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BRAIDED C∗-QUANTUM GROUPS

SUTANU ROY

Abstract. We propose a general theory of braided quantum groups in the
C∗-algebraic framework. More precisely, we construct braided quantum groups
using manageable braided multiplicative unitaries over a regular C∗-quantum
group. We show that braided C∗-quantum groups are equivalent to C∗-quantum
groups with projection.

1. Introduction

Let H be a group and let p be an idempotent homomorphism H . This is equiv-
alent to a split exact sequence of groups such that H ∼= K ⋉ G where K = ker(p)
and G = Im(p). C∗-quantum groups with projection is a quantum analogue of
semidirect product of groups.

In a purely algebraic setting, quantum groups and Hopf algebras are (roughly)
synonymous. In [10], Radford shows that Hopf algebras with projection correspond
exactly to pairs consisting of a Hopf algebra A and a Hopf algebra in the monoidal
category of A-Yetter-Drinfeld algebras.

The image of the projection is again a Hopf algebra A. The analogue of the
kernel is a Yetter–Drinfeld algebra B over A. For instance, when A = C[Z] then
B is a A-Yetter-Drinfeld algebra if and only if B is a Z-graded Z-module. For two
Yetter–Drinfeld algebras B1 and B2, the tensor product B1 ⊗ B2 carries a unique
multiplication for which it is again a Yetter–Drinfeld algebra; the Yetter–Drinfeld
module structure is the diagonal one, which is determined by requiring the embed-
dings of B1 and B2 to be equivariant. The comultiplication on B is a homomorphism
to the deformed tensor product B ⊠ B, which turns B into a Hopf algebra in the
monoidal category of Yetter–Drinfeld algebras.

This suggests that a braided C∗-quantum group over a C∗-quantum group G =
(A, ∆A) should be a pair (B, ∆B) consisting of a G-Yetter-Drinfeld C∗-algebra
B and a nondegenerate ∗-homomorphism ∆B : B → M(B ⊠ B) respecting the
G-Yetter-Drinfeld structure. This has been studied in [7, Section 6] when A and B

both are unital. In the nonunital case, we need to generalise the concept of multi-
plicative uniatries.

Let H be a separable Hilbert space. A unitary operator W : H ⊗ H → H ⊗ H is
multiplicative if it satisfies the pentagon equation

(1.1) W23W12 = W12W13W23 in U(H ⊗ H ⊗ H).

In [1], Baaj and Skandalis used regularity of multiplicative unitaries as a basic
axiom to construct locally compact quantum groups in C∗-algebraic framework.
The notion of manageability of multiplicative unitaries, introduced by Woronowicz
in [16], provides a more general approach to the C∗-algebraic theory for locally
compact quantum groups or, in short, C∗-quantum groups (see Theorem 2.2).
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Motivated by [1], Bücher and the author, in [2], presented a general theory
of regular braided quantum groups in the C∗-algebraic framework using regular
braided multiplicative unitaries.

Let C be a braided monoidal category of separable Hilbert spaces. Thus, for any

two objects L1, L2 ∈ C there is a bounded operator L2L1 : L1 ⊗ L2 → L2 ⊗ L1

that braid diagrams. Assume that L2L1 is unitary for all objects L1, L2 ∈ C. For
an object L ∈ C, a braided multiplicative unitary on should be unitary morphism
F : L ⊗ L → L ⊗ L in C that satisfies a braided version of (1.1) (see (3.7)).

Our setting is the following: we set C to be the corepresentation category of
quantum codouble of a C∗-quantum group G see [7, Proposition 3.4 & Section
5]. Then a braided multiplicative unitary F over G is a morphism in this category
satisfying braided pentagon equation (see Definition 3.4). Next we recall the notion
of manageability from [8].

The goal of this article is to construct braided C∗-quantum groups (as outlined
in the fourth paragraph above) from manageable braided multiplicative unitaries
over a regular C∗-quantum group G.

Unlike nonbraided case, it is not even clear whether the set B0 of slices (ω⊗idL)F
for ω ∈ B(L)∗ forms an algebra. In [2, Proposition 5], it was shown that B0 is an
algebra whenever C is a regularly braided monoidal category: the braiding operator
on C is regular in the sense of [2, Definition 3]. Furthemore, regularity condition

on F ensures that B = B
−‖·‖
0 ⊂ B(L) is a C∗-algebra and B admits a structure of a

regular braided C∗-quantum group see [2, Theorem 13]. Because of [2, Proposition
16] the monoidal category C is regularly braided.

It is shown in [11] and [8], that Radford’s theorem can be generalised nicely for
manageable multiplicative unitaries. Thus shows that a braided C∗-quantum group
(B, ∆B) over a C∗-quantum group G gives rise to a C∗-quantum group H = (C, ∆C)
with projection. As shown in [3], for the von Neumann algebraic quantum groups,
the analogue of the B coincides with the algebra fixed points for the canonical
coaction of G on H induced by the projection on H. This is not the case for B.
As a C∗-algebra, B should be the generalised fixed point algebra. This is a special
case of quantum homogeneous spaces, which is also treated by Vaes [15] that needs
regularity assumptions on G.

Therefore, it seems that the regularity of G turns out to be a natural assumption
to construct braided C∗-quantum groups from braided multiplicative unitaries.

Let us briefly outline the structure of this article. In Section 2, we recall basic nec-
essary preliminaries. In particular, the main results on modular and manageable
multiplicative unitaries, that give rise to C∗-quantum groups [16], the notion of
Heisenberg and anti-Heisenbegr pairs for C∗-quantum groups from [6], coactions
and corepresentations of C∗-quantum groups, results related to Yetter-Drinfeld
C∗-algebras from [7]. In Section 2.5 we gather some important facts of regular
C∗-quantum groups. After introducing manageable braided multiplicative unitaries
we state the main result (see Theorem 3.9) to construct braided C∗-quantum groups
in Section 3. We also construct the big C∗-quantum group H in terms of a braided
C∗-quantum group (B, ∆B) over a regular G. In Section 4, we use the quantum
version of the Landstad theorem to construct B the fixed point algebra for the
action of G on H induced by the projection. Finally, in Section 5 we complete the
proof of Theorem 3.9.

2. Preliminaries

All Hilbert spaces and C∗-algebras (which are not explicitly multiplier algebras)
are assumed to be separable. For a C∗-algebra A, let M(A) be its multiplier algebra
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and let U(A) be the group of unitary multipliers of A. For two norm closed subsets
X and Y of a C∗-algebra A and T ∈ M(A), let

XT Y := {xT y : x ∈ X, y ∈ T }CLS

where CLS stands for the closed linear span.
Let C∗alg be the category of C∗-algebras with nondegenerate ∗-homomorphisms

ϕ : A → M(B) as morphisms A → B; let Mor(A, B) denote this set of morphisms.
Let H be a Hilbert space. A representation of a C∗-algebra A is a nondegenerate

∗-homomorphism A → B(H). Since B(H) = M(K(H)) and the nondegeneracy
conditions AK(H) = K(H) and AH = H are equivalent, this is the same as a
morphism from A to K(H).

We write Σ for the tensor flip H ⊗ K → K ⊗ H, x ⊗ y 7→ y ⊗ x, for two Hilbert
spaces H and K. We write σ for the tensor flip isomorphism A ⊗ B → B ⊗ A for
two C∗-algebras A and B.

