arXiv:1601.00171v2 [hep-th] 5 Jan 2016

Quasi-Local Conserved Charges of Spin-3
Topologically Massive Gravity

M. R. SetareEl , H. AdamiH

Department of Science, University of Kurdistan, Sanandaj, Iran.

Abstract
In this paper we obtain conserved charges of spin-3 topologically massive
gravity by using a quasi-local formalism. We find a general formula to
calculate conserved charge of the spin-3 topologically massive gravity
corresponds to a Killing vector field £. We show that this general formula
reduces to the previous one for the ordinary spin-3 gravity presented in
[18] when we take into account only transformation under diffeomorphism,
without considering generalized Lorentz gauge transformation (i.e.

A¢ = 0), and by taking % — 0. Then we obtain a general formula for the
entropy of black hole solutions of the spin-3 topologically massive gravity.
Finally we apply our formalism to calculate energy, angular momentum
and entropy of a special black hole solution and we find that obtained
results are consistent with previous results in the limiting cases. Moreover
our result for energy, angular momentum and entropy are consistent with
the first law of black hole mechanics.

1 Introduction

Higher spin gravity was formulated by Vasiliev and collaborators in papers
[1] . In its simplest form it is an extension of ordinary gravity that includes a
massless scalar and massless fields with spins S = 3,4, .... In [2] Vasiliev pro-
posed a system of gauge invariant nonlinear dynamical equations for totally
symmetric massless fields of all spins in (A)dS backgrounds. According to
the result of this paper, ”in the framework of gravity, unbroken higher spin
gauge symmetries require a non-zero cosmological constant”. In paper [3]
the authors have considered the coupling of a symmetric spin-3 gauge field
©uv to 3-dimensional gravity in a second order metric-like formulation. In
the context of frame-like approach the gravitational coupling of a symmet-
ric tensor of rank 3 in the presence of negative cosmological constant can
be given by SL(3,R) x SL(3,R) Chern-Simons theory [4, [5, [6]. The emer-
gence of W-algebras as asymptotic symmetries of higher-spin gauge theories
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coupled to three-dimensional Einstein gravity with a negative cosmological
constant discussed in [4].

Higher-spin theories in AdSs, like ordinary gravity, they possess no prop-
agating degrees of freedom [4 [7]. Pure Einstein-Hilbert gravity in three
dimensions exhibits no propagating physical degrees of freedom [8, [9]. But
adding the gravitational Chern-Simons term produces a propagating massive
graviton [I0]. The resulting theory is called topologically massive gravity
(TMG). The authors of [II] have done the generalisation of topologically
massive gravity to higher spins, specifically spin-3 (see also [12]). In this
paper we would like to obtain conserved charges of black hole solutions of
spin-3 topologically massive gravity by using a quasi-local formalism.

A method to calculate the energy of asymptotically AdS solution was given
by Abbott and Deser [13]. Deser and Tekin have extended this approach to
the calculation of the energy of asymptotically dS or AdS solutions in higher
curvature gravity models and also to TMG [14]. The authors of [15] have
obtained the quasi-local conserved charges for black holes in any diffeomor-
phically invariant theory of gravity. By considering an appropriate variation
of the metric, they have established a one-to-one correspondence between
the ADT approach and the linear Noether expressions. They have extended
this work to a theory of gravity containing a gravitational Chern-Simons
term in [16], and have computed the off-shell potential and quasi-local con-
served charges of some black holes in TMG. In the first order formalism,
quasi-local conserved charges of Lorentz-diffeomorphism covariant theories
of gravity are investigated in [I7]. But there are theories which are not
Lorentz-difeomorphism covariant so for such theories a method for which
one can calculate conserved charges of Lorentz-diffeomorphism covariant
theories are useless. In previous paper [19] by introducing the total varia-
tion of a quantity due to an infinitesimal Lorentz-diffeomorphism transfor-
mation, we have obtained the conserved charges in Lorentz-diffeomorphism
non-covariant theories. The formalism proposed in [19] is for on-shell case.
In this paper we want to extend this formalism to the spin-3 topologically
massive gravity. We find an expression for ADT conserved current which
is off-shell conserved for a given Killing vector field. Then we can find the
generalized ADT conserved charge by virtue of the Poincare lemma. In ref.
[18] the energy of the higher spin black hole solutions of ordinary higher
spin gravity has obtained by canonical formalism. Here we not only obtain
the energy but also we find the angular momentum of black hole solutions
of spin-3 topologically massive gravity. Furthermore we obtain a general
formula for entropy of black hole solutions of spin-3 topologically massive

gravity, where by substituting eu“b = wuab = 0, this formula reduces to



the entropy formula in the ordinary topologically massive gravity which we
obtained previously in the paper [19].

