13} \mathbb{U}_{23}$. By [\[5,](#page-15-15) Lemma 5.8] $\Delta_R(C)(1 \otimes A) = C \otimes A$. Equation (33) in [\[5\]](#page-15-15) implies

$$
(\pi(A) \otimes 1_{\mathcal{L}\otimes\mathcal{H}})\hat{V}_{12}^*(1_{\mathcal{H}} \otimes B \otimes 1_{\mathcal{H}})\hat{V}_{12}\mathbb{U}_{23}^*\mathbb{W}_{13}^*(1_{\mathcal{H}\otimes\mathcal{L}} \otimes \pi(A))
$$

=
$$
\mathbb{U}_{23}^*\mathbb{W}_{13}^*(\pi(A) \otimes 1_{\mathcal{L}\otimes\mathcal{H}})\hat{V}_{12}^*(1_{\mathcal{H}} \otimes B \otimes 1_{\mathcal{H}})\hat{V}_{12}(1_{\mathcal{H}\otimes\mathcal{L}} \otimes \pi(A)).
$$

Multiplying by $\mathbb{K}(\mathcal{H})$ on the first leg and using $\pi(A)\mathbb{K}(\mathcal{H}) = \mathbb{K}(\mathcal{H})$ on the left and right, this gives

$$
(\mathbb{K}(\mathcal{H})\otimes 1_{\mathcal{L}\otimes \mathcal{H}})\hat{\mathbb{V}}^*_{12}(1_{\mathcal{H}}\otimes B\otimes 1_{\mathcal{H}})\hat{\mathbb{V}}_{12}\mathbb{U}^*_{23}\mathbb{W}^*_{13}(\mathbb{K}(\mathcal{H})\otimes 1_{\mathcal{L}}\otimes \pi(A))
$$

 $=(\mathbb{K}(\mathcal{H})\otimes 1_{\mathcal{L}\otimes\mathcal{H}})\mathbb{U}_{23}^*\mathbb{W}_{13}^*(\pi(A)\otimes 1_{\mathcal{L}\otimes\mathcal{H}})\hat{\mathbb{V}}_{12}^*(1_{\mathcal{H}}\otimes B\otimes 1_{\mathcal{H}})\hat{\mathbb{V}}_{12}(\mathbb{K}(\mathcal{H})\otimes 1_{\mathcal{L}}\otimes \pi(A)).$

Equation [\(5.3\)](#page-13-0) now gives

$$
\begin{aligned} (\mathbb{K}(\mathcal{H})\otimes B\otimes 1_{\mathcal{H}})\mathbb{U}_{23}^* \mathbb{W}_{13}^*(\mathbb{K}(\mathcal{H})\otimes 1_{\mathcal{L}}\otimes \pi(A))\\ &= (\mathbb{K}(\mathcal{H})\otimes 1_{\mathcal{L}\otimes \mathcal{H}})\mathbb{U}_{23}^*\mathbb{W}_{13}^*(\pi(A)\mathbb{K}(\mathcal{H})\otimes B\otimes \pi(A)).\end{aligned}
$$

Now $\pi(A)\mathbb{K}(\mathcal{H}) = \mathbb{K}(\mathcal{H})$ and $\mathbb{W}_{\hat{\pi}2}^A(\mathbb{K}(\mathcal{H})\otimes A) = \mathbb{K}(\mathcal{H})\otimes A$. The regularity [\(2.24\)](#page-4-5) of G gives $(\mathbb{K}(\mathcal{H}) \otimes 1_{\mathcal{H}}) \mathbb{W}(1_{\mathcal{H}} \otimes \pi(A)) = \mathbb{K}(\mathcal{H}) \otimes \pi(A)$. Thus

$$
\mathbb{K}(\mathcal{H}) \otimes ((B \otimes 1_{\mathcal{H}}) \mathbb{U}^*(1_{\mathcal{L}} \otimes \pi(A)) = \mathbb{K}(\mathcal{H}) \otimes (\mathbb{U}_{23}^*(\otimes B \otimes \pi(A)).
$$

Taking slices by $\omega \in \mathbb{B}(\mathcal{H})$ on the first leg and rearranging U now gives

$$
\mathbb{U}(B\otimes 1_{\mathcal{H}})\mathbb{U}^*(1_{\mathcal{L}}\otimes \pi(A))=B\otimes \pi(A).
$$

This is equivalent to the Podleś condition for *β*.

