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ABSTRACT
Modern Internet applications such as websites and mobile
games produce a large amount of activity data represent-
ing information associated with user actions such as login
or online purchases. Cohort analysis, originated from Social
Science, is a powerful data exploration technique for finding
unusual user behavior trends in large activity datasets using
the concept of cohort. This paper presents the design and
implementation of database support for cohort analysis. We
introduce an extended relational data model for represent-
ing a collection of activity data as an activity relation, and
define a set of cohort operators on the activity relations, for
composing cohort queries. To evaluate a cohort query, we
present three schemes: a SQL based approach which trans-
lates a cohort query into a set of SQL statements for execu-
tion, a materialized view approach which materializes birth
activity tuples to speed up SQL execution, and a new cohort
query evaluation scheme specially designed for cohort query
processing. We implement the first two schemes on MySQL
and MonetDB respectively and develop a prototype of our
own cohort query engine, COHANA, for the third scheme.
An extensive experimental evaluation shows that the perfor-
mance of the proposed cohort query evaluation scheme is up
to three orders of magnitude faster than the performance of
the two SQL based schemes.

1. INTRODUCTION
E-commerce websites and mobile gaming apps often ac-

cumulate a huge amount of activity data representing infor-
mation that are associated with user actions such as reg-
ister, login and online purchases. Such activity data are
often tabulated to provide insight into the behavior of the
users in order to increase sales and ensure user retention.
To illustrate, Table 1 shows some samples of a real dataset
containing the information of 30M user activities collected
by a mobile game. Each tuple of this table represents a user

action and its associated information. For example, tuple t1
means that in a role of dwarf, player 001 launched the game
on 2013/05/19 in Australia.

To obtain insight based on such activity data, one obvious
choice is to apply traditional SQL GroupBy operators. Still
taking Table 1 as an example, if we want to look at users’
shopping trend in terms of the gold (the virtual currency)
spent, we may run the following SQL query Qs.

SELECT Week, avg(Gold) as AvgSpent

FROM GameActions

WHERE Action = "shop"

GROUP BY Week(Time) as Week

Executing this query against the whole 30M dataset re-
sults in Table 2, where each tuple represents the average
gold that users spent in shopping during a certain week.
The result as shown in Table 2 seems to suggest a slight
drop in shopping, and then a recovery. However, it is hard
to explain the behavior and draw insight from this result. In
particular, this result fails to reveal the true trend of in-game
shopping, which as we shall see shortly, is the consequence
of the aging and social change effects.

To obtain deeper insight into factors that affect the be-
havior of users, we will focus on the use of cohort analysis

in this paper. Cohort analysis, originally introduced in So-
cial Science, is a data analysis technique for assessing the
effects of aging on human behavior in a changing society [8].

According to the social scientists, there are two major
sources that can affect human behavior: 1) aging, i.e., people
behave differently as they grow older and 2) social changes,
i.e., people may change their behavior when the society they
live in changes. In our in-game shopping example, players
tend to buy more weapons in their initial game sessions than
they do in later game sessions - this is the effect of aging.
On the other hand, social change may also affect the players’
shopping behavior, e.g., with new weapons being introduced
in iterative game development, players may start to spend
again in order to acquire these weapons.

With cohort analytics, we can study the trend of human
behavior in three steps. First, users are assigned to different
cohorts (each cohort is therefore a group of users ) based
on the period of time when users perform an action for the
first time. This step is of vital importance in cohort analysis
since its purpose is to exclude the effect of social changes.
Social scientists think that people who were born in the same
period will exhibit similar behavioral patterns. In our in-
game shopping example, suppose we cohort players based on
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Table 1: Mobile Game Activity Table
Player Time Action Role Country Gold

t1 001 2013/05/19:1000 launch dwarf Australia 0
t2 001 2013/05/20:0800 shop dwarf Australia 50
t3 001 2013/05/20:1400 shop dwarf Australia 100
t4 001 2013/05/21:1400 shop assassin Australia 50
t5 001 2013/05/22:0900 fight assassin Australia 0
t6 002 2013/05/20:0900 launch wizard United States 0
t7 002 2013/05/21:1500 shop wizard United States 30
t8 002 2013/05/22:1700 shop wizard United States 40
t9 003 2013/05/20:1000 launch bandit China 0
t10 003 2013/05/21:1000 fight bandit China 0

Table 2: Results of Qs

Week AvgSpent
2013-05-19 50
2013-05-26 45
2013-06-02 43
2013-06-09 42
2013-06-16 45

Table 3: Cohort Report for Shopping Trend

Cohort Age (Weeks)
1 2 3 4 5

2013-05-19 (145) 52 31 18 12 5
2013-05-26 (130) 58 43 31 21
2013-06-02 (135) 68 58 50
2013-06-09 (140) 80 73
2013-06-16 (126) 86
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Figure 1: Launch Cohort Shopping Trend

the week when they first launched the game. Then, player
001 is assigned to 2013-05-19 launch cohort. In the second
step, the activity tuples are also partitioned accordingly so
that tuples of an user are assigned to the same cohort as
the user. For our running example, all the shopping tuples
are assigned to the cohorts to which their players belong.
For instance, tuple t2 is assigned to its player’s 2013-05-19
launch cohort. Finally, in the third step, to capture the aging
effect, the tuples of each cohort are further split into smaller
sub-partitions based on age (time). The desired aggregate
is then applied on each such sub-partition. In our in-game
scenario, we organize the shopping tuples into partitions,
each corresponding to a week’s duration (i.e., age). In other
words, for each shopping tuple in a cohort, we calculate
the number of weeks (i.e., age) that have passed between
the shopping time and the time the player first launched
the game, and assign the tuple to the respective partition.
Finally, we report average gold each cohort spent at different
ages.

