
ar
X

iv
:1

60
1.

00
17

0v
1 

 [
m

at
h.

D
G

] 
 2

 J
an

 2
01

6

Diffeological vector pseudo-bundles, and diffeological

pseudo-metrics on them as substitutes for Riemannian metrics
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Abstract

Although our main interest here is developing an appropriate analog, for diffeological vector pseudo-
bundles, of a Riemannian metric, a significant portion is dedicated to continued study of the gluing
operation for pseudo-bundles introduced in [9]. We give more details regarding the behavior of this
operation with respect to gluing, also providing some details omitted from [9], and pay more attention
to the relations with the spaces of smooth maps. We also show that a usual smooth vector bundle
over a manifold that admits a finite atlas can be seen as a result of a diffeological gluing, and thus
deduce that its usual dual bundle is the same as its diffeological dual. We then consider the notion of a
pseudo-metric, the fact that it does not always exist (which seems to be related to non-local-triviality
condition), construction of an induced pseudo-metric on a pseudo-bundle obtained by gluing, and
finally, the relation between the spaces of all pseudo-metrics on the factors of a gluing, and on its
result. We conclude by commenting on the induced pseudo-metric on the pseudo-bundle dual to the
given one.
MSC (2010): 53C15 (primary), 57R35 (secondary).

Introduction

For anyone who comes into contact with diffeology [6] (meant initially as an extension of differential
geometry, although as of now, other opinions exist) it does not take long to notice that a great number
of typical objects do not admit obvious counterparts; there is obviously a diffeological space as the base
object, and there are also various types of it endowed with an extra, algebraic, structure, starting with a
natural concept of a diffeological vector space and proceeding towards the notion of a diffeological group,
diffeological algebra, and so on. But when we try to endow these objects with further structures, even
very simple ones, we discover that it is not possible to do so.

The specific instance that we have in mind at the moment is that of a scalar product on a finite-
dimensional diffeological vector space. Surprising in its simplicity, it excellently illustrates what has been
said in the previous paragraph. Specifically, it has been known for some time (see [6], Ex. 70 on p. 74)
that a finite-dimensional diffeological vector space admits a smooth (with respect to its diffeology) scalar
product if and only if it is a standard space, which means that, as a vector space, it is isomorphic to R

n

for some n, and its diffeology consists of all usual smooth maps. But for a single vector space this issue is
easily resolved: one looks (as was done, for instance, in [8]) for a kind of minimally degenerate symmetric
bilinear form on it; there is always one, of rank equal to the dimension of the so-called diffeological dual
[15] of the space in question.

The next natural step, then, is to pose the same question for a possible diffeological counterpart of
the notion of a Riemannian metric. The corresponding issues become two-fold then: for one thing, there
is not yet a standard theory of tangent spaces in diffeology (but some constructions do exist, see, for
instance, [2], as well as the previous [4], and other references therein), so we are left with looking for a
diffeological version of a diffeological metric on an abstract (diffeological version of) vector bundle.

This version appeared originally in [5] (by the author’s own admission, the same material is better
explained in Chapter 8 of [6]; but the former is the original source). It was later utilized in [14], under
the name of a regular vector bundle, and then in [2], where it is called a diffeological vector space over X ,
X being the notation for the base space. We call it a diffeological vector pseudo-bundle, as was already
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done in [9]. This concept is an obvious (it is asked that all the operations be smooth in the diffeological
sense) extension to the diffeological context of the usual notion of a vector bundle, except that there is
no requirement of local triviality. This allows to treat objects that not only carry an unusual smooth
structure (that is, a diffeology) but also ones that from a topological point of view, have local structure
more complicated than that of a Euclidean space.

For objects such as these, there are well-defined notions of the tensor product (pseudo-)bundle and of
the dual pseudo-bundle, see [14]. So a diffeological metric can of course be defined as a smooth section
of the tensor product of two duals, symmetric at each point. However, due to what has been said about
single vector spaces, the value at a given point cannot, in general, be a scalar product, unless the fibre at
this specific point is standard (generally not the case). In this paper we discuss what happens if pointwise
we try to take the minimally degenerate value of the prospective section (the approach initiated in [9]).

Acknowledgements Various parts of this work emerged inside of several others — and then moved in
here, when it became more sensible for them to do so. I must admit that I maybe would not have kept
sensible enough in the meantime if it were not for a few people, such as my colleague and role model
Prof. Riccardo Zucchi (the others should remain unnamed — sometimes less is more).

1 Definitions needed

In order to make the paper self-contained, we collect here all the definitions that are used in the rest of
the paper.

1.1 Diffeological spaces

The basic notion for diffeology is that of a diffeological space, that is, a set endowed with a diffeology, a
collection of maps called plots that play the role of a (version of a) smooth structure.

Diffeological spaces and smooth maps between them A diffeological space is just a setX endowed
with a diffeology, which is a collection of maps from usual domains to X ; three natural conditions must
be satisfied.

Definition 1.1. ([12]) A diffeological space is a pair (X,DX) where X is a set and DX is a specified
collection, also called the diffeology of X, of maps U → X (called plots) for each open set U in R

n and
for each n ∈ N, such that for all open subsets U ⊆ R

n and V ⊆ R
m the following three conditions are

satisfied:

1. (The covering condition) Every constant map U → X is a plot;

2. (The smooth compatibility condition) If U → X is a plot and V → U is a smooth map (in the usual
sense) then the composition V → U → X is also a plot;

3. (The sheaf condition) If U = ∪iUi is an open cover and U → X is a set map such that each
restriction Ui → X is a plot then the entire map U → X is a plot as well.

A standard example of a diffeological space is a standard manifold whose diffeology consists of all
usual smooth maps into it. However, some standard constructions of diffeology (appearing shortly below)
allow us to construct plenty of unusual diffeological spaces.

Let now X and Y be two diffeological spaces (obviously, this includes Y = X), and let f : X → Y
be a set map. It is a smooth map (as one between diffeological spaces) if for every plot p of X the
composition f ◦ p is a plot of Y .

The underlying topology Let X be a diffeological space; it carries a natural topology underlying its
diffeological structure and called D-topology. This topology is defined by the following condition: a
set Y ⊂ X is open for D-topology (and is called D-open) if and only if for every plot p : U → X of X
its pre-image p−1(Y ) is open in U ⊆ R

m in the usual sense. In fact, it was shown in [3] (Theorem 3.7)
that it is sufficient (and, of course, necessary) that this condition hold for smooth curves only, that is,
for plots defined on R (or its subdomain).
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The lattice of diffeologies As can be expected, the set of all diffeologies on a fixed set X is partially
ordered by inclusion; if D and D′ are two diffeologies on X then we say that D is finer than D′ if
D ⊂ D′, and it is said to be coarser if the inclusion is vice versa. It is also a fact (see [6], Chapter 1.25)
that with respect to this partial ordering; and this fact is frequently used when defining various types of
diffeologies (as, indeed, we do almost immediately below), because the lattice property frequently extends
to sub-families of diffeologies possessing such-and-such specified property.

Discrete diffeology and coarse diffeology The smallest/finest of all possible diffeologies on a given
set X is usually called the discrete diffeology; it consists of all locally constant maps with values in
X and the D-topology underlying it is the usual discrete topology (see [3]). The largest of all possible
diffeologies is called the coarse diffeology; it consists of all possible maps into X .

Generated diffeology A frequent way to define a diffeology on a given set X is to consider a(n
arbitrary) collection A = {pi : U → X} of maps with values in X , each of which is defined on a domain of
some Rn; to each such collection there corresponds a diffeology on X called the diffeology generated by
A and defined as the smallest diffeology containing all maps pi ∈ A as plots. The plots of the generated
diffeology can locally be described as follows: they either are constant or filter through a map in A.
Some frequent instances of generated diffeologies include those generated by just one plot (this is the
case of many of our examples) or those defined on a specific class of domains (such as the so-called wire
diffeology, generated by maps defined on one-dimensional domains, that we will encounter below).

Pushforwards and pullbacks Let X be a diffeological space, and let Y be any set (with or without
any extra structure). Suppose first that we have a map f : X → Y ; then Y can be endowed with a specific
diffeology, called the pushforward diffeology (from X via f). It is defined as the finest diffeology such
that f is smooth; its plots are precisely those maps that locally are pre-compositions of f with plots of
X . Suppose now that, vice versa, we have a map f : Y → X ; in this case, Y can be endowed with the
pullback diffeology, which is the coarsest diffeology such that f is smooth. Its plots are precisely those
maps whose compositions with f are plots of X .

Functional diffeology If nowX and Y are both diffeological spaces, we can consider the set C∞(X,Y )
of all smooth maps X → Y . It carries a canonical diffeology called the functional diffeology; this is the
coarsest diffeology for which the evaluation map, the map ev : C∞(X,Y )×X → Y with ev(f, x) = f(x),
is smooth.

Subset diffeology and quotient diffeology Every subset Y ⊂ X of a diffeological space X carries
a natural diffeology called subset diffeology; it is the coarsest diffeology for which the inclusion map
Y →֒ X is smooth. Likewise, for every equivalence relation ∼ the quotient space X/ ∼ carries the natural
diffeology called (unsurprisingly) the quotient diffeology; this is the pushforward of the diffeology of
X by the natural projection.

The disjoint union diffeology and the direct product diffeology Given a collection X1, . . . , Xn

of diffeological spaces (it does not have to be finite, but for us this is sufficient), there are standard
diffeologies on the disjoint union

∐n
i=1Xi and on the direct product

∏n
i=1, called, respectively, the sum

diffeology and the product diffeology. The sum diffeology is the finest diffeology such that all the
natural inclusions Xi →֒

∐n

i=1Xi for i = 1, . . . , n are smooth; locally any plot of it is a plot of one of
the components of the disjoint union. The product diffeology is the coarsest diffeology such that for each
i = 1, . . . , n the natural projection

∏n

i=1Xi → X is smooth; every plot of it locally is an n-tuple of plots
of Xi, that is, has form (p1, . . . , pn) with pi a plot of Xi.

1.2 Diffeological vector spaces

Here we turn to the concept of a diffeological vector space (mostly, we speak about finite-dimensional
ones, although various definitions apply elsewhere).
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1.2.1 Main definitions

All the main concepts regarding vector spaces admit their diffeological counterparts, usually by a trivial
extension, although sometimes with non-trivial implications.

A diffeological vector space A diffeological vector space is a (real) vector space V endowed with
a vector space diffeology, that is, any diffeology for which the following two maps are smooth: the
addition map V × V → V , where obviously (v1, v2) 7→ v1 + v2 and V × V carries the product diffeology,
and the scalar multiplication map R× V → V , where R carries the standard diffeology and, once again,
R× V carries the product diffeology. All our spaces are finite-dimensional.

Fine diffeology The set of all vector space diffeologies on a given vector space V is quite large (although
there are quite a few diffeologies that are not vector diffeologies1). The finest of them is called the fine
diffeology, and a vector space endowed with its fine diffeology is called a fine vector space.

Subspaces and quotient spaces Any vector subspace W 6 V of a diffeological vector space V is
itself a diffeological vector space for the subset diffeology; the latter is therefore the canonical diffeology
on W , and unless specified otherwise, any subspace is automatically considered with its subset diffeology.
Likewise, the usual quotient space V/W is a diffeological vector space for the quotient diffeology; it is
canonically endowed with the latter.

Linear maps and smooth linear maps Surprisingly at least for a finite-dimensional case (at least,
in my opinion), a diffeological vector space in general admits linear maps that are not smooth; as already
said, even if its dimension is finite. More precisely, for every linear map to be smooth a finite-dimensional
space must necessarily be standard, that is, diffeomorphic to the standard R

n for the appropriate n. As
an illustration, we add a simple example: if V is identified with R

n as a vector space and V carries
the vector space diffeology generated by the plot R ∋ x → |x|en (in place of |x| we could take any
not-everywhere-smooth function) then the corresponding dual (in the usual sense) function en : V → R

is not smooth (for the chosen diffeology of V and the standard diffeology of R).

Diffeological dual The above example also shows that the so-called diffeological dual ([14], [15]) of
a diffeological vector space (of finite dimension) has in general smaller dimension than the space itself.
The diffeological dual V ∗ of V is the space of all smooth R-valued linear maps on V ; it is not hard to
find examples of spaces with trivial diffeological dual and not-too-large a diffeology. Indeed, it suffices
to extend the example that appears in the preceding paragraph, endowing R

n with the vector space
diffeology generated by the n plots R ∋ x → |x|ei for i = 1, . . . , n. No element ei of the canonical dual
basis of Rn is smooth for this diffeology, so the diffeological dual is trivial in this case, although the
diffeology in question is a rather specific one.

Euclidean structure and pseudo-metrics A scalar product on a diffeological vector space V is a
usual scalar product on the underlying vector space which is also smooth with respect to the diffeology
of V . However (see [6]), in the finite-dimensional case this concept does not make much sense, meaning
that unless V is a standard space, it does not carry any scalar product; in other words, if V is finite-
dimensional and is not diffeomorphic to some standard R

n then every smooth symmetric bilinear form
on V is degenerate. The degree of degeneracy, unsurprisingly, is measured by the difference between
the dimension of V and that of its diffeological dual; that is to say, the maximal rank that a smooth
symmetric bilinear form on V might have is dim(V ∗). It is easy to see that this rank is always achieved;
any smooth symmetric bilinear form on V of rank dim(V ∗) is called a pseudo-metric on V .

1Two examples in case V = R
n are the discrete diffeology, for which the scalar multiplication is not smooth, and the

so-called wire diffeology (see [6], Chapter 1.10; it is the diffeology generated by all usual smooth maps R → R
n), where the

addition is not smooth.
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1.2.2 Operations with diffeological vector spaces and their properties

We now describe what becomes of the usual operations on vector spaces in the context of diffeological
vector spaces.

Direct sum Let V and W be two diffeological vector spaces. Their usual direct sum V ⊕W (which
is in bijective correspondence with the direct product V ×W ) is endowed with the product diffeology,
which however takes the name of the direct sum diffeology. Note that interesting phenomena might
happen when we consider a single (finite-dimensional) diffeological vector space V and its decomposition
(in the sense of just vector spaces) into a direct sum of two of its subspaces, V = V1 ⊕ V2. Note that if
V1 and V2 are considered with the ir subset diffeologies then the direct sum diffeology on V1 ⊕ V2 might
be strictly finer than the initial diffeology of V (see [8] for a specific example of this).

Tensor product Let V1, . . . , Vn be diffeological vector spaces. Their usual tensor product as vector
spaces carries a natural tensor product diffeology (see [14] and [15]), which is defined as the pushfor-
ward of the product diffeology on V1 × . . .× Vn by the universal map V1 × . . .× Vn → V1 ⊗ . . .⊗ Vn.

Multilinear maps as elements of a tensor product The diffeological tensor product possesses
the appropriate counterpart of the usual universal property (see [14], Theorem 2.3.5), which means
the following: if V1, . . . , Vn,W are diffeological vector spaces then the space of all smooth linear maps
V1 ⊗ . . .⊗ Vn →W , considered with the functional diffeology, is diffeomorphic to the space of all smooth
multilinear maps V1 × . . .×Vn →W (if it, too, is endowed with the functional diffeology). In particular,
the space of all smooth bilinear R-valued maps on a given diffeological vector space V is diffeomorphic
to (V ⊗ V )∗; we also note that the latter is diffeomorphic, as is usually the case, to V ∗ ⊗ V ∗.

1.3 Diffeological vector pseudo-bundles

We now turn to the object which is pretty much central to our discussion. Indeed, although a notion of
metric (or its best-possible substitute, as in our case) would usually be defined on some kind of a tangent
bundle, there is not yet a standard theory of such for diffeological spaces, although there do exist various
ad hoc treatments and proposals (see in particular a recent [2] for the notion of the internal tangent
bundle and the external one, as well as mentionings of other attempts in this respect). Our solution to
this matter is to consider a diffeological notion of a metric (that we call a pseudo-metric), or whatever
can reasonably be considered such, on abstract diffeological vector pseudo-bundles, on the assumption
that whatever a proper notion of a tangent bundle for a diffeological space would reveal itself to be, it
should be an instance of such a pseudo-bundle.

1.3.1 Main definitions for pseudo-bundles

We now recall, as briefly as possible, the main definitions and some facts regarding pseudo-bundles,
concentrating on the aspects that we will need in what follows.

