
ar
X

iv
:1

60
1.

00
17

5v
1 

 [
q-

fi
n.

PM
] 

 2
 J

an
 2

01
6

MINIMAX PERFECT STOPPING RULES FOR SELLING AN ASSET

NEAR ITS ULTIMATE MAXIMUM

DMITRY B. ROKHLIN

Abstract. We study the problem of selling an asset near its ultimate maximum in
the minimax setting. The regret-based notion of a perfect stopping time is introduced.
The related selling rule improves any earlier one and cannot be improved by further
delay. A perfect stopping time is unique and has the following form: one should sell
the asset if its price deviates from the running maximum by a certain time-dependent
quantity. The result is applicable to a quite general price model.

1. Introduction

Assume that an agent wants to sell an asset before the maturity date T at a price Xτ ,
which is as close as possible to the ultimate maximum X∗

T = max0≤t≤T Xt. The asset
price is a continuous function t 7→ Xt(ω), depending on an unknown outcome ω ∈ Ω.
A selling rule τ(ω) may depend on the price history {Xs : s ≤ τ(ω)}. For such a rule
τ the difference X∗

T (ω)−Xτ (ω) can be considered as the agent regret that the selling
price Xτ was lower then the maximal price. If the agent is extremely pessimistic, he
may try to minimize the value

sup
ω∈Ω

(X∗
T (ω)−Xτ (ω)) (1.1)

over all stopping rules τ . We will see, however, that this approach is somewhat crude.
Such optimal selling rule is by no means unique and even a deterministic one (that is,
independent of ω) can be optimal in this sense.
To each selling rule we associate the regret over the past, the regret over the future

and the overall regret. Based on the latter quantity we introduce the notion of a perfect
stopping rule. The idea is that it improves any earlier stopping rule and cannot be
improved by further delay. We show that a perfect stopping rule is unique and has
the following simple form: one should sell the asset if its price Xt deviates from the
running maximum X∗

t by a certain time-dependent quantity.
An optimality of such selling rule (“let profits run but cut losses”) was first justified

in [1] for a discrete time model. This result was inspired by the paper [7], which studied
the case of a divisible asset. The approach of [7, 1] was based on discrete-time specific
recurrent dynamic programming formulas. Furthermore, for the problem considered in
[1], along with the mentioned optimal selling rule, there exists a deterministic (“non-
sequential”) selling rule, also minimizing (1.1). The notion of a perfect stopping time,
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introduced below, gives grounds to distinguish between these selling rules and prefer
the former.
In continuous-time probabilistic setting the problem of stopping near the ultimate

maximum became popular after the stimulating paper [6] and the preceding talk [9].
For instance, the cases of Brownian motion with drift and geometric Browninan motion
were studied thoroughly in [4, 8, 5, 2]. In the latter case the ratios Xτ/X

∗
T , X

∗
T/Xτ

were considered instead of (1.1). Typical optimal stopping rules are determined by the
processes X∗

t −Xt, Xt/X
∗
t , or prescribe to sell the asset immediately, or to hold it until

the maturity date T .
In Section 2 we introduce a perfect stopping time in a general model and present

its explicit description. A model with uniformly Lipschitz continuous trajectories is
considered in Section 3. In Section 4 we briefly consider the ratio X∗

T/Xτ performance
criterion, reducing the problem to the previous one.

2. Perfect stopping time

Although we do not use any probability measure, the basic terminology comes from
probability theory. Possible outcomes are described by a subset Ω of the canonical
space C[0, T ] of continuous functions ω. Let Xt : Ω 7→ R be the coordinate mappings:
Xt(ω) = ωt. For each t ∈ [0, T ], ω ∈ Ω we put

A (t, ω) = {ω′ ∈ Ω : Xs(ω
′) = Xs(ω), s ∈ [0, t]}.

The set A (t, ω) contains all outcomes with the same history as ω up to time t. Let us
introduce the regret over the past :

X∗
t (ω)−Xt(ω), X∗

t (ω) = sup
s∈[0,t]

Xs(ω).

and the regret over the future:

U(t, ω) = sup
ω′∈A (t,ω)

sup
s∈[t,T ]

(Xs −Xt)(ω
′) = sup

ω′∈A (t,ω)

sup
s∈[t,T ]

Xs(ω
′)−Xt(ω).