The result of our shopping trend cohort analysis is shown
in Table 3 and visualized in Figure 1 in the form of a heatmap.
In Figure 1, each row represents the shopping trend of a co-
hort, and each column captures the aging effect on the aver-
age expenditures of that cohort since its “birth”with respect
to the time the game is first launched. For example, column
k reports the average expenditures of the cohorts at the age

Table 4: Cohort Report for Retention Trend

Cohort Age (Weeks)
1 2 3 4 5

Australia (162) 160 103 78 42 26
United States (1815) 1812 1065 678 478 470
China (924) 912 630 457 234 125
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Figure 2: Country Cohort Retention Trend

of k weeks.
By looking at each row horizontally, we can see the ag-

ing effect, i.e., players spent more gold on buying weapons
on their initial game sessions than their later game sessions.
On the other hand, by comparing different rows (i.e., read-
ing rows vertically), we can observe that the drop-off trend
becomes better. This suggests that the iterative game devel-
opment indeed improves the players’ gaming experience as
they seemed to be spending more gold on buying weapons
to win battles.

Moreover, the analysis result can be used as a training
dataset for other analytical techniques. For example, we
can regard the age as an independent variable and the av-
erage gold players spent as a dependent variable. Thus,
for each cohort, we can train a regression model to predict
the average amount of gold that cohort will spend in subse-
quent weeks. Such information can be further utilized by a
recommendation engine for recommending weapons of sim-
ilar price to that cohort. The ability to pipeline analytical
results to downstream analytical algorithms makes cohort
analysis an interesting and powerful tool for transforming
raw activity data from Table 1 into actionable insights such
as trend analysis and/or recommendation.

While the classic cohort analysis we presented so far has
been very useful in many analytic applications such as re-
tention analysis [1], we hope to further widen its application
in this paper. One limitation of classical cohort analysis
is that time is the only dimension which is used for iden-
tifying cohorts. This is natural in social science research
where birth time is considered to be the key attribute that



determines people’s behavior. However, in many other ap-
plications, there are other factors leading to the similarity
in people’s behavior. For example, while players might start
their first game session in different weeks (hence having dif-
ferent birth time), they may still share the similar gaming
experiences if they play the same version of the game. On
the other hand, players who perform the first game session in
the same week or month (hence having the same birth time)
may still behave differently since they may launch different
versions of the game. Therefore, we intend to generalize
cohort analysis so that it is able to group people by any at-
tributes of interests. If such a generalization is possible, we
would be able to perform, say, a country cohort retention
analysis which reports the total number of active players in
each country cohort since that cohort is born. The result
of this generalized cohort analysis is shown in Table 4 and
visualized in Figure 2.

This paper presents the design and implementation of
database support for generalized cohort analysis. To our
best knowledge, our paper is the first work to provide database
query-style support for the generalized cohort analysis. We
first introduce an extended relational data model which rep-
resents a collection of activity tuples as an activity relation,
a special relation with at least three attributes, each within
a particular domain. We further propose three operators
to manipulate activity relations a birth selection operator
σb
C,e for selecting activity tuples of qualified users, an age

selection operator σ
g
C,e for selecting qualified age activity

tuples while retaining all birth tuples1, and a cohort aggre-
gation operator γc

L,e,fA
for aggregating activity tuples. Co-

hort analysis can thus be formulated as a cohort query which
is an expression composed of the three cohort operators.

To evaluate a cohort query, we present three schemes. The
first scheme (called SQL based approach) translates a co-
hort query into a set of SQL statements by translating each
cohort operator into expressions composed of standard re-
lational operators. This approach is easy to implement but
is inefficient to execute since the translation involves mul-
tiple joins between temporary tables. The second evalua-
tion scheme (called the materialized view based approach)
employs materialized views to speed up query processing.
However, this technique is not scalable due to the signifi-
cant increase in the size of materialized views. Thus, we
propose a new query processing scheme specially designed
for cohort query processing. We implement the first two
schemes on MySQL and MonetDB. For the third scheme,
we build a new cohort query engine, COHANA (COHort
ANAlytics), and equip it with various optimization tech-
niques. Through extensive experiments, we show that CO-
HANA runs up to three orders of magnitude faster than a
row-oriented database (MySQL) and 3.4X∼20X faster than
a column-oriented database (MonetDB), and demonstrate
the effect of the proposed optimization techniques.

The rest of the paper is organized as follows: Section
2 presents the foundations of cohort analysis. Section 3
presents the SQL based and the materialized view based ap-
proaches for processing cohort queries. We also present the
basic idea of sort-aware cohort algorithms in this section. In
Section 4, we present COHANA, a prototype query engine
which refines the sort-aware cohort algorithms by several

1The definitions of birth tuples and age tuples will be given
in Section 2.2.

query optimization techniques for cohort query processing.
Section 5 reports the experimental results. We present re-
lated work in Section 6 and conclude this paper in Section
7.