2.1. Multiplicative unitaries and quantum groups. Let H be a Hilbert space.
A multiplicative unitary W ∈ U(H⊗H) is manageable if there are a strictly positive

operator Q on H and a unitary W̃ ∈ U(H ⊗ H) with W∗(Q ⊗ Q)W = Q ⊗ Q and

(2.1)
(
x ⊗ u | W | z ⊗ y

)
=

(
z ⊗ Qu | W̃ | x ⊗ Q−1y

)

for all x, z ∈ H, u ∈ D(Q) and y ∈ D(Q−1) (see [16, Definition 1.2]). Here H is
the conjugate Hilbert space, and an operator is strictly positive if it is positive and
self-adjoint with trivial kernel. The condition W∗(Q ⊗ Q)W = Q ⊗ Q means that
the unitary W commutes with the unbounded operator Q ⊗ Q.

Theorem 2.2 ([14, 16]). Let H be a separable Hilbert space and W ∈ U(H ⊗ H) a

manageable multiplicative unitary. Let

A := {(ω ⊗ idH)W : ω ∈ B(H)∗}CLS,(2.3)

Â := {(idH ⊗ ω)W : ω ∈ B(H)∗}CLS.(2.4)

(1) A and Â are separable, nondegenerate C∗-subalgebras of B(H).

(2) W ∈ U(Â ⊗ A) ⊆ U(H ⊗ H). We write WA for W viewed as a unitary

multiplier of Â ⊗ A and call it reduced bicharacter.
(3) The map ∆A(a) := W(a ⊗ 1H)W∗ defines a unique morphism A → A ⊗ A

satisfying

(2.5) (idÂ ⊗ ∆A)WA = WA
12WA

13 in U(Â ⊗ A ⊗ A).

Moreover, ∆A is coassociative:

(2.6) (∆A ⊗ idA)∆A = (idA ⊗ ∆A)∆A,

and satisfies the cancellation conditions:

(2.7) ∆A(A)(1A ⊗ A) = A ⊗ A = (A ⊗ 1A)∆A(A).

(4) There is a unique ultraweakly continuous, linear anti-automorphism RA

of A with

∆ARA = σ(RA ⊗ RA)∆A,(2.8)

where σ(x ⊗ y) = y ⊗ x. It satisfies R2
A = idA.

A C∗-quantum group G is a pair (C, ∆C) consisting of a C∗-algebra C and an
element ∆C ∈ Mor(C, C ⊗ C) constructed from a modular or managebale multi-
plicative unitary W. Then we say G = (C, ∆C) is generated by W. We do not need
Haar weights.
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The dual multiplicative unitary is Ŵ := ΣW∗Σ ∈ U(H ⊗ H), where Σ(x ⊗ y) =

y ⊗ x. It is modular or manageable if W is. The C∗-quantum group Ĝ = (Â, ∆̂A)

generated by Ŵ is the dual of G. Its comultiplication is characterised by

(2.9) (∆̂A ⊗ idA)WA = WA
23WA

13 in U(Â ⊗ Â ⊗ A).

2.2. Heisenberg pairs. Let G = (A, ∆A) be a C∗-quantum group. Let Ĝ =

(Â, ∆̂A) be its dual, and WA ∈ U(Â ⊗ A) be the reduced bicharacter.

A pair of representations (π, π̂) of A and Â on a Hilbert space H is a G-Heisenberg

pair if and only if

(2.10) WA
π̂3WA

1π = WA
1πWA

13WA
π̂3 in U(Â ⊗ K(H) ⊗ A).

Here WA
1π := ((idÂ ⊗ π)WA)12 and WA

π̂3 := ((π̂ ⊗ idA)WA)23. Theorem 2.2 ensures
the existance of a faithful G-Heisenberg pairs and [12, Proposition 3.2] shows that
any G-Heisenberg pair is faithful.

Similarly, a pair of representations (ρ, ρ̂) of A and Â on H is a G-anti-Heisenberg

pair on H if and only if

(2.11) WA
1ρWA

ρ̂3 = WA
ρ̂3WA

13WA
1ρ in U(Â ⊗ K(H) ⊗ A).

Let H be the conjugate Hilbert space to the Hilbert space H. The transpose of
an operator x ∈ B(H) is the operator xT ∈ B(H) defined by xT(ξ) := x∗ξ for all
ξ ∈ H. The transposition is a linear, involutive anti-automorphism B(H) → B(H).

Let RA and R̂A be the unitary antipodes of G and Ĝ, respectively. A pair of
representations (π, π̂) of A and Â on H is a G-Heisenberg pair if and only if the the

pair of representations (ρ, ρ̂) of A and Â on H, defined by

(2.12) ρ(a) := (RA(a))T, ρ̂(â) := (R̂A(â))T,

is a G-anti-Heisenberg pair on H (see [6, Lemma 3.4]). This shows that the set of
G-Heisenberg pairs and G-anti-Heisenberg pairs are in bijective correspondance.

2.3. Corepresentations.

Definition 2.13. A (right) corepresentation of G on a Hilbert space L is a unitary
U ∈ U(K(L) ⊗ A) with

(2.14) (idK(L) ⊗ ∆A)U = U12U13 in U(K(L) ⊗ A ⊗ A).

Let U1 ∈ U(K(L1) ⊗ A) and U2 ∈ U(K(L2) ⊗ A) be corepresentations of G. An
element t ∈ B(L1, L2) is called an intertwiner if (t ⊗ 1A)U1 = U2(t ⊗ 1A). The
set of all intertwiners between U1 and U2 is denoted Hom(U1, U2). This gives
corepresentations a structure of W∗-category (see [14, Sections 3.1–2]).

The tensor product of two corepresentations UL1 and UL2 is defined by

(2.15) U1 U2 := U1
13U2

23 in U(K(L1 ⊗ L2) ⊗ A).

Routine computations show the following: U1 U2 is a corepresentation; is
associative; and the trivial 1-dimensional representation is a tensor unit. Thus
corepresentations form a monoidal W∗-category, which we denote by Corep(G); see
[14, Section 3.3] for more details.

2.4. Coactions.

Definition 2.16. A continuous (right) coaction of G on a C∗-algebra C is a mor-
phism γ : C → C ⊗ A with the following properties:

(1) γ is injective;
(2) γ is a comodule structure, that is,

(2.17) (idC ⊗ ∆A)γ = (γ ⊗ idA)γ;
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(3) γ satisfies the Podleś condition:

(2.18) γ(C)(1C ⊗ A) = C ⊗ A.

We call (C, γ) a G-C∗-algebra. We often drop γ from our notation.

Similarly, a left coaction of G on C is an injective morphism γ : C → A ⊗ C

satisfying a variant of (2.17) and the Podleś condition (2.18).
In this article the we reserve the word “coaction" for right coaction.
A morphism f : C → D between two G-C∗-algebras (C, γ) and (D, δ) is G-equi-

variant if δ ◦ f = (f ⊗ idA) ◦ γ. Let MorG(C, D) be the set of G-equivariant
morphisms from C to D. Let C∗alg(G) be the category with G-C∗-algebras as
objects and G-equivariant morphisms as arrows.