Ad 3. Now we show that $\mathbb{F} \in \mathcal{U}(\mathbb{K}(\mathcal{L}) \otimes B)$. The second condition in the Landstad theorem [4.4](#page-9-3) shows that $C = \pi(A) \otimes 1_{\mathcal{L}} \hat{V}^*(1 \otimes B) \hat{V}$ and C is ^{*}-invariant. Since W^{*C*} is a unitary multiplier of $\mathbb{K}(\mathcal{H}\otimes\mathcal{L})\otimes C$ we have $(\mathbb{K}(\mathcal{H})\otimes\mathbb{K}(\mathcal{L})\otimes C)\mathbb{W}^C=$ $\mathbb{K}(\mathcal{H}) \otimes \mathbb{K}(\mathcal{L}) \otimes C$. For two C^{*}-algebras *D* and *D'* let $D_1D_2' = D \otimes D'$. This gives

$$
\hat{\mathbb{V}}_{34}^*B_4\hat{\mathbb{V}}_{34}\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\pi(A)_3\mathbb{W}_{13}\mathbb{U}_{23}\hat{\mathbb{V}}_{34}^*\mathbb{F}_{24}\hat{\mathbb{V}}_{34}=\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\pi(A)_3\hat{\mathbb{V}}_{34}^*B_4\hat{\mathbb{V}}_{34}.
$$

Now $(\mathbb{K}(\mathcal{H}) \otimes \pi(A)\mathbb{W} = \mathbb{K}(\mathcal{H}) \otimes \pi(A)$ and $\mathbb{U} = (\mathrm{id}_{\mathcal{L}} \otimes \pi) \mathbb{U}$. Therefore, $(\mathbb{K}(\mathcal{H}) \otimes \pi(A)\mathbb{W})$ $\mathbb{K}(\mathcal{L}) \otimes \pi(A)$ $\mathbb{W}_{13}\mathbb{U}_{23} = \mathbb{K}(\mathcal{H}) \otimes \mathbb{K}(\mathcal{L}) \otimes \pi(A)$. This gives

$$
\hat{\mathbb{V}}^*_{34}B_4\hat{\mathbb{V}}_{34}\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\pi(A)_3\hat{\mathbb{V}}^*_{34}\mathbb{F}_{24}\hat{\mathbb{V}}_{34}=\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\pi(A)_3\hat{\mathbb{V}}^*_{34}B_4\hat{\mathbb{V}}_{34}.
$$

Multiplying by $\mathbb{K}(\mathcal{H})$ on the third leg from the left and using [\(5.3\)](#page-13-0) on bothsides, this gives

$$
\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3\pi(A)_3B_4\hat{\mathbb{V}}_{34}^*\mathbb{F}_{24}\hat{\mathbb{V}}_{34} = \mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3\pi(A)_3B_4.
$$

Now $\pi: A \to \mathbb{B}(\mathcal{H})$ is nondegenerate: $\pi(A)\mathbb{K}(\mathcal{H}) = \mathbb{K}(\mathcal{H})\pi(A) = \mathbb{K}(\mathcal{H})$. This simplifies the last expression and gives

$$
\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4\hat{\mathbb{V}}_{34}^*\mathbb{F}_{24}\hat{\mathbb{V}}_{34} = \mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4.
$$