2. COHORT ANALYSIS FOUNDATIONS
In this paper, the term cohort is used to refer to a number

of individuals who have some common characteristic in per-
forming a particular action for the first time, and we shall
use this particular action and the attribute values of the
common characteristics as an adjective to identify a cohort.
For example, a group of users who perform the first login

(the particular action) on 2015 January (the common char-
acteristic) is called the 2015 January login cohort. Simi-
larly, a number of customers who make their first purchase
at the United States forms a United States purchase cohort.
Broadly speaking, cohort analysis is a data exploration tech-
nique which inspects the variance of measures, e.g., revenue,
retention and sales, of different cohorts since they were born
from performing a particular action.

2.1 Modeling Activity Data
We employ a relational approach to model activity data.

A collection of activity data is represented as an instance of
an activity relation, a special relation where each tuple rep-
resents the information associated with a single user activity.
We will also call an activity relation an activity table. In
this paper, the two terms, i.e., activity relation and activity
table are used interchangeably.

Formally, an activity table D is a relation with attributes
A1, A2, . . . , An where n ≥ 3. A1 is a string uniquely identify-
ing a user, A3 is also a string, representing an action chosen
from a pre-defined collection of actions, and A2 records the
time at which A1 performed A3. Every other attribute in
D is a standard data cube style attribute, which can be a
dimension attribute representing a user property or a mea-
sure attribute representing a numeric value associated with
the activity tuple. Since A1, A2 and A3 have specific se-
mantics, we write them as Au, At and Ae respectively. Fur-
thermore, an activity table has a primary key constraint on
(Au, At, Ae). That is, each user i can only perform a specific
action e once at each instant time. As exemplified in Table
1, the first three columns correspond to the user (Au), times-
tamp (At) and action (Ae) attribute, respectively. Role and
Country are dimension attributes which respectively spec-
ify the role and the country of player Au when performing
Ae at At. Following the two dimension attributes is Gold,
a measure attribute representing the virtual currency that
player Au spent for this action. We shall continue to use
Table 1 as our running example for describing each concept
in cohort analysis.

2.2 Basic Concepts of Cohort Analysis
The core concepts of cohort analysis are birth time,

which defines when to start measuring user behavior, and
age, which defines the time period over which the metrics
of interests are aggregated for each cohort. Given an action
e ∈ Dom(Ae), the birth time of user i is the first time that
i performed e or -1 if i never performed e, as shown in Def-
inition 1. We call an action e, a birth action if e is used to
define the birth time of users.



Definition 1. Given an activity table D, a time value ti,e

is called the birth time of user i if and only if

t
i,e =

{

min πAt(σAu=i∧Ae=e(D)) if σAu=i∧Ae=e(D) 6= ∅
−1 otherwise

where π and σ are the standard projection and selection
operators and e ∈ Dom(Ae).

Technically, any action e ∈ Dom(Ae) can be specified as a
birth action. However, in real applications, we often use an
action such as “Signup” or “Purchase” which triggers a long
sequence of user activities as a birth action. We now define
the birth activity tuple di,e:

Definition 2. Given an activity table D, a tuple di,e ∈ D
is called the birth activity tuple of user i if and only if

d
i,e[Au] = i ∧ d

i,e[At] = t
i,e

where e is a birth action.

Given the fact that (Au, At, Ae) is the primary key of D,
we conclude that for each user i, there is only one birth
activity tuple of i in D for any birth action e if i performed
e. Based on the birth time ti,e, each activity tuple d of
user i, i.e., d ∈ D ∧ d[Au] = i, can be indexed by the time
difference called age between ti,e and d[At].

Definition 3. Given the birth time ti,e, a numerical value
g is called the age of user i in tuple d ∈ D, if and only if

d[Au] = i ∧ g = d[At]− t
i,e

The concept of age is designed for specifying the time in-
terval over which to aggregate the behavioral metric of a
cohort. In cohort analysis, we always calculate the metric
at positive ages. That is, if the age of an user in a tuple is
negative, that tuple will be excluded from the final report.
The activity tuple with a positive age is called an age ac-
tivity tuple. Furthermore, in practical applications, the age
g is normalized by a certain time unit such as a day, week
or month. Without loss of generality, we assume that the
granularity of g is a day. That is, we report each cohort’s
aggregated metric in terms of days since the users of that
cohort were born.

Consider the example activity relation in Table 1. Sup-
pose we use the action launch as the birth action. Then,
the activity tuple t1 is the birth tuple of player 001, and the
birth time is 2013/05/19:1000. The activity tuple t2 is an
age tuple of player 001 performed at age 1.

2.3 Cohort Operators
We now present operations on activity tables. We intro-

duce three new operators: two selection operators σb
C,e and

σ
g
C,e for selecting qualified activity tuples to aggregate and

a cohort aggregation operator γc
L,e,fA

for calculating aggre-
gations of the qualified activity tuples. These operators are
our cohort versions of the standard relational selection (σC)
and aggregation (γL,fA) operators.

2.3.1 The σb
C,e Operator

A birth selection operator σb
C,e is used to obtain all ac-

tivity tuples of qualified users whose birth activity tuples
satisfy a specific condition C. The formal definition of σb

C,e

is given as follows.

Definition 4. Given an activity table D, the birth selec-
tion operator σb

C,e is defined as

σ
b
C,e(D) = {d ∈ D | i← d[Au] ∧ C(di,e) = true}

where C is a propositional formula and e is a birth action.

Consider the activity relation D in Table 1. Suppose we
want to derive an activity table from D which retains all
activity tuples for users who were born from performing the
launch action in Australia. This can be achieved using the
following expression.

σ
b
Country=Australia,launch(D)

The result set of the above operation is {t1, t2, t3, t4, t5}
which contains all activity tuples of the only qualified player
001.