What is a diffeological vector pseudo-bundle Let π : V → X be a smooth surjective map between
two diffeological spaces V and X . It is called a diffeological vector pseudo-bundle if for every
x ∈ X the pre-image π−1(x) is endowed with a vector space structure such that the induced operations
V ×X V → V of fibrewise addition and R× V → V of scalar multiplication, as well as the zero section,
are smooth, for the subset diffeology on V ×X V ⊂ V × V and the product diffeologies on V × V and
R × V (in the latter case R carries the standard diffeology). A usual vector bundle of course fits this
definition, but there are many examples (some of which arise in independent contexts, see below) that are
not vector bundles in the usual sense. This has in part to do with the fact that X and V , as diffeological
spaces, do not have to be smooth, or even topological, manifolds, but more importantly, the map π does
not have to be locally trivial, as illustrated below.

5



The absence of local trivializations As has just been mentioned, diffeological vector pseudo-bundles
frequently lack local trivializations; there are two main ways for this to happen, as we now explain.

The first way is that the pseudo-bundle in question could be locally trivial, or even trivial, from the
point of view of the underlying topology, but not locally trivial from the diffeological point of view. An
instance of this is easy to construct by taking the usual projection R

2 → R of R2 onto its first coordinate,
and endowing the target R with its standard diffeology and the source R

2 with the smallest diffeology
generated by the map R

2 ∋ (u, v) 7→ (u, u|v|) with respect to which the projection becomes a pseudo-
bundle. In this case, the subset diffeology on each fibre, except the one over the origin of the target R,
is the vector space diffeology on R generated by the map v 7→ |v| (in particular, it is non-standard). On
the other hand, the fibre over the origin carries the standard diffeology, so in the neighbourhood of 0 ∈ R

the pseudo-bundle is non-trivial from the diffeological point of view, although it is trivial topologically.
The other thing that might happen is that a diffeological pseudo-bundle may have fibres of different

dimension; in the neighbourhood of a point where the dimension changes the pseudo-bundle is of course
non-trivial (this will be better explained via the concept of diffeological gluing, see below).

Generating a diffeology on the total space of a pseudo-bundle Especially when dealing with
examples, we will frequently encounter the following situation. Let X be a diffeological space, and let
π : V → X be a surjective map onto X such that the pre-image π−1(x) of every point x ∈ X carries a
(finite-dimensional) vector space structure. We note first that there is obviously a diffeology on V with
respect to which π is smooth: it suffices to take the pull-back diffeology. This will be a pseudo-bundle
diffeology (that is, it will make the operations smooth); indeed, by Proposition 4.16 of [2], any diffeology
on V as given with respect to which π is smooth can be expanded to a pseudo-bundle diffeology, and since
the pull-back diffeology is the coarsest one for which π is smooth, it will coincide with such expansion,
and so be a pseudo-bundle diffeology itself.

Now, by a similar reasoning we can consider a pseudo-bundle diffeology on V generated by a
given set A of plots, provided that the composition of each plot in the set with π is a plot of X . If
this requirement is satisfied then it suffices to take the diffeology of V generated (in the sense of just
generated diffeology) by A. Since the map π is smooth with respect to this diffeology, we can apply
again Proposition 4.16 of [2] to obtain a pseudo-bundle diffeology on V ; this is going to be the smallest
pseudo-bundle diffeology containing all maps in A as plots.

Notation for topologically trivial pseudo-bundles Before proceeding, we give brief explanation
of the ad hoc notation that we will use to describe some examples to be seen below. The notation has no
pretence of generality; it applies to the pseudo-bundles whose underlying topological structure is that of
the projection R

n → R
k to the first k coordinates of some Rn (with, obviously, n > k). However, already

this very simple fibration yields interesting examples from the diffeological point of view, by choosing
different pseudo-bundle diffeologies on the total space R

n (whereas the base space, Rk, will usually be
considered with its standard diffeology).

The vector space structure on the fibres of the just-mentioned projection comes from the second factor
in the obvious decomposition as a direct product Rn = R

k × R
n−k. Thus, in particular, the elements of

the dual space of the fibre at a given point x ∈ R
k can be written in the form (x, ak+1e

k+1+ . . .+ane
n) for

some real numbers ak+1, . . . , an. As can be expected from what we have said already about diffeological
duals, in general not all choices of these coefficient would give a smooth linear map on a given fibre; the
point at this moment is however that all of them can be written in such a form.

Similarly, on appropriate occasions we can use this notation to describe the main object of our interest,
a smooth bilinear form (hopefully one that comes as close as possible to a kind of a metric; we will see
this later) on a pseudo-bundle as above. Such a form is, as usual, a smooth section of the tensor square
of its dual, so we can write it as

x 7→ (x,

n
∑

i,j=k+1

aije
i ⊗ ej).

As in the case of the dual, in general (that is, unless the diffeology is the standard one) there are
restrictions on the coefficients aij to ensure that the section is smooth (these are seen on the case-by-case
basis). Besides, we will always deal with symmetric forms, so of course we’ll have aij = aji.
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1.3.2 Vector bundle operations on pseudo-bundles

In what follows we will need the following operations on pseudo-bundles: taking a sub-bundle, taking a
quotient bundle, direct sum of pseudo-bundles, tensor product of pseudo-bundles, and taking the dual
bundle. Since we cannot use local trivializations, as is standard, to define these operations, we briefly
recall their definitions in the diffeological case.

Sub-bundles A sub-bundle of diffeological vector pseudo-bundle π : V → X is any subset W ⊂ V
such that for every x ∈ X the intersection W ∩ π−1(x) is a vector subspace of π−1(x); the subset W
is equipped with the subset diffeology of V and the restriction π|W of the pseudo-bundle map π. The
map π|W :W → X thus obtained is a diffeological vector pseudo-bundle on its own; in particular, it is a
surjective map, since the assumption that W ∩ π−1(x) be always a vector subspace means in particular
that it is always non-empty.

Quotient pseudo-bundles Suppose now that we have a pseudo-bundle π : V → X and a sub-bundle
W ⊂ V . This sub-bundle defines the obvious (it is defined separately on each single fibre by the usual
quotienting over the vector subspaceW∩π−1(x)) equivalence relation on V ; the quotient space Z = V/W ,
endowed with the quotient diffeology and the induced projection onto X is again a diffeological vector
pseudo-bundle, which is called the quotient pseudo-bundle.

The direct sum Let π1 : V1 → X and π2 : V2 → X be two diffeological vector pseudo-bundles with
the same base space. Their direct sum is defined as V1⊕V2 := V1×X V2 = {(v1, v2) |π1(v1) = π2(v2)} ⊂
V1×V2, endowed with the factorwise operations and the subset diffeology relative to the product diffeology
on V1 ×V2. The projection onto X is obvious and is denoted by π1 ⊕ π2; and it is rather easy to see (the
details are available in [14]) that π1 ⊕ π2 : V1 ⊕ V2 → X is again a diffeological vector pseudo-bundle,
with the fibre (π1 ⊕ π2)

−1(x) = π−1
1 (x) ⊕ π−1

2 (x) for any x ∈ X .

The tensor product Once again, we choose a(n arbitrary) diffeological space X and consider two
(finite-dimensional) diffeological vector pseudo-bundles over it, π1 : V1 → X and π2 : V2 → X . The
tensor product π1⊗π2 : V1⊗V2 → X of these two pseudo-bundles is by definition the quotient pseudo-
bundle of the direct product pseudo-bundle V1 ×X V2 → X over its sub-bundle W given by the condition
that its fibreWx at any x ∈ X is the kernel of the usual universal map π−1

1 (x)×π−1
2 (x) → π−1

1 (x)⊗π−1
2 (x);

as we have already mentioned, any collection of vector subspaces, taken one for each fibre, defines a sub-
bundle, soW , and the quotient pseudo-bundle over it, are well-defined. It is also clear from this definition
that (π1 ⊗ π2)

−1(x) = π−1
1 (x)⊗ π−1

2 (x) for every x ∈ X .

The dual bundle Let π : V → X be a diffeological vector pseudo-bundle; to define its dual pseudo-
bundle (for brevity, more often we will just say dual bundle) we first set V ∗ to be the formal union of
the diffeological duals of all fibres of V , i.e., V ∗ = ∪x∈X(π−1(x))∗. This union is naturally equipped
with the obvious projection onto X ; we wish to endow it with a diffeology (which, recall, would also
imply a topological structure), such that, first, the projection onto X be smooth, and, second, the subset
diffeology on any its component (π−1(x))∗ coincide with its existing (functional) diffeology as the dual of
π−1(x). The existence of this diffeology, and an explicit characterization of its plots were given in [14],
Definition 5.3.1 and Proposition 5.3.2. This description of plots is as follows.

Let π : V → X be a diffeological vector pseudo-bundle, and let π∗ : V ∗ → X be its dual pseudo-
bundle. A map p : Rk ⊃ U → V ∗ is a plot of V ∗ if and only if for every plot q : Rk′

⊃ U ′ → V of
V the map (u, u′) 7→ p(u)(q(u′)) defined on the set Y = {(u, u′) |π∗(p(u)) = π(q(u))} ⊂ U × U ′ (and
taking values in R) is smooth for the subset diffeology on Y ⊂ R

k+k′

and the standard diffeology of R.
It is easy to notice that this is a fibrewise extension of the characterization of the functional diffeology
on individual fibres.

1.3.3 Assembling more complicated pseudo-bundles

As we have already pointed out, diffeological pseudo-bundles lack local trivializations, and rightly so, since
they may not be locally trivial. A partial attempt to compensate for this absence could be to consider a
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kind of assembling, which later on we will call gluing, of more complicated pseudo-bundles from simpler
ones, such as for instance those that from the topological point of view are just trivial fiberings of some
R

n over some R
k. While there is no reason to expect that this would describe any finite-dimensional

diffeological vector pseudo-bundle (rather, given the breadth of diffeology, we might expect the obvious),
it could still be a way to single out, and render more manageable, some reasonable, and reasonably wide,
classes of them.

Gluing of two diffeological spaces The basic operation that defines this assembling is the gluing of
two diffeological spaces. Let X1 and X2 be diffeological spaces, and let f : X1 ⊃ Y → X2 be a smooth
(for the subset diffeology on Y ) map; more often than not we will assume that it is a diffeomorphism with
its image, but this is not necessary at the moment. We use the standard (topological) notion defining
the result of gluing X1 to X2 along f , as a set, by setting

X1 ∪f X2 = (X1 ⊔X2) / ∼,

where ∼ is the equivalence relation on the disjoint union given by Y ∋ y ∼ f(y) (with all other points
being equivalent to themselves only). The set X1 ∪f X2 is then endowed with the gluing diffeology,
which is the obvious one: the quotient diffeology of the disjoint union diffeology on X1 ⊔X2.

Gluing of two pseudo-bundles Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector
pseudo-bundles. To perform a gluing on them, we just need two maps, one for the bases and the other
for the total spaces, with a number of conditions that ensure that the result of the gluing is again a
diffeological vector pseudo-bundle (with the pseudo-bundle map arising naturally from the two given
ones, π1 and π2). These conditions are as follows. The gluing of the base spaces is carried out along a
map f : X1 ⊃ Y → f(Y ) ⊂ X2, which is required to be smooth (for the subset diffeologies of its domain
and co-domain); in most cases we will actually assume that it is a diffeomorphism with its image. The
gluing of the total spaces is done along a smooth and fibrewise linear lift f̃ : π−1

1 (Y ) → π−1
2 (f(Y )).

Given the data listed in the above paragraph, we obtain two diffeological spaces, V1 ∪f̃ V2 and X1 ∪f

X2; the pseudo-bundle maps π1 and π2 induce in an obvious manner a smooth surjection, denoted by
π1 ∪(f̃ ,f) π2, of the former onto the latter. Furthermore, each fibre of this surjection inherits a vector
space structure from either V1 or V2, as relevant. We finally observe that the resulting map

π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2

is again a diffeological vector pseudo-bundle (see [9] for the formal proof). This pseudo-bundle is precisely
what we mean by the result of gluing the pseudo-bundle π1 : V1 → X1 to π2 : V2 → X2 along (f̃ , f).

2 Operations and gluing

The first results regarding the behaviour of the vector bundle operations with respect to the gluing were
given in [9]. Here we give details that were omitted from there, along with some new examples and
observations.

2.1 Sub-bundles and quotient pseudo-bundles

Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let W1 ⊂ V1 and
W2 ⊂ V2 be their sub-bundles. Let f : X1 ⊃ Y → f(Y ) ⊂ X2 be a smooth map, and let f̃ : π−1

1 (Y ) →
π−1
2 (f(Y )) be its smooth fibrewise linear lift.

Sub-bundles What follows is an extended version of a lemma that appears in [9].

Lemma 2.1. The image W̃ of W1 ⊔W2 in V1 ∪f̃ V2 is a sub-bundle of the latter if and only if for every

y ∈ Y one of the following two cases occurs: either f̃(π−1
1 (y)∩W1) 6 π

−1
2 (y)∩W2 or f̃(π−1

1 (y)∩W1) >
π−1
2 (y) ∩W2 (the reverse inclusion).
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Proof. The only condition that W1 ∪f̃ W2 must satisfy in order to be a sub-bundle of V1 ∪f̃ V2 is that
its intersection with every fibre of π1 ∪f̃ π2 be a vector subspace. It is also clear that outside of the
domain of gluing this condition is automatic. It remains to notice that for any y the domain of gluing,
(W1 ∪f̃ W2) ∩ (π1 ∪f̃ π2)

−1(y) is a subspace in the fibre if and only if one of the two inclusions of the
statement of the lemma holds.

Let us now consider the question of the induced gluing of the sub-bundles. The main observation (a
kind of non-commutativity for sub-bundles) is that for there to exist a well-defined induced gluing of W1

to W2 it is not sufficient that W̃ be a sub-bundle. Indeed, if at least at one point we have the strict
inclusion f̃(π−1

1 (y) ∩W1) > π−1
2 (y) ∩W2 then the restriction of f̃ to W1 does not generally take values

in W2. Therefore, W1 ∪f̃ |W1

W2 is well-defined (and is a sub-bundle of V1 ∪f̃ V2) if and only if for every

y ∈ Y we have f̃(π−1
1 (y) ∩W1) 6 π

−1
2 (y) ∩W2 (so the sub-bundle that we previously called W̃ coincides

with W1 ∪f̃ |W1

W2, and the latter can be described also as the image of W1 ⊔W2 in V1 ∪f̃ W2).

Quotient pseudo-bundles Let us now consider Z1 = V1/W1 and Z2 = V2/W2; we denote the corre-
sponding pseudo-bundle maps by πZ

1 : Z1 → X1 and πZ
2 : Z2 → X2 respectively. Notice that already at

the level of individual fibres we must have

f̃(W1 ∩ π
−1
1 (y)) ⊂W2 ∩ π

−1
2 (y) for all y ∈ Y

for there to be a well-defined induced gluing of Z1 to Z2. (Thus, according to what has been said in the
previous paragraph we must have W1 ∪f̃ |W1

W2 = W̃ ). If this condition holds, there is a well-defined

induced map f̃Z : Z1 ⊃ π−1
1 (Y )/

(

π−1
1 (Y ) ∩W1

)

→ π−1
2 (f(Y ))/

(

π−1
2 (f(Y )) ∩W2

)

⊂ Z2, which is a lift
of f to the pseudo-bundles Z1 and Z2. Thus, we have a gluing of the quotient pseudo-bundles, with the
result the pseudo-bundle

πZ
1 ∪(f̃Z ,f) π

Z
2 : Z1 ∪f̃Z Z2 → X1 ∪f X2.

Lemma 2.2. The pseudo-bundle Z1 ∪f̃Z Z2 is diffeomorphic to the quotient pseudo-bundle (V1 ∪f̃

V2)/(W1 ∪f̃ |W1

W2) via a diffeomorphism which is a lift of the identity morphism on the bases.

Proof. By construction, there is an identity between each fibre of the pseudo-bundle Z1 ∪f̃Z Z2 and the
corresponding fibre of (V1 ∪f̃ V2)/(W1 ∪f̃ |W1

W2). This is trivial outside of the domain of gluing. If now

y ∈ Y ⊂ X1∪fX2, we observe that the fibre of the former pseudo-bundle is π−1
2 (f(y))/

(

π−1
2 (f(y)) ∩W2

)

,
and that of the latter pseudo-bundle is the same, because the fibre of the sub-bundle W1 ∪f̃ |W1

W2 at

y = f(y) is π−1
2 (f(y)) ∩W2.

2.2 Direct sum and gluing

We now turn to the binary operation of taking the direct sum; it is natural to ask whether it commutes
with gluing (in the sense that should be rather obvious, but we do state the question precisely immediately
below). It should be noted that the fact that it does, is due to having defined the gluing diffeology as the
finest (smallest) one for which the subset diffeology on the factors coincides with their original diffeology.