Note, that the regret over the past is calculated along the trajectory observed up to the
present time t, and the regret over the future corresponds to a worst future scenario.
In the sequel we adopt the following assumptions.

Assumption 1. All price trajectories start from some fixed value x ∈ R: X0(ω) = x,
ω ∈ Ω, and the set Ω of trajectories is uniformly bounded:

sup{|Xt|(ω) : t ∈ [0, T ], ω ∈ Ω} < ∞.

Assumption 1 guarantees that U(t, ω) < ∞. Clearly, the function U is non-increasing
in t. The next assumption strengthens this property.

Assumption 2. The regret over the future U(t, ω) is continuous and strictly decreasing
in t.

Assumption 3. For any ω ∈ Ω and t there exist ω′ ∈ A (t, ω) such that Xs(ω
′) is

strictly decreasing in s on [t, T ].

Assumption 3 means that at any time moment t it is possible that the asset price
will permanently go down in the future.
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Definition 1. A function τ : Ω 7→ [0, T ] is called a stopping time if the conditions
τ(ω) ≤ t, Xs(ω

′) = Xs(ω), s ≤ t imply that τ(ω′) = τ(ω).

Remark 1. Consider the σ-algebras Ft = σ(Xs, s ∈ [0, t]), generated by the coordinate
mappings. It is proved in [3] (Theorem IV.100 (a)) that an FT -measurable random
variable τ : C[0, T ] 7→ [0, T ] is a stopping time in the sense of Definition 1 if and only if
{ω : τ(ω) ≤ s} ∈ Fs, s ∈ [0, T ]. Thus, our definition of a stopping time coincides with
the usual one except of an additional measurability property, which we do not need.

Remark 2. For any stopping time τ and ω ∈ Ω we have τ(ω′) = τ(ω), ω′ ∈ A (τ(ω), ω),
since Xs(ω

′) = Xs(ω), s ≤ τ(ω). Furthermore, for any stopping times τ1, τ2 such that
τ1(ω) < τ2(ω) we have

τ1(ω) = τ1(ω
′) < τ2(ω

′), ω′ ∈ A (τ1(ω), ω).

Indeed, otherwise, τ2(ω
′′) ≤ τ1(ω

′′) = τ1(ω) for some ω′′ ∈ A (τ1(ω), ω). But Xs(ω
′′) =

Xs(ω), s ≤ τ1(ω), and the Definition 1 gives a contradiction: τ2(ω
′′) = τ2(ω) ≤ τ1(ω).

The overall regret related to a stopping time τ , is defined as follows:

R(τ, ω) = max {X∗
τ (ω)−Xτ (ω), U(τ(ω), ω)} , Xτ (ω) = ωτ(ω).

Definition 2. We call a stopping time σ perfect if for any stopping time τ and any
ω ∈ Ω the following is true:

(B) if τ(ω) < σ(ω) then

R(τ, ω′) > R(σ, ω′) for all ω′ ∈ A (τ(ω), ω),

(A) if τ(ω) > σ(ω) then

R(τ, ω′) > R(σ, ω′) for some ω′ ∈ A (σ(ω), ω).

Condition (B) (“before”) means that it is not rational to sell the asset before a
perfect stopping time σ, since the overall regret can be reduced by waiting until σ.
Condition (A) (“after”) means that the overall regret can become larger if the asset is
not sold at time σ.
Put

τ ∗(ω) = inf{t ≥ 0 : (X∗
t −Xt)(ω) ≥ U(t, ω)}.

Note, that τ ∗ is correctly defined since U(T, ω) = 0. Clearly, τ ∗ is a stopping time in
the sense of Definition 1. By the continuity of U we get

R(τ ∗, ω) = (X∗
τ∗ −Xτ∗)(ω) = U(τ ∗(ω), ω).

Thus, τ ∗ balances the regret over the past and over the future.

Theorem 1. τ ∗ is the unique perfect stopping time.