Definition 2.19. A covariant representation of (C, γ, A) on a Hilbert space H is a
pair (U, ϕ) consisting of a corepresentation U ∈ U(K(H) ⊗ A) and a representation
ϕ : C → B(H) that satisfy the covariance condition

(2.20) (ϕ ⊗ idA) ◦ γ(c) = U(ϕ(c) ⊗ 1A)U∗ in U(K(H) ⊗ A)

for all c ∈ C. A covariant representation is called faithful if ϕ is faithful.

Faithful covariant representations always exist by [6, Example 4.5].

2.5. Regularity for quantum groups and corepresentations. Let G = (A, ∆A)
be the C∗-quantum group generated by a manageable multiplictive unitary W. Let

Ĝ = (Â, ∆̂A) be its dual, and let WA ∈ U(Â ⊗ A) be the reduced bicharacter.
Define

C := {(idH ⊗ ω)(ΣW) | ω ∈ B(H)∗}CLS.

The multiplicative unitary W ∈ U(H ⊗ H) is regular if C = K(H), see [1, Definition
3.3]. By virtue of [1, Proposition 3.2 (b) & Proposition 3.6], this is equivalent to

(2.21) (Â ⊗ 1A)WA(1Â ⊗ A) = Â ⊗ A.

Now WA does not depend on the multiplicative unitary generating G, see [14,
Theorem 5(3)]. Therefore, regularity is a property of the the quantum group G and
not of a particular multiplicative unitary W used to construct it.

Moreover, [1, Proposition A.3] shows that the regularity property of G passes
to its corepresentations. More precisely, if G is regular then every corepresentation
U ∈ U(K(L) ⊗ A) of G is also regular in the following sense:

(2.22) (K(L) ⊗ idA)U(1K(L) ⊗ A) = K(L) ⊗ A.

We claim that Equation (2.22) is equivalent to

(2.23) (1K(L) ⊗ A)U(K(L) ⊗ idA) = K(L) ⊗ A.

The contragradient of a corepresentation U ∈ U(K(L) ⊗ A) is defined by Uc :=

UT⊗RA ∈ U(K(L)⊗A), see [14, Proposition 10]. Here aRA denotes RA(a) for a ∈ A.
Regularity of G implies

(K(L) ⊗ idA)Uc(1
K(L)

⊗ A) = K(L) ⊗ A.

Since, T ⊗ RA : K(L) ⊗ A → K(L) ⊗ A is an anti-multiplicative involution, it maps
the last Equation to (2.23).

A similar argument replacing the transpose by the unitary antipode R̂A and
using (R̂A ⊗ RA)WA = WA (see [14, Lemma 40]), shows that Equation (2.21) is
equivalent to

(2.24) (1Â ⊗ A)WA(Â ⊗ 1A) = Â ⊗ A.
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The dual of a regular quantum group is again regular. Therefore, (2.24) is also
equivalent to

(2.25) (1A ⊗ Â)Ŵ
A

(A ⊗ 1Â) = A ⊗ Â.

2.6. Twisted tensor products of Yetter-Drinfeld C*-algebras.

Definition 2.26 ([9, Definition 3.1]). A G-Yetter-Drinfeld C∗-algebra is a triple
(C, γ, γ̂) consisting of a C∗-algebra C along with coactions γ : C → C ⊗ A and

γ̂ : C → C ⊗ Â of G and Ĝ that satisfy the Yetter-Drinfeld compatibility condition

(2.27) (γ̂ ⊗ idA)γ(c) = (WA
23)σ23

(
(γ ⊗ idÂ)γ̂(c)

)
(WA

23)∗ for all c ∈ C.

Example 2.28. Let G = (A, ∆A) be a regular C∗-quantum group. Then θ : A →

A ⊗ Â define by θ(a) := σ(W∗(1Â ⊗ a)W) for a ∈ A is a coaction of Ĝ on A, and
(A, ∆A, θ) is a G-Yetter-Drinfeld C∗-algebra (see [9, Section 3]).

Let YDC∗alg(G) be the category with G-Yetter-Drinfeld C∗-algebras as objects

and G- and Ĝ-equivariant morphisms as arrows.
Next we briefly recall the monodial structure on YDC∗alg(G).

Let U1 ∈ U(K(L1)⊗A) and V2 ∈ U(K(L2)⊗ Â) be corepresentations of G and Ĝ

on L1 and L2, respectively. The proof of [6, Theorem 4.1] shows that there exists
a unique Z ∈ U(L1 ⊗ L2) such that

(2.29) U1
1πV2

2π̂Z12 = V2
2π̂U1

1π in U(L1 ⊗ L2 ⊗ H)

for any G-Heisenberg pair (π, π̂) on H. Define L1L2 : L2 ⊗ L1 → L1 ⊗ L2 by
L1L2 := Z ◦ Σ, and L1 L2 : L1 ⊗ L2 → L2 ⊗ L1 by L1 L2 := Σ ◦ Z∗.

Let (C1, γ1, γ̂1) and (C2, γ2, γ̂2) be G-Yetter-Drinfeld C∗-algebras. Without loss

of generality, assume that (Ui, ϕi) be a faithful covariant representation of (Ci, γi)

on Li and (Vi, ϕ̂i) be a faithful covariant representation of (Ci, γ̂i) for i = 1, 2,
respectively.

Define faithful representations of j1 and j2 of C1 and C2 on L1 ⊗ L2 by

(2.30) j1(c1) := ϕ1(c1) ⊗ 1L2
, j2(c2) := L1L2 (ϕ2(c2) ⊗ 1L1

)L1 L2

Theorem 2.31 ([6, Lemma 3.20, Theorem 4.3, Theorem 4.9]). The subspace

C1 ⊠ C2 := j1(C1)j2(C2) ⊂ B(L1 ⊗ L2)

is a nondegenerate C∗-subalgebra. The crossed product (C1⊠C2, j1, j2), up to equiva-

lence, does not depend on the faithful covariant representations (Ui, ϕi) and (Vi, ϕi)
for i = 1, 2.

We call C1 ⊠ C2 the twisted tensor product of C1 and C2.

The twisted tensor product C1⊠C2 carries diagonal coactions of G and Ĝ defined
by

γ1 ⊲⊳ γ2 : C1 ⊠ C2 → C1 ⊠ C2 ⊗ A, x 7→ (U1 U2)(x ⊗ 1A)(U1 U2)∗,(2.32)

γ̂1 ⊲⊳ γ̂2 : C1 ⊠ C2 → C1 ⊠ C2 ⊗ Â, x 7→ (V1 V2)(x ⊗ 1Â)(V1 V2)∗.(2.33)

Then (C1 ⊠ C2, γ1 ⊲⊳ γ2, γ̂1 ⊲⊳ γ̂2) is again a G-Yetter-Drinfeld C∗-algebra.

Theorem 2.34. (YDC∗alg(G),⊠) is a monoidal category.

This theorem has been proved in [9, Section 3] in the presence of Haar weights
on G and in [7, Section 5] in the general framework of modular multiplicative
unitaries.
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3. Manageable braided multiplicative unitaries

Let G = (A, ∆A) be a C∗-quantum group. Let Ĝ = (Â, ∆̂A) be its dual and W ∈

U(Â ⊗ A) be the reduced bicharacter.