The commutativity problem Let X1 and X2 be two diffeological spaces. Over each of them, we
consider two diffeological vector pseudo-bundles, πi : Vi → Xi and π

′
i : V

′
i → Xi for i = 1, 2. This allows

to take the direct sum of the two pseudo-bundles over each Xi, obtaining the pseudo-bundles

π1 ⊕ π′
1 : V1 ⊕ V ′

1 → X1, and π2 ⊕ π′
2 : V2 ⊕ V ′

2 → X2.

On the other hand, we consider also a fixed gluing of X1 to X2 and two pairs of gluings between the
pseudo-bundles over them. The former is performed, as usual, along the map f : X1 ⊃ Y → f(Y ) ⊂ X2;
we glue the pseudo-bundle V1 to V2 along a smooth fibrewise linear lift f̃ : π−1

1 (Y ) → π−1
2 (f(Y )) of f , and

similarly, we glue V ′
1 to V ′

2 along another (smooth, fibrewise linear) lift f̃ ′ : (π′
1)

−1(Y ) → (π′
2)

−1(f(Y ))
of the same f . This produces the following two pseudo-bundles:

π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2, and π
′
1 ∪(f̃ ′,f) π

′
2 : V ′

1 ∪f̃ ′ V
′
2 → X1 ∪f X2.
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Now, the latter two bundles are over the same base space, so we can take their direct sum:

(π1 ∪(f̃ ,f) π2)⊕ (π′
1 ∪(f̃ ′,f) π

′
2) : (V1 ∪f̃ V2)⊕ (V ′

1 ∪f̃ V
′
2) → X1 ∪f X2.

We can also observe that the two direct sum pseudo-bundles, previously obtained can be glued the map
f and its lift f̃ ⊕ f̃ ′ : (π1 ⊕ π′

1)
−1(Y ) → (π2 ⊕ π′

2)
−1(f(Y )). This gluing produces the pseudo-bundle

(π1 ⊕ π2) ∪f̃⊕f̃ ′ (π
′
1 ⊕ π′

2) : (V1 ⊕ V2) ∪f̃⊕f̃ ′ (V
′
1 ⊕ V ′

2) → X1 ∪f X2.

The precise form of the question whether the gluing commutes with the direct sum is the following one:
does there exist a diffeomorphism

Φ : (V1 ∪f̃ V2)⊕ (V ′
1 ∪f̃ V

′
2) → (V1 ⊕ V2) ∪f̃⊕f̃ ′ (V

′
1 ⊕ V ′

2)

such that
(π1 ∪(f̃ ,f) π2)⊕ (π′

1 ∪(f̃ ′,f) π
′
2) =

(

(π1 ⊕ π2) ∪f̃⊕f̃ ′ (π
′
1 ⊕ π′

2)
)

◦ Φ?

The answer The answer is in the affirmative (it was already stated in [9]) by the properties of the
direct sum; it suffices to examine the fibres at each point. Note that there is an obvious identity for
the fibres that are not over points in the domain of gluing. There is actually the same kind of identity
for fibres over the points in the domain of gluing (it is just a bit less obvious). Nevertheless, we omit
a detailed consideration here (but we provide an extensive explanation in the case what follows, that of
tensor product; the two explanations would be quite similar, so we omit the more evident one).

2.3 Tensor product and gluing

One (out of two) ingredients crucial for considering the existence questions related to our main subject
(pseudo-metrics on pseudo-bundles) is that of the behavior of the tensor product with respect to gluing.
The issue is obvious (we state it below in a precise form): if we have two pseudo-bundles, over the same
base, each of which is the result of a gluing (with the same gluing on the base), we can take their tensor
product; but we can also first take the tensor products of the factors (as appropriate) and then perform
an induced gluing of the results. It turns out that the end result is the same, but this is not quite obvious.

The statement of the problem Let π1 : V1 → X1 and π′
1 : V ′

1 → X1, and π2 : V2 → X2 and
π′
2 : V ′

2 → X2 be two pairs of diffeological vector pseudo-bundles, let f : X1 ⊃ Y → f(Y ) ⊂ X2

be a smooth invertible map with smooth inverse, and let f̃ : V1 ⊃ π−1
1 (Y ) → π−1

2 (f(Y )) ⊂ V2 and
f̃ ′ : V ′

1 ⊃ (π′
1)

−1(Y ) → (π′
2)

−1(f(Y )) ⊂ V ′
2 be two smooth fibrewise linear lifts of it. These data allow to

define the following two pairs of pseudo-bundles, the two possible tensor products in the first pair:

π1 ⊗ π′
1 : V1 ⊗ V ′

1 → X1 and π2 ⊗ π′
2 : V2 ⊗ V ′

2 → X2,

and then two gluings:

π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2 and π′
1 ∪(f̃ ′,f) π

′
2 : V ′

1 ∪f̃ ′ V
′
2 → X1 ∪f X2.

We now consider the tensor product of the pseudo-bundles in the second pair:

(π1 ∪(f̃ ,f) π2)⊗ (π′
1 ∪(f̃ ′,f) π

′
2) : (V1 ∪f̃ V2)⊗ (V ′

1 ∪f̃ ′ V
′
2 ) → X1 ∪f X2,

and then the induced gluing of the pseudo-bundles of the first pair (this induced gluing is along the maps
f and f̃ ⊗ f̃ ′):

(π1 ⊗ π′
1) ∪f̃⊗f̃ ′ (π2 ⊗ π′

2) : (V1 ⊗ V ′
1) ∪f̃⊗f̃ ′ (V2 ⊗ V ′

2) → X1 ∪f X2.

The question is then, whether the two pseudo-bundles thus obtained, (π1 ∪(f̃ ,f) π2)⊗ (π′
1 ∪(f̃ ′,f) π

′
2) and

(π1 ⊗ π′
1) ∪f̃⊗f̃ ′ (π2 ⊗ π′

2), are the same (up to some natural pseudo-bundle diffeomorphism).
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The answer As in the case of the direct sum, we obtain the affirmative answer, whose full form is as
follows.

Theorem 2.3. Let π1 : V1 → X1 and π′
1 : V ′

1 → X1, and π2 : V2 → X2 and π′
2 : V ′

2 → X2 be two
pairs of finite-dimensional diffeological vector pseudo-bundles. Let f : X1 ⊃ Y → f(Y ) ⊂ X2 be a
smooth map that is a diffeomorphism with its image, and let f̃ : V1 ⊃ π−1

1 (Y ) → π−1
2 (f(Y )) ⊂ V2 and

f̃ ′ : V ′
1 ⊃ (π′

1)
−1(Y ) → (π′

2)
−1(f(Y )) ⊂ V ′

2 be two smooth lifts of it that are linear on all fibres in their
respective domains of definition. Then there exists a diffeomorphism

Ψ : (V1 ∪f̃ V2)⊗ (V ′
1 ∪f̃ ′ V

′
2 ) → (V1 ⊗ V ′

1 ) ∪f̃⊗f̃ ′ (V2 ⊗ V ′
2)

such that
(π1 ∪(f̃ ,f) π2)⊗ (π′

1 ∪(f̃ ′,f) π
′
2) =

(

(π1 ⊗ π′
1) ∪f̃⊗f̃ ′ (π2 ⊗ π′

2)
)

◦Ψ.

Proof. Let us write for brevity

V ′ := (V1 ∪f̃ V2)⊗ (V ′
1 ∪f̃ ′ V

′
2), V

′′ := (V1 ⊗ V ′
1) ∪f̃⊗f̃ ′ (V2 ⊗ V ′

2), and

π′ = (π1 ∪(f̃ ,f) π2)⊗ (π′
1 ∪(f̃ ′,f) π

′
2), π

′′ = (π1 ⊗ π′
1) ∪f̃⊗f̃ ′ (π2 ⊗ π′

2);

then both V ′ and V ′′ fiber over X1 ∪f X2. Let us first describe a fibrewise bijection Ψ : V ′ → V ′′ and
then show that it is both ways smooth. The description obviously depends on the following three cases:

Case 1: x ∈ X1 \ Y ⊂ X1 ∪f X2. The fibre (π′)−1(x) is the tensor product of the following two fibres:
(π1 ∪(f̃ ,f) π2)

−1(x) and (π′
1 ∪(f̃ ′,f) π

′
2)

−1(x). By the choice of x the former coincides with π−1
1 (x) and the

latter, with (π′
1)

−1(x). Thus, for x ∈ X1 \Y we essentially have (π′)−1(x) = π−1
1 (x)⊗ (π′

1)
−1(x). On the

other hand, the fibre (π′′)−1(x), again by choice of x, is actually contained in (V1 ⊗ V ′
1) ⊂ V ′′, thus it is

also the tensor product of fibres π−1
1 (x) and (π′

1)
−1(x). So we have (π′′)−1(x) = π−1

1 (x) ⊗ (π′
1)

−1(x) as
well. In particular, there is an obvious (identity) bijection (π′)−1(x) → (π′′)−1(x).

Case 2: x ∈ X2 \ f(Y ) ⊂ X1 ∪f X2. This case is completely analogous to the previous one. The fibre
(π′)−1(x) is again the tensor product of (π1 ∪(f̃ ,f) π2)

−1(x) and (π′
1 ∪(f̃ ′,f) π

′
2)

−1(x). Since x ∈ X2 \f(Y ),

we have (π1 ∪(f̃ ,f) π2)
−1(x) = π−1

2 (x) and (π′
1 ∪(f̃ ′,f) π

′
2)

−1(x) = (π′
2)

−1(x), so we have (π′)−1(x) =

π−1
2 (x)⊗ (π′

2)
−1(x).

As for the fibre (π′′)−1(x), it is contained in (V2 ⊗ V ′
2) ⊂ V ′′

2 , so we also have (π′′)−1(x) = π−1
2 (x) ⊗

(π′
2)

−1(x). Thus, there is again an (essentially) identity map (π′)−1(x) → (π′′)−1(x). We should also note
that in the two cases just considered the identity established is smooth for the relevant subset diffeologies.

Case 3: x ∈ X1∩X2 ⊂ X1∪f X2, meaning that x writes both as x = y ∈ Y and x = f(y) ∈ f(Y ). This is
the only case that might raise some doubt. The fibre (π′)−1(x) is the tensor product of (π1∪(f̃ ,f)π2)

−1(x)

and (π′
1 ∪(f̃ ′,f) π

′
2)

−1(x); the former of these two fibres is the quotient π−1
1 (x) ∪f̃ π

−1
2 (x) and as a single

fibre coincides with π−1
2 (x) (this being the target space of f̃). Similarly, the fibre (π′

1 ∪(f̃ ′,f) π
′
2)

−1(x) is

the quotient (π′
1)

−1(x)∪f̃ (π
′
2)

−1(x) and coincides with (π′
2)

−1(x). Thus, we have a natural identification

(π′)−1(x) → π−1
2 (x) ⊗ (π′

2)
−1(x).

We now consider the fibre (π′′)−1(x). This fibre is obtained by identification, via map f̃ ⊗ f̃ ′ of the
following two tensor products: π−1

1 (x)⊗ (π′
1)

−1(x) and π−1
2 (x)⊗ (π′

2)
−1(x). The target space of the map

f̃ ⊗ f̃ ′ is the second of these two products, which means that (π′′)−1(x) coincides with it, (π′′)−1(x) =
π−1
2 (x)⊗ (π′

2)
−1(x). This gives us the third, and final, necessary identification (π′)−1(x) → (π′′)−1(x).

The above three are all the possibilities, so we have an obvious bijection Ψ, which is also a fibrewise
isomorphism of vector spaces. It remains to consider its smoothness.

We summarize now the defining identities of Ψ:

Ψ :







(π′)−1(x) = π−1
1 (x)⊗ (π′

1)
−1(x) = (π′′)−1(x) for x ∈ X1 \ Y ⊂ X1 ∪f X2

(π′)−1(x) = π−1
2 (x)⊗ (π′

2)
−1(x) = (π′′)−1(x) for x ∈ X2 \ f(Y ) ⊂ X1 ∪f X2

(π′)−1(x) = π−1
2 (x)⊗ (π′

2)
−1(x) = (π′′)−1(x) for x ∈ X1 ∩X2 ⊂ X1 ∪f X2.
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By examining these identities, the smoothness of Ψ follows from the definition of the gluing diffeology.
As we have already mentioned, outside of the domain of gluing the smoothness is automatic, since Ψ is
essentially the identity map.

Let us consider it on the domain of gluing. Let p′ : U → V ′ be a plot of V ′ whose range intersects
(π1 ∪(f̃ ,f) π2)

−1(Y )⊗ (π′
1 ∪(f̃ ′,f) π

′
2)

−1(Y ). By definition of the tensor product diffeology and the gluing

diffeology this means that p′ locally (meaning we should assume U to be small enough) lifts to (f̃ ◦p1, f̃
′ ◦

p′1), where p1 is a plot of V1 and p′1 is a plot of V ′
1 ; furthermore, by the smoothness of f̃ and f̃ ′ the

composition f̃ ◦ p1 is a plot of V2 and f̃ ′ ◦ p′1 is a plot of V ′
2 . Thus, the pair (f̃ ◦ p1, f̃ ′ ◦ p′1) defines,

in some sense, also a plot of V2 ⊗ V ′
2 . Finally, observe that this pair can also be written in the form

(f̃ ⊗ f̃ ′) ◦ (p1, p′1); and this means precisely that the composition Ψ ◦ p′ yields a plot of V ′′. We conclude
that Ψ is indeed a smooth map.

2.4 The dual pseudo-bundle of π1 ∪(f̃∗,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2

This case presents the most substantial differences, as generally, taking the dual pseudo-bundles does not
commute with gluing; in fact, it appears that this is a condition that should be explicitly imposed.

2.4.1 The statement of the commutativity problem

Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, which are glued along the
maps f : X1 ⊃ Y → f(Y ) ⊂ X2 and f̃ : π−1

1 (Y ) → π−1
2 (f(Y )). We assume that f is a diffeomorphism

with its image (this assumption is necessary in this case, since we are also going to consider the gluing
along the inverse of f) and that f̃ is a smooth lift of f linear on each fibre. The result of gluing of
π1 : V1 → X1 to π2 : V2 → X2 along the pair (f̃ , f) is the pseudo-bundle

π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2,

with the dual bundle
(π1 ∪(f̃ ,f) π2)

∗ : (V1 ∪f̃ V2)
∗ → X1 ∪f X2.

On the other hand, the pair (f̃ , f) provides for a natural gluing between the dual bundles π∗
1 : V ∗

1 → X1

and π∗
2 : V ∗

2 → X2. This induced gluing is performed along the maps f̃∗ (the fibrewise dual map) and
f−1 : X2 ⊃ f(Y ) → Y ⊂ X1. Its result is the pseudo-bundle

π∗
2 ∪(f̃∗,f) π

∗
1 : V ∗

2 ∪f̃∗ V
∗
1 → X2 ∪f−1 X1.

The commutativity problem is the natural question of whether the two pseudo-bundles thus obtained
are diffeomorphic (as pseudo-bundles). Specifically, does there exist a diffeomorphism Φ : (V1 ∪f̃ V2)

∗ →
V ∗
2 ∪f̃∗ V ∗

1 such that

(π1 ∪(f̃ ,f) π2)
∗ =

(

π∗
2 ∪(f̃∗,f) π

∗
1

)

◦ Φ?

Below we show that the answer is negative in general.

2.4.2 Under which conditions gluing and taking dual commute

What we find in this section is that for the general statement of the commutativity problem, as it is given
above, the condition that gluing and taking duals commute must simply be imposed explicitly over the
domain of gluing. We first give a certain necessary condition for the commutativity and then illustrate
that it is not sufficient.

The necessary condition: (π−1
2 (f(y)))∗ = (π−1

1 (y))∗ for all y ∈ Y This is a necessary (but not
sufficient, as we will see shortly) condition, which has to do essentially with the fact that the fibres in
the result of a gluing of pseudo-bundle are the target spaces of the gluing map between the total spaces
(else they are inherited from one of the factors in the gluing).
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Lemma 2.4. Suppose that there exists a diffeomorphism Φ : (V1∪f̃ V2)
∗ → V ∗

2 ∪f̃∗ V ∗
1 such that (π1∪(f̃ ,f)

π2)
∗ =

(

π∗
2 ∪(f̃∗,f) π

∗
1

)

◦ Φ. Then for every y ∈ Y we have (π−1
2 (f(y)))∗ = (π−1

1 (y))∗.