2.3.2 The σ
g
C,e Operator

Suppose we want to obtain an activity table from D which
retains all birth activity tuples in D and only includes age
activity tuples which satisfy a condition C. The age selection
operator is designed for this purpose.

Definition 5. Given an activity table D, the age selection
operator σg

C,e is defined as

σ
g
C,e(D) ={d ∈ D|i← d[Au]∧

((d[At] = t
i,e) ∨ (d[At] > t

i,e ∧ C(d) = true))}

where C is a propositional formula and e is a birth action.

For example, suppose we choose the action shop as the
birth action, and want to derive an activity table which re-
tains all birth activity tuples in Table 1 but only includes
age activity tuples which indicate users performing in-game
shopping in all countries but China. The following expres-
sion can be used to obtain the desired activity table.

σ
g
Action=shop∧Country6=China,shop(D)

The result set of the above selection operation is {t2, t3, t4, t7, t8}
where t2 is the birth activity tuple of player 001, t3 and t4
are the qualified age activity tuples of player 001, and t7
and t8 are respectively the birth activity tuple and the only
qualified age activity tuple of player 002.

A common requirement in specifying σ
g
C,e operation is

that we often want to reference the attribute values of birth
activity tuples in C. For example, given the birth action
shop, we may want to select age activity tuples which indi-
cate that users perform in-game shopping at the same loca-
tion as their birth location. We introduce a Birth() function
for this purpose. Given an attribute A, for any activity tuple
d, the Birth(A) returns the value of attribute A in d[Au]’s
birth tuple:

Birth(A) = d
i,e[A]

where i = d[Au] and e is the birth action.
In our running example, suppose that users were born

from their first performing shopping, and that we want to
obtain an activity table which retains all birth activity tu-
ples but only include age activity tuples which indicate that
players performed shopping in the same role as they were
born. The following expression can be used to fulfill this
requirement.

σ
g

Role=Birth(Role),shop(D)



The result set of the above operation is {t2, t3, t7, t8} where
t2 and t7 are the birth tuples of player 001 and player 002,
respectively, and t3 and t8 are the qualified age activity tu-
ples of player 001 and player 002, respectively.

2.3.3 The γc
L,e,fA

Operator
We now present the cohort aggregation operator γc

L,e,fA

which aggregates over activity tuples. Briefly speaking, the
γc
L,e,fA

operator performs aggregation in two steps. First, it
divides users into different cohorts based on the projection of
users’ birth activity tuples onto a specified cohort attribute
set, and we call this step the cohort operation. Then, all
activity tuples (including both the birth and the activity
tuples) are assigned to the cohorts to which the users belong
for aggregation. We shall elaborate on these two steps one
by one.

The cohort operation is based on a cohort attribute set
L. Formally, given an activity table D with its attribute set
A = {Au, At, Ae, A1 . . . , An} and a birth action e, we pick
up a cohort attribute set L ⊂ A such that L∩{Au, Ae} = ∅
and assign each user i to a cohort c specified by di,e[L]. Con-
sider the activity relation in Table 1. Given the birth action
launch and the cohort attribute set L={Country}, player
001 is thus assigned to the Australia launch cohort, player
002 is assigned to the United States launch cohort and player
003 is assigned to the China launch cohort. Similarly, if we
choose L={Day(Time)}, where the Day() function returns
the date part of the Time attribute, as the cohort attribute
set, for the same launch birth action, player 001 is assigned
to the 2013/05/19 launch cohort and player 002 and player
003 are assigned to the 2013/05/20 launch cohort. After
assigning users to cohorts, we thereafter divide activity tu-
ples into cohorts accordingly. Given a cohort attribute set
L and a birth action e, an activity tuple d is assigned to the
same cohort c as is d[Au], i.e., d

i,e[L]. The γc
L,e,f operator

is formally presented in Definition 6.

Definition 6. Given an activity table D, the cohort aggre-
gation operator γc

L,e,fA
is defined as

γ
c
L,e,fA

(D) ={(dL, g, s,m)|

Dg ← {(d, g)|d ∈ D ∧ i← d[Au] ∧ g = d[At]− t
i,e}

∧ (dL, g) ∈ πL,g(Dg)

∧ s = count(πAuσdg [L]=dL
(Dg))

∧m = fA(σdg [L]=dL∧dg[g]=g∧g>0(Dg))

where L is a cohort attributes set, e is a birth action and
fA is a standard aggregation function with respect to the
attribute A.

In summary, the cohort aggregation operator takes an ac-
tivity table D as input and produces a normal relational
table R as output. Each row in the output table R consists
of four parts (dL, g, s,m), where dL is a projected tuple on
the cohort attributes set L representing the cohort, g is the
age, i.e., the time point that we report the aggregates, s is
the cohort size, i.e., the number of users in the cohort spec-
ified by dL, and m is the aggregated measure produced by
the aggregate function fA. Note that we only apply fA on
age activity tuples with g > 0.

2.3.4 Discussions on Cohort Operators

We note that the two selection operators, σb
C,e and σ

g
C,e,

are commutative if they involve the same birth action2.

σ
b
C,eσ

g
C,e(D) = σ

g
C,eσ

b
C,e(D) (1)

Leveraging this property, we present in Section 4 an opti-
mization that pushes down the selection of birth tuples, i.e.,
birth selection operator, in evaluating cohort queries.

