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COUNTING LATTICE POINTS IN FREE SUMS OF POLYTOPES

ALAN STAPLEDON

ABSTRACT. We show how to compute the Ehrhart polynomial of the free sum of two lattice
polytopes containing the origin P and @ in terms of the enumerative combinatorics of P and
Q. This generalizes work of Beck, Jayawant, McAllister, and Braun, and follows from the
observation that the weighted h*-polynomial is multiplicative with respect to the free sum.
We deduce that given a lattice polytope P containing the origin, the problem of computing
the number of lattice points in all rational dilates of P is equivalent to the problem of
computing the number of lattice points in all integer dilates of all free sums of P with itself.

Let P and @ be full-dimensional lattice polytopes containing the origin with respect to
lattices Np = Z9™F and Ny = Z9™@ respectively. The free sum (also known as ‘direct
sum’) P@(Q is a full-dimensional lattice polytope containing the origin in the lattice Np&® Ny,
defined by:

P& Q= conv((P x0g)U(0p xQ)) C(Npd Ng)r,
where conv(S) denotes the convex hull of a set S, Ng := N ®g R for a lattice N, and 0p, 0
denote the origin in Np, Ng respectively.

The Ehrhart polynomial f(P;m) of P is a polynomial of degree dim P characterized
by the property that f(P;m) = #(mP N Np) for all m € Z>( [6]. Our goal is to describe
the Ehrhart polynomial of P @ () in terms of the enumerative combinatorics of P and ().

We first observe that {#(AP N Np) | A € Qxo} and {#(AQ N Ng) | A € Qs¢} determine
{#ANPeQ)N(Np@® Ng)) | A € Q>0}, and hence the set {#(m(P&Q)N(Np®Ng)) | m €
Z>o}, which is encoded by the Ehrhart polynomial of P& @ (see (8) for a partial converse).
Indeed, this follows from the following observation: if d.yP denotes the union of the facets
of P not containing the origin, then, by definition, for any A € Qx:

#(020(AP) N Np) = #(AP N Np) — max #(X'P N Np),

and
(1) d(MP®Q)) = U O20(ApP) x 020(AQQ),
Syt

where the right hand side is a disjoint union.
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It will be useful to express the invariants above in terms of corresponding generating series.
Firstly, the Ehrhart polynomial may be encoded as follows:

m h*(P;t
> f(Pimt = (1_5)#341

m>0
where h*(P;t) € Z[t] is a polynomial of degree at most dim P with non-negative integer
coefficients, called the h*-polynomial of P [9]. Secondly, let Mp := Hom(Np,Z) be the
dual lattice, and recall that the dual polyhedron PV is defined to be P¥Y = {u € (Mp)g |
(u,v) > —1 for all v € P}. Let

(2) rp:=min{r € Z.o | rP" is a lattice polyhedron }.

Note that since (P @ Q)" is the Cartesian product P¥ x @V, we have rpgg = lem(rp,rg).
Then one may associate a generating series encoding {#(AP N Np) | A € Q¢ }:

®) 5 #0P) N = ML

A€Q>o

~ 1
where h(P;t) € Z[t"r] is a polynomial of degree at most dim P with fractional exponents
and non-negative integer coefficients, called the weighted h*-polynomial of P.

Remark 1. The weighted A*-polynomial was introduced in [I0] and generalized in [13],
Section 4.3]. For the specific definition given in (3), see the proof of Proposition 2.6 in [10]
with A = 0 and s = t. For the non-negativity of the coefficients together with a formula to

compute h(P;t), see (15) in [10]. For the fact that h(P;t) € Zit#], see Remark [3] below.
Note that it follows from (@) that if we write h(P;t) = >, o hp;t’, then the polynomial

Y ez %p7iti consisting of the terms with integer-valued exponents of ¢ is precisely the h*-
polynomial associated to the lattice polyhedral complex determined by the union of the
facets of P not containing the origin.

Moreover, let
(4) v REY]— R[]
TEZ>0

denote the R-linear map defined by W(#/) = tl7! for all j € Qso. Then we recover the
h*-polynomial of P via the formula (see (14) in [10]):

(5) W (P;t) = W(h(P;t)).

We also note that when the origin lies in the relative interior of P, we have the symmetry
[10, Corollary 2.12]:

(6) h(P;t) = i PR(pye .
Then () immediately implies the following multiplicative formula.
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Lemma 2. Let P, Q) be full-dimensional lattice polytopes containing the origin with respect
to lattices Np, Ng respectively. Then

h(P & Q;t) = h(P;)h(Q;t).
Combined with (), we deduce the following formula for the Ehrhart polynomial of P& Q:
(7) W (P& Q;t) = W(h(P;h(Q:1)).