Proof. Let y ∈ Y be a point in the domain of the gluing of the bases. Obviously, y = f−1(f(y)) ∼ f(y)
represents a point both in X1∪f X2 and X2∪f−1 X1 (the latter two spaces being obviously diffeomorphic,
but considered here as the base spaces of our two pseudo-bundles (π1 ∪(f̃ ,f) π2)

∗ and π∗
2 ∪(f̃∗,f) π

∗
1

respectively). Now, observe that when we carry out a gluing, on each fibre the result is the target space
of the gluing map.

Since in the first case the gluing over y is along f̃ | : π−1
1 (y) → π−1

2 (y) (with taking the dual afterwards),
in the pseudo-bundle (π1 ∪(f̃ ,f) π2)

∗ the fibre over y is (π−1
2 (y))∗. On the other hand, f̃∗ goes from

(π−1
2 (y))∗ to (π−1

1 (y))∗, so in the pseudo-bundle π∗
2 ∪(f̃∗,f) π

∗
1 the fibre over y is (π−1

1 (y))∗. Thus, we

conclude that for (π1∪(f̃ ,f) π2)
∗ and π∗

2 ∪(f̃∗,f)π
∗
1 to be diffeomorphic, it is necessary that for every y ∈ Y

we have (π−1
2 (f(y)))∗ = (π−1

1 (y))∗.

We will now show that the above condition is not sufficient, as can be expected from the standard
case (that of vector bundles over smooth manifolds).

Why this is not a sufficient condition: the open annulus and the open Möbius strip Our
aim in this section is to point two simple examples, which are pseudo-bundles over the same base space
(S1 with its diffeology as a smooth manifold) and the same fibre (the standard R), but which are not
diffeomorphic, nor even homeomorphic: the open annulus and the open Möbius strip.

Let us first specify what we mean by the standard diffeology on S1. We can define it by representing
it as the unit circle in R

2 and endow it with the subset diffeology; we can also define it as the gluing
diffeology on S1 = (Rx ⊔ Ry)/x= 1

y
, where the gluing is along the set Rx \ {0} and the gluing map f on

it is given by f(x) = 1
x
. The open annulus A carries then the product diffeology of A = S1 × R of the

direct product of S1 with the standard R.
We now obtain the diffeology on the open Möbius strip M by representing it as the total space of

the pseudo-bundle obtained by gluing together the following two pseudo-bundles: π1 : R2
(x1,x2)

→ Rx1

(that is, π1(x1, x2) = x1) and π2 : R2
(y1,y2)

→ Ry1
with π2(y1, y2) = y1 (obviously, these are two copies of

the same bundle). The domain of gluing is the set given by x1 6= 0, and the map f acts by f(x1) =
1
y1

.

Finally, the lift f̃ is defined by setting f̃(x1, x2) = ( 1
x1

, x2) for x1 < 0 and f̃(x1, x2) = ( 1
x1

,−x2) for
x1 > 0.

Let us explain now how these two spaces relate to the question of (π−1
2 (f(y)))∗ = (π−1

1 (y))∗ pointwise
not being a sufficient condition for commutativity. The base spaces, i.e., the core circles of A and M, play
the role of Y and its diffeomorphic image f(Y ); the total spaces, i.e., A and M themselves, act as π−1

1 (Y )
and π−1

2 (f(Y )), and since they are self-dual (we give the proof below), they also act as (π−1
1 (Y ))∗ and

(π−1
2 (f(Y )))∗. Note that if they are endowed with their standard diffeologies, any smooth lift f̃ : A → M

of any diffeomorphism between their core circles degenerates (becomes the zero map) on at least one fibre.

Lemma 2.5. Both A and M, considered with their standard diffeologies, are self-dual as diffeological
vector (pseudo-)bundles.

Proof. In the case of the annulus this simply follows from Theorem 5.3.5 of [14], which affirms that the
dual of a trivial diffeological bundle is itself trivial. Therefore A∗ is the trivial bundle with the same
base and the same fibre as A, and the conclusion is obvious. In this case of the Möbius strip M, the
same uniqueness consideration would give the desired result if we show that the dual M∗ is a non-trivial
bundle. This follows from Theorem 3.6 below which affirms that the dual in the diffeological sense bundle
of a usual smooth vector bundle (under some assumptions that both the annulus and the Möbius strip
satisfy) is the same as its dual bundle in the usual sense (they are diffeomorphic if both are considered
as diffeological vector pseudo-bundles for the respective standard diffeologies).
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3 Diffeological gluing and standard manifolds/bundles

The main issue that we consider in this section is the following one: letMn be a smooth compact manifold
with an atlas {(Uα, ϕα)}α∈I , where Uα ⊂ M is a finite covering and ϕα : Uα → R

n. Then M , and each
Uα can be seen as diffeological spaces, for their standard diffeological structures; and furthermore, M can
also be seen as the result of finite number of gluings of the spaces Uα along all the transition functions,
and thus endowed with the corresponding gluing diffeology. The latter is a priori finer than the standard
smooth structure; the question is whether it can be strictly finer. Analogous question can then be
asked for a usual vector bundle over M ; and the results used to compare the usual dual bundle with its
diffeological counterpart.

3.1 The case of a manifold

We now consider the question of whether representing a smooth (compact, or at least admitting a finite
atlas) manifold as the result of the diffeological gluing along the transition maps produces a diffeology
that coincides with the manifold’s standard diffeology.

The case with two domains Let us consider the following simplified case that clarifies the issue
mentioned, that is, whether the standard diffeology could be coarser than the gluing diffeology. Consider
the case of M = Uα ∪ Uβ, with ϕα : Uα → R

n and ϕβ : Uα → R
n being the charts defining the smooth

structure of M . Let Y = ϕα(Uα ∩ Uβ), and let gαβ : Y → ϕβ(Uα ∩ Uβ) be the corresponding transition
function. Let Ds be the standard diffeology on M , namely, a map f : U →M , for U a domain in R

m is a
plot for Ds if and only if f is smooth in the usual sense (recall that this means that ϕα◦f, ϕβ ◦f : U → R

n

are smooth).
The diffeological gluing allows to see M as (Uα ⊔ Uβ)/ ∼, where ∼ is the equivalence relation given

(essentially) by x ∼ gαβ(x). Let Dgl be the corresponding gluing diffeology; recall that by the definition
of the gluing diffeology a plot of it, on a sufficiently small neighbourhood, is just a smooth function either
into Uα or into Uβ .

Lemma 3.1. The diffeologies Ds and Dgl coincide.

Proof. We need to show that each plot of Ds is a plot of Dgl, and vice versa. Considering the charac-
terization of plots of Dgl given immediately prior to the statement of the lemma, it suffices to observe
that every f : U → M such that ϕα ◦ f and ϕβ ◦ f : U → R

n are smooth, is locally a smooth function
into either Uα or Uβ , for the standard diffeology on each of them. Now, since Uα, Uβ are open sets, so is
their intersection, which, together with the properties of usual smooth maps, implies that for every point
u ∈ U there is an open neighbourhood U ′ ∋ u such that f(U ′) is entirely contained in either Uα or Uβ .
The restriction of f to U ′ is then indeed a smooth map, as desired, so f is a plot of Dgl.

2 This allows us
to conclude that Ds ⊆ Dgl.

Let us now prove the vice versa. Observe that, since the gluing is along a diffeomorphism, and Uα

and Uβ are open, up to switch between α and β, we can locally describe each plot of the gluing diffeology
as a smooth map into Uα or as a composition gαβ ◦ f for some smooth f into Uα∩Uβ , which implies that
p is smooth in the usual sense as a map into M , and so is a plot of Ds. This gives the reverse inclusion
Dgl ⊆ Ds, and the statement is proven.

Let us now return to the remark made in the course of the proof, that regarding the importance of
the fact that we are dealing with a gluing of two open (sub)sets. As said already, this ensures that the
gluing is along an open subset, which is precisely what guarantees that the usual definition of a smooth
function into M the result of gluing, coincides with that of a plot of the gluing diffeology. Without the
assumption of the openness, we would not be guaranteed to get the same conclusion (this is shown in [9],
see Example 4.1).

2Note that Uα ∩ Uβ being open is essential here; in general, the reasoning would fail if it is not.
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The case of a compact manifold Let us now turn to the case of a compact manifold, where the
assumption of compactness serves only to ensure the existence of a finite atlas, which is the hypothesis
that we truly need. The Theorem that follows is stated in terms of the existence of a finite atlas, and
this is essential for the proof that we give (the proof is by induction, where the manifolds consecutively
arising at each step may not be compact, even if the initial manifold was).

Theorem 3.2. Let M be a smooth connected manifold that admits a finite atlas, let {(Ui, ϕi : Ui →
R

n)}mi=1 be such an atlas, and let gij : ϕi(Ui∩Uj) → ϕj(Ui∩Uj) be the corresponding transition functions
defined for those pairs i, j of indices for which Ui ∩ Uj 6= ∅; assume, up to a possible reordering, that the
indices i are such that the intersection Ui−1 ∩Ui is non-empty for i = 2, . . . ,m. Let X be the diffeological
space obtained by m − 1 successive gluings of form ∪i−1

j=1Uj ⊔ ϕi(Ui)  ∪i−1
j=1Uj ∪(∪i−1

j=1
gij)

ϕi(Ui), where

∪i−1
j=1gij is the obvious map ϕi(Ui∩ (∪i−1

j=1Uj)) → (∪i−1
j=1Uj) induced by the compositions of the appropriate

transition functions with the corresponding ϕ−1
i ’s. Then X, considered with the gluing diffeology, is

diffeomorphic to M considered with the standard diffeology.

Proof. The proof is by induction on the number of components of the chosen atlas; the base step of the
induction is Lemma 3.1. The inductive step is as follows.

We assume that for 1 < i − 1 < m the space Xi−1 obtained by consecutive gluings of ϕ1(U1), . . .,
ϕi−1(Ui−1) along the relevant maps g′l = ∪l−1

j=1glj with l = 2, . . . , i−1 is diffeomorphic to the submanifold

∪i−1
j=1Uj ⊆ M . We need to show that the result of gluing between Xi−1 and ϕi(Ui) along ∪i−1

j=1gij is

diffeomorphic to Xi = ∪i
j=1Uj ⊆M . Now, since all plots are characterized by their local properties, and

all our sets Uj, ϕj(Uj) are open, the proof of this is essentially the same as that of Lemma 3.1.

Note that the above statement serves as an illustration of how different procedures of gluings (different
types of the factors of gluings and/or different gluing maps) may give the same result. Indeed, the manifold
M has many different finite atlases, and so there are many corresponding sequences of gluing, although
the end result (the manifold M) is always the same.

3.2 The case of a vector bundle

The reasoning in the above section easily extends to the case of a usual vector bundle over a smooth
connected manifold that admits a finite atlas of local trivializations.

A smooth vector bundle of rank k Recall that this means the following: we are given a smooth
map π : E →M between two smooth manifolds E and M such that

a) for every x ∈M the fibre π−1(x) carries a vector space structure;

b) M admits a finite atlas {(Ui, ϕi : Ui → R
n)}mi=1 such that for every index i = 1, . . . ,m there is a

fixed diffeomorphism ψi : π
−1(Ui) → Ui ×R

k such that for every x ∈ Ui the restriction of ψi to the
fibre π−1(x) is an vector space isomorphism π−1(x) → {x} × R

k.

Recall also that the transition functions in this case are defined, for every pair of indices i, j such that the
intersection Ui ∩Uj is non-empty, by setting gij(x) = ψj |π−1(x) ◦

(

ψ−1
i |{x}×Rk

)

for all x ∈ Ui ∩Uj , which

is a vector space isomorphism {x} × R
k → {x} × R

k. Thus, each map gij is a map Ui ∩ Uj → GLk(R).

The case m = 2 and the corresponding diffeological gluing Let us spell out the case of m = 2.
Note that, to avoid complicating the notation, we will sometimes use the same symbol Ui for the subset
Ui ⊂ M and for its image ϕi(Ui) (which one is being meant at any given moment, should be clear from
the context).

Lemma 3.3. Let π : E → M be a smooth vector bundle of rank k that admits an atlas of local trivial-
izations consisting of two charts only, i.e., M = U1 ∪ U2 with ϕi : Ui → R

n a diffeomorphism for each
i = 1, 2, and E = π−1(U1) ∪ π−1(U2) with ψi : π

−1(Ui) → Ui × R
k being a fibrewise diffeomorphism for
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i = 1, 2. Let g12 : U1 ∩ U2 → GLk(R) be the corresponding transition function. Let πi : R
n+k → R

n be
the projection of Rn+k = R

n × R
k onto its first factor R

n given by

πi = ϕi ◦ π ◦ ψ−1
i ◦ (ϕ−1

i × IdRk)

and considered as a diffeological vector pseudo-bundle with respect to the standard diffeology. Let Y =
ϕ1(U1∩U2), and let f : Y → R

n be given by f = ϕ2 ◦ (ϕ1|U1∩U2
)−1. Finally, let f̃ : π−1

1 (Y ) → π−1
2 (f(Y ))

act by f̃(y, v) = (f(y), g12(ϕ
−1
1 (y))v). Then π1 ∪(f̃ ,f) π2 : Rn+k ∪f̃ R

n+k → R
n ∪f R

n is diffeomorphic as
a diffeological vector pseudo-bundle to the bundle π : E →M .

Proof. Observe first of all that (f̃ , f) does define a diffeological gluing of pseudo-bundles; this is an
easy consequence of the definitions of the two maps, and of the relevant assumptions. Furthermore, the
existence of the obvious diffeomorphism between R

n ∪f R
n and M follows from Lemma 3.1. The same

Lemma can also be applied to the gluing along f̃ between the two copies of Rn+k, allowing us to conclude
that E is diffeomorphic to R

n+k ∪f̃ R
n+k (recall indeed that in the definition of gluing of two diffeological

pseudo-bundles the gluing of the total spaces is still the usual gluing of them as diffeological spaces, and,
on the other hand, {(π−1(U1), (ϕ1×IdRk)◦ψ1), (π

−1(U2), (ϕ2×IdRk)◦ψ2)} is trivially a finite atlas on E).
Finally, π1 ∪(f̃ ,f) π2 and π commute with these two diffeomorphisms by construction, so the statement is
proven.

The case of any m The case of an arbitrary (if finite) number of local trivializations now follows by
an obvious induction (or can be deduced from Theorem 3.2 as it was done in the above lemma). In
particular, we obtain the following statement (see the notation at the beginning of the section).

Theorem 3.4. Let π : E →M be a smooth vector bundle of rank k over an n-dimensional manifold M
that admits a finite atlas of m local trivializations. Then π is the result of gluing of m diffeological vector
pseudo-bundles πi : R

n+k → R
n, where

πi = ϕi ◦ π ◦ ψ−1
i ◦ (ϕ−1

i × IdRk) for i = 1, . . . ,m,

and the gluing (f̃ij , fij) between πi and πj is given by the maps

fij = ϕj ◦ (ϕi|Ui∩Uj
)−1, and

f̃ij(y, v) = (fij(y), gij(ϕ
−1
i (y))v), for y ∈ Ui ∩ Uj and v ∈ π−1

i (y).

In other words, the gluing construction for diffeological vector pseudo-bundles does serve as an exten-
sion of the concept of an atlas of local trivializations for usual smooth vector bundles.

3.3 The usual dual and the diffeological dual

Finally, let us consider the following question. Let π : E →M be a smooth vector bundle of rank k over
an n-dimensional smooth manifold M , admitting a finite atlas of local trivializations. It is automatically
a diffeological vector pseudo-bundle for the standard diffeologies on E and M . In this section we use the
diffeological gluing representation of the smooth bundle π given by Theorem 3.4, as well as our earlier
observations regarding the behavior of gluing with respect to vector (pseudo-)bundles operations, to show
that the usual dual bundle of π : E → M coincides with its diffeological dual pseudo-bundle (meaning
that there exists a diffeological diffeomorphism between them).

Diffeological dual bundles of local trivializations Let us consider one of the elementary bundles
πi : R

n+k → R
n. If we consider it as a diffeological vector pseudo-bundle, with respect to the standard

diffeologies on R
n+k and R

n, by Theorem 5.3.5 of [14] its diffeological dual is a trivial bundle with the
fibre (Rk)∗; in particular, it does coincide with its usual dual.
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Commutativity of gluing with dual Let us now consider the question of whether the gluing of two
such elementary bundles, say πi and πj , along the maps fij and f̃ij (see Theorem 3.4 for the definitions
of these two maps), commutes with taking duals, that is, whether the pseudo-bundles

(πi ∪(f̃ij ,fij)
πj)

∗ : (Rn+k ∪f̃ij
R

n+k)∗ → R
n ∪fij R

n, and

π∗
j ∪(f̃∗

ij
,f

−1

ij
) π

∗
i : (Rn+k)∗ ∪f̃∗

ij
(Rn+k)∗ → R

n ∪f
−1

ij
R

n

are diffeomorphic. Since we are dealing solely with diffeomorphisms and standard diffeologies, we certainly
expect them to be so, but let us give a formal proof.