We can also check that σb
C,e and σ

g
C,e are operationally

closed since they take an activity table as input and produce
an activity table as output. However, the γc

L,e,fA
operator

is not operationally closed since it produces a normal rela-
tional table as output. Technically, it is easy to make γc

L,e,fA

to be operationally closed. We just need to treat each cohort
in the output table R of γc

L,e,fA
as a giant user and extend

each output tuple (dL, g, s,m) to (au, g, e, dL, s,m) where
au is a string representation of dL, i.e., the concatenation
of all attribute values in dL, and e is the birth action pa-
rameter of γc

L,e,fA
. We can check that (au, g, e) satisfies our

(Au, At, Ae) primary key constraint. Making the output of
γc
L,e,fA

as an activity table enables query chaining, that is,
the output of a cohort query can be fed into another cohort
query for further processing. However, we have not found
any practical applications of this query chain since treat-
ing each cohort as a single giant user is quite strange and
there is only one action, i.e., e, in the result set. The com-
mon scenario is that the output of a cohort query is further
processed by a standard relational query such as selecting
certain cohorts for comparison. Therefore, making γc

L,e,fA

produces a normal relational table is sufficient.

2.4 The Cohort Query
Given an activity table D and operators σb

C,e, σ
g
C,e, πL,

ρ 3 and γc
L,e,fA

, a cohort query Q : D → R is an expres-
sion of composition of those operators that takes D as input
and produces a relation R as output, during which the fol-
lowing constraints are satisfied. 1) the same birth action e
is used for all cohort operators in Q, and 2) the primary
key (Au, At, Ae) is always in the projection attribute set of
πL, i.e., L ⊇ {Au, At, Ae}.

4 The first constraint ensures
that the cohort query is meaningful, since it does not make
sense to compare cohorts born from different birth actions.
The second constraint ensures that the standard projection
operator defined for a normal relation can work well with co-
hort operators by producing an activity table. Following is
a cohort query regarding the shopping trend in our running
example expressed with the proposed cohort operators.

Example 1. Given the launch birth action, report the to-

tal gold that country launch cohorts spent since they were

born in the role of dwarf.

Q1 = γ
c
L,e,sumGold

σ
g
Action=shop,eσ

b
Role=dwarf,e(D)

where L = {Country} and e = “launch”.

We do now allow standard selection operator σC and bi-
nary operations in the cohort query. The reason for rejecting
σC is that the operator may produce dangling users in the
result set. A dangling user is a user who only has age activ-
ity tuples but does not have the birth activity tuple in the

2In fact, , using the same birth action in σb
C,e and σ

g
C,e is a

must for a cohort query to be meaningful.
3The renaming operator in relational algebra.
4Note that L is not the cohort attribute set here.



result set of an operation. For example, consider the activ-
ity relation in Table 1. Suppose we allow σC in the cohort
query. One may specify the operation σTime>2013/05/22:0000 .
The birth tuple, i.e., t1, is removed by the selection, and the
result set of this selection operation is {t5, t8}, both of which
are age tuples. The result activity relation is therefore cor-
rupted in the sense that we cannot allocate player 001 to a
cohort (since the birth activity tuple of that user is missing)
and aggregate age activity tuples of that user anymore.

Binary operations such as join, intersection also suffers
from the dangling users problem. To include them in cohort
queries, these operators need to be redefined just as we do
for selection operator. We therefore leave these extensions
as future work.

From another point of view, the rejection of join operation
in a cohort query may not be a big issue. In real applications,
we can usually (if not always) pre-join all related tables into
a single big wide table for analysis. In fact, this wide table
scheme is very popular and is a preferred storage format for
analytical databases in recent research [12].

3. ADDRESSING COHORT QUERIES
This section presents three schemes for the evaluation

of cohort queries: SQL based approach, materialized view
based approach and our proposed cohort algorithms. The
first two schemes evaluate a cohort query by translating a
cohort query into a set of SQL statements for execution.
These two evaluation schemes are easy to implement, but
are either inefficient or not scalable. we therefore develop
a new cohort query processing scheme to achieve both effi-
ciency and scalability. We present the basic algorithms of
our own cohort query processing scheme in this section, and
discuss in Section 4 the implementation of these algorithms
as well as optimizations.

3.1 SQL based Approach
We now present the translation of each cohort operator

into an expression of relational operators. Given a birth
action e, we first derive a birth time table Re that stores the
birth time of users.

R
e = γAu,min(At)→Ab

t
σAe=e(D)

where D is the input activity table and γ is the standard
aggregation operator. For each user i in D, Re stores i and
its birth time ti,e with respect to the given birth action e.

With Re, we can evaluate the birth selection operator σb
C,e

according to the following expressions.

T ← R
e

✶
Re.Au=D.Au

D (2)

U ← πAuσAt=Ab
t∧C(T ) (3)

σ
b
C,e(D)← D ✶

D.Au=U.Au

U (4)

To evaluate σb
C,e, we first produce a temporary table T

by joining the input activity table D with the birth time
table Re on Au attribute (expression (2)). Then, we collect
all qualified users in a temporary table U by first applying
selection condition C on birth tuples of T (expression (3))
and then projecting the results on Au. Finally, we join U and
D and produce the final resultant activity table (expression
(4)).