2 First-order formalism of 3D spin-3 gravity

In this section, we will briefly review relevant aspects of spin-3 gravity in
three dimensions in a slightly different way. We can describe the spin-3
gravity in three dimensions by the generalized dreibein and spin-connection
[]. We want to work in the first order formalism, so we take generalized
spin-connection as an independent quantity as well as generalized dreibein.
The algebra sl(3,R) have 3 generators J, and 5 generators Ty, with the
following commutation relations

[Jaa Jb] = 5abc=]07 [Jay Tbc] = 25da(ch)dy (1)
[Taby T, ] = -2 (77(1(c*€cl)be + nb(cgd)ae) Je,

where Ty, are symmetric and trace-less in the Lorentz indices. In the repre-
sentation we have considered the inner product of the generators are [20)]

tT(Ja) = 07 tr(Ta ) = 07 tr(JaTbc) = 07

4 (2)
tT(Jan) = 21ap, 757‘(Tachd) = 477a(cnd)b - g"?abncd'

The generalized dreibein and the generalized spin-connection take values in
the Lie algebra sl(3,R) as follows respectively:

e = e, Ju+ e, Ty, (3)

Wy = WuaJa + WuabTaby (4)

a,b = 0,1,2. Notice that eu“b is symmetric and trace-less with respect to
Lorentz indices. It is convenient to write the generalized dreibein one-form
and the generalized spin-connection one-form as [3|, 2]

e= e“AJAdx“, w= quJAdx“, (5)
respectively, and A = 1,...,8. In the above J4 denotes a full set of sl(3,R),

[Ja, JB] = fas“Jc, (6)

3In this paper, we use the ordinary symmetrization by a pair of parentheses.




where fap® are anti-symmetric structure constants. The Killing form in
the fundamental representation of sl(3,R) is defined as

1
Kuap = 5757‘(JAJB), (7)

and the anti-symmetric and symmetric structure constants of the Lie algebra
are given by

faBc = %W‘([JA, JplJc), dapc = %tr({JA, Jp}Jo). (8)

Translating the frame-like formalism to the metric-like formalism given by
the following transformations [4]

1
G = Etr(e(ueu))
) 9)
Puvd = gtr(e(peue)\))'
where g,,,, is the metric and ¢, is the spin-3 field and it is totally symmet-
ric. By substituting e, from Eq.({]) into Eq.(@) and using Eq. () and Eq. (8]
we have

Juv = KABeuAeVB
(10)
Ouvn = gdABCe,uAeuBe)\C

It is clear that g,,, and ¢, both are invariant under the following Lorentz-
like gauge transformation
€, = Le, L™, (11)

where L € SL(3,R) and we can write L = exp (\) so that A is the generator
of Lorentz-like transformation and it is a sl(3, R) Lie algebra valued quantity,

A= A0y + AT, = M. (12)

Now we can introduce the exterior covariant derivative by demanding that
it be covariant under the Lorentz-like transformation (III) as well as diffeo-
morphism covariance. To this end, we need to introduce the generalized
spin-connection in the form of (). Thus, we can define exterior covariant
derivative as

Dye, = 0ue, + [wye0] & DMeVA = (%eVA + fABcwMBeVC. (13)



In order the above exterior derivative be covariant under the Lorentz-like
transformation, the generalized spin-connection must transforms as

©=LwL™ '+ LdL™?, (14)

where d denotes the ordinary exterior derivative. Now, one can define the
total derivative as follows:

DELT)e,, = 0pey + [wy, en] — F:\we,\, (15)

where F:\w can be interprets as Affine connection. The metric-connection

compatibility condition Vg, = 0 leads to the total derivative of dreibein
)

. . T . .
vanishes, i.e. D,(L e, = 0. Therefore, one can define the generalized torsion

2-form as

T = exfﬁydaz” A dz” = De. (16)

Another useful covariant quantity is the generalized curvature 2-form which
is given by

1
R=dv+wAhw & RA:de+§fABch/\wc. (17)

Since the total derivative of e“A is zero, then we have Vi, = 0.