The quantum codouble D(G)̂ = (D̂, ∆D̂) of G is defined by D̂ := A ⊗ Â and

σW : A ⊗ Â → Â ⊗ A, a ⊗ â 7→ W(â ⊗ a)W∗,

∆D̂ : D̂ → D̂ ⊗ D̂, a ⊗ â 7→ σW
23 (∆A(a) ⊗ ∆̂A(â)),

for a ∈ A, â ∈ Â. We may generate D(G)̂ by a manageable multiplicative unitary
by [12, Theorem 4.1]. So it is a C∗-quantum group.

Let L be a Hilbert space. A pair of corepresentations (U, V) of G and Ĝ on L is
corepresentations is called D(G)̂ -compatible if they satisfy the following Drinfeld

compatibility condition:

(3.1) V12U13W23 = W23U13V12 in U(K(L) ⊗ Â ⊗ A),

Let (π, π̂) be the G-Heisenberg pair on H associated to the manageable multiplica-

tive unitary W ∈ U(H ⊗ H), that is, (π̂ ⊗ π)WA = W. Define V̂ ∈ U(Â ⊗ K(L)),

U,V ∈ U(L ⊗ H) and V̂ ∈ U(H ⊗ L) by

V̂ := σ(V∗), U := (idL ⊗ π)U, V := (idL ⊗ π̂)V, V̂ := ΣV
∗Σ = (π̂ ⊗ idL)V̂.

Then the Equations (2.29) and (3.1) for U and V are equivalent to

Z13 = V̂23U
∗
12V̂

∗
23U12 in U(L ⊗ H ⊗ L);(3.2)

U23W13V̂12 = V̂12W13U23 in U(H ⊗ L ⊗ H).(3.3)

As proved in [7, Theorem 5.4], for any D(G)̂ -pair (U, V) on L the unitary LL :=
Z ◦ Σ is a braiding.

Definition 3.4. Let (U, V) be a D(G)̂ -compatible corepresentation on a Hilbert
space L. A braided multiplicative unitary on L over G relative to (U, V) is a unitary
F ∈ U(L ⊗ L) with the following properties:

(1) F is invariant with respect to the right corepresentation U U := U13U23

of G on L ⊗ L:

(3.5) U13U23F12 = F12U13U23 in U(K(L ⊗ L) ⊗ A);

(2) F is invariant with respect to the corepresentation V V := V13V23 of Ĝ
on L ⊗ L:

(3.6) V13V23F12 = F12V13V23 in U(K(L ⊗ L) ⊗ Â);

(3) F satisfies the braided pentagon equation

(3.7) F23F12 = F12( LL )23F12(L L)23F23 in U(L ⊗ L ⊗ L);

here the braiding LL ∈ U(L ⊗ L) and L L = ( LL )∗ are defined as LL =
ZΣ for the flip Σ, x ⊗ y 7→ y ⊗ x, and the unique unitary Z ∈ U(L ⊗ L)
that satisfies (3.2).

From now onwards we fix the D(G)̂-pair (U, V) on L and say that F is a braided

multiplicative unitary over G.
The contragradient of U ∈ U(K(L) ⊗ A) is defined by Uc := (T ⊗ RA)U ∈

U(K(L) ⊗ A), see [14, Proposition 10]. There is a unique unitary Z̃ ∈ U(L ⊗ L)
satisfying

Uc
1πV2π̂Z̃12 = V2π̂Uc

1π in U(L ⊗ L ⊗ H).
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Definition 3.8. Let W ∈ U(H ⊗ H) be a manageable multiplicative unitary gener-
ating G = (A, ∆A), let Q is strictly positive operator in the definition of the manage-

ability of W, and let Z, Z̃ be as above. A braided multiplicative unitary F ∈ U(L⊗L)
over G is manageable if there are a strictly positive operator Q′ on L and a unitary

F̃ ∈ U(L ⊗ L) such that

U(Q′ ⊗ Q)U∗ = Q′ ⊗ Q, V(Q′ ⊗ Q)V∗ = Q′ ⊗ Q, F(Q′ ⊗ Q′)F∗ = Q′ ⊗ Q′,

and

(x ⊗ u | Z∗
F | y ⊗ v) = (y ⊗ Q′(u) | F̃Z̃∗ | x ⊗ (Q′)−1(v))

for all x, y ∈ L, u ∈ D(Q′) and v ∈ D((Q′)−1).

Now we state the main result of this article.

Theorem 3.9. Let F ∈ U(L ⊗ L) be a manageable braided multiplicative unitary

over a regular C∗-quantum group G = (A, ∆A). Let

(3.10) B := {(ω ⊗ idL)F | ω ∈ B(L)∗}CLS

(1) B is a nondegenerate C∗-subalgebra of B(L);

(2) The morphisms β ∈ Mor(B, B ⊗ A) and β̂ ∈ Mor(B, B ⊗ Â) defined by

(3.11) β(b) := U(b ⊗ 1)U∗, β̂(b) := V(b ⊗ 1)V∗

are coactions of G and Ĝ on B and (B, β, β̂) is a G-Yetter-Drinfeld C∗-algebra;

(3) F ∈ U(K(L) ⊗ B);

Let j1, j2 ∈ Mor(B, B ⊠ B) are the canonical morphisms described by (2.30).

(4) The map ∆B(b) := F(b ⊗ 1H)F∗ defines a unique morphism B → B ⊠ B

that is G- and Ĝ-equivariant and satisfies

(3.12) (id ⊗ ∆B)F = (idL ⊗ j1)F(idL ⊗ j2)F in U(K(L) ⊗ B ⊠ B).

Moreover, ∆B is coassociative,

(3.13) (idB ⊠ ∆B)∆B = (∆B ⊠ idB)∆B,

and satisfies

(3.14) j1(B)∆B(B) = B ⊠ B = ∆B(B)j2(B).

We resume the proof of Theorem 3.9 in the next section.

Definition 3.15. The pair (B, ∆B) in Theorem 3.9 is called a braided C∗-quantum

group over G. We say (B, ∆B) is generated by F.

Let H = (C, ∆C) be a C∗quantum group and let (η, η̂) be a H-Heisenberg pair

on a Hilbert space Hη. An element P ∈ U(Ĉ ⊗ C) is called a projection on H if it
satisfies the following conditions:

(1) P is a bicharacter:

(3.16) (∆̂C ⊗ idC)P = P23P13 (idĈ ⊗ ∆C)P = P12P13,

(2) P is an idempotent endomorphism of H:

(3.17) Pη̂3P1η = P1ηP13Pη̂3 in U(Ĉ ⊗ K(Hη) ⊗ C).

Clearly, (η̂ ⊗ η)P ∈ U(Hη ⊗ Hη) is a mutliplicative unitary and it is manageable,
see [11, Proposition 3.36].

By virtue of [11, Theorem 6.15 & 6.16], a manageable braided multiplicative
unitary F ∈ U(L ⊗ L) over G gives rise to a C∗-quantum group H = (C, ∆C)
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generated by a manageable multiplicaitive unitary WC ∈ U(H⊗L⊗H⊗L) defined
by

W
C := W13U23V̂

∗
34F24V̂34 in U(H ⊗ L ⊗ H ⊗ L).(3.18)

Furthermore, the unitary P ∈ U(H ⊗ L ⊗ H ⊗ L) defined by

P := W13U23 in U(H ⊗ L ⊗ H ⊗ L).(3.19)

is a projection on H with the image G = (A, ∆A) see [11, Propositon 2.36 &
Theorem 6.17].