Compared with σb
C,e, the evaluation of σg

C,e is similar but

a little complicated. To perform σ
g
C,e, we first inspect the

condition C to collect each attribute Ai for which the Birth
function is given, and denote the set of collected attributes
by Lb = ∪Ai. Then the following expressions can be used
to evaluate σ

g
C,e:

T ← R
e

✶
Re.Au=D.Au

D (5)

U ← π
Au,Lb→Lb′σAt=Ab

t
(T ) (6)

σ
g
C,e(D)← πAσCb∨At=Ab

t
(D ✶

D.Au=U.Au

U) (7)

where A is the attribute set of D, the condition Cb in ex-
pression (7) is derived from C by replacing every Birth

(Ai) function with A′
i, a renamed attribute of Ai, in L

b′ .
For example, suppose we want to evaluate the operation
σ
g

Time=Birth(Time),e. First, we collect the attribute in Birth()

function and obtain Lb = {Time}. Suppose we rename the
Time attribute in Lb to BirthTime in expression (6). Then,
the condition Cb in expression (7) would be Time = Birth-
Time.

The evaluation of σg
C,e consists of three steps. First, we

derive a temporary table T by joining D and Re on Au (ex-
pression (5)). Second, we derive a temporary table U by
retrieving all birth activity tuples from T and then project-

ing the results on (Au,L
b′) (expression (6)). Finally, we

replace the selection condition C with Cb, apply Cb on the
join results of D and U , and produce the final results by pro-
jecting the join results onto the attribute set A (expression
(7)).

The cohort aggregation operator γc
L,e,fA

is evaluated in
following four steps.

S ← πA,Ab
t ,D.At−Ab

t→Ag
(Re

✶
Re.Au=D.Au

D) (8)

T ← γL,count()→CohortSizeσAt=Ab
t
(S) (9)

U ← γL,Ag,f(A)→Am
σAg>0(S) (10)

γ
c
L,e,fA

(D)← T ✶
T.L=U.L

U (11)

First, we derive a temporary table S by joiningD with Re on
Au and calculating the age Ag (expression (8)). Second, we
calculate the cohort size by first retrieving all birth activity
tuples and then applying count() aggregation function on
the cohort attribute set L. The temporary results are stored
in T (expression (9)). Third, we calculate the age metric
by performing fA on S based on the group by attribute
set (L, Ag) and produce the results as U (expression (10)).
Finally, we join T and U to get the final result (expression
(11)).

With the implementation of cohort operators, a cohort
query Q can be evaluated in two steps. First, we trans-
late each cohort operator in Q into a view by CREATE VIEW

statements based on the above translation schemes. Then,
we use a SELECT statement to combine these views and feed
this statement into the database for execution. The SQL
based approach is easy to implement. However, the evalua-
tion scheme is inefficient as it involves multiple joins.

3.2 Materialized View based Approach
A major bottleneck of SQL based approach presented in

Section 3.1 is to find birth activity tuples, which requires to
find birth time table Re for the given birth action e and join



Re with the activity table D on D.Au = Re.Au and D.Ae =
Re.Ab

t . To eliminate this cost, we can adopt a materialized
view approach which materializes birth activity tuples in the
original activity table for a particular birth action. Once the
birth activity tuples are materialized, cohort operations can
be implemented with fewer joins.

Formally, given a birth action e and a birth attribute set
Ab = {Ai, . . . , Ai+k} where k ≤ n−3 and for each Aj ∈ A

b,
Aj ∈ A ∧ Aj 6∈ {Au, At, Ae}, we create a materialized view
V as

T ← πAu,Ab
t ,A

bσAt=Ab
t
(Re

✶
Re.Au=D.Au

D) (12)

V ← πA,Ab,Ab
t ,(At−Ab

t )→Ag
(T ✶

T.Au=D.Au

D) (13)

The materialized view V is built in two steps. In the first
step, we first join Re with D on Au and retrieve all birth ac-
tivity tuples. Then, the results are projected on (Au, A

b
t ,A

b)
and stored in T (expression (12)). In the second step, we
join T with D on Au and project the join results onto the
desired attribute set; We also add the age (Ag) attribute
in the materialized view V to avoid its computation during
the evaluation of cohort aggregation operators (expression
(13)).

Consider the activity table in Table 1, suppose we choose
the launch action as the birth action and Lb = {Country} as
the birth attribute set. Table 5 shows the corresponding ma-
terialized view. In Table 5, the attribute Ab

t is named Birth-
Time, the birth attribute Country is named BirthCountry
and the attribute Ag is named Age.

With V , the cohort operators can be evaluated with fewer
joins. The birth selection operator σb

C,e is now evaluated as

σ
b
C,e(D)← σCb(V )

where Cb is the rewritten condition of C by replacing each
attribute A in C with its corresponding birth attribute Ab in
V . For example, the σb

Country=China,launch operation on Table
5 is evaluated as a standard selection operation σBirthCountry=China.

The age selection operator σg
C,e is implemented as

σ
g
C,e(D)← πAσCb∨At=Ab

t
(V )

where Cb is the rewritten condition of C by replacing each
Birth(A) function call with the corresponding birth at-
tribute Ab in Ab.

Finally, the cohort aggregation operator γL,e,fA is evalu-
ated by simply removing expression (8) in the implementa-
tion presented in Section 3.1 and replacing S with V in the
rest expressions.

T ← γL,count()→CohortSizeπAu(V )

U ← γL,Ag ,f(A)(V )

γL,e,fA (D)← T ✶
T.L=U.L

U

The materialized view V that we introduced above im-
proves the query performance by eliminating multiple joins.
Furthermore, a standard B-tree index can also be built on
birth attributes in V for speeding up birth selection opera-
tions. Unfortunately, for age selection operation, no index
proposed so far can be used for efficient retrieval of qualified
activity tuples, as according to Definition 4, the birth tuple
should always be selected no matter if it passes the selection
condition.