From Eq.(IT) and Eq.(Id]), it is easy to check that the variation of generalized
dreibein and generalized spin connection under an infinitesimal Lorentz-like
gauge transformation are

5)\6 = [)‘7 6]7 (18)
Ow = —DA, (19)

where
Dy = O + [wp Al (20)

It is well-known that the ordinary Lie derivative of a diffeomorphism in-
variant quantity is diffeomorphism covariant but it may be not Lorentz-like
covariant. In the manner of papers [22, 23] 24] 25, [19], we can generalize
the Lie derivative so that it becomes covariant under Lorentz-like transfor-
mation as well as diffeomorphism. To this end, we consider the ordinary
Lie derivative of dreibein along a curve generated by the vector filed &,
Lee, = 5)‘8)\% + e)\(‘)qu. Now we generalize this by adding variation of e,
with respect to an infinitesimal Lorentz-like gauge transformation

Lee = .,Ege + [)\5, el. (21)



If the generator of Lorentz-like gauge transformation ¢ transforms as
>\~£ = L)\fL_l + L£§L_1, (22)

under Lorentz-gauge transformation, then the definition of generalized Lie
derivative (2II) will be covariant under the Lorentz-like transformations. It
is straightforward to extend this expression of the generalized Lie derivative
for eMA to the case for which we have more than one Lorentz-like index. The
generalized Lie derivative of generalized spin-connection, £¢w, is not covari-
ant under Lorentz-like transformations, while £cw — d)¢ will be covariant
under the Lorentz-like transformations. Thus, under the generalized local
translations we have
dee = Lee, (23)
dew = Lew — dg, (24)
therefore they are covariant under the Lorentz-like transformations as well as
diffeomorphism. Hence, we can interpret d¢ as a generalized diffeomorphism

transformation. We can use Eq.(23)) to obtain behaviour of the metric under
this generalized diffeomorphism transformation as

(5§gwj = £§gwj. (25)
This equation is exactly what we expect. In a similar way, for spin-3 field
we obtain
5690uu)\ = £§90u1/)\7 (26)
In the last step of the calculation we used fED(AdBC)E = 0. Since Vo
is zero, the equation (20) can be rewritten as

5590;111)\ = 3v()\ ((:O,ul/)crgo) +3 (iETU)()\ Puv)os (27)

thus in a torsion free theory this reduce to

5590;111)\ = V(Aguu)a (28)

where

g;w = 390/WU§U = 36Maeybeaab50 - 46Mabeubcegcafa- (29)

The equation (28] is just the spin-3 field gauge transformation which was
introduced in [26], 27].

It is well known that Einstein-Hilbert action in the presence of negative
cosmological constant in 3-dimension can be reformulated as a Chern-Simons
theory with gage group SO(2,2) ~ SL(2,R) x SL(2,R) [28,29]. Similarly, a



SL(3,R)xSL(3,R) Chern-Simons theory with the following action describes
a three dimensional spin-3 gravity theory [5l [6] (see also [30]),

Spy = Scs[A+] — Scs|A7], (30)

where ; 5
A= [(ANdA+ZANANA 1
Sosld] = i [(ANdA+ ZARANA) (31)

where [2 > 0 corresponds to a negative cosmological constant, and G is
Newton’s constant. To relate these to the first order formalism based on
dreibein and spin-connection we introduce following two independent con-
nection one-form A% and A~

1
AT =w+ 7€ (32)
By substituting A* from Eq.(32)) into Eq.([30) we obtain the following action
which describes a three dimensional spin-3 gravity theory

1 1
SEH—m/(e/\R+@e/\e/\e), (33)

In the next section we will extend the above Einstein-Hilbert spin-3 gravity
action to the spin-3 topologically massive gravity theory. The field equations
come from above action are

1
T =0, R+l—2€/\e:0. (34)

Since i¢w transforms like (22) then one can choose A\¢ = i¢w. Notice that this
choice is not unique. Using the field equations and by choosing A¢ = icw,

Eq.(I8) and Eq.(I9) reduce to

556 = DE, 550.) = l

e 2 (35)

where = = i¢ce. These results are exactly the generalized local translations
which were already mentioned in [4], B} 21].

3 Spin-3 topologically massive gravity

In this section, we consider an action describing the spin-3 field coupled to
TMG. This generalization has already been done [I1},12]. In that paper, the
authors have studied this model at the linearized level. In this paper, we



are interested to consider the Spin-3 Topologically Massive Gravity in non-
linear level and we want to find a general formula for quasi-local conserved
charges of the solutions of this model.