Remark 3. Let © : |, ;. R[t"/"] — R[] denote the R-linear map defined by ©(t7) = ¢/~

for all j € Qs¢. Then [13| Example 4.12] gives an explicit formula for O(h(P;t)) that we
will describe below.

Each facet F' of P not containing the origin has the form
F=PnN {U c (NP>R ‘ <UF,’U> = —mp},

where up € Mp is a primitive integer vector, and mpr € Z~ is the lattice distance of F
from the origin. Then the vertices of P are precisely {;:= | F' facet of P,0 ¢ F'}, and hence
rp = lem(mp | F facet of P,0 ¢ F'). Then

mp—1
O(h(Pit) = Y Vol(F) Y t7r,
F facet of P =0
0¢F

where Vol(F) is defined in Remark [ below.

Remark 4. For any lattice polytope F', h*(F'; 1) is equal to the normalized volume Vol(F)
of F', i.e. after possibly replacing the underlying lattice with a smaller lattice, we may assume
that FF C N = RY™F for some lattice N, and then Vol(F) is (dim F))! times the Euclidean
volume of F. In the formula in Remark Bl to make the connection with [I3, Example 4.12]
explicit, observe that Vol(£") = mg Vol(F'), where F’ is the convex hull of F' and the origin.

Remark 5. Remark Bl shows that rp is the minimal choice of denominator in the fractional
exponents in h(P;t) in the sense that h(P;t) € Z[t'/"] and if h(P;t) € Z[t'/"], then rp
divides r. For example, h(P;t) = h*(P;t) if and only if rp = 1.

Remark 6. If P and () contain the origin, but are not full-dimensional, then one may apply
the results above after replacing Np and Ng by their intersections with the linear spans of
P and @ respectively. If P contains the origin but not ), then one may replace ) with
Q' = conv(Q,0q) since P& Q =P & Q.

If neither P nor () contain the origin, but satisfy the property that the affine spans of P
and () are strict subsets of the linear spans of P and @) respectively, then P, () and P & @
are the unique facets not containing the origin of P’ = conv(P,0p), Q' = conv(Q,0g) and
P’ ® @)’ respectively. In this case, by Remark [[land Lemma 2, h*(P @ Q;t) is the polynomial
consisting of the terms of h(P' & Q';t) = h(P’;t)h(Q’;t) with integer-valued exponents of ¢.
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We deduce a new proof to the following result of Beck, Jayawant and McAllister [3]
Theorem 1.3], which itself generalizes a result of Braun [4].

Corollary 7. Let P, Q) be full-dimensional lattice polytopes containing the origin with respect
to lattices Np, Ng respectively. Then

h*(P @& Q;t) = h*(P;t)h*(Q;t) <= rp=1orrg=1
Proof. If we write h(P;t) = Zje(@?lfpdtj, then by (B) and ([7),

h*(P D Q7 t) — Z %P,jTLQ,j’t[j—i—j/L
J,3'€Q

BPOR(Q51) = D hpsho 1,
7,'€Q
If rp =1 orrg =1, then we have equality. If rp,7g > 1, then by Remark ] there exists
(j.j") € Q* such that hp,, ho; > 0 and 0 < j — [j], 4" — 15'] £ 1/2. Then [j] +[j'] =
[j 4+ 47 + 1, and the non-negativity of the coefficients of h(P;t) and h(Q;t) implies that
h*(P & Q; t) # h*(P;t)h*(Q;t). O

Remark 8. A lattice polytope P satisfying rp = 1 and containing the origin in its relative
interior is called reflexive. These polytopes have received a lot of attention, in particular
because of their role in Batyrev and Borisov’s construction of mirror pairs of Calabi-Yau
varieties [I].

Remark 9. The weighted h*-polynomial arises naturally in two distinct geometric situations:
Firstly, in the computation of dimensions of the graded pieces of orbifold cohomology groups
of toric stacks [10, Theorem 4.3] and, more generally, in the computation of motivic integrals
on toric stacks [I1, Theorem 6.5]. Secondly, in computations of the action of monodromy on
the cohomology of the fiber of a degeneration of complex hypersurfaces (or the associated
Milnor fiber) [13| Sections 5,6, Corollary 5.12]. In particular, the multiplicative formula in
Lemma [2] may be viewed as a Kiinneth formula for the dimensions of the graded pieces of
orbifold cohomology groups of toric stacks.