However, the materialized view technique has two major
limitations. First, to employ V for query processing, every
possible attribute A that appears in the condition C of the
birth selection operator σb

C,e or in the Birth(A) function of
the age selection operator σg

C,e must have its corresponding

birth attribute Ab in V . Second, the materialized view V
can only be used for processing cohort queries whose birth
action e in the query is the same birth action that is used
for the creation of V .

To solve the first issue, we can include every non-primary
key attribute A ∈ A in the birth attribute set Ab. To solve
the second issue, we can create a set of materialized views
V = {V1, . . . , Vn} where each materialized view Vi ∈ V
is created for a specific birth action ei ∈ Dom(Ae). Un-
fortunately, both of the aforementioned approaches signifi-
cantly increase the storage space and maintenance costs of
materialized view management. Suppose our cohort query
workload consists of n birth actions and queries m birth at-
tributes. For each birth action, we need to perform 2 joins
(expression (12) and (13)) and add to the original activ-
ity table m + 2 additional columns, m of which are birth
attributes and the other two of which are the birth time
and age attribute, respectively. As a result, creating a ma-
terialized view for each birth action requires 2n joins and
generates (m + 2) × n additional columns in total. Obvi-
ously, even for modest setting, e.g., n = 20 and m = 20,
the total number of joins and new attributes added is quite
large. Therefore, this technique is only useful in scenarios
where the cohort queries involve a very few number of birth
actions and birth attributes.

3.3 Cohort Algorithms
The major problem of the materialized view approach pre-

sented in Section 3.2 is scalability, and this section develops
a set of cohort algorithms to conquer the scalability issue. A
key observation is that all cohort operators need to process
birth activity tuples. Therefore, searching birth activity tu-
ples constitutes the critical execution path in cohort query
processing, and we can thus speed up the cohort query pro-
cessing by optimizing the birth activity tuples searching op-
eration. The optimization is performed in two steps. First,
we sort the activity table D according to (Au, At, Ae) dur-
ing the load phase. The sorted activity table has two nice
properties: 1) activity tuples of the same user are clustered
together, called user clustering property; 2) For each user i,
the activity tuples of i are stored in increasing order of time,
called time ordering property. With these two properties,
we can efficiently find the birth activity tuple for any birth
action e in a single sequential scan. Suppose the activity tu-
ples of user i is stored between dj and dk (the user clustering
property). For any birth action e, we iterate each tuple be-
tween dj and dk to locate the birth activity tuple of i, and
the first tuple db satisfying db[Ae] = e is the desired birth
activity tuple di,e. In the second step, we develop a set of
sort-aware cohort operators which utilize the two properties
of the sorted activity table for efficient cohort operations 5.
The sort-aware cohort algorithms will be refined in Section
4 and implemented in our COHANA query engine.

We now present the implementation of σb
C,e and γc

L,e,fA

5We shall note that even though the activity table is sorted,
the existing relational operators still cannot perform efficient
cohort operation since they are not coded to utilize such
sorted storage for efficient birth tuple location.



Table 5: Materialized View of Table 1
Player Time Action Role Country Gold BirthTime BirthCountry Age
001 2013/05/19:1000 launch dwarf Australia 0 2013/05/19:1000 Australia 0
001 2013/05/20:0800 shop dwarf Australia 50 2013/05/19:1000 Australia 1
001 2013/05/20:1400 shop dwarf Australia 100 2013/05/19:1000 Australia 1
001 2013/05/21:1400 shop assassin Australia 50 2013/05/19:1000 Australia 2
001 2013/05/22:0900 fight assassin Australia 0 2013/05/19:1000 Australia 3
002 2013/05/20:0900 launch wizard United States 0 2013/05/20:0900 United States 0
002 2013/05/21:1500 shop wizard United States 30 2013/05/20:0900 United States 1
002 2013/05/22:1700 shop wizard United States 40 2013/05/20:0900 United States 2
003 2013/05/20:1000 launch bandit China 0 2013/05/20:1000 China 0
003 2013/05/21:1000 fight bandit China 0 2013/05/20:1000 China 1

Algorithm 1: σb
C,e(D) operator implementation

Input : A sorted activity table D and a birth action e
1 GetBirthTuple(d, e)
2 i← d[Au]
3 while d[Au] = i ∧ d[Ae] 6= e do

4 d← D.GetNext()

5 return d

6 Open()
7 D.Open()
8 uc ← ∅
9 Found ← false

10 GetNext()
11 d← D.GetNext()
12 if d[Au] 6= uc then

13 db ← GetBirthTuple(d, e)

14 uc ← db[Au]

15 Found ← C(db)

16 return Found = true ? d : ∅

operators in Algorithm 1 , Algorithm 3 and Algorithm 2 re-
spectively. Each cohort operation is implemented as a stan-
dard operator, which is a group of three functions: Open()

for initializing the operator, GetNext() for returning the
next tuple in the result set and Close() for terminating the
iteration. We omit the Close() implementation since the
implementation is trivial: we just close the input activity
table by calling D.Close().

Algorithm 1 presents the implementation of σb
C,e operator.

The algorithm employs an auxiliary function GetBirthTu-

ple(d, e) (line 1 – line 5) for finding the birth tuple of user
i = d[Au] given that d is the first activity tuple of i in the
underlying storage and e is a birth action. The GetBirth-

Tuple() function finds i’s birth tuple by iterating each next
tuple d ∈ D and checks whether d belongs to i and whether
the value d[Ae] is the birth action e (line 3). The first tuple
d matching the condition is returned as the birth tuple.