The Lagrangian of the spin-3 Topologically Massive Gravity is given by

A 1 2
£=tr{—ae/\7€+§e/\e/\e+ﬂ <wdw+§w/\w/\w> +hANT} (36)

In the above Lagrangian h is an auxiliary sl(3,R) Lie algebra valued one-
form field. Also i is a mass parameter, o is a sign and A denotes the
cosmological parameter.

The general variation of the Lagrangian (36]) is given by

5L = tr(6® A Eg) + dO(®,5®). (37)

We use the symbol @ to denote all of fields e, w and h. Here Eg denotes the
equation of motion associated with field ®. Equations of motion are given
as follows:

E.=—-0R+AeANe+ Dh =0, (38)

1
Ew:—0T+;R—|—e/\h+h/\e:0, (39)
Ep,=T =0. (40)

Also, the surface term O(®, ) is

O(®,0P) = tr <—a(5w/\e+ %&u/\w—i—ée/\h) . (41)
w
If we take A )
2= _— = 42
l > and  h 2ul2e’ (42)

then the equations of motion (B8])-(@Q) reduce to
1
T =0, R+l—2€/\e:0. (43)
These are exactly what we are mentioned already in the equation (B4]). In

this way, all the solutions of the spin-3 gravity (for instance, see [20} 30 31])
are solutions of the spin-3 topologically massive gravity.



4 Quasi-local conserved charges

The action ([B3]) of spin-3 gravity in 3D is invariant under the generalized
local Lorentz translations (23]) and ([24). In other words, variation of the
Lagrangian of spin-3 gravity with respect to the generalized local Lorentz
translations is equals to the generalized Lie derivative of the Lagrangian,
ie. 0¢Lrpy = LeLEy. But, this is not the case for the spin-3 topologically
massive gravity. Consider the spin-3 topologically massive gravity (3a]).
This Lagrangian is not invariant under the generalized local Lorentz trans-
lations. In this model, variation of the Lagrangian due to the generalized
local Lorentz translations becomes

55,6 = Sgﬁ + d¥e, (44)
where W, is given by

1
Ve = ﬂtr(d}\g Aw). (45)

In the calculation of the equation ([@4]), we use the fact that the generalized
Lie derivative do not commute with the exterior derivative,

[d,2§]€ = d/\g/\e—l—e/\)\f. (46)

Also, notice that A¢ does not depend on the fields. In a similar way, one
can show that the variation of surface term (@Il) due to the generalized local
Lorentz translations differs form its generalized Lie derivative as

(5§@((I>,(5(I)) = ﬂg@(@,é@) + 11, (47)
where Il¢ is given by
1
H5 = ﬂtr(d)\g VAN (50.)) (48)

Now we consider variation of the Lagrangian Eq.([36]) due to a generalized
local Lorentz translation,

0L =1tr(0:P N Eg) + dO(P, 6¢D). (49)
By using Eqgs.(@4)), [@39) and from £.L£ = £¢£ = di¢L, we can write
d(O(P,0:P) —icL — W) = —tr(0:P N Eo). (50)

We will not restrict our study to the on-sell case. One can rewrite Eq.(23)
as follows:

(5§6 = £§6 + [)\5, e] = £§ + [igw, e]+[A— lew, el = D(ige) +i57-+ [)\g —lew, el,
(51)



where i¢T = (i¢T7),e,dz”. Now we rewrite Eq.(24]) as
dew = £ew + [Ae,w| —dX =g R — D(A¢ — iew). (52)
Also, we can show that
D?h = dDh + [w,Dh] = RAh—hAR. (53)

By some calculations and using Eqs. (51])-(53]), we can simplify the right hand
side of the equation (B0l as

tr(0e® N Eg) =d tr (iceFe — (e — iew)Ey, + ichEy)
+tr{ciceDR —i¢ch(DT +e AR —-R ANe)}

(54)
1
+tr{(A\¢ —igw)[-o(DT +e AR —R Ae) + ;DR]}
By substituting Eq.([54) into Eq.([50) we will have
dJe =tr{—ocigeDR + ich(DT + e AR —R ANe)}
(55)

+Wﬂ&—Q@bﬂﬂ#eAR—RA@—%DML

where J¢ is given by
Je =0(D,0¢P) —ie L — Ve + tr(iceEe — (A\e —igw)Ey, +ighEy). (56)

If we demand that J¢ to be an off-shell conserved quantity for arbitrary &,
the following identities should be satisfy

DR =0,

(57)
DT +eANR—-RANe=0.