To state our claim, let us denote by i1 : R
n → R

n ∪fij R
n the inclusion of the first copy of R

n

into the result of gluing, and by i2 : Rn → R
n ∪fij R

n the inclusion of the second copy. Let j1 and j2
be the analogously defined inclusions for the space R

n ∪f
−1

ij
R

n. Note that all four maps are actually

inductions (i.e., each of them is a diffeomorphism with its image). Besides, there is an obvious (and
unique) diffeomorphism ϕ : Rn ∪fij R

n → R
n ∪f

−1

ij
R

n, with the property that ϕ ◦ i1 = ϕ−1 ◦ j2 and vice

versa (that is, ϕ ◦ i2 = ϕ−1 ◦ j1). We call this ϕ the switch map (since it does indeed exchange the
copies of Rn being glued together).

Proposition 3.5. Let ϕ : Rn ∪fij R
n → R

n ∪f
−1

ij
R

n be the switch map between the two copies of Rn.

Then there exists a lift Φ : (Rn+k ∪f̃ij
R

n+k)∗ → (Rn+k)∗ ∪f̃∗

ij
(Rn+k)∗ which is a diffeomorphism.

Proof. The definition of Φ is rather obvious; examining the fibres over any arbitrary x ∈ R
n ∪fij R

n and
ϕ(x) ∈ R

n ∪f
−1

ij
R

n, we notice that they are diffeomorphic (essentially, they are identical). Hence so are

their duals (individually), which gives an obvious bijection, (Rn+k ∪f̃ij
R

n+k)∗ → (Rn+k)∗ ∪f̃∗

ij
(Rn+k)∗,

that uses the canonical isomorphism between R
k and its dual space and that we denote Φ. It remains to

see that Φ is smooth with smooth inverse, so we actually spell out its (local) form in detail.
Let us denote for brevity V∪,∗ := (Rn+k ∪f̃ij

R
n+k)∗ and V∗,∪ := (Rn+k)∗ ∪f̃∗

ij
(Rn+k)∗. Since f̃∗

ij

is also a diffeomorphism, by Lemma 3.1 the gluing diffeology on V∗,∪ coincides with the standard one,
while, using the same Lemma, the diffeology on V∪,∗ is the dual (in the sense of pseudo-bundles for now)
diffeology of the standard diffeology on R

n+k ∪f̃ij
R

n+k. A plot p : U → V∪,∗ of the diffeology on V∪,∗ is

characterized by the property that the evaluation p(u)(f(u′)) of p on any smooth function f : U ′ → R
n+k

(due to the fact that the two copies of Rn+k are being glued along the open subsets ϕ(Ui ∩Uj)×R
k and

ϕj(Ui ∩ Uj) × R
k, the local form of any plot of Rn+k ∪f̃ij

R
n+k is such an f) is smooth for the subset

diffeology (relative to the standard diffeology on the domain U ×U ′) on the set of pairs (u, u′) such that
(πi ∪(f̃ij ,fij)

πj)
∗(u) = (πi ∪(f̃ij ,fij)

πj)(u
′). This implies that we can always choose U small enough so

that (πi ∪(f̃ij ,fij)
πj)(p(U)) be wholly contained in one of the copies of Rn ⊂ R

n ∪fij R
n.

Furthermore, this implies that the plot p is can be identified with either a plot p1 of the lift ((πi∪(f̃ij ,fij)

πj)
∗)−1(Rn) ⊂ V∪,∗ to the first copy of Rn, or a plot p2 of the lift of the second copy of Rn. Thus,

p(u)(f(u′)) coincides with either p1(u)(f(u
′)) or p2(u)(f(u

′)). Furthermore, on ϕi(Ui ∩ Uj) (the domain
of definition of fij) we have p1(u) = p2(u) ◦ fij , i.e. p1(u) = f∗

ij(p2(u)). Finally, observe that Φ ◦ p
is either p1 or p2 considered as element(s) of V∗,∪, so a plot of the latter. Since smoothness is a local
property, we obtain the Φ is indeed a smooth map. Finally, the smoothness of the inverse map Φ−1 is
established in exactly the same, so we conclude that Φ is a diffeomorphism, as wanted.

We note that the main reason why this statement holds in this case (it is not true in general, see
above) is that the gluing is performed along a diffeomorphism between two open subsets (both in the
bases and in the total spaces).

The final statement We can now use the representation of the bundle π : E → M as the result of
gluing of the elementary standard bundles πi : R

n+k → R
n given by Theorem 3.4, to obtain the following

statement.

Theorem 3.6. Let π : E →M be a smooth vector bundle over a smooth finite-dimensional manifold M ,
that admits a finite atlas of local trivializations. Then the diffeological dual pseudo-bundle of π : E →M
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endowed with the standard diffeological structure is diffeomorphic to its usual dual bundle, via the identity
on M .

4 Smooth maps and gluing

The following somewhat technical construction is frequently used when dealing with the gluing of diffe-
ological spaces. It has to do with the situation where we glue together two diffeological spaces each of
which acts as the domain of some smooth map. The range of the two maps could be the same diffeological
space, or else there could be a simultaneously gluing of the ranges (such as when we are dealing with the
gluing of the pseudo-bundles and two respective sections of them). Now, under an expected condition of
compatibility there is an induced map on the result, which can be called the result of gluing of the two
maps (on of which the pseudo-bundle map of form π1 ∪(f̃ ,f) π2 is a specific instance).

4.1 Local structure of plots of gluing diffeology

When it comes to considering the smoothness of various maps on diffeological spaces obtained by gluing,
it is useful to consider the following technical properties of the gluing diffeology.

Lemma 4.1. Let X1 and X2 be two diffeological spaces, and let f : X1 ⊃ Y → X2 be a smooth map.
Then:
1) the gluing diffeology on X1 ∪f X2 is the finest diffeology such that the obvious inclusions i1 : X1 \Y →֒
X1 ∪f X2 (where X1 \ Y is considered with the subset diffeology relative to the diffeology of X1) and
i2 : X2 →֒ X1 ∪f X2 are inductions;3

2) every plot p : U → X1 ∪f X2 locally has the following characterization: either there exists a plot
p2 : U ⊃ U ′ → X2 of X2 such that p|U ′ = i2 ◦ p2, or there exists a plot p1 : U ⊃ U ′ → X1 of X1 such that

p(u′) =

{

i1(p1(u
′)) if p1(u

′) ∈ X1 \ Y,
i2(f(p1(u

′))) if p1(u
′) ∈ Y.

Proof. This lemma is essentially a direct consequence of the definitions. The only somewhat subtle aspect
to clarify is why i1 and i2 are inductions and not just smooth injective maps. We need to check that
p1 : U → X1 \ Y is a plot of X1 \ Y if and only if i1 ◦ p1 is a plot of X1 ∪f X2, as well as the analogous
statement for i2. Recall first of all that the diffeology on X1 ∪f X2 is a pushforward of the diffeology
on X1 ⊔ X2, therefore i1 ◦ p1 is a plot of X1 ∪f X2 if and only if it lifts to a plot of X1 ⊔ X2; this
lift is unique in this case, so i1 ◦ p1 is a plot if and only if the composition of the obvious inclusions
(X1 \ Y ) →֒ X1 →֒ (X1 ⊔X2) is a plot of X1 ⊔X2. The second of these inclusions is an induction by the
definition of the disjoint union diffeology, and so is the first one, by definition of the subset diffeology.
We conclude observing that the composition of two inductions is an induction itself.

Likewise, let p2 : U → X2 be a map. The composition i2 ◦ p2 is a plot of X1 ∪f X2 if and only
if it lifts to a plot of X1 ⊔ X2. Once again, the lift of this map is unique and coincides the inclusion
X2 →֒ (X1 ⊔X2), which is an induction. Thus, i2 ◦ p2 is a plot if and only if p2 is a plot.

Note in particular that i1(X1 \ Y ) and i2(X2) cover X1 ∪f X2.

4.2 The compatibility condition

This condition is rather obvious; to state it rigorously, we need to distinguish between the following two
cases.

3A map f : X → Y between two diffeological spaces is called an induction if it is injective, and the diffeology of X is
the pullback, via f , of the diffeology of Y .
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The gluing of two Z-valued maps Let X1, X2, Z be diffeological spaces, let f : X1 ⊃ Y → X2 be a
smooth map for the subset diffeology on Y , and let ϕi : Xi → Z be two other smooth maps, with i = 1, 2.
We say that ϕ1 and ϕ2 are f-compatible (or simply compatible when the map of reference is clear
from the context) if the following is true for all y ∈ Y :

ϕ1(y) = ϕ2(f(y)).

Recall that this equality makes sense because ϕ1, ϕ2 take values in the same set Z (which for this notion
does not actually need to be diffeological space; it could be any set).

The gluing of two maps with different ranges Let X1, X2 and Z1, Z2 be two pairs of diffeological
spaces, and let ψ1 : X1 → Z1 and ψ2 : X2 → Z2 be two smooth maps. Suppose, further, that we are
given a smooth map f : X1 ⊃ Y → X2 and a smooth map g : Y ′ → Z2 defined on Y ′ = ψ1(Y ) ⊂ Z1. We
say that ψ1 and ψ2 are (f, g)-compatible if for all y ∈ Y we have

g(ψ1(y)) = ψ2(f(y)).

4.3 The gluing of ϕi : Xi → Z along f : X1 ⊃ Y → X2

Let us now describe the map on the glued space X1 ∪f X2 induced by two given f -compatible maps
ϕ1 : X1 → Z and ϕ2 : X2 → Z. The definition of this induced map, which we denote by ϕ1 ∪f ϕ2 is the
evident one. It is a map ϕ1 ∪f ϕ2 : X1 ∪f X2 → Z that acts by

(ϕ1 ∪f ϕ2)(x) =

{

ϕ1(i
−1
1 (x)) for x ∈ i1(X1 \ Y )

ϕ2(i
−1
2 (x)) for x ∈ i2(X2).

Since i1(X1 \Y ) and i2(X2) cover X1∪fX2 and are disjoint (see Lemma 4.1), this map is well-defined.
In fact, it is so even without the requirement of compatibility, which, on the other hand, is necessary to
establish the following statement.

Proposition 4.2. The map ϕ1 ∪f ϕ2 is smooth for the gluing diffeology on X1 ∪f X2 and the given
diffeology of Z.

Proof. Let p : U → X1 ∪f X2 be a plot of X1 ∪f X2; we need to show that (ϕ1 ∪f ϕ2) ◦ p is a plot of Z.
By Lemma 4.1, for every point u ∈ U there is a small neighbourhood U ′ ∋ u such that the restriction of
p to U ′ either has form i2 ◦ p2 for some plot p2 : U ′ → X2, or else there exists a plot p1 of X1 such that

p(u′) =

{

(i1 ◦ p1)(u′) if p1(u
′) /∈ Y, and

(i2 ◦ f ◦ p1)(u′) if p1(u
′) ∈ Y,

for all u′ ∈ U ′. In the first case we have:

((ϕ1 ∪f ϕ2) ◦ p)(u
′) = (ϕ1 ∪f ϕ2)(i2(p2(u

′))) = (ϕ2 ◦ p2)(u
′) for all u′ ∈ U ′.

Since ϕ2 is smooth by assumption, and p2 is a plot of X2, the composition ϕ2 ◦ p2 is a plot of Z, as we
wanted.

Let us now consider the second case. We have:

((ϕ1 ∪f ϕ2) ◦ p)(u
′) =

{

ϕ1(p1(u
′)) if p1(u

′) /∈ Y, and
ϕ2(f(p1(u

′))) = ϕ1(p1(u
′)) if p1(u

′) ∈ Y,

where the equality ϕ2(f(p1(u
′))) = ϕ1(p1(u

′)) follows from the compatibility condition. Thus, we obtain
that ((ϕ1 ∪f ϕ2) ◦ p)(u′) = (ϕ1 ◦ p1)(u′) for all u′ ∈ U ′; since ϕ1 is smooth by assumption and p1 is a plot
of X1, we conclude that (ϕ1 ∪f ϕ2) ◦ p = ϕ1 ◦ p1 is also a plot of Z, so we obtain the final statement.

We thus have an assignment (ϕ1, ϕ2) 7→ ϕ1 ∪ ϕ2, defined for every pair of f -compatible maps ϕi :
Xi → Z, and yielding a smooth map ϕ1 ∪f ϕ2 : X1 ∪f X2 → Z. This assignment can be seen as a map

FZ : C∞(X1, Z)×comp C
∞(X2, Z) → C∞(X1 ∪f X2, Z),
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defined on the subset of the direct product C∞(X1, Z) × C∞(X2, Z) that consists of all pairs of f -
compatible maps. Now, each of C∞(X1, Z), C

∞(X2, Z), and C
∞(X1∪fX2, Z) has its standard functional

diffeology, and the subset C∞(X1, Z) ×comp C
∞(X2, Z) has the natural subset diffeology coming from

the product diffeology on C∞(X1, Z) × C∞(X2, Z). With respect to all of these, we have the following
statement.

Theorem 4.3. The map FZ : C∞(X1, Z)×comp C
∞(X2, Z) → C∞(X1 ∪f X2, Z) is smooth.

Proof. Let p : U → C∞(X1, Z) ×comp C
∞(X2, Z) be a plot; by definition of the subset diffeology, p is

then a plot of C∞(X1, Z)×C∞(X2, Z) such that its range is contained in C∞(X1, Z)×compC
∞(X2, Z).

By definition of direct product diffeology, we can assume that U is small enough so that p has form
p = (p1, p2), where each pi is a plot of C∞(Xi, Z) for i = 1, 2.

Recall that, by the standard property of any functional diffeology, pi being a plot of C∞(Xi, Z) means
that for every plot qi : U

′ → Xi of Xi and i = 1, 2 the map (u, u′) 7→ pi(u)(qi(u
′)) is a plot of Z. By the

same property, to show that FZ is smooth, we need to show that FZ ◦p is a plot of C∞(X1∪fX2, Z), and
specifically, that for every plot q : U ′ → X1∪fX2 ofX1∪fX2 the induced map (u, u′) 7→ (FZ ◦p)(u)(q(u′))
is a plot of Z.

Let q be an arbitrary plot of X1 ∪f X2; let u be a point in the domain of the definition of q, and let
U ′ be a small enough neighborhood of u in this domain such that q lifts to either a plot q1 of X1 or a
plot q2 of X2. Suppose first that q lifts to a plot of X2, i.e., q = i2 ◦ q2 on U ′. Then by construction

(FZ ◦ p)(u)(q(u′)) = p2(u)(q2(u
′))

on U ′; therefore it is a plot of Z by the assumptions on p2 and q2.
Suppose now that q lifts to a plot q1 of X1. This means that on U ′ the plot q is defined as follows:

q(u′) =

{

i1(q1(u
′)) for u′ ∈ U ′ such that q1(u

′) ∈ X1 \ Y, and
i2(f(q1(u

′))) for u′ ∈ U ′ such that q1(u
′) ∈ Y.

In this case we have

(FZ ◦ p)(u)(q(u′)) =

{

p1(u)(q1(u
′)) for u′ ∈ U ′ such that q1(u

′) ∈ X1 \ Y, and
p2(u)(f(q1(u

′))) = p1(u)(q1(u
′)) for u′ ∈ U ′ such that q1(u

′) ∈ Y,

where the equality in the second line is by the compatibility condition. This allows to conclude that on
U ×U ′ the map FZ ◦ p coincides with the evaluation of p1 at q1, which is a plot of Z by the assumptions
on p1 and q1, therefore the conclusion.

4.4 The gluing of ψi : Xi → Zi along f : X1 ⊃ Y → X2 and g : Z1 ⊃ Y ′ → Z2

Let us now consider the case of a simultaneous gluing on the domains and the ranges of two given smooth
maps ψ1 : X1 → Z1 and ψ2 : X2 → Z2 between diffeological spaces. On the domains the gluing is given
by the map f : X1 ⊃ Y → X2, and on the ranges it is given by g : Z1 ⊃ ψ1(Y ) → Z2; these maps
give rise to two new diffeological spaces, X1 ∪f X2 and Z1 ∪g Z2. Denote, as before, by i1 and i2, for
k = 1, 2, the inductions i1 : X1 \ Y →֒ X1 ∪f X2 and i2 : X2 →֒ X1 ∪f X2 (these are the same i1 and
i2 that are defined in Section 4.1), and by j1 and j2 the analogous inductions for Z1, Z2, and g, that is,
j1 : Z1 \ ψ1(Y ) →֒ Z1 ∪g Z2 and j2 : Z2 →֒ Z1 ∪g Z2.