Example 10. Let Np =Z and let P = [-2,2], Q = [-1,3] = P+ 1. Then rp = 2,19 = 3,
and one may compute:
h*(P;t) = h*(Q;t) = 1 + 3t.

R(Pit) =14 262+t h(Q;t) =1+ '3 + 23 4 ¢,
R*(P® P;t) =1+ 10t + 5t h* (P @© Q;t) = 1+ 8t + 712
WP @ Pit) =1+ 4t + 6t + 4t'/2 + ¢,
WP @ Q;t) =14 /3 4 2612 4 ¢2/3 4 21%/6 4 op 4 247/0 - 41/3 4 943/2 4 453 4 42,
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Example 11. In order to provide a wider class of examples of weighted h*-polynomials,
we consider a class of examples of lattice polytopes used by Payne in [8]. Consider positive

integers oy > «a; > --- > g with no common factor and let N = Zdﬂ/(Zf:O ae; = 0),
where e, . ..,eq denotes the standard basis of Z%*!. Observe that N is a lattice of rank d
and, if P(ay, ..., aq) denotes the convex hull of the images of ey, . . ., €4, then P(ay, ..., ay) is

a lattice polytope containing the origin in its relative interior. The following formula follows
from the proof of [12, Lemma 9.1]:
d o;—1 ) ) )
~ Jjop Jog d Jo
h(P(ag, ..., aq);t) = Z Z tzoﬁkﬁdvk#(?-_LTZ-J)*ZIC:M“”(T@-),
i=0 j=0

where p(z) = 1 if x is an integer and (z) = 0, otherwise.

We now consider a partial converse to (7). We will use the following lemma due to Terence
Harris [7].

Lemma 12. Let f(t) € R[t'"] be a polynomial with non-negative coefficients and fractional
exponents for some r € Z~o. Fix a positive real number x. For any n € Zso, let fi(t) =
U(f(t)") € R[t], where V is defined in {l) i.e. fi(t) is obtained from f(t)" by rounding up
exponents in t. Then

i) < fl@)" <ar fr@) f o<z <1,

@) < frl@) <2 fo)" ife > L
In particular, given any polynomial f(t) € U, ez, R[t'/"] with non-negative coefficients and
fractional exponents,
f() = lim fr(z)V",
n—oo
and f(t) determines and is determined by {f:(t) | n € Z<o}.

Proof. First assume that * > 1. When n = 1, the inequalities V(f(t))i=, < f(x) <
21 rWU(f(t))1—s follow from the fact that z+ < zl+] < z'~+z+r for any i € Z>o, and the
assumption that the coefficients of f(¢) are non-negative. When n > 1, the inequalities
follow by replacing f(t) with f(£)". When 0 < z < 1, z/+1 < zr < 2+~ 12031 and the result
follows similarly. The final statement follows immediately. O

For any positive integer n, let P®" denote the free sum of P with itself n times. By
Lemma [2l and (), one may apply the above lemma with f(¢t) = h(P;t), f(t)" = h(P%";t),
fx(t) = h*(P®"t) and r = rp, to obtain the corollary below.

Corollary 13. Let P be a full-dimensional lattice polytope containing the origin with respect
to a lattice Np. Fiz a positive real number x. For any n € Z~qo, and with rp as defined in

@),
WP ) < h(Pyz)* < z7e (P ) if 0 <z < 1,
h(P;z)" < h*(P#™: 2) < xl_iﬁ(P;x)” if x > 1.
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In particular,
h(P;z) = lim h*(P®";2)"/",

n—oo

and h(P;t) determines and is determined by {h*(P®":t) | n € Zso}.

Note that the final statement above states that the following two sets contain precisely
the same information:

(8) {#(APNONp) | A€ Qxo},
{#(mPeB” N (Np DD Np)) ‘ m < Zzo,n - Z>0}.

Remark 14. From the proof of Corollary [13] E(P;t) determines and is determined by
{h*(P®";t) | n € S} for any infinite subset S C Z-q.

Finally, the above results together with the central limit theorem describe some of the
asymptotic behavior of h*(P%";t) as n — oo. More precisely, let X7, Xp be R-valued
random variables with probability distributions on R defined by:

. Wp,
PXr =1 = ey
IP)(XP - Z) - VOI(P)’

where h*(P;t) = Y2,., hp,t' and h(P;t) = ZjeQﬁthj, and h*(P;1) = h(P;1) = Vol(P)

(see Remark M]). Equivalently, the moment generating functions of X} and Xp are given by:

sX;, o 1 * . 8
E[e ] - VO].(P)h (P7€ )7

Xpj_ L 7ip s
E[e**?] = Vol(P)h(P’e ).