These are the generalized Bianchi identities. In other words, in the presence
of the above Bianchi identities, the current J¢ is conserved off-shell, because
the right hand side of Eq.(55) is zero, so dJ¢ = 0. Thus, by the Poincare
lemma we find that

Je = dKe. (58)
By varying the equation Eq.([50) and using Eq.([36) and Eq.[dT), we will
have
d(0K¢ —igO(P,0:P)) — (0O(P,0:P) — 6:O(P,0P)) + dpe — IIe =
tr{ée VAN igEe + dw A ing + 6h A igEh + ige(SEe + igh(SEh - ()\ﬁ - igw)(sz}
(59)

10



Now, we restrict our attention to the case in which ¢ is a Killing vector field.
On the one hand, we have the following configuration space result given in

132]
5O(®,5:D) — 5:0(D,5P) = 0, (60)

this equality holds when £ is a Killing vector field. On the other hand, the
right hand side of the equation (59) is just the first order formalism version
of the off-shell ADT conserved current for the considered theory

JAapT = tr{(se/\igEe—st/\ing+(5h/\i5Eh+i5€5Ee+i5h(5Eh—()\g—igw)(SEw}.

(61)
One can find the metric formalism version of the off-shell ADT conserved
current in [I5] [16]. The definition J4pr by Eq.([61) is just resemble of the
metric formalism version. Thus, we can rewrite Eq.(59]) as follows:

Japr = d(0Ke —icO(P,6¢D)) . (62)

In the last step of the calculations we used of the fact that d®¢ —II¢ = 0
which can be easily read off from Eq.([45]) and Eq.([48]). Now, it is obvious
that Japr is conserved off-shell for any Killing vector field £ and we can
define the off-shell ADT conserved charge associated with a Killing vector
field £ as

Qapr(P,00;&) = 0K¢ — icO(P, 6¢P), (63)

so that through it we can rewrite Eq.([62) as Japr = dQapr. Hence, in the
manner of papers [15] [16], we define the quasi-local charge corresponding to
a Killing vector & as

1
Q6) = 5= [ s [ Qanr(als), (64)

where > denotes a codimension two space-like surface and integration with
respect to s runs over a one-parameter path in the solution space. Also,
s =0 and s = 1 are correspond to the background solution and the inter-
ested solution, respectively.

By substituting the explicit expressions of the surface term Eq.([#Il), the La~
grangian Eq.(36]) and Eq.(#5]) into Eq.(56) we obtain J¢, then using Eq.(G8]),
we find that

1 1
K¢ =tr{o(A¢e —icw)e +igceh + 2—i§ww — —Aew}. (65)
7 7

This ensures that J¢ is closed an exact off-shell and hence the equations in
(B7) must be satisfied. Hence, we can express the ADT conserved charge

11



([63]) explicitly as follows:

QADT((I)y 5(13; f) = tT{O’()\g —igw)5€+i§€(5h— i ()\ﬁ —igw)éw—kz’ghée—az‘geéw}.

(66)
In the section 3, we showed that all the solutions of spin-3 gravity in three
dimensions are solutions of the spin-3 topologically massive gravity in the

presence of following relations
o 1
A= _l_2 and h = W@.

By substituting the above h into Eq.(66) we find that

(67)

Qapr(®,60;€) = tr{(Ae — igw)(0de — %M) Fige(—odw + %56)}. (68)

It is traditional to write conserved charge in terms of gauge connections A*.

Using Eq.([32]) we have

1

T3

Then we can rewrite the off-sell ADT conserved charge corresponds to a
Killing vector field as follows:

(AT A7), w= %(A++A‘). (69)

Qupr(®.60:€) = 3tr{(r = -T)(\e —ieAT)SAT = 7+ 0)(he —ieAT)3AT).

(70)
If we substitute A¢ = 0 in Eq.([0), in another word if we consider only
covariance under diffeomorphism, then ADT conserved charge reduce to the
following

-l 1 1
Qapr(®,09;¢) = 7”{(0’ - m)iéAJr‘SAJF —(o+ m)isA_5A_}- (71)
Now if we consider the surface ) in Eq.(G4]) as a circle with infinite radius,
and insert the above Q4pr into Eq.([64]) we obtain

2m

Q(e) = —% lim [ er{(o- i)igAJréA; o+ i)igA‘&A;}dqﬁ. (72)
If we take the limit é — 0, where TMG action Eq.([36]) reduce to the
Einstein-Hilbert action Eq.([33]), the above conserved charge Eq.([72]) also
in this limiting case reduce to the result presented in [I8] exactly (see also
[33]). So we could obtain an extended version of conserved charge presented
in [I§] in the first order formalism and in off-shell case by the quasi-local
approach.