Assuming that ψ1 and ψ2 are (f, g)-compatible, we can define the following map ψ1 ∪(f,g) ψ2 : X1 ∪f

X2 → Z1 ∪g Z2 between these new spaces:4

(ψ1 ∪(f,g) ψ2)(x) =

{

j1(ψ1(i
−1
1 (x))) for x ∈ i1(X1 \ Y )

j2(ψ2(i
−1
2 (x))) for x ∈ i2(X2).

As we see, the definition of the map ψ1 ∪(f,g) ψ2 is very much similar to that of the map ϕ1 ∪f ϕ2

(especially considering that our use of j1 and j2 serves mostly the formal purposes); the proof that it is
smooth is somewhat (not much) different.

4As before, the map itself can be defined without the assumption of the compatibility, which is needed to guarantee its
smoothness.
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Proposition 4.4. The map ψ1 ∪(f,g) ψ2 is smooth for the gluing diffeologies on X1 ∪f X2 and Z1 ∪g Z2.

Proof. Let p : U → X1 ∪f X2 be a plot of X1 ∪f X2; we assume from the start that U is small enough
so that p lifts to either a plot of X1 or one of X2. Suppose first that p = i2 ◦ p2 for an appropriate plot
p2 : U → X2 of X2. Then we have (ψ1∪(f,g)ψ2)(p(u)) = j2(ψ2(p2(u))); since ψ2 is smooth by assumption,
ψ2 ◦ p2 is a plot of Z2, and since j2 is an induction, j2 ◦ ψ2 ◦ p2 is a plot Z1 ∪g Z2, as wanted.

Suppose now that p lifts to a plot p1 : U → X1 of X1. Then we obtain

(ψ1 ∪(f,g) ψ2)(p(u)) =

{

j1(ψ1(p1(u))) for u such that p1(u) ∈ X1 \ Y
j2(ψ2(f(p1(u)))) for u such that p1(u) ∈ Y.

Now, observe that if p1(u) ∈ Y then j2(ψ2(f(p1(u)))) = j2(g(ψ1(p1(u)))) by the compatibility condition,
and ψ1 ◦ p1 is a plot of Z1, since ψ1 is smooth. Let us denote q1 = ψ1 ◦ p1 : U → Z1 this plot; we obtain
that

(ψ1 ∪(f,g) ψ2)(p(u)) =

{

j1(q1(u))) for u such that q1(u) ∈ Z1 \ ψ1(Y )
j2(g(q1(u))) for u such that q1(u) ∈ ψ1(Y ).

It then follows from Lemma 4.1 that this is a plot of Z1 ∪g Z2, which completes the proof.

Remark 4.5. The proposition just proven will mostly be applied in the case when ψ1 and ψ2 are two
sections of, respectively, pseudo-bundles π1 : V1 → X1 and π2 : V2 → X2 (so Zi = Vi and g is f̃) and,
especially, in the case of sections of the corresponding pseudo-bundles π∗

i ⊗ π∗
i : V ∗

i ⊗ V ∗
i → Xi (which in

what follows we call pseudo-metrics on pseudo-bundles πi). (Below we dedicate a separate section to the
case of two sections of pseudo-bundle).

Assigning to each pair of smooth (f, g)-compatible maps ψ1 and ψ2 the above-defined map ψ1∪(f,g)ψ2

yields a well-defined map

FZ1,Z2
: C∞(X1, Z1)×comp C

∞(X2, Z2) → C∞(X1 ∪f X2, Z1 ∪g Z2).

Both the domain of definition and the range of FZ1,Z2
are naturally diffeological spaces: C∞(X1 ∪f

X2, Z1 ∪g Z2) has the standard functional diffeology, while C∞(X1, Z1) ×comp C
∞(X2, Z2) carries the

subset diffeology coming from the inclusion C∞(X1, Z1)×compC
∞(X2, Z2) ⊂ C∞(X1, Z1)×C∞(X2, Z2),

with the latter space considered with the product diffeology relative to the functional diffeologies on
C∞(X1, Z1) and C

∞(X2, Z2). With respect to these diffeologies the following statement holds.

Theorem 4.6. The map FZ1,Z2
is smooth.

Proof. Let ϕi : Xi → Z1 ∪g Z2 be the composition of ψi with the following: Zi →֒ (Z1 ⊔Z2) → Z1 ∪g Z2,
for i = 1, 2. As a composition of three smooth maps, each ϕi is a smooth map.

Let us show that ϕ1 and ϕ2 are f -compatible. We need to check that for all y ∈ Y we have ϕ2(f(y)) =
ϕ1(y). But by their definitions, ϕ1(y) = g(ψ1(y)), and ϕ2(f(y)) = ψ2(f(y)), so the desired equality follows
from the (f, g)-compatibility between ψ1 and ψ2.

Let us show that ϕ1 ∪f ϕ2 coincides with ψ1 ∪(f,g) ψ2. By definition of the former,

(ϕ1 ∪f ϕ2)(x) =

{

ϕ1(i
−1
1 (x)) = j1(ψ1(i

−1
1 (x))) for x ∈ i1(X1 \ Y ),

ϕ2(i
−1
2 (x)) = j2(ψ2(i

−1
2 (x))) for x ∈ i2(X2).

But the right-hand sides of the two equalities above define precisely the map ψ1 ∪(f,g) ψ2, as wanted.
Observe now that the assignment ψi 7→ ϕi yields a well-defined map Φi : C

∞(Xi, Zi) → C∞(Xi, Z1∪g

Z2); and since this assignment acts by a post-composition with the same fixed map, Φi is smooth for
the functional diffeologies on the two spaces involved. Furthermore, the appropriate restriction Φ of
(Φ1,Φ2) : C

∞(X1, Z1)×C∞(X2, Z2) → C∞(X1, Z1 ∪g Z2)×C∞(X2, Z1 ∪g Z2) is a well-defined smooth
map C∞(X1, Z1)×comp C

∞(X2, Z2) → C∞(X1, Z1 ∪g Z2)×comp C
∞(X2, Z1 ∪g Z2), where the former is

with respect to the (f, g)-compatibility and the latter is with respect to the f -compatibility. It remains
to observe that FZ1,Z2

= FZ1∪gZ2
◦ Φ, so applying Theorem 4.3 for Z = Z1 ∪g Z2, we conclude that

FZ1,Z2
is smooth, as desired.
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4.5 Gluing together two sections of two pseudo-bundles

Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let (f̃ , f) be a gluing
between them. For two sections s1 ∈ C∞(X1, V1) and s2 ∈ C∞(X2, V2) being (f, f̃)-compatible is just a
partial case of the (f, g)-compatibility above, and if s1 and s2 are so, the image FV1,V2

(s1, s2) = s1∪(f,f̃)s2
is a smooth section of the pseudo-bundle π1∪(f̃ ,f)π2 : V1∪f̃V2 → X1∪fX2. Below we prove two statements
applying specifically to this setting.

Proposition 4.7. Let s1 ∈ C∞(X1, V1) and s2 ∈ C∞(X2, V2) be (f, f̃)-compatible, and let h1 ∈
C∞(X1,R) and h2 ∈ C∞(X2,R). Then

(h1 ∪f h2)(s1 ∪(f,f̃) s2) = (h1s1) ∪(f,f̃) (h2s2).

Proof. The proof is by pointwise consideration of the sections on the two sides of the equality. Namely,
recall that

(h1 ∪f h2)(x) =

{

h1(i
−1
1 (x)) if x ∈ Im(i1),

h2(i
−1
2 (x)) if x ∈ Im(i2),

and accordingly,

(s1 ∪(f,f̃) s2)(x) =

{

j1(s1(i
−1
1 (x))) if x ∈ Im(i1),

j2(s2(i
−1
2 (x))) if x ∈ Im(i2).

Therefore

(h1 ∪f h2)(s1 ∪(f,f̃) s2)(x) =

{

(h1(i
−1
1 (x))) · j1(s1(i

−1
1 (x))) = j1((h1s1)(i

−1
1 (x))) if x ∈ Im(i1),

(h2(i
−1
2 (x))) · j2(s2(i

−1
2 (x))) = j2((h2s2)(i

−1
2 (x))) if x ∈ Im(i2),

whence the conclusion.

The next statement essentially follows from the already-seen commutativity between gluing and tensor
product (in particular, the proof is a combination of the pointwise consideration of the two sections, and
the above-mentioned commutativity).

Proposition 4.8. Let si ∈ C∞(Xi, Vi) and s
′
i ∈ C∞(Xi, V

′
i ) be such that s1, s2 and s2, s

′
2 are two pairs

of (f, f̃)-compatible sections. Let f̃ ′ be a lift of f to pseudo-bundles V ′
1 , V

′
2 . Then

(s1 ∪(f,f̃) s2)⊗ (s′1 ∪(f,f̃ ′) s
′
2) = (s1 ⊗ s′1) ∪(f,f̃⊗f̃ ′) (s2 ⊗ s′2).

5 Pseudo-metrics on pseudo-bundles

In this section we consider the notion obtained by a natural extension of the usual definition of a Rieman-
nian metric to the case of diffeological vector pseudo-bundles. This extension has two aspects: one is that
the requirement of smoothness assumes its diffeological meaning; the other is that instead of asking for
a scalar product on each fibre, we ask for there to be a pseudo-metric in the sense of diffeological vector
spaces (see [8] and Section 1). The notion thus obtained is again called a (diffeological) pseudo-metric on
a pseudo-bundle; it was already considered in [9]. Here we build on and extend the results of the latter
(briefly citing them as necessary).

5.1 The definition and examples

As has been indicated above, the definition of a pseudo-metric on a finite-dimensional diffeological vector
pseudo-bundle is given in a form very much similar to that of a usual Riemannian metric.

Definition 5.1. Let π : V → X be a diffeological vector pseudo-bundle with finite-dimensional fibres. A
pseudo-metric on this pseudo-bundle is a smooth section g : X → V ∗⊗V ∗ of the pseudo-bundle V ∗⊗V ∗

such that for every x ∈ X the bilinear form g(x) is symmetric and of rank equal to dim((π−1(x))∗) ( i.e.,
g(x) is a pseudo-metric on the diffeological vector space π−1(x)).
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Let us also briefly explain why g(x) is, in fact, a bilinear form. This is for the same reason as it
would be so in the usual Riemannian context: indeed, by Theorem 2.3.5 of [14] there is a diffeomorphism
between the space of bilinear forms on any diffeological vector spaceW and (W ⊗W )∗, and it was shown
in [7] that (W ⊗W )∗ is indeed diffeomorphic to W ∗ ⊗W ∗.

A usual metric on the tangent bundle of a smooth manifold is of course an example of a pseudo-metric
on a pseudo-bundle, but let us give another one, more specific to diffeology.

Example 5.2. Take X to be the standard R, and endow V = R
3 with the pseudo-bundle diffeology, relative

to its projection onto the first coordinate, and generated by the plot p : R2 ∋ (u, v) 7→ (u, 0, |v|) ∈ R
3 = V .

Thus, the diffeology of V , as well as its structure as the total space of this pseudo-bundle, corresponds to
its presentation as the direct product R × R

2; this product diffeology comes from the standard diffeology
on R = X and the vector space diffeology on R

2 generated by the plot v 7→ (0, |v|). The pseudo-bundle
map π is just the projection onto the first factor.

Since the diffeology on V is a product diffeology, the pseudo-bundle in question is trivial (diffeolog-
ically), so finding a pseudo-metric is easy; we can choose one on the fibre and set it to be the chosen
one on any other fibre. Thus, the question reduces itself to one regarding pseudo-metrics, in the sense
of vector spaces, on R

2 (we write it in the (y, z)-coordinates coming from the ambient R
3 = V ) with

diffeology generated by v 7→ (0, |v|). This we have seen already, in the sense that each smooth linear map
f on this space is given by (y, z) 7→ ay for some constant a; by abuse of notation we can then write f as
f = ae2 (making an implicit reference to the canonical dual basis of the ambient R3 and the same direct
product decomposition of its dual space). It follows then that any pseudo-metric g(x) on a given fibre
π−1(x) has form g(x) = a(x)e2 ⊗ e2, where a : R → R is a smooth everywhere positive function.

5.2 Non-existence of pseudo-metrics

It is in fact rather easy to show why a pseudo-metric does not always exist; one of the simplest examples
of a non-locally trivial pseudo-bundle suffices for that.

Example 5.3. Let V = R
2 and X = R; let π : V → X be the projection on the x-axis, π(x, y) = x.

Endow X with the standard diffeology, and endow V with the pseudo-bundle diffeology generated by the
plot p : R2 → V defined by p(u, v) = (u, u|v|).

Lemma 5.4. If π : V → X is the pseudo-bundle of Example 5.3, it does not admit a pseudo-metric.

Proof. Observe that, outside of the origin of X , the diffeology on the fibre is the vector space diffeology
on R generated by the plot v 7→ |v|, while over the origin the fibre is R with the standard diffeology. This
implies, in particular, that the fibre over a point x 6= 0 has trivial dual, while the dual of a fibre over
x = 0 is the standard R.

Let us now consider the dual bundle. Since from the topological point of view the pseudo-bundle V is
a trivial vector bundle, and its vector bundle structure corresponds to the direct product decomposition
R × R, we can represent each element v∗ ∈ V ∗ of the dual bundle V ∗ in the form (x, f(x)e2), where
x = π∗(v∗) and f(x)e2 describes the action of v∗ on the fibre π−1(x) = {(x, y)|y ∈ R} (any linear map
on this fibre is a multiple of e2 given by e2(x, 1) = 1; f(x) is the corresponding coefficient).

Now, by definition, a pseudo-metric is a smooth section of V ∗ ⊗ V ∗; by the same reasoning as above,
it can be written as x 7→ (x, f(x)e2 ⊗ e2) for some function f : R → R. Notice that, since the tensor
product V ∗ ⊗ V ∗ is fibrewise, it is zero everywhere except the origin (over which it is the standard R).
Thus, f(x) is a positive multiple of the δ-function, namely, the function δ : R → R given by δ(0) = 1 and
δ(x) = 0 for x 6= 0. Thus, let us see whether g : x 7→ (x, δ(x)e2 ⊗ e2) is, or is not, a smooth section of
V ∗ ⊗ V ∗.

By linearity and the fact that V ∗ ⊗ V ∗ = (V ⊗ V )∗, it suffices to establish the smoothness of the
evaluation of g on q⊗ s, where q, s : U → V are an arbitrary pair of plots of V (such that q1(u) = s1(u)).
Notice that we can choose q(u) = s(u) = (u, 1) for u ∈ R (this is a plot for the pseudo-bundle diffeology).
Then the evaluation in question is the function u 7→ δ(u), and so, obviously, it is not smooth. Since this
was the unique possibility, we conclude that no pseudo-metric exists on this pseudo-bundle.

Lemma 5.4 thus shows that a non locally trivial pseudo-bundle may well not admit a pseudo-metric
(in the concluding section of this paper we mention a way to rectify this specific situation, via a concept
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of a δ-metric), although we would not be ready to describe the totality of situations for non-existence.
Likewise, as far as existence matters are concerned, we are not able to give a complete characterization of
the class of pseudo-bundles that admit a pseudo-metric; the discussion that follows is mostly restricted to
the case of pseudo-bundles that are obtained by gluing of several (a finite number of) copies of diffeological
trivial bundles.

6 Pseudo-metrics and gluing

Continuing from the previous section, we turn to the question which, most generally, is stated as follows:
given a gluing of two pseudo-bundles endowed with a pseudo-metric, when does there exist a natural
pseudo-metric on the result of gluing?

For the duration of this section we fix the following notation: π1 : V1 → X1 and π2 : V2 → X2 are two
diffeological vector pseudo-bundles, carrying pseudo-metrics g1 : X1 → V ∗

1 ⊗ V ∗
1 and g2 : X2 → V ∗

2 ⊗ V ∗
2 ,

respectively. Furthermore, we are given a gluing between the two pseudo-bundles, along the maps f :
X1 ⊃ Y → X2 and f̃ : π−1

1 (Y ) → π−1
2 (f(Y )). Recall that both maps are smooth, and, moreover, f̃ is

linear on each fibre in its domain of definition.

6.1 Compatibility for pseudo-metrics and the induced gluing

A natural compatibility, with respect to gluing, condition for pseudo-metrics can be stated with only
obvious geometric considerations in mind. Specifically, for all y ∈ Y and for all v1, v2 ∈ π−1

1 (Y ) we must
have

g1(y)(v1, v2) = g2(f(y))(f̃ (v1), f̃(v2)).