Let pip and op denote the mean and standard deviation of Xp respectively, and let N (u, o)
denote the normal distribution with mean p and variance o.

__ dimP

Example 15. When the origin lies in the relative interior of P, (@) implies that 1p = <5

Corollary 16. Let P be a full-dimensional lattice polytope containing the origin in a lattice
Np. Then
Xpon —1hp 4
vn

as n — 00, where convergence means convergence in distribution (see Remark[17).

(07513)’
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Proof. Fix s € R. Then by Corollary [13] for any n € Z>0,
s(l—rp

e PV (PO e Vi) < e PVRR(Preva)t < e S e~ VIRt (PO e ) if 5 <0,

s(rp 1)

e_sﬁp\/ﬁﬁ(P;e\/s_) < e shPVRpx(pon, ef) < e Vir e SRRV (P ef) if s > 0.
If )Z'l, . ,)Z'n are 1id random variables with distribution Xp, and Zn = (X ”PH\};(X"_’]P),
then either a direct computation or invoking the central limit theorem gives:
= ~ o~ s (s3p)>
lim E[e*”] = lim e *FPV h(Pievi) = ¢ 2
n—oo n—o0
(s5p)* . . ~ X% o —nfi
where e 2~ is the moment generating function of N'(0,5p). If Z* = Pe’"f then the
above inequalities state that
Z s(l1-rp)
E[e*%n] < E[e??r] < eﬁ’PE[ "] if 5 <0,

~ s(rp
E[e*?"] < E[e*%r] < e e E[ SZ"] if s >0.

. (s3p)? .
Hence lim,,_,» Ele = llmnﬁooE[eSZ”] = e 2 and the result follows since convergence

of the moment generating functions of Z* to the moment generating function of N (0,p)
implies convergence of the corresponding distributions [5, Theorem 3] (note that all moment
generating functions above converge for all s € R). O

sZn]

Remark 17. The convergence in Corollary [I0is defined in terms of the corresponding cumu-
lative distribution functions as follows: for all z € R, if we write h*(P®";t) = Y., hpen Zt’

X*éBn —’n,/jp 1 *
iﬁvégﬁnﬁp

and @5, (z) = ffoo e_(%wzds, then lim F,(z) = @z, (2).
n—o0

1
V215 p
Example 18. A lattice polytope P containing the origin is a standard simplex if its non-
zero vertices form a basis of Np. In this case, h(P;t) = h*(P;t) =1, ip = o0p = 0 and P®"
is a standard simplex for all n. This is the only case when op = 0.

Example 19. Fix a positive integer n and consider the lattice N = Z[e%]. The n-th
cyclotomic polytope C, is the convex hull of all n-th roots of unity in N ®; R = R#(")
where ¢ is the Euler totient function. In [2 Theorem 7,Lemma 8,Corollary 9], Beck and
Hosten prove that the lattice points of C,, consist of the n-th roots of unity, which are vertices,
togegher with the origin, which is the unique interior lattice point, and they identify C,, with
C:ZW, where sqf(n) denotes the square-free part of n i.e. the product of the prime divisors
of n. Moreover, they prove that C, is reflexive if n is divisible by at most two odd primes,
and they show how to compute h*(C,;t) = h(C,;t) for n < 104. The smallest value of n for
which h*(C,;t) is unknown is n = 105 = 3-5-7. We refer the reader to [2] for further results
and details.



By (), and using Beck and Hosten’s result above, for any positive integer n,

n

B (Coit) = B (Coogin”51) = W(A(Cugriny; 1) ).

sqf(n)

It follows from this observation and Remark [[4] that for any product of distinct primes a,
the problem of computing {h*(C,;t) | sqf(n) = a} is equivalent to the problem of computing
h(Cq4;t). More precisely, consider a strictly increasing sequence of positive integers {ny } ez,

satisfying sqf(ng) = a for all k. Then by Remark [I4 {h*(C,,;t) = h*(C(?Tk;t) | k € Zso}

determines and is determined by ﬁ(Ca; t). Moreover, since fi¢, = 98¢ — @ by Example [I5],
setting P = C, and n = ?* in Corollary [16 implies that

x _ ngp(a)

Cny

2 4 N(0,5¢,),

Tk
a

as k — o0o. We note that it is an open problem to compute ¢, for any product of distinct
primes a.
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