12



5 Gauge fixing

In this section, we want to find an expression for A\¢ when the generalized
Lie derivative of generalized dreibein Eq. (2II) vanishes explicitly where £ is
a Killing vector field. We suggest following expression

1 .
Ae = lew + 5[6'/, D, (ice) + (icT)u) (73)
The above A¢ manifestly transforms like Eq.(22) under the Lorentz-like
gauge transformation. In the considered Lie algebra, the following relation
holds between Killing form and the anti-symmetric structure constants

fagt frop = —(KacKpp — KapKpe). (74)

By substituting Eq.([73]) into Eq.([21), and using the metric-connection com-
patibility condition and the above equation we find that

1 14
Leen = 5¢" Leg- (75)

It is clear now that £¢e becomes zero when ¢ is a Killing vector field, where
we have £L¢g,,, = 0.

6 A general formula for the entropy of black holes

Let us consider a black hole solution of the spin-3 topologically massive
gravity. From section 4 we know that any quasi-local conserved charge of
black hole corresponding to the Killing vector field ¢ is given by Eq.([64). We
take the codimension two surface ¥ to be the bifurcate surface 5. Suppose
that ¢ is the Killing vector field which generates the Killing horizon, so we
must set £ = 0 on B. Thus, by substituting Q4 pr from Eq.(66]) into Eq.(64]),
the conserved charge expression (64 reduces to

1
Q) = %/0 ds/lgtr{)\g(aée — %&u)}. (76)

Now, we take s = 0 and s = 1 correspond to the considered black hole
space-time an the perturbed one, respectively. Therefore, the equation (Z6l)

becomes )

5Q(E) = = / tr{)\g(o*&e—%éw)}. (77)

:871' B

13



Since A¢ do not depends on the fields at all, so we have

Q) = 3= [ trlreloe = )} (78)
On the bifurcate surface, we can rewrite Eq.(73) as
1
)\5 = §V'LL§V[€M,€V]. (79)

Since we have V&Y = gn” on the bifurcate surface, where x is surface
gravity and n* is bi-normal to B, therefore Eq.(79) becomes

1 1
Ae = Emn’w[eu, ey = EﬁfABCeMBeVCnWJA. (80)
Now, we define N4 as follows:
1
NA — §fABC€uBeVCnMV’ (81)
since the bi-normal to B is normalized to —2 then N# is normalized to 1,

ie. KaAgNANPB = 1. For the stationary black hole solutions, the non-zero
components of the bi-normal to B are n'? = —n*!, therefore Eq.(8I]) becomes

NA = fABCetBepcntp, (82)

where ¢t and p are time-coordinate and radial-coordinate, respectively. It is
obvious that N4 is orthogonal to etA and epA, i.e. KABetANB = KABepANB
0, then it must be proportional to e ¢A, where ¢ denotes the angular coordi-
nate. Because N4 is normalized to 1 then we have
1
N4 = ey’ (83)
V9o

by substituting this equation into Eq.(80]) we find that

K
Ae = ed,. (84)
¢ VYo

We substitute the above expression into Eq.(78) then we obtain
K 1 1
Qg:—/ tries(cey — —wy) tdo. 85
(©) 87T89¢¢{¢(¢ M)} (85)
Now, we can define the entropy of a black hole as
8 1 1
S:—Qﬁz/ tries(cey — —wy) tdo. 86
—Q() s V7 {es(oey . ¢)} (86)

If we set e/ﬂb = wu“b = 0, then the above formula reduces to the entropy
formula in the ordinary topologically massive gravity which is obtained in

the paper [19].