Thus, a braided C∗-quantum group (B, ∆B) over a regular C∗-quantum group
G gives rise to a C∗-quantum group H = (C, ∆C) with projection. Therefore, it
is important to encode (C, ∆C) in terms of (A, ∆A) and (B, ∆B) to construct new
examples of C∗-quantum groups. In the compact case, that is when A and B are
unital, this has been already done in [7, Theorem 6.7]. We shall extend this result
for locally compact case.

Regularity of G gives A ∈ YDC∗alg(G) and by Theorem 3.9(2) B ∈ YDC∗alg(G).

Therefore, A⊠B := (A ⊗ 1L)V̂∗(1H ⊗ B)V̂ as shown in [7, Page 19]. Here we have
supressed the faithful representations of A and B on H and L, respectively.

For any x ∈ A ⊠ B ⊠ B the map

(3.20) x → W12U23V̂
∗
34x124V̂34U

∗
23W

∗
12

defines an injective morphism Ψ: A⊠B ⊠B → A⊠B ⊗ A⊠B (see [7, Proposition
6.5]).

Theorem 3.21. Let C = A ⊠ B and define ∆C ∈ Mor(C, C ⊗ C) by ∆C :=
Ψ◦ (idB ⊠∆B). Then (C, ∆C) is the C∗-quantum group generated by WC in (3.18).

Proof. For any c ∈ A ⊠ B ⊂ B(H ⊗ L)

∆C(c) = Ψ ◦ (idB ⊠ ∆B)(c) = Ψ(F23(c ⊗ 1L)F∗
23)

= W12U23V̂
∗
34F24(c ⊗ 1H⊗L)F∗

24V̂34U
∗
23W

∗
12 = (WC)(c ⊗ 1)(WC)∗

Therefore, we only need to show

A ⊠ B = {(ω ⊗ ω′ ⊗ idH⊗L)WC | ω ∈ B(H)∗, ω′ ∈ B(L)∗}CLS.

Let L = {(ω ⊗ ω′ ⊗ idH⊗L)WC | ω ∈ B(H)∗, ω′ ∈ B(L)∗}CLS.
Using (2.3) we get

L = {(ω ⊗ ω′ ⊗ idH⊗L)W13U23V̂
∗
34F24V̂34 | ω ∈ B(H)∗, ω′ ∈ B(L)∗}CLS

= {(ω′ ⊗ idH⊗L)(1 ⊗ a ⊗ 1)U12V̂
∗
23F13V̂23 | ω′ ∈ B(L)∗, a ∈ A}CLS

For ω′ ∈ B(L)∗ and ξ ∈ K(L) define ω′ · ξ ∈ B(L)∗ by ω′ · ξ(y) := ω′(ξy).
Replacing ω′ by ω′ · ξ in the last expression gives

L = {(ω′ ⊗ idH⊗L)((ξ ⊗ a)U) ⊗ 1LV̂
∗
23F13V̂23 | ω′ ∈ B(L)∗, ξ ∈ K(L), a ∈ A}CLS

We may replace (ξ ⊗ a)U by ξ ⊗ a for ξ ∈ K(L), a ∈ A, because U ∈ U(L ⊗ A) and
U = (idL ⊗ π)U. We have

L = {(ω′ ⊗ idH⊗L)(ξ ⊗ a ⊗ 1L)V̂∗
23F13V̂23 | ω′ ∈ B(L)∗, ξ ∈ K(L), a ∈ A}CLS

= {(ω′ ⊗ idH⊗L)(1L ⊗ a ⊗ 1L)V̂∗
23F13V̂23 | ω′ ∈ B(L)∗, a ∈ A}CLS

Finally using (3.10) we obtain

L = {(ω′ ⊗ idH⊗L)(1 ⊗ a ⊗ 1)V̂∗
23F13V̂23 | ξ ∈ K(L), a ∈ A, ω′ ∈ B(L)∗}CLS

= (A ⊗ 1L)V̂∗(1H ⊗ B)V̂. �
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4. Slices of braided multiplicative unitaries

Let H = (C, ∆C) be a C∗-quantum group and P ∈ U(Ĉ ⊗C) be a projection on H

with image G = (A, ∆A). Let Ĥ = (Ĉ, ∆̂C) be the dual of H and WC ∈ U(Ĉ ⊗ C)
be the reduced bicharacter.

Theorem 4.1. Assume G is a regular C∗-quantum group. Let F := P∗WC ∈
U(Ĉ ⊗ C). Then

D := {(ω ⊗ idC)F | ω ∈ Ĉ′}CLS ⊆ M(C).

is a C∗-algebra.

Remark 4.2. The C∗-algebra D in Theorem 4.1 is independent of the multiplicative
unitary generating H. In other words, D depends only on (C, ∆C), (A, ∆A) and

P ∈ U(Ĉ ⊗ C).

The main tool we use to prove Theorem 4.1 is the Landstad-Vaes theorem for
quantum groups.

Let γ : C → A ⊗ C be a left coaction of G on a C∗-algebra C and let i : A → C

be a morphism. The triple (C, γ, i) is a G-product if i is a G-equivariant:

(4.3) γ ◦ i = (idA ⊗ i) ◦ ∆A.

Let Ĝ = (Â, ∆̂A) be the dual of G and WA ∈ U(Â⊗A) be the reduced bicharacter.
Let (π, π̂) be a G-Heisenberg pair on a Hilbert space H.

Let X := (idÂ ⊗ i)WA ∈ U(Â ⊗ C). Define ϕ : C → K(H) ⊗ C by ϕ(c) :=
X∗

π̂2γ(c)π2Xπ̂2 for c ∈ C.

Theorem 4.4 (Landstad–Vaes). Assume that G = (A, ∆A) is a regular quan-

tum group. Let (C, γ, i) be a G-product. Then there is a unique C∗-subalgebra D

of M(C) with the following properties:

(1) D ⊆ {c ∈ M(C) | γ(c) = 1A ⊗ c};

(2) C = i(A)D;

(3) Â ⊗ D = (Â ⊗ 1)ϕ(D) = (Â ⊗ 1)X∗(1 ⊗ D)X.

The map β̂ : D → M(D ⊗ Z) defined by β̂(d) := σ(ϕ(d)) takes values in M(B ⊗ Â)

and is a (right) coaction of Ĝ on B, and σϕ defines a G-equivariant isomorphism

between C and B ⋊ A.

The C∗-algebra D is called the Landstad-Vaes algebra for the G-product (C, γ, i).

This theorem is proved in [15, Theorem 6.7] if G is a regular locally compact
quantum group (see [4]) with Haar weights (the conventions in [15] are, however,
slightly different), and in [13] in the above generality, assuming only that G is a
regular C∗-quantum group generated by a manageable multiplicative unitary.