One may wonder then, whether this notion corresponds to some specific instance of the (f, g)-
compatibility of smooth maps, introduced in Section 4.2, and if the map FZ1,Z2

considered in Section 4.4
could be employed to assign to our two pseudo-metrics g1 and g2 one on the pseudo-bundle π1 ∪(f̃ ,f) π2
obtained by gluing. The answer is easily positive to the former:

Lemma 6.1. Suppose that f is invertible. Then the pseudo-metrics g1 and g2 are compatible if and only
if they are (f−1, f̃∗ ⊗ f̃∗)-compatible.

Proof. Being (f−1, f̃∗⊗f̃∗)-compatible for g1 and g2 means g1◦f−1 = (f̃∗⊗f̃∗)◦g2 wherever defined, and it
is obvious that, considered pointwise, this equality amounts to g1(f

−1(y′))(v1, v2) = g2(y
′)(f̃(v1), f̃(v2)).

Since f is invertible, this is the same as the above definition of compatibility for g1 and g2.

Thus, it does make sense to speak of FV ∗

2
⊗V ∗

2
,V ∗

1
⊗V ∗

1
(g2, g1), i.e., the map g2 ∪(f−1,f̃∗⊗f̃∗) g1, and we

discuss it in the section that immediately follows. However, a priori it is not a pseudo-metric (in fact, it
does not even have the form of one).

6.2 The map g2 ∪(f−1,f̃∗⊗f̃∗) g1

What the concluding sentence of the previous section means precisely, is that the map g2∪(f−1, f̃∗ ⊗ f̃∗)g1
is defined between the following spaces:

X2 ∪f−1 X1 → (V ∗
2 ⊗ V ∗

2 ) ∪f̃∗⊗f̃∗ (V
∗
1 ⊗ V ∗

1 ).

Thus, it is not a pseudo-metric, at least not formally; to become one, it must be pre- and post-composed
with appropriate diffeomorphisms, if such exist.

More precisely, what we are looking for is a pseudo-metric on the pseudo-bundle π1 ∪(f̃ ,f) π2 : V1 ∪f̃

V2 → X1 ∪f X2; such a pseudo-metric must, first of all, be a map of form

X1 ∪f X2 → (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗.

Now, since f is a diffeomorphism of its domain with its image, there is a natural diffeomorphism between
X1 ∪f X2 and X2 ∪f−1 X1, so the real issue regards the existence of a diffeomorphism between (V1 ∪f̃
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V2)
∗ ⊗ (V1 ∪f̃ V2)

∗ and (V ∗
2 ⊗ V ∗

2 ) ∪f̃∗⊗f̃∗ (V ∗
1 ⊗ V ∗

1 ), something which we discuss in the section that
follows referring to it as the (gluing-dual) commutativity condition; in the rest of this section we consider
a minor commutativity condition on the base space of the glued pseudo-bundle (this commutativity is
always present, being a direct consequence of the assumptions on f).

Recall the switch map ϕ, discussed immediately prior to Proposition 3.5. We now introduce its more
general counterpart.

Definition 6.2. Let X1 and X2 be two diffeological spaces, and let f : X1 ⊃ Y → X2 be a map that
is a diffeomorphism with its image. The switch map ϕX1↔X2

: X1 ∪f X2 → X2 ∪f−1 X1 is the map
satisfying the following conditions: (ϕX1↔X2

) ◦ i′1, where i
′
1 : X1 →֒ (X1 ⊔ X2) → X1 ∪f X2, coincides

with the composition X1 →֒ (X2⊔X1) → X2∪f−1 X1, while (ϕX1↔X2
)◦ i2 coincides with the composition

X2 →֒ (X2 ⊔X1) → X2 ∪f−1 X1.

The following lemma is quite obvious.

Lemma 6.3. The switch map ϕX1↔X2
is uniquely defined and is a diffeomorphism.

6.3 The gluing-dual commutativity condition

This issue has already been discussed in the section 2.4; we now simply give its formulation appropriate
for the current context. Essentially, the commutativity condition is satisfied if

(V1 ∪f̃ V2)
∗ = V ∗

2 ∪f̃∗ V
∗
1 .

We have discussed already the fact that essentially, this condition must be stated in this form and cannot
be replaced by a simpler version. Thus, when we say that the (gluing-dual) commutativity condition
is fulfilled (or just, commutativity condition, when it is clear from the context which commutativity we
are referring to) when we are guaranteed the existence of a diffeomorphism

ψ∪↔∗ : (V1 ∪f̃ V2)
∗ → V ∗

2 ∪f̃∗ V
∗
1

that covers the switch map ϕX1↔X2
.

6.4 The commutative case

In this section we assume that the gluing-dual commutativity condition is satisfied; it is then quite easy
to see that there is a canonically defined pseudo-metric on the glued bundle, induced by any pair of
compatible pseudo-metrics on the factors. Furthermore, this allows for the existence of a smooth map
between the relevant spaces of pseudo-metrics, as explained below.

6.4.1 Constructing the induced pseudo-metric

Even without the assumption of gluing-dual commutativity, we can always obtain the following map:

g2 ∪(f−1,f̃∗⊗f̃∗) g1 : X2 ∪f−1 X1 → (V ∗
2 ⊗ V ∗

2 ) ∪f̃∗⊗f̃∗ (V
∗
1 ⊗ V ∗

1 ).

As has been explained above, since the gluing commutes with tensor product, we have the following
equality for the range of this map:

(V ∗
2 ⊗ V ∗

2 ) ∪f̃∗⊗f̃∗ (V
∗
1 ⊗ V ∗

1 ) = (V ∗
2 ∪f̃∗ V

∗
1 )⊗ (V ∗

2 ∪f̃∗ V
∗
1 );

this is always true. But by the assumptions in the case we are considering, we also have

(V ∗
2 ∪f̃∗ V

∗
1 )⊗ (V ∗

2 ∪f̃∗ V
∗
1 ) = (V1 ∪f̃ V2)

∗ ⊗ (V1 ∪f̃ V2)
∗.

Thus, we obtain a diffeomorphism

Ψ∪,∗ : (V ∗
2 ⊗ V ∗

2 ) ∪f̃∗⊗f̃∗ (V
∗
1 ⊗ V ∗

1 ) → (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗.
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Finally, let ψ : X1 ∪f X2 → X2 ∪f−1 X1 be the obvious diffeomorphism (observe in particular that
Ψ∪,∗ is a lift of its inverse ψ−1, although this is not the use we make of it). To conclude, we define

g̃ : X1 ∪f X2 → (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗

by setting
g̃ = Ψ∪,∗ ◦ (g2 ∪(f−1,f̃∗⊗f̃∗) g1) ◦ ψ.

Theorem 6.4. Let π1 : V1 → X1 and π2 : V2 → X2 be two finite-dimensional diffeological vector pseudo-
bundles, and let (f̃ , f) be a gluing between them given by a smooth invertible f : X1 ⊃ Y → X2 and
its smooth fibrewise linear lift f̃ . Suppose that (π−1

2 (f(Y ))∗ and (π−1
1 (Y ))∗ are fibrewise diffeomorphic.

Finally, assume that for i = 1, 2 there exists a pseudo-metric gi on Xi such that g1 and g2 are (f, f̃)-
compatible. Then the map

g̃ = Ψ∪,∗ ◦ (g2 ∪(f−1,f̃∗⊗f̃∗) g1) ◦ ψ,

where Ψ∪,∗ and ψ are as as above, is a pseudo-metric on the pseudo-bundle π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 →
X1 ∪f X2.

Proof. That g̃(x) is a bilinear symmetric form on the fibre over each x ∈ X1 ∪f X2 follows from the
construction (and is explained prior to the statement of the theorem); we should check that g̃ is smooth,
and that g̃(x) has the maximal possible rank for the corresponding fibre. Since Ψ∪,∗ and ψ are diffeo-
morphisms, this follows from the corresponding properties of g2 ∪(f−1,f̃∗⊗f̃∗) g1. Now, the latter map
is smooth, for the gluing diffeologies on its domain and co-domain, because because it is obtained by
diffeological gluing of two smooth maps. Its rank should be checked only over the domain of gluing,
otherwise it coincides with that of either g1 or g2 (and so is indeed the maximal possible for the fibre in
question).

Let y ∈ i2(f(Y )) ⊂ V1 ∪f̃ V2; the fibre (π1 ∪(f̃ ,f) π2)
−1(y) is by construction (diffeomorphic to)

π−1
2 (i−1

2 (y)). The value g̃(y) ∈ (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗ is obtained as g̃(y) = Ψ∪,∗(g2(i
−1
2 (y))) =

Ψ∪,∗(g1(i
−1
1 (f−1(y)))) (notice that, since f is invertible, we extend i1 to the induction X1 →֒ X1 ∪f X2

in an obvious way). Notice that g2(i
−1
2 (y)) is formally an element of V ∗

2 ⊗ V ∗
2 belonging to the fibre over

i−1
2 (y). It however represents an element of the domain of definition (V ∗

2 ⊗V ∗
2 )∪f̃∗⊗f̃∗ (V ∗

1 ⊗V ∗
1 ) of Ψ∪,∗,

where it is identified to (f̃∗⊗ f̃∗)(g1(i
−1
1 (f−1(y)))); this is well-defined by the compatibility of g1 and g2.

Finally, since Ψ∪,∗ is a diffeomorphism, we can deduce that the rank of g̃(y) is equal to that of
g2(i

−1
2 (y)). Since the latter is by assumption a pseudo-metric on π−1

2 (i−1
2 (y)) (in the sense of diffeological

vector spaces, obviously), it achieves the maximal rank possible on the space in question, that is, the
rank equal to dim((π−1

2 (i−1
2 (y)))∗).

6.5 The noncommutative case

The absence of commutativity between the operation of gluing and that of taking the dual pseudo-bundle
does not necessarily preclude the existence of an induced pseudo-metric on the result of a given gluing.
Indeed, one can define such directly, as we do below, using the fact that every fibre of V1∪f̃ V2 is identical
to one of either V1 or V2, and thus, by construction, the analogous statement is true for every fibre of
(V1 ∪f̃ V2)

∗ ⊗ (V1 ∪f̃ V2)
∗.

Let us now describe the pseudo-metric thus obtained. Suppose that we are given two diffeological
vector pseudo-bundles π1 : V1 → X1 and π2 : V2 → X2, a gluing of the former to the latter along an
appropriate pair (f̃ , f) of maps, and two compatible pseudo-metrics g1 and g2 on V1 and V2 respectively.
We now define a section

g̃ : X1 ∪f X2 → (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗

by setting its value on x1 ∈ i1(X1 \ Y ) to be

g̃(x1) := g1(x1) ◦ (j
−1
1 ⊗ j−1

1 ) ∈ (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗,

and then
g̃(x2) := g2(x2) ◦ (j

−1
2 ⊗ j−1

2 ) ∈ (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗
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for x2 ∈ i2(X2). The map g̃ is thus well-defined (simply because i1, i2 are inductions whose images
form a disjoint cover of X1 ∪f X2, and the same holds for j1, j2 and V1 ∪f̃ V2), and pointwise produces
a pseudo-metric on the relevant fibre. It remains to show that g̃ is smooth as a map X1 ∪f X2 →
(V1 ∪f̃ V2)

∗ ⊗ (V1 ∪f̃ V2)
∗.

Theorem 6.5. Let π1 : V1 → X1 and π2 : V2 → X2 be two finite-dimensional diffeological vector pseudo-
bundles, let (f̃ , f) be a gluing between them, and let g1 and g2 be pseudo-metrics on V1 and, respectively,
V2 compatible with respect to the gluing. Define g̃ : X1 ∪f X2 → (V1 ∪f̃ V2)

∗ ⊗ (V1 ∪f̃ V2)
∗ as

g̃(x) =

{

g1(x) ◦ (j
−1
1 ⊗ j−1

1 ) for x ∈ i1(X1 \ Y )
g2(x) ◦ (j

−1
2 ⊗ j−1

2 ) for x ∈ i2(X2).

Then g̃ is a pseudo-metric on the pseudo-bundle π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2.

Proof. Consider a plot p : U → X1 ∪f X2 of X1 ∪f X2. By definition of the gluing diffeology such a plot
locally lifts either to a plot p2 : U → X2 of X2, and then we have p = i2 ◦ p2, or to a plot p1 : U → X1 of
X1 and then p has the following form:

p(u) =

{

i1(p1(u)) for u ∈ U such that p1(u) ∈ (X1 \ Y ),
i2(f(p1(u))) for u ∈ U such that p1(u) ∈ Y.

We need to show that the composition g̃(p(u)) is a plot of the tensor product (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗.
By the definition of the tensor product diffeology and that of the gluing diffeology, we need to show

that its evaluation
(u, u′) 7→ g̃(p(u))(q(u′), s(u′))

on a pair of plots q, s : U ′ → V1∪f̃ V2 of V1∪f̃ V2 (with q(u′), s(u′) belonging to the same fibre for all u′) is
a smooth function on its domain of definition. This domain of definition is a subset of U ×U ′ consisting
precisely of those pairs (u, u′) for which (π1 ∪(f̃ ,f) π2)(q(u

′)) = (π1 ∪(f̃ ,f) π2)(s(u
′)) = p(u) and carries

the subset diffeology relative to this inclusion. Furthermore, the assumption that q and s are plots of
V1 ∪f̃ V2 means the following (we give an explicit description for q only). As it happens for all plots of a
gluing diffeology, q locally lifts either to a plot q2 of V2, in which case q = j2 ◦ q2, or to a plot q1 of V1,
and then it has the following form:

q(u′) =

{

j1(q1(u
′)) if π1(q1(u

′)) ∈ X1 \ Y,

j2(f̃(q1(u
′))) if π1(q1(u

′)) ∈ Y.

Suppose first that p lifts to a plot p1 (the second case); consider the evaluation (u, u′) 7→ g̃(p(u))(q(u′), s(u′)).
We have

g̃(p(u))(q(u′), s(u′)) =

{

g1(p1(u))(q1(u
′), s1(u

′)) if p1(u) ∈ X1 \ Y,

g2(f(p1(u)))(f̃(q1(u
′)), f̃(s1(u

′))) if p1(u) ∈ Y.

Now, the first expression is the evaluation of g1 ◦ p1 at a pair of plots q1, s1 of V1, while the second one
equals to

g2(f(p1(u)))(f̃ (q1(u
′)), f̃(s1(u

′))) = g1(p1(u))(q1(u
′), s1(u

′))

by the compatibility condition. Thus, g̃(p(u))(q(u′), s(u′)) coincides, for all (u, u′) for which it is defined,
with the evaluation of g1 ◦ p1 on a pair of plots q1, s1 of V1, so it is a smooth function by the smoothness
of g1.

Finally, if we suppose that p lifts to a plot p2 of X2, then in the domain of the evaluation function,
the two plots q and s must also lift to plots q2 and s2 of V2 (not those of V1). Therefore the result of the
evaluation function is

g̃(p(u))(q(u′), s(u′)) = g2(p2(u))(q2(u
′), s2(u

′)).

Since the latter coincides with the value of the evaluation function for the pseudo-metric g2 on plots p2,
q2, and s2, we conclude that (u, u′) 7→ g̃(p(u))(q(u′), s(u′)) is smooth, whence the final conclusion of the
theorem.
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6.6 Comparison of commutative and noncommutative cases

It is natural to wonder at this point whether the two versions of the pseudo-metric g̃ on π1 ∪(f̃ ,f) π2 :
V1 ∪f̃ V2 → X1 ∪f X2 provided respectively by Theorem 6.4 and by Theorem 6.5, coincide in the case
when both are applicable (that is, in the commutative case). We now show that they always do (this is
a direct consequence of the construction).

Theorem 6.6. Let πi : Vi → Xi for i = 1, 2 be two diffeological vector pseudo-bundles, and let (f̃ , f) be
a usual pair of maps defining gluing of V1 to V2. Suppose that there is a diffeomorphism (V1 ∪f̃ V2)

∗ →
V ∗
2 ∪f̃∗ V ∗

1 covering the switch map ϕX1↔X2
. Finally, let gi be a pseudo-metric on πi : Vi → Xi and

assume that g1 and g2 are (f, f̃)-compatible. Then the commutative and the noncommutative versions of
g̃ yield the same pseudo-metric on π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2.