14



7 Example

The authors of [30] (see also [4]) have proposed following gauge connections
which solve the spin-3 gravity field equations

A* =b(p)~ta" (27)b(p) + b(p) " db(p) (87)
AT = b(p)a” (a7)b(p) ™" + b(p)db(p) ",
where b(p) = exp (pLo) and z* = t/l + ¢. Also, a®(z¥) are given by
at(z") = (L1 = LY (@) Loy =W (@")W_y) da™ (8)
a (z7)=(Loy — L (@7 )Ly + W (27 )Wa) da ™.

where £*(z%) and W¥*(2F) are functions which transform under gauge
transformations which preserve the asymptotic conditions (see [4] for de-
tails). An representation of generators L;, (i = —1,0,1), Wj, (j = =2,-1,0,1,2)
is given in appendix. By substituting the gauge connections (87]) into Eq.(69)

we can find the generalized dreibein as

er = % ((eF —L7e )Ly + (e — LTe ™ P)L_y + W e Wy — WHe #W_,)

ep = % ((e” +L7e )Ly — (e’ + LTe ™ P)L_1 — W e 2Py — W+e_2pW_2)

€p = lLO
(89)

Similarly, the space-time components of the generalized spin-connections

can be find as L

2%
By substituting generalized dreibeins Eq.(89) into Eq.(@]), the metric takes
following form

wp = wp =0, We = €. (90)

ds* =— (LYL™ e + AWt W e — LT — L7 + %) dt?
+ 1Pdp* + 21(LT — L£L7)dtdg (91)
+P(LTL e +AWTW e + LT+ L7 +e*) do.
Now, we try to find energy and angular momentum of this solution. To

this end, we take co-dimension two surface to be a circle at infinity and the
background solution corresponds to the case in which £+ = W* = 0. So,
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for the background solution, we have
_ 1
e = §€p (L1 + L_l)

l
Ep = 560 (L1 — L_1) (92)
€p = (L.

The bar on the top of a quantity emphasizes that quantity calculated on
background. Because the spin-3 topologically massive gravity is a torsion-
free theory, Eq.(73) reduce to

Ae —igw = VFHE7e e, (93)

Energy corresponds to the Killing vector £y = —0;. For this Killing vector
on the background, Eq.([@3]) becomes

< A
)\g(t) — Zg(t)w = l—2€¢. (94)

By substituting Eqgs.(89), @), @2]) and (@4) into Eq.([64) we find energy of
black hole as following

2T
E=Q(-0) = ﬁ/o do [a(ﬁ_ + L)+ %(ﬁ— — L. (95)

If we take the limit % — 0 this energy reduces to the result presented in [I§]
exactly. Angular momentum corresponds to the Killing vector §(4) = 0. In
this case on the background, Eq.([@3]) becomes

5\5((;5) — i§(¢)@) = —¢€. (96)

Thus, in a similar way, we can find angular momentum of the considered
solution as

l

1
47

2w
J=Q(04) = / d¢ [a(ﬁ_ — LT+ o (L~ + L. (97)
0
Now, we want to find the entropy of the considered black hole solution ([OI])
by the entropy formula (86l). We can rewrite the metric (91)as the following
form

ds® = gudt® + g,pdp* + gppdd* + 2gi5dtds. (98)
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We have gt2¢ — g1t9ss = 0 on the Killing horizon H which leads to the
following equation

LYLTeT2PH 4 AWTW e 1 1 21 = 2V L+ L~ (99)

where we suppose that the Killing horizon is located at p = pg. The angular
velocity of Killing horizon is

(e _ VL =VIH)
it = <g¢¢>H_l(\/£__+\/£_+)' (100)

Now, by substituting wy from Eq.(@0) into the formula (8G) we obtain

27 1 1
S=2 /0 o096 — a0, (101)

where have we used Eq.([@). By considering the explicit form of the metric
and by using Eq.(@9]), the above equation becomes

5 21/02“6@ [a<\/c——+¢,c—+>+ %m——_m) o am

By inserting following functions into metric Eq.(@1]), we obtain a metric for

BTZ black hole of mass M and angular momentum a

_ 2
I/

In this case, equations (@), (O7) and (I02)) reduce to following quantities,
respectively

(Mi+a), L£F=2(Mi—a), W:E=0, . (103)

£ l

a
E=M+— 104
o (104)
j=a+ (105)
L

and .
S =dr <r+ + —7‘_> . (106)

ul

These results are what we expected in the BTZ case. In the equation (106,
r_ and ry are respectively inner and outer horizon radii of BTZ black hole,

ry = \/2 (M + V2R = a). (107)
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The horizon angular velocity Eq.(I00) in this case becomes Qg = 17;«_17 also
the surface gravity is

K = [\ / —%wgvvugy
H

where ¢ is the Killing horizon generator vector field. It is worth to say that
equations (I04])-(I08]) satisfy the first law of black hole mechanics, that is

2—7‘2

Ty oo
108
12T+ ) ( )

SE = TysS + Quéj, (109)

where Ty = r/(27).