The invariant condition [\(3.6\)](#page-6-6) is equivalent to $\hat{V}^*_{23}F_{13}\hat{V}_{23} = V_{12}F_{13}V^*_{12}$. This gives

$$
\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4\mathbb{V}_{23}\mathbb{F}_{24}\mathbb{V}_{23}^*=\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4.
$$

Now \mathbb{V}_{23} commutes with B_4 and $(\mathbb{K}(\mathcal{L} \otimes \mathbb{K}(\mathcal{H}))\mathbb{V} = \mathbb{K}(\mathcal{L}) \otimes \mathcal{H}$. This gives

$$
\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4\mathbb{F}_{24}\mathbb{V}_{23}^*=\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4.
$$

Multiplying bothside by \mathbb{V}_{23} from the right and using $(\mathbb{K}(\mathcal{L}\otimes\mathbb{K}(\mathcal{H}))\mathbb{V} = \mathbb{K}(\mathcal{L})\otimes\mathcal{H}$, this gives

$$
\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4\mathbb{F}_{24}=\mathbb{K}(\mathcal{H})_1\mathbb{K}(\mathcal{L})_2\mathbb{K}(\mathcal{H})_3B_4.
$$

Taking the slices on the first and third legs by $\omega \in \mathbb{B}(\mathcal{H})_*$ gives $(\mathbb{K}(\mathcal{L}) \otimes B)\mathbb{F} =$ $\mathbb{K}(\mathcal{L})\otimes B$. This shows that F is a unitary right multiplier of $\mathbb{K}(\mathcal{L})\otimes B$). Multiplying bothsides by \mathbb{F}^* of the above equation from the right gives gives $\mathbb{K}(\mathcal{L}) \otimes B =$ $(\mathbb{K}(\mathcal{L}) \otimes B)\mathbb{F}^*$; hence $\mathbb F$ is also a left multiplier of $\mathbb{K}(\mathcal{L}) \otimes B$).

Ad 4. The unitary $Z \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$ is characterised by [\(3.2\)](#page-6-4); hence [\(2.30\)](#page-5-1) gives $j_1(b) := b \otimes 1_{\mathcal{L}}, j_2(b) := {}^{\mathcal{L}} \times {\mathcal{L}}(b \otimes 1_{\mathcal{L}})^{\mathcal{L}} \times {\mathcal{L}}, \text{ and } B \boxtimes B = j_1(B)j_2(B) \subseteq \mathbb{B}(\mathcal{L} \otimes \mathcal{L}).$

Define $\Delta_B(b) := \mathbb{F}(b \otimes 1_{\mathcal{L}})\mathbb{F}^*$ for all $b \in B$. The braided pentagon equation [\(3.7\)](#page-6-0) gives [\(3.12\)](#page-7-4):

$$
(\mathrm{id}_\mathcal{L}\otimes\Delta_B)\mathbb{F}=\mathbb{F}_{23}\mathbb{F}_{12}\mathbb{F}_{23}^*=\mathbb{F}_{12}\text{Ker}^\mathcal{L}\times\text{L}_{23}\mathbb{F}_{12}\text{Ker}^\mathcal{L}\times\text{L}_{23}.
$$

Since $\mathbb{F} \in \mathcal{U}(\mathbb{K}(\mathcal{L}\otimes B))$, taking slices on the first leg of the both sides of [\(3.12\)](#page-7-4) shows that $\Delta_B : B \to \mathcal{M}(B \boxtimes B)$ is the unique ^{*}-homomorphism satisfying [\(3.12\)](#page-7-4).