Proof. Let us compare the two maps pointwise, denoting the commutative version by g̃′ and the non-
commutative one by g̃′′. Let x1 ∈ i1(X1 \ Y ), and let v1, v2 ∈ (π1 ∪(f̃ ,f) π2)

−1(x1); note that v1, v2 ∈

j1(V1 \ π
−1
1 (Y )). Starting with g̃′, we obtain

g̃′(x1)(v1, v2) = g1(i
−1
1 (x1))(j

−1
1 (v1), j

−1
1 (v2)) =

(

g1(i
−1
1 (x1)) ◦ j

−1
1 ⊗ j−1

1

)

(v1, v2) = g̃′′(x1).

Similarly, if x2 ∈ i2(X2) and v1, v2 ∈ (π1 ∪(f̃ ,f) π2)
−1(x2) then v1, v2 ∈ j2(V2), and we obtain

g̃′(x2)(v1, v2) = g2(i
−1
2 (x2))(j

−1
2 (v1), j

−1
2 (v2)) =

(

g2(i
−1
2 (x2)) ◦ j

−1
2 ⊗ j−1

2

)

(v1, v2) = g̃′′(x2).

We conclude saying that the commutative version, when defined, is in some cases more convenient,
being a kind of functorial construction; the noncommutative version is more direct and more generally
applicable.

6.7 Using the gluing construction to prove existence

We conclude this section with observing that the gluing construction and the corresponding procedure
for obtaining a pseudo-metric on the resulting pseudo-bundle (see Theorem 6.5) might allow for proving
existence of pseudo-metrics on a rather wide class of pseudo-bundles, such as all those obtained by gluing
together standard bundles (projections of form R

n = R
k × R

n−k → R
k), as long as compatible pseudo-

metrics can be found on the factors. Since we are not ready to give a comprehensive statement to this
matter, we limit ourselves to this brief remark.

7 The spaces of pseudo-metrics G(V1, X1) and G(V2, X2), and the

space G(V1 ∪f̃ V2, X1 ∪f X2)

For any finite-dimensional diffeological vector pseudo-bundle π : V → X , let G(V,X) stand for the
space of all pseudo-metrics on this pseudo-bundle. This space is naturally endowed with the functional
diffeology, and so is a diffeological space.

The above-considered assignment of a new pseudo-metric g̃, for every pair of compatible pseudo-
metrics g1 and g2, can be seen as a map defined on some subset of G(V1, X1) × G(V2, X2) and taking
values in G(V1∪f̃ V2, X1∪fX2). In this section we consider the smoothness of this map (for the diffeologies
indicated).

7.1 The map P

Let π1 : V1 → X1 and π2 : V2 → X2 be two finite-dimensional diffeological vector pseudo-bundles, let
f : X1 ⊃ Y → X2 be a smooth map, and let f̃ : π−1

1 (Y ) → π−1
2 (f(Y )) be a smooth lift of f that is linear

on each fibre. Suppose that G(Vi, Xi) 6= ∅ for i = 1, 2, and assume that there exists at least one pair of
compatible pseudo-metrics g1, g2 with gi ∈ G(Vi, Xi); note that the construction of g̃ out of g1, g2 that is
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described in the previous section allows to conclude immediately that the set G(V1 ∪f̃ V2, X1 ∪f X2) is
also non-empty.

Consider now the subset G(V1, X1) ×comp G(V2, X2) of the direct product G(V1, X1) × G(V2, X2);
this subset consists of all pairs of compatible pseudo-metrics and is endowed with the subset diffeology
relative to the product diffeology on G(V1, X1)×G(V2, X2) (this product diffeology, in turn, is relative to
the functional diffeologies on G(V1, X1) and G(V2, X2)).

Let us define the following map:

P : G(V1, X1)×comp G(V2, X2) → G(V1 ∪f̃ V2, X1 ∪f X2)

acting by
P(g1, g2) = g̃,

where g̃ is associated (see Theorem 6.4) to g2 ∪(f−1,f̃∗⊗f̃∗) g1 in the gluing-dual commutative case and is
given by Theorem 6.5 in the corresponding non-commutative case. We shall now show that this map is
smooth for the diffeologies on its domain and its range indicated above.

7.2 Smoothness with the commutativity assumption

Although the pseudo-metric g̃ obtained under the assumption of the gluing-dual commutativity is a
partial case of the one obtained without such assumption, we do give a separate proof of the smoothness
of P in this case (it is quite different, and also brief).

Theorem 7.1. The map P is smooth.

Proof. The map P can be written as the composition of three maps, specifically: the map

G(V1, X1)×comp G(V2, X2) → G(V2, X2)× G(V1, X1),

which is just the order change within the direct product; the map

FV ∗

2
⊗V ∗

2
,V ∗

1
⊗V ∗

1
: C∞(X2, V

∗
2 ⊗V

∗
2 )×compC

∞(X1, V
∗
1 ⊗V

∗
1 ) → C∞(X2∪f−1X1, (V

∗
2 ⊗V

∗
2 )∪f̃∗⊗f̃∗(V

∗
1 ⊗V

∗
1 ))

(where the compatibility is considered with respect to the maps f−1 and f̃∗ ⊗ f̃∗), which is a particular
case of the map of Theorem 4.6; and the map

C∞(X2 ∪f−1 X1, (V
∗
2 ⊗ V ∗

2 ) ∪f̃∗⊗f̃∗ (V
∗
1 ⊗ V ∗

1 )) → C∞(X2 ∪f−1 X1, (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗),

which acts by post-composing with the fixed map Ψ∪,∗.
The first of these maps is smooth by definition of the product diffeology; and so is the second, by

Theorem 4.6. That the third map is smooth, can easily be deduced from the definition of a functional
diffeology and the fact that it is a composition with a fixed map, which can be seen as the image of a
constant plot.5

7.3 Smoothness without the commutativity assumption

In this absence of the gluing-dual commutativity, the description of the pseudo-metric g̃ = P(g1, g2) is
pointwise, so we give a direct proof.

Theorem 7.2. For any two (f, f̃)-compatible pseudo-metrics g1 and g2 on the pseudo-bundles π1 : V1 →
X1 and π2 : V2 → X2 consider the pseudo-metric g̃ on the pseudo-bundle π1∪(f̃ ,f)π2 : V1∪f̃V2 → X1∪fX2

defined, for every x ∈ X1 ∪f X2 and v, w ∈ (π1 ∪(f̃ ,f) π2)
−1(x) as

g̃(x)(v1, v2) =

{

g1(i
−1
1 (x))(j−1

1 (v), j−1
1 (w)) if x ∈ Im(i1),

g2(i
−1
2 (x))(j−1

2 (v), j−1
2 (w)) if x ∈ Im(i2).

5We are making an implicit reference to the fact that, ifX,Y, Z are diffeological spaces, and each of C∞(X, Y ), C∞(Y,Z),
C∞(X,Z) is considered with the functional diffeology, then the composition map C∞(X, Y ) × C∞(Y, Z) → C∞(X,Z) is
smooth (for the product diffeology on its domain of definition), see [6], Section 1.59.
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Then the map
P : G(V1, X1)×comp G(V2, X2) → G(V1 ∪f̃ V2, X1 ∪f X2)

defined by P(g1, g2) = g̃ is smooth.

Proof. We must show that the composition of P with an arbitrary plot p of G(V1, X1)×compG(V2, X2) is a
plot of G(V1 ∪f̃ V2, X1∪f X2). By definitions of the subset diffeology and the product one, we can assume
from the start that the domain of definition of p is small enough so that p writes as a pair of form (p1, p2),
where each pi : U → G(Vi, Xi) is a plot of G(Vi, Xi); the diffeology of the latter being the subset diffeology
relative to the functional diffeology on C∞(Xi, V

∗
i ⊗ V ∗

i ), our assumptions thus amount to precisely the
following. First of all, the map ϕi : U ×X → V ∗

i ⊗V ∗
i given by (u, x) 7→ pi(u)(x) must be smooth; this in

turn means that for every plot qi : U
′
i → Xi the map defined by U×U ′

i ∋ (u, u′) 7→ pi(u)(qi(u
′)) ∈ V ∗

i ⊗V ∗
i

must be a plot of V ∗
i ⊗ V ∗

i . And this, finally, means that for any two plots si, ti : U
′′
i → Vi the map

U × U ′
i × U ′′

i ∋ (u, u′, u′′) 7→ pi(u)(qi(u
′))(si(u

′′), ti(u
′′)),

defined on the subset of triples (u, u′, u′′) such that πi(si(u
′′)) = πi(ti(u

′′)) = qi(u
′), must be a R-valued

smooth map (for the subset diffeology of the appropriate triples).
On the other hand (also by the properties of functional diffeologies), since we need to show that P ◦ p

is a plot of G(V1∪f̃ V2, X1∪fX2), this amounts to taking an arbitrary plot q : U ′ → X1∪f X2 of X1∪f X2

and showing that U × U ′ ∋ (u, u′) 7→ (P(p(u)))(q(u′)) is a plot of (V1 ∪f̃ V2)
∗ ⊗ (V1 ∪f̃ V2)

∗, that is, for
any two plots s, t : U ′′ → V1 ∪f̃ V2 of V1 ∪f̃ V2, the map

U × U ′ × U ′′ ∋ (u, u′, u′′) 7→ (P(p(u)))(q(u′))(s(u′′), t(u′′)),

once again defined precisely for those triples for which (π1∪(f̃ ,f)π2)(s(u
′′)) = (π1∪(f̃ ,f)π2)(t(u

′′)) = q(u′),
is a R-valued map smooth for the subset diffeology on the set of such triples.

Recall, finally, that by definition of P we have

P(p(u))(q(u′)) =

{

p1(u)(i
−1
1 (q(u′))) ◦ (j−1

1 ⊗ j−1
1 ) if q(u′) ∈ Im(i1),

p2(u)(i
−1
2 (q(u′))) ◦ (j−1

2 ⊗ j−1
2 ) if q(u′) ∈ Im(i2).

Now, every plot q of X1 ∪f X2 locally lifts to either a plot q1 of X1, or to a plot q2 of X2. Suppose
first that it lifts to a plot q2; this means that q = i2 ◦ q2. Then we have:

(P(p(u)))(q(u′))(s(u′′), t(u′′)) = p2(u)(q2(u
′))(j−1

2 (s(u′′)), j−1
2 (t(u′′))).

Recalling that j−1
2 ◦s and j−1

2 ◦t are plots of V2 (by j2 being an induction), we conclude that the evaluation
(u, u′, u′′) 7→ (P(p(u)))(q(u′))(s(u′′), t(u′′)) is a smooth map from its domain of definition to R.

Suppose, finally, that q lifts to a plot q1 of X1; this means that

q(u′) =

{

i1(q1(u
′)) if q1(u

′) ∈ X1 \ Y,
i2(f(q1(u

′))) if q1(u
′) ∈ Y.

Accordingly, we obtain

P(p(u))(q(u′))(s(u′′), t(u′′)) =

{

p1(u)(q1(u
′))(j−1

1 (s(u′′)), j−1
1 (t(u′′))) if q1(u

′) ∈ X1 \ Y,
p2(u)(f(q1(u

′)))(j−1
2 (s(u′′)), j−1

2 (t(u′′))) if q1(u
′) ∈ Y.

Recall now that s : U ′′ → V1 ∪f̃ V2 (we consider only one of s, t, the reasoning is completely the same
for the other) is a plot of V1 ∪f̃ V2, so (as usual, we assume that U ′′ is small enough) it lifts either to
a plot of V1 or that of V2. Now, since (π1 ∪(f̃ ,f) π2)(s(u

′′)) = q(u′), and we assumed that q lifts to a

plot of X1, we see that s lifts to a plot s1 of V1, and furthermore, whenever q1(u
′) ∈ Y , we have that

j−1
2 (s(u′′)) = f̃(s1(u

′′)) (while we have j−1
1 (s(u′′)) = s1(u

′′) elsewhere). For the same reason, there is a
plot t1 of V1 such that q1(u

′) ∈ Y ⇒ j−1
2 (t(u′′)) = f̃(t1(u

′′)) and j−1
1 (t(u′′)) = t1(u

′′) in all other cases.
It remains to observe that, by compatibility of the pseudo-metrics p1(u) and p2(u), we have

p2(u)(f(q1(u
′)))(j−1

2 (s(u′′)), j−1
2 (t(u′′))) = p2(u)(f(q1(u

′)))(f̃ (s1(u
′′)), f̃(t1(u

′′))) =

= p1(u)(q1(u
′))(s1(u

′′), t1(u
′′)),

which is the same expression that defines P(p(u))(q(u′))(s(u′′), t(u′′)) for q1(u
′) ∈ X1 \Y , and we get the

final conclusion from the assumptions on p(u).
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We thus can see directly that there is a clear relation between the space of pairs of compatible pseudo-
metrics on the factors of gluing, and the space of pseudo-metrics on the result of gluing. Furthermore,
it is quite clear that the map P is a diffeomorphism if f̃ is so; in fact, it probably suffices for f̃ to be an
induction (checking this thoroughly is left for future work). More in general, P is always injective (this
follows simply from the fact that the restriction of P(g1, g2) on each fibres coincides with either g1 or g2,
and from the compatibility of these); on the other hand, it is not quite clear whether/when it would be
surjective (once again, the issue is left for future work).

8 The induced metric on the dual pseudo-bundle

Similarly to the standard case, if a given finite-dimensional diffeological vector pseudo-bundle π : V → X
admits a pseudo-metric g, then there is a natural induced pseudo-metric on its dual pseudo-bundle
π∗ : V ∗ → X .

The natural pairing map induced by a pseudo-metric Let us define the following pseudo-bundle
map Φ from V to V ∗. We set, for every v ∈ V , that

Φ(v) = g(π(v))(v, ·) ∈ V ∗.

The restriction of this map to each fibre is the natural pairing via g; as a map between diffeological
vector spaces, it was already considered in [8], where it was shown that it is surjective and establishes a
diffeomorphism between the dual and a specific subspace of the domain space.

Lemma 8.1. Let π : V → X be a finite-dimensional diffeological vector pseudo-bundle that admits a
pseudo-metric, and let g : X → V ∗ ⊗V ∗ be a pseudo-metric on V . Then Φ is smooth as a map V → V ∗.

Proof. In order to show that Φ is smooth, we need to show that, for any arbitrary plot p : U → V of V
its composition Φ ◦ p is a plot of V ∗. Since we have (Φ ◦ p)(u) = g(π(p(u)))(p(u), ·), and by definition of
the diffeology on V ∗, it suffices to prove that its evaluation on any other plot q : U ′ → V is smooth (as a
map from the set of (u, u′) such that
pi(p(u)) = π(q(u′))), and this follows from smoothness of g.

Remark 8.2. Notice that the same conclusion holds for any smooth bilinear map g : X → V ∗ ⊗ V ∗,
not necessarily a pseudo-metric: whether it has, or not, the maximal rank possible for a given fibre, is
inessential for smoothness of Φ.

The pseudo-metric on V ∗ We now make use of the above lemma to obtain a pseudo-metric on the
dual pseudo-bundle of a given one, provided it is locally trivial.

Theorem 8.3. Let π : V → X be a finite-dimensional diffeological vector pseudo-bundle that is locally
trivial and admits a pseudo-metric g. Then there is a natural induced pseudo-metric g∗ on its dual bundle
π∗ : V ∗ → X.

Proof. Let us define g∗ pointwise; recall ([8]) that for each x ∈ X the restriction of the map Φ to the
fibre over x is surjective onto the corresponding fibre of V ∗. We define

g∗(x)(Φ(v),Φ(w)) := g(x)(v, w) for all x ∈ X and v, w ∈ π−1(x).

By the same result, this is well-defined, since whenever Φ(x)(v) = Φ(x)(v′), the elements v, v′ ∈ π−1(x)
differ by an element of the isotropic subspace of g(x). It remains to see that g∗ is smooth as a map
X → (V ∗)∗ ⊗ (V ∗)∗.

Let x ∈ X be an arbitrary point, and let X ′ ∋ x be a neighborhood of it such that π−1(X ′) ∼=
X ′ × π−1(x). Recall (see [8]) that π−1(x), being a finite-dimensional diffeological vector space endowed
with a pseudo-metric g(x), contains a subspace V0 such that the restriction of Φ to this subspace is a
diffeomorphism V0 → (π−1(x))∗. Then the assumption of the local triviality this restriction yields a
diffeomorphism π−1(X ′) ⊃ X ′ × V0 → (π∗)−1(X ′), which shows that g∗ = ev(g)(Φ−1 ⊗Φ−1) over X ′, is
indeed smooth.
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Remark 8.4. We are not able to say whether the assumption of local triviality is truly necessary for the
existence of a smooth g∗, which is somewhat disappointing. On the other hand, neither are we able to
say if there are non locally trivial pseudo-bundles that admit pseudo-metrics; hence we leave things at this
state for now.
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