By [8, Proposition 2.8] H = (C, ∆C) with projection P ∈ U(Ĉ ⊗ C) with im-
age G = (A, ∆A) is equivalent to a pair (i, ∆L) consisting of morphisms i : A → C

and ∆L : C → A ⊗ C such that

(1) i is a Hopf ∗-homomorphism: ∆C ◦ i = (i ⊗ i)∆A,
(2) ∆L is a left quantum group homomorphism:

(idA ⊗ ∆C) ◦ ∆L = (∆L ⊗ idC)∆C (∆A ⊗ idC)∆L = (idA ⊗ ∆L)∆L,

(3) i satisfies the following condition:

(4.5) (idA ⊗ i) ◦ ∆A = ∆L ◦ i.

In particular, ∆L is a left coaction of G on C by [5, Lemma 5.8]. Thus (C, ∆L, i) is
a G-product. We shall show that D in Theorem 4.1 is the Landstad-Vaes algebra
for the G-product (C, ∆L, i).

Before that we prove a technical lemma:
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Lemma 4.6. Let (ρ, ρ̂) be an H-anti-Heisenberg pair on a Hilbert space Hρ. Define

X ∈ U(Â ⊗ C) by X := (idÂ ⊗ i)WA. Then

Fρ̂3X13X1ρ = X13X1ρFρ̂3 in U(Â ⊗ K(Hρ) ⊗ C).(4.7)

Proof. Since (ρ, ρ̂) is an H-anti-Heisenberg pair,

WC
1ρ̂WC

ρ3 = WC
ρ3WC

13WC
1ρ̂ in U(Ĉ ⊗ K(Hρ) ⊗ C).(4.8)

Combining (2.5) and (4.8) we can show that

(idC ⊗ ρ)∆C(c) = σ(WC
ρ̂2

∗(ρ(c) ⊗ 1C)WC
ρ2) for c ∈ C.(4.9)

The unitary X := (idÂ ⊗ i)WA ∈ U(Â ⊗ C) is a bicharacter because i is a Hopf
∗-homomorphism. Hence (idÂ ⊗ ∆C)X = X12X13 which is equivalent to

X1ρWC
ρ̂3 = WC

ρ̂3X13X1ρ in U(Â ⊗ K(Hρ) ⊗ C)(4.10)

by (4.9). Similarly, replacing Hesienberg pairs by anti-Heisenberg pairs in (3.17)
gives

P1ρPρ̂3 = Pρ̂3P13P1ρ in U(Ĉ ⊗ K(Hρ) ⊗ C).

Notice that P = (j ⊗ i)WA. Since i and j are injective, we apply j−1 ⊗ idHρ
⊗ i−1

on the both sides and obtain

X1ρPρ̂3 = Pρ̂3X13X1ρ in U(Â ⊗ K(Hρ) ⊗ C).(4.11)

The following computation finishes the proof:

Fρ̂3X13X1ρ = P∗
ρ̂3WC

ρ̂3X13X1ρ = P∗
ρ̂3X1ρWC

ρ̂3 = X13X1ρP∗
ρ̂3WC

ρ̂3

= X13X1ρFρ̂3. �

Proof of Theorem 4.1. By [5, Theorem 5.5], there is a bicharacter χ ∈ U(Ĉ ⊗ A)
such that

(idĈ ⊗ ∆L)WC = χ12WC
13 in U(Ĉ ⊗ A ⊗ C).(4.12)

The unitary P̂ := σ(P∗) ∈ U(C ⊗ Ĉ) is a projection on Ĥ. This defines an

injective Hopf ∗-homomorphism j : Â → Ĉ such that P = (j⊗i)WA. As proved in [8,

Proposition 2.8], χ := (j ⊗ idA)WA ∈ U(Ĉ ⊗ A) is the bicharacter satisfying (4.12).
Equation (4.5) gives

(idĈ ⊗ ∆L)P = (j ⊗ ∆L ◦ i)WA = (j ⊗ idA ⊗ i)
(
(idÂ ⊗ ∆A)WA

)
(4.13)

= (j ⊗ idA ⊗ i)
(
WA

12WA
13

)
= χ12P13.

Equation (4.12) and the previous computation give

(idĈ ⊗ ∆L)F = (idĈ ⊗ ∆L)(P∗WC) = P∗
13χ∗

12χ12WC
13 = F13.

Taking slices on the first leg gives D ⊆ {c ∈ M(C) | ∆L(c) = 1A ⊗ c)}, the first
condition in Theorem 4.4.

Now χ = (j ⊗ idA)WA ∈ U(Ĉ ⊗ A) and P = (idĈ ⊗ i)χ ∈ U(Ĉ ⊗ C). Therefore,

(Ĉ ⊗ i(A))P = (idĈ ⊗ i)
(
(Ĉ ⊗ A)χ

)
= Ĉ ⊗ i(A).
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The following computation gives the second condition in Theorem 4.4:

i(A)D = i(A){(ω ⊗ idC)F | ω ∈ Ĉ′}CLS

= {(ω ⊗ idC)
(
(Ĉ ⊗ i(A))F

)
| ω ∈ Ĉ′}CLS

= {(ω ⊗ idC)
(
(Ĉ ⊗ i(A))PF

)
| ω ∈ Ĉ′}CLS

= {(ω ⊗ idC)
(
(Ĉ ⊗ i(A))WC

)
| ω ∈ Ĉ′}CLS

= {(ω ⊗ i(A))WC) | ω ∈ Ĉ′}CLS

= i(A)C = C.

Let (ρ, ρ̂) be an H-anti-Heisenberg pair on a Hilbert space Hρ. Since ρ is faithful,

(4.14) D = {(ω ⊗ idC)Fρ̂2 | ω ∈ B(Hρ)∗}CLS.

Recall X ∈ U(Â ⊗ C) from Lemma 4.6. Equation (4.14) gives

(Â ⊗ 1C)X∗
12(1Â ⊗ D)X12 = {(Â ⊗ ω ⊗ idC)(X∗

13Fρ̂3X13) | ω ∈ B(Hρ)∗}CLS.

Now Lemma 4.6 gives

(Â ⊗ 1C)X∗
12(1Â ⊗ D)X12 = {(Â ⊗ ω ⊗ idC)(X1ρFρ̂3X∗

1ρ) | ω ∈ B(Hρ)∗}CLS.

Now (Â ⊗ K(Hρ))X1ρ = (Â ⊗ K(Hρ)ρ(A))X1ρ = Â ⊗ K(Hρ)ρ(A) = Â ⊗ K(Hρ).
This implies

(Â ⊗ 1C)X∗
12(1Â ⊗ D)X12

= {(Â ⊗ ω ⊗ idC)(X1ρFρ̂3X∗
1ρ) | ω ∈ B(Hρ)∗}CLS

=
{

(idÂ ⊗ ω ⊗ idC)
(
((Â ⊗ K(Hρ)X1ρ) ⊗ idC)Fρ̂3X∗

1ρ

)
| ω ∈ B(Hρ)∗

}CLS

= {(Â ⊗ ω ⊗ idC)(Fρ̂3X∗
1ρ) | ω ∈ B(Hρ)∗}CLS

= {(idÂ ⊗ ω ⊗ idC)
(
Fρ̂3((Â ⊗ idHρ

)X∗
1ρ(1Â ⊗ K(Hρ)) ⊗ 1C)

)
| ω ∈ B(Hρ)∗}CLS.