The diagonal coaction $\beta \bowtie \beta$ of \mathbb{G} on $B \boxtimes B$ is described by [\(2.32\)](#page-5-2) as

$$
\beta \bowtie \beta \colon B \boxtimes B \to B \boxtimes B \otimes A, \qquad x \mapsto \mathrm{U}_{13}\mathrm{U}_{23}(x \otimes 1_A)\mathrm{U}_{23}^*\mathrm{U}_{13}^*.
$$

The invariance condition (3.5) for $\mathbb F$ gives

$$
\beta \bowtie \beta \circ \Delta_B(b) = \mathbb{U}_{13} \mathbb{U}_{23} \mathbb{F}_{12}(b \otimes 1_{\mathcal{L} \otimes \mathcal{H}}) \mathbb{F}_{12}^* \mathbb{U}_{23}^* \mathbb{U}_{13}^*
$$

= $\mathbb{F}_{12} \mathbb{U}_{13} \mathbb{U}_{23}(b \otimes 1_{\mathcal{L} \otimes \mathcal{H}}) \mathbb{U}_{23}^* \mathbb{U}_{13}^* \mathbb{F}_{12}^*$
= $(\Delta_B \otimes id_A) \circ \beta(b);$

hence Δ_B is G-equivariant. Similarly, we may show that Δ_B is $\hat{\mathbb{G}}$ -equivariant.

The coassociativity of Δ_B follows from the top-braided pentagon equation [\(3.7\)](#page-6-0):

$$
(\Delta_B \boxtimes id_B)\Delta_B(b) = \mathbb{F}_{12}{}^K \times \mathcal{L}_{23} \Delta_B(b)_{12}{}^L \times \mathcal{L}_{23} \mathbb{F}_{12}^* = \mathbb{F}_{12}{}^L \times \mathcal{L}_{23} \mathbb{F}_{12}{}^b{}_1 \mathbb{F}_{12}^*{}^L \times \mathcal{L}_{23} \mathbb{F}_{12}^* = \mathbb{F}_{23} \mathbb{F}_{12}{}^b{}_1 \mathbb{F}_{12}^* \mathbb{F}_{23} = (id_B \boxtimes \Delta_B) \circ \Delta_B(b).
$$

Now($\mathbb{K}(\mathcal{L}) \otimes B$) $\mathbb{F} = \mathbb{K}(\mathcal{L}) \otimes B$. Then [\(3.12\)](#page-7-4) gives

$$
(\mathbb{K}(\mathcal{L}) \otimes j_1(B))(\mathrm{id}_{\mathcal{L}} \otimes \Delta_B)\mathbb{F} = (\mathrm{id}_{\mathcal{L}} \otimes j_1)\big((\mathbb{K}(\mathcal{L}) \otimes B)\mathbb{F}\big)(\mathrm{id}_{\mathcal{L}} \otimes j_2)\mathbb{F} \\
= (\mathbb{K}(\mathcal{L}) \otimes j_1(B))(\mathrm{id}_{\mathcal{L}} \otimes j_2)\mathbb{F}.
$$

Slicing the first leg by $\omega \in \mathbb{B}(\mathcal{L})_*$ on both sides gives $j_1(B)\Delta_B(B) = j_1(B)j_2(B)$ $B \boxtimes B$. A similar computation gives $\Delta_B(B)j_2(B) = B \boxtimes B$.