Proof. If a perfect stopping time exists, then it is unique. Indeed, let σ1, σ2 be perfect
stopping times. If σ1(ω) < σ2(ω), then

R(σ1, ω
′) > R(σ2, ω

′), ω′ ∈ A (σ1(ω), ω),

since σ2 satisfies (B), and

R(σ2, ω
′′) > R(σ1, ω

′′) for some ω′′ ∈ A (σ1(ω), ω),
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since σ1 satisfies (A). This contradiction indicates that σ1 ≥ σ2. By symmetry, σ1 = σ2.
It remains to show that τ ∗ is perfect. Assume first that τ(ω) < τ ∗(ω) for some

stopping time τ and ω ∈ Ω. By Remark 2 we have τ(ω′) < τ ∗(ω′) for all ω′ ∈
A (τ(ω), ω). Since U is strictly decreasing in t, we get

R(τ, ω′) ≥ U(τ(ω′), ω′) > U(τ ∗(ω′), ω′) = R(τ ∗, ω′), ω′ ∈ A (τ(ω), ω).

Hence, τ ∗ satisfies (B) of Definition 2.
Now assume that τ(ω) > τ ∗(ω). By Remark 2 for any ω′ ∈ A (τ ∗(ω), ω) we have

τ(ω′) > τ ∗(ω′) = τ ∗(ω). By Assumption 3 there exists ω′ ∈ A (τ ∗(ω), ω) such that

Xτ (ω
′) < Xτ∗(ω

′) = Xτ∗(ω), X∗
τ (ω

′) = X∗
τ∗(ω

′) = X∗
τ∗(ω).

Thus,
R(τ, ω′) ≥ X∗

τ (ω
′)−Xτ (ω

′) > X∗
τ∗(ω

′)−Xτ∗(ω
′) = R(τ ∗, ω′),

and τ ∗ satisfies (A). �

Denote by
R(τ) = sup

ω∈A

R(τ, ω) = sup
ω∈A

(X∗
T −Xτ )(ω)

the worst-case overall regret. It is natural to call a stopping time σ optimal if

R(σ) ≤ R(τ)

for all stopping times τ .

Theorem 2. τ ∗ is optimal.

Proof. It is trivial to check that for any stopping time τ the function τ ∨ τ ∗ is also a
stopping time (here a ∨ b = max{a, b}). If τ(ω) ≥ τ ∗(ω), then (τ ∨ τ ∗)(ω) = τ(ω) and
R(τ, ω) = R(τ ∨ τ ∗, ω). If τ(ω) < τ ∗(ω) then

R(τ, ω) > R(τ ∗, ω) = R(τ ∨ τ ∗, ω)

by the property (B) of τ ∗. Thus, R(τ) ≥ R(τ ∨ τ ∗).
Furthermore, since Ω = ∪ω∈ΩA (τ ∗(ω), ω), we have

R(τ ∨ τ ∗) = sup
ω∈Ω

sup{R(τ ∨ τ ∗, ω′) : ω′ ∈ A (τ ∗(ω), ω)}

≥ sup
ω∈Ω

R(τ ∗, ω) = R(τ ∗),

where the inequality is implied by the property (A) of τ ∗. �

3. The case of uniformly Lipschitz continuous price trajectories

Consider the set Ω of ω ∈ C[0, T ] such that X0(ω) = x and

− l · (t− s) ≤ Xt(ω)−Xs(ω) ≤ u · (t− s), 0 ≤ s < t ≤ T (3.1)

with some constants l, u > 0. In particular, ω ∈ Ω are assumed to be uniformly
Lipschitz continuous. Note, that any piecewise linear function

ωt = ωti +
t− ti

ti+1 − ti
(ωti+1

− ωti), t ∈ [ti, ti+1],

where 0 = t0 < t1 < · · · < tn = T and −l ≤ (ωti+1
− ωti)/(ti+1 − ti) ≤ u, belongs to Ω.
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Furthermore, since

sup
s∈[t,T ]

Xs(ω
′)−Xt(ω

′) ≤ u · (T − t), ω′ ∈ A (t, ω),

we have U(t, ω) ≤ u · (T − t). Moreover, as

ω′′
s =

{
ωt + u · (s− t), s ≥ t

ωs, s < t

belongs to A (t, ω), from the equality

sup
s∈[t,T ]

Xs(ω
′′)−Xt(ω

′′) = u · (T − t)

it follows that U(t, ω) = u · (T − t).
Clearly, the Assumptions 1-3 are satisfied. The perfect stopping time is defined by

τ ∗(ω) = inf{t ≥ 0 : (X∗
t −Xt)(ω) ≥ u · (T − t)}.