The regularity condition (2.24) implies

(Â ⊗ idHρ
)X∗

1ρ(1Â ⊗ K(Hρ)) = (Â ⊗ idHρ
)X∗

1ρ(1Â ⊗ ρ(A)K(Hρ)) = Â ⊗ K(Hρ).

This completes the proof

(Â ⊗ 1C)X∗
12(1Â ⊗ D)X12 = {(Â ⊗ ω ⊗ idC)Fρ̂3 | ω ∈ B(Hρ)∗}CLS = Â ⊗ D. �

5. Construction of braided C*-quantum groups

Throughut this section we follow the same notations, assumptions and definitions
that we introduced and used in Section 3.

In this section we shall prove Theorem 3.9. We shall eventually use Theorem 4.1
for the the C∗-quantum group H = (C, ∆C) generated by WC defined in (3.18)
with projection P defined by (3.19) with the image G = (A, ∆A), which is a regular
C∗-quantum group. Therefore we must indentify i and ∆L in order to view C as a
G-product.

Lemma 5.1. Let (π, π̂) be a G-Heisenberg pair on H. There is a faithful represen-

tation ρ̂ : Â → B(H ⊗ L) such that (ρ̂ ⊗ π)WA = W12U13 ∈ U(K(H ⊗ L ⊗ H).

Proof. Let (η, η̂) be a G-anti-Heisenberg pair on a Hilbert space Hη. Hence the
corepresentation condition (2.14) for U is equivalent to

U1ηWA
η̂3 = WA

η̂3U13U1η in U(K(L ⊗ Hη) ⊗ A),

by (4.10). Applying σ12 on both sides and rearranging gives

(5.2) Û
∗

η2WA
η̂3Ûη2 = WA

η̂3U23 in U(K(Hη ⊗ L) ⊗ A).
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Here Û := σ(U∗) ∈ U(A ⊗ K(L)). This yields a representation ρ̂′ defined by

ρ̂′(â) := Û
∗

η2(η̂(â) ⊗ 1)Ûη2. Since η̂, π̂ are faithful by [12, Proposition 3.2], we

may define ρ̂(â) := (π̂ ◦ η̂−1 ⊗ idL) ◦ ρ̂′(â). This faithful representation satisfies

(ρ̂ ⊗ π)WA = W12U13 by (5.2). �

Let us identify C, Ĉ with their images inside B(H ⊗ L ⊗ H ⊗ L) under the rep-
resentations obtained from the H-Heisenberg pair that arises from the manageable
multiplicative unitary WC in (3.18).

Define ρ(a) := π(a)⊗1L. Then (ρ̂⊗ρ)WA is the projection P in (3.19). Therefore

the image of ρ and ρ̂ are contained inside the image of C and Ĉ, respectively. The
first condition in (3.16) and (2.9) together shows that gives

(∆̂C ◦ ρ̂⊗ρ−1ρ)WA = (∆̂C ⊗ρ−1)P = (id⊗ρ−1)
(
P23P13

)
= ((ρ̂⊗ ρ̂)∆̂A ⊗ρ−1ρ)WA.

Taking slices on the second legs of the bothsides of the last expression shows that
ρ̂ is a Hopf ∗-homomorphism from Â to Ĉ. Similarly, we can show that ρ is a
Hopf ∗-homomorphism from A to C.

Therefore χ := (ρ̂ ⊗ idA)WA ∈ U(K(H ⊗ L) ⊗ A) is a bicharacter from H to G

and let ∆L : C → A ⊗ C be the left quanum groups morphism associated to it.
We want to show that the pair (ρ, ∆L) is the equivalent to the projection P on H.
Hence, we only need to verify (4.5) for this pair. Equation (4.13) and (2.5) gives

(ρ̂ ⊗ ∆L ◦ ρ)WA = (id ⊗ ∆L)P = χ12P13 =
(
ρ̂ ⊗ (id ⊗ ρ)∆A)WA

)

Injectivity of ρ̂ gives (4.5) for (ρ, ∆L); hence (C, ∆L, ρ) is a G-product.

Proof of Theorem 3.9. Ad 1. The image of P is G = (A, ∆A), which is regular by
assumption (see Section 2.5). Theorem 4.1 shows that

D = {(ω ⊗ ω′ ⊗ idK)P∗
W

C | ω ∈ B(H)∗, ω′ ∈ B(L)∗}CLS

= {(ω′ ⊗ idH⊗L)V̂∗
23F13V̂23 | ω ∈ B(L)∗}CLS.

is a C∗-algebra. Hence so is

B := {(ω′ ⊗ idL)F | ω ∈ B(L)∗}CLS ⊆ B(L)

because V̂DV̂∗ = 1H ⊗ B ⊆ B(H ⊗ L).
The second condition in Theorem 4.4 gives DC = C. Also CK(H⊗L) = K(H⊗L)

because C is constructed from the manageable multiplicative unitary WC in (3.18),

and V̂ ∈ U(H ⊗ L). Therefore,

V̂
∗DV̂K(H ⊗ L) = V̂

∗DCK(H ⊗ L) = V̂
∗CK(H ⊗ L) = V̂K(H ⊗ L) = K(H ⊗ L).

Thus B acts nondegenerately on L and seperability of B(L)∗ implies B is separable.

Ad 2. Define β̂(b) := V(b ⊗ 1Â)V∗ for b ∈ B. Clearly, β̂ is injective.
We have identified the pair (i, γ) in Theorem 4.4 with (ρ, ∆L). Recall that (π, π̂)

is the G-Heisenberg pair on H. The third condition in Theorem 4.4 gives

π̂ ⊗ D = π̂(Â) ⊗ V̂
∗(1 ⊗ B)V̂ = (π̂(Â) ⊗ 1L⊗L)W∗

12V̂
∗
23(1H ⊗ 1L ⊗ B)V̂23W12.

Now corepresentation condition (2.14) for V is equivalent to

V̂23W12 = W12V̂13V̂23 in U(H ⊗ H ⊗ L).
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This gives

V̂
∗
23

(
π̂(Â) ⊗ 1 ⊗ B

)
V̂23 = π̂(Â) ⊗ V̂

∗(1 ⊗ B)V̂

= (π̂(Â) ⊗ 1L⊗L)V̂∗
23V̂

∗
13W

∗
12(1H ⊗ 1L ⊗ B)W12V̂13V̂23

= (π̂(Â) ⊗ 1L⊗L)V̂∗
23V̂

∗
13(1H ⊗ 1L ⊗ B)V̂13V̂23

= V̂
∗
23

(
π̂(Â) ⊗ 1)V̂∗(1 ⊗ B)V̂

)
13
V̂23.

This is equivalent to

(5.3) Â ⊗ B = (π̂(Â) ⊗ 1L)V̂∗(1H ⊗ B)V̂;

this is the Podleś condition for β̂. Thus β̂ ∈ Mor(B, B⊗A) and the corepresentation

condition (2.14) for V yields (2.17) for β̂

Similarly, β(b) := U(b ⊗ 1A)U∗ is injective, and it is sufficent to establish the

Podleś condition for β. Then (B, β, β̂) is a G-Yetter-Drinfeld C∗-algebra because

(U, V̂) satisfies the Drinfeld compatibility (3.3).