8 Conclusion

The spin-3 gravity is covariant under generalized Lorentz gauge transforma-
tion as well as diffeomorphism. Using this fact, one can define quantities
(such as generalized torsion 2-form Eq.([I6]) and generalized curvature 2-form
Eq.([I7)) so that they are covariant under generalized Lorentz gauge trans-
formation. We saw that inorder to define an exterior covariant derivative,
we need to introduce a spin-connection which transform under generalized
Lorentz gauge transformations as Eq. (I4]). The ordinary Lie derivative is
not covariant under this transformation so we defined the generalized Lie
derivative Eq.(2I) so that it is covariant under generalized Lorentz gauge
transformations. We showed that by demanding torsion-free condition and
choosing A¢ = i¢w, this formalism reduces to ordinary one which is describes
by the Chern-Simons action [B0) with gauge group SL(3,R) x SL(3,R). In
the section 3, we extended our study from spin-3 gravity theory to the
topologically massive spin-3 gravity. Presence of the Chern-Simons topo-
logical term makes the Lagrangian of this theory, Eq.(36]), non-invariant
under generalized Lorentz gauge transformations. To obtain the conserved
charges of the topologically massive spin-3 gravity therefore we should use
the method of obtaining conserved charges in non-covariant theories which
firstly was introduced by Tachikawa for ordinary topological massive gravity
[34]. Also, we showed that all the solutions of the spin-3 gravity are solutions
of the spin-3 topologically massive gravity. In section 4, we found a general
formula to calculate conserved charge of the spin-3 topologically massive
gravity corresponds to a Killing vector field £&. We have defined the off-shell
ADT current (GI) associated to a vector field £ by virtue of the Bianchi
identities (1), then we showed that this current is conserved when ¢ is a
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Killing vector field. Hence, using Poincare lemma, we defined off-shell ADT
conserved charge (63]) associated to a Killing vector field . Consequently,
by integrating off-shell ADT conserved charge, we obtained quasi-local con-
served charge (64]). It should be noted that this result is independent of
the integration surface ¥ and then we can use the formula (64]) to calcu-
late the conserved charge of solutions which are not asymptotically AdS.
We showed that our general formula Eq.(72]) reduces to the previous one for
the spin-3 gravity presented in [I8] when we take into account only trans-
formation under diffeomorphism, without considering generalized Lorentz
gauge transformation (i.e. A¢ = 0), and by taking % — 0. In the section 5,
we fixed generator of Lorentz gauge transformation A\¢ by demanding that
generalized Lie derivative of the generalized dreibein e, becomes zero when
¢ is Killing vector field and A¢ transforms as (22]) under generalized Lorentz
gauge transformation. In the section 6, we obtained a general formula (86I)
for the entropy of black hole solutions of the spin-3 topologically massive
gravity. In the section 7, we applied this formalism to calculate energy, an-
gular momentum and entropy of a special black hole solution and we have
shown that obtained results are consistent with previous results in the lim-
iting cases. Moreover our result for energy, angular momentum and entropy
are consistent with the first law of black hole mechanics.

9 Acknowledgments

M. R. Setare thank Mu-In. Park and Bin. Chen for helpful comments and
discussions.

19



A SL(3,R) generators

In the section 7, we used the following basis of SL(3,R) generators [4] [30]

000 10 0 0 -2 0
Ly=(1 00 Lo=10 0 0 Ly=[0 0 -2
010 0 0 -1 0 0 O
0 00 0 0 9 1 0 0
Wo=1 0 0 O Wi=|1 0 0 Wy = 3 0 -2 0
200 0 -1 0 0 0 1
0 -2 0 0 0 8
W_i=10 0 2 W_o=10 0 0 ].
0 0 O 0 00
(110)
The generators satisfy the following commutation relations
[Li, Lj] = (i — j)Li+;
[Li, Win] = (20 = m)Wigm, (111)

1
(Wi, Wy = —g(m —n)(2m? +2n* — mn — 8) Ly i
where —1 <14,j <1 and —2 < m,n < 2. Also, the non-zero traces are

t’r’(LoLo) = 2, tr(LlL_l) =—4
8 (112)
tT(W()WQ) = g, tT(Wlw_l) = —4, tT(WQW_Q) = 16.
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