Let τ ≤ τ ∗ be a random variable such that Xτ = X∗
τ∗ . Note, that τ need not be a

stopping time. By the definition of τ ∗ and the left inequality (3.1) we get

u · (T − τ ∗) = X∗
τ∗ −Xτ∗ = −(Xτ∗ −Xτ ) ≤ l(τ ∗ − τ ) ≤ lτ ∗. (3.2)

Thus,

τ ∗ ≥
uT

l + u
(3.3)

and the worst-case regret is estimated as follows:

R(τ ∗) = sup
ω∈Ω

U(τ ∗(ω), ω) = sup
ω∈Ω

u · (T − τ ∗(ω)) ≤ u ·

(
T −

uT

l + u

)
=

lu

l + u
T.

In fact, the equality

R(τ ∗) =
lu

l + u
T

holds true. Indeed, for ωt = x− lt we have

(X∗
τ∗ −Xτ∗)(ω) = x− (x− lτ ∗(ω)) = lτ ∗(ω) = u · (T − τ ∗(ω)).

Hence, τ ∗(ω) = uT/(l + u) and

R(τ ∗, ω) = u · (T − τ ∗(ω)) =
lu

l + u
T.

It is interesting to mention that the deterministic stopping time τ̂ = uT/(l + u) is
also optimal. Indeed,

U(τ̂ , ω) = u

(
T −

uT

l + u

)
=

lu

l + u
T,

X∗
τ̂ −Xτ̂ ≤ lτ̂ =

lu

l + u
T,

where the inequality is obtained similar to (3.2). It follows that

R(τ̂ ) = sup
ω∈Ω

max{(X∗
τ̂ −Xτ̂ )(ω), U(τ̂ , ω)} ≤

lu

l + u
T = R(τ ∗).
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But the strict inequality is impossible, since τ ∗ is optimal. Optimal stopping times
quite similar to τ ∗, τ̂ appeared in [1].
Note, that from the inequality (3.3) and property (B) of the perfect stopping time

τ ∗ it follows that either τ̂ = τ ∗(ω) and R(τ̂ , ω) = R(τ ∗, ω), or τ̂ < τ ∗(ω) and

R(τ̂ , ω) > R(τ ∗, ω).

We see that the optimality property alone is not sensitive enough to eliminate stopping
times which are not Pareto optimal for the family of objective functions {τ 7→ R(τ, ω) :
ω ∈ Ω}.

4. Ratio performance criterion for positive price processes

In this section we explicitly require X to be strictly positive on all outcomes ω ∈ Ω.
Along with (1.1), a natural performance criterion is the ratio X∗

T/Xτ (see, e.g., [5]),
which depends only on relative values of the asset price. The related overall regret can
be defined as follows

R(t, ω) = max

{
X∗

t

Xt

(ω), sup
ω′∈A (t,ω)

sup
s∈[t,T ]

Xs

Xt

(ω′)

}
.

Put lnω = (lnωt)
T
t=0 and consider the set of trajectories Ω̂ = {lnω : ω ∈ Ω}. We

have

lnR(t, ω) = R(t, lnω) = max {(X∗
t −Xt)(lnω), U(t, lnω)} ,

U(t, lnω) = sup
ω′∈A (t,lnω)

sup
s∈[t,T ]

(Xs −Xt)(lnω
′).

So, assuming that Ω̂ satisfies Assumptions 1-3, we may apply the results of Section 2.
Let’s calculate the perfect stopping time for

Ω = {ω : X0(ω) = x > 0, e−l·(t−s) ≤
Xt

Xs

(ω) ≤ eu·(t−s), 0 ≤ s < t ≤ T},

where l, u > 0. The set Ω̂ = {lnω : ω ∈ Ω} corresponds to the model, considered in
Section 3:

−l · (t− s) ≤ Xt(lnω)−Xs(lnω) ≤ u · (t− s), 0 ≤ s < t ≤ T.

From the equality (X∗
t −Xt)(lnω) = ln(X∗

t /Xt)(ω) we get

τ ∗(lnω) = inf{t ≥ 0 : ln
X∗

t

Xt

(ω) ≥ u(T − t)} = inf{t ≥ 0 :
X∗

t

Xt

(ω) ≥ eu(T−t)}.

Qualitatively similar stopping rule was obtained in [5, Theorem 1] for some combina-
tions of drift and volatility parameters of a geometric Brownian motion.
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