The second condition in Theorem 4.4 gives C = ρ(A)D = (π(A) ⊗ 1L)V̂∗(1H ⊗

B)V̂.
Let ∆R : C → C ⊗ A be the right quantum group homomorphism associated to

the projection P = W13U23. By [5, Lemma 5.8] ∆R(C)(1 ⊗ A) = C ⊗ A. Equa-
tion (33) in [5] implies

(π(A) ⊗ 1L⊗H)V̂∗
12(1H ⊗ B ⊗ 1H)V̂12U

∗
23W

∗
13(1H⊗L ⊗ π(A))

= U
∗
23W

∗
13(π(A) ⊗ 1L⊗H)V̂∗

12(1H ⊗ B ⊗ 1H)V̂12(1H⊗L ⊗ π(A)).

Multiplying by K(H) on the first leg and using π(A)K(H) = K(H) on the left and
right, this gives

(K(H) ⊗ 1L⊗H)V̂∗
12(1H ⊗ B ⊗ 1H)V̂12U

∗
23W

∗
13(K(H) ⊗ 1L ⊗ π(A))

= (K(H)⊗1L⊗H)U∗
23W

∗
13(π(A)⊗1L⊗H)V̂∗

12(1H⊗B⊗1H)V̂12(K(H)⊗1L⊗π(A)).

Equation (5.3) now gives

(K(H) ⊗ B ⊗ 1H)U∗
23W

∗
13(K(H) ⊗ 1L ⊗ π(A))

= (K(H) ⊗ 1L⊗H)U∗
23W

∗
13(π(A)K(H) ⊗ B ⊗ π(A)).

Now π(A)K(H) = K(H) and WA
π̂2(K(H) ⊗ A) = K(H) ⊗ A. The regularity (2.24)

of G gives (K(H) ⊗ 1H)W(1H ⊗ π(A)) = K(H) ⊗ π(A). Thus

K(H) ⊗
(
(B ⊗ 1H)U∗(1L ⊗ π(A)

)
= K(H) ⊗

(
U

∗
23(⊗B ⊗ π(A)

)
.

Taking slices by ω ∈ B(H) on the first leg and rearranging U now gives

U(B ⊗ 1H)U∗(1L ⊗ π(A)) = B ⊗ π(A).

This is equivalent to the Podleś condition for β.

Ad 3. Now we show that F ∈ U(K(L) ⊗ B). The second condition in the

Landstad theorem 4.4 shows that C = π(A) ⊗ 1L)V̂∗(1 ⊗ B)V̂ and C is ∗-invariant.
Since WC is a unitary multiplier of K(H⊗L)⊗C we have (K(H)⊗K(L)⊗C)WC =
K(H) ⊗K(L) ⊗ C). For two C∗-algebras D and D′ let D1D′

2 = D ⊗ D′. This gives

V̂
∗
34B4V̂34K(H)1K(L)2π(A)3W13U23V̂

∗
34F24V̂34 = K(H)1K(L)2π(A)3V̂

∗
34B4V̂34.

Now (K(H) ⊗ π(A)W = K(H) ⊗ π(A) and U = (idL ⊗ π)U. Therefore, (K(H) ⊗
K(L) ⊗ π(A))W13U23 = K(H) ⊗ K(L) ⊗ π(A). This gives

V̂
∗
34B4V̂34K(H)1K(L)2π(A)3V̂

∗
34F24V̂34 = K(H)1K(L)2π(A)3V̂

∗
34B4V̂34.
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Multiplying by K(H) on the third leg from the left and using (5.3) on bothsides,
this gives

K(H)1K(L)2K(H)3π(A)3B4V̂
∗
34F24V̂34 = K(H)1K(L)2K(H)3π(A)3B4.

Now π : A → B(H) is nondegenerate: π(A)K(H) = K(H)π(A) = K(H). This
simplifies the last expression and gives

K(H)1K(L)2K(H)3B4V̂
∗
34F24V̂34 = K(H)1K(L)2K(H)3B4.

The invariant condition (3.6) is equivalent to V̂∗
23F13V̂23 = V12F13V

∗
12. This gives

K(H)1K(L)2K(H)3B4V23F24V
∗
23 = K(H)1K(L)2K(H)3B4.

Now V23 commutes with B4 and (K(L ⊗ K(H))V = K(L) ⊗ H. This gives

K(H)1K(L)2K(H)3B4F24V
∗
23 = K(H)1K(L)2K(H)3B4.

Multiplying bothside by V23 from the right and using (K(L ⊗K(H))V = K(L) ⊗ H,
this gives

K(H)1K(L)2K(H)3B4F24 = K(H)1K(L)2K(H)3B4.

Taking the slices on the first and third legs by ω ∈ B(H)∗ gives (K(L) ⊗ B)F =
K(L)⊗B. This shows that F is a unitary right multiplier of K(L)⊗B). Multiplying
bothsides by F∗ of the above equation from the right gives gives K(L) ⊗ B =
(K(L) ⊗ B)F∗; hence F is also a left multiplier of K(L) ⊗ B).

Ad 4. The unitary Z ∈ U(L ⊗ L) is characterised by (3.2); hence (2.30) gives

j1(b) := b ⊗ 1L, j2(b) := LL (b ⊗ 1L)L L, and B ⊠ B = j1(B)j2(B) ⊆ B(L ⊗ L).
Define ∆B(b) := F(b ⊗ 1L)F∗ for all b ∈ B. The braided pentagon equation (3.7)

gives (3.12):

(idL ⊗ ∆B)F = F23F12F
∗
23 = F12

LL
23F12

L L
23.

Since F ∈ U(K(L⊗B), taking slices on the first leg of the both sides of (3.12) shows
that ∆B : B → M(B ⊠ B) is the unique ∗-homomorphism satisfying (3.12).

The diagonal coaction β ⊲⊳ β of G on B ⊠ B is described by (2.32) as

β ⊲⊳ β : B ⊠ B → B ⊠ B ⊗ A, x 7→ U13U23(x ⊗ 1A)U∗
23U∗

13.

The invariance condition (3.5) for F gives

β ⊲⊳ β ◦ ∆B(b) = U13U23F12(b ⊗ 1L⊗H)F∗
12U

∗
23U

∗
13

= F12U13U23(b ⊗ 1L⊗H)U∗
23U

∗
13F

∗
12

= (∆B ⊗ idA) ◦ β(b);

hence ∆B is G-equivariant. Similarly, we may show that ∆B is Ĝ-equivariant.
The coassociativity of ∆B follows from the top-braided pentagon equation (3.7):

(∆B ⊠ idB)∆B(b) = F12
LK

23∆B(b)12
L L

23F
∗
12 = F12

LL
23F12b1F

∗
12

L L
23F

∗
12

= F23F12b1F
∗
12F23

= (idB ⊠ ∆B) ◦ ∆B(b).

Now(K(L) ⊗ B)F = K(L) ⊗ B. Then (3.12) gives

(K(L) ⊗ j1(B))(idL ⊗ ∆B)F = (idL ⊗ j1)
(
(K(L) ⊗ B)F

)
(idL ⊗ j2)F

= (K(L) ⊗ j1(B))(idL ⊗ j2)F.

Slicing the first leg by ω ∈ B(L)∗ on both sides gives j1(B)∆B(B) = j1(B)j2(B) =
B ⊠ B. A similar computation gives ∆B(B)j2(B) = B ⊠ B. �
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