REFERENCES

- [1] Saad Baaj and Georges Skandalis, *Unitaires multiplicatifs et dualité pour les produits croisés de C*[∗] *-algèbres*, Ann. Sci. École Norm. Sup. (4) **26** (1993), no. 4, 425–488, available at http://www.numdam.org/item?id=ASENS_1993_4_26_4_425_0. MR **[1235438](http://www.ams.org/mathscinet-getitem?mr=1235438)**
- [2] David Bücher and Sutanu Roy, *Regularity for braided multiplicative unitaries* (2014), eprint. [arXiv: 1411.4611.](http://www.arxiv.org/abs/1411.4611)
- [3] Paweł Kasprzak and Piotr M. Sołtan, *Quantum groups with projection on von Neumann algebra level*, J. Math. Anal. Appl. **427** (2015), no. 1, 289–306, [doi: 10.1016/j.jmaa.2015.02.047.](http://dx.doi.org/10.1016/j.jmaa.2015.02.047) MR **[3318200](http://www.ams.org/mathscinet-getitem?mr=3318200)**
- [4] Johan Kustermans and Stefaan Vaes, *Locally compact quantum groups*, Ann. Sci. École Norm. Sup. (4) **33** (2000), no. 6, 837–934, [doi: 10.1016/S0012-9593\(00\)01055-7.](http://dx.doi.org/10.1016/S0012-9593(00)01055-7) MR **[1832993](http://www.ams.org/mathscinet-getitem?mr=1832993)**
- [5] Ralf Meyer, Sutanu Roy, and Stanisław Lech Woronowicz, *Homomorphisms of quantum groups*, Münster J. Math. **5** (2012), 1–24, available at <http://nbn-resolving.de/urn:nbn:de:hbz:6-88399662599>. MR **[3047623](http://www.ams.org/mathscinet-getitem?mr=3047623)**
- [6] , *Quantum group-twisted tensor products of* C[∗] *-algebras*, Internat. J. Math. **25** (2014), no. 2, 1450019, 37, [doi: 10.1142/S0129167X14500190.](http://dx.doi.org/10.1142/S0129167X14500190) MR **[3189775](http://www.ams.org/mathscinet-getitem?mr=3189775)**
- [7] , *Quantum group-twisted tensor products of* C[∗] *-algebras II*, J. Noncommut. Geom. (2015), accepted. [arXiv: 1501.04432.](http://www.arxiv.org/abs/1501.04432)
- [8] , C[∗] *-quantum groups with projection*, in preparation.
- [9] Ryszard Nest and Christian Voigt, *Equivariant Poincaré duality for quantum group actions*, J. Funct. Anal. **258** (2010), no. 5, 1466–1503, [doi: 10.1016/j.jfa.2009.10.015.](http://dx.doi.org/10.1016/j.jfa.2009.10.015) MR **[2566309](http://www.ams.org/mathscinet-getitem?mr=2566309)**
- [10] David E. Radford, *The structure of Hopf algebras with a projection*, J. Algebra **92** (1985), no. 2, 322–347, [doi: 10.1016/0021-8693\(85\)90124-3.](http://dx.doi.org/10.1016/0021-8693(85)90124-3) MR **[778452](http://www.ams.org/mathscinet-getitem?mr=778452)**
- [11] Sutanu Roy, C[∗] *-Quantum groups with projection*, Ph.D. Thesis, Georg-August Universität Göttingen, 2013, <http://hdl.handle.net/11858/00-1735-0000-0022-5EF9-0>.
- [12] , *The Drinfeld double for C*∗*-algebraic quantum groups*, J. Operator Theory **74** (2015), no. 2, 485–515, available at <http://www.mathjournals.org/jot/2015-074-002/2015-074-002-010.html>.
- [13] Sutanu Roy and Stanisław Lech Woronowicz, *Landstad-Vaes theory for locally compact quantum groups*, in preparation.
- [14] Piotr M. Sołtan and Stanisław Lech Woronowicz, *From multiplicative unitaries to quantum groups. II*, J. Funct. Anal. **252** (2007), no. 1, 42–67, doi: 10.1016/j.jfa.2007.07.006R **[2357350](http://www.ams.org/mathscinet-getitem?mr=2357350)**
- [15] Stefaan Vaes, *A new approach to induction and imprimitivity results*, J. Funct. Anal. **229** (2005), no. 2, 317–374, [doi: 10.1016/j.jfa.2004.11.016.](http://dx.doi.org/10.1016/j.jfa.2004.11.016) MR **[2182592](http://www.ams.org/mathscinet-getitem?mr=2182592)**
- [16] Stanisław Lech Woronowicz, *From multiplicative unitaries to quantum groups*, Internat. J. Math. **7** (1996), no. 1, 127–149, [doi: 10.1142/S0129167X96000086.](http://dx.doi.org/10.1142/S0129167X96000086) MR **[1369908](http://www.ams.org/mathscinet-getitem?mr=1369908)** *E-mail address*: sutanu.roy@carleton.ca

School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, Canada.