To evaluate σb
C,e, Algorithm 1 first opens the input ac-

tivity table D and initializes two global variables (line 8
– line 9): uc which points to the current processing user
and Found, a boolean flag which indicates whether the cur-
rent processing tuple should be returned as a result. In the
GetNext() function, we first retrieve the next tuple d from
the input (line 11). Then, we check whether the user of
d, i.e., d[Au], is the current processing user (line 12). If
the check fails, we look for a new user and then call Get-
BirthTuple(d, e) to get the birth tuple db of d[Au] (line 13).
Thereafter, we apply the selection condition on db and up-
date uc and the Found flag accordingly (line 14 – line 15).

Algorithm 2: γL,e,fA(D) operator implementation

Input : A sorted activity table D, a birth action e, a cohort
attribute list L

1 Open()
2 D.Open()
3 Hc ← ∅ // Cohort Size hash table
4 Hg ← ∅ // Cohort metric hash table

5 db ← ∅
6 uc ← ∅
7 while D is not exhausted do

8 d← D.GetNext()
9 if uc 6= d[Au] then

10 db ← D.GetBirthTuple(d, e)

11 uc ← db[Au]

12 Hc[db[L]] + +
13 else

14 g ← d[At]− db[At]

15 update Hg[db[L]][g] with fA(d)

16 GetNext()
17 Retrieve next key (c, g) from Hg

18 return (c, g,Hc[c],Hg[c][g])

We finally return d if Found is true (line 16).
Algorithm 3 presents the implementation of σ

g
C,e. The

Open() function opens the input activity table D and initial-
izes three global variables: uc which stores the current pro-
cessing user, db which holds uc’s birth tuple and the boolean
indication flag Found (line 2 – line 5). The GetNext() func-
tion first retrieves the next tuple d from D (line 7). Then,
it checks whether d[Au] is the current processing user uc. If
the check fails, a new user is found. We update uc and db

and return the birth tuple of newly found user (line 9 – line
12). If the check succeeds, d must be an age tuple of uc.
We rewrite the condition C by replacing each occurrence of
Birth(A) with the value db[A] and apply it to d (line 14 –
line 15). Finally, the activity tuple d is returned if Found is
true.

Algorithm 2 presents the implementation of γc
L,e,fA

op-
erator. The Open() function implements the main logic of
γc
L,e,fA

. The function first initializes its data structures: a
hash table Hc which stores the cohort size for each cohort; a
hash table Hg which stores aggregation result of fA for each
cohort; uc, the current processing user and db, the birth
tuple of uc (line 2 – line 6). Then, the Open() function iter-
ates through each activity tuple d ∈ D in a while loop (line
7). For each d, we first check whether d[Au] is the current
processing user uc (line 9). If d[Au] is a new user, we up-
date db and uc and then increment the cohort size Hc[dL]



Algorithm 3: σ
g
C,e(D) operator implementation

Input: A sorted activity table D and a birth action e
1 Open()

2 D.Open()

3 db ← ∅
4 uc ← ∅
5 Found ← false

6 GetNext()

7 d← D.GetNext()
8 if d[Au] 6= uc then

9 db ← D.GetBirthTuple(d, e)

10 uc ← db[Au]

11 d← db

12 Found ← true

13 else

14 C′ ← replace Birth(A) with db[A] in C
15 Found ← C′(d)

16 return Found = true ? d : ∅
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Figure 3: COHANA Architecture

(line 10 – line 12). If d[Au] is not a new user, we calcu-
late the age of d[Au], apply the aggregate function fA and
update Hg accordingly (line 14 – line 15). The GetNext()

function simply retrieves each entry from Hg and returns
(c, g,Hc[c], Hg[c][g]) as a result (line 17 – line 18). The run-
time performance of Algorithm 1 – Algorithm 2 is bound by
Θ(|D|).

3.3.1 Discussions on Cohort Algorithms
We now analyze the runtime performance of Algorithm

1- Algorithm 2. For all three algorithms, it can be clearly
seen that to produce the result set, each activity tuple in
the input activity table D is examined only once. Hence the
run time performance of the three algorithms grows linearly
with the number of activity tuples in the input and therefore
is bound by Θ(|D|). Our cohort algorithms require that the
input activity table to be sorted. At first glance, maintain-
ing a sorted table may be costly for tuples insertion. How-
ever, as shown in C-store [15], this problem can be solved
by maintaining a writable store in memory and a read-only
sorted store on disk and using a tuple mover to periodically
merge these two stores.

4. THE COHANA SYSTEM
This section refines the basic cohort algorithms presented

in Section 3.3 and introduce more optimizations for effi-
cient cohort query processing. We developed COHANA,
a query engine for cohort analytics, to demonstrate how
these techniques can be readily integrated into a real sys-
tem. COHANA is built from scratch in Java. We shall

present the centralized version of COHANA in this paper,
and will present its distributed version in the next paper.

As shown in Figure 3, COHANA shares the similar archi-
tecture with other read-mostly analytical database systems
and consists of three major modules: a catalog module for
managing the schema of activity tables, a storage module for
persisting activity tables, and a query processing module for
processing cohort queries. Efficient cohort query processing
is achieved by a fine-tuned compressed columnar storage for
sorted activity tables, applying sort-aware cohort operators
for performing cohort operations, pushing down birth selec-
tion operator, skipping unqualified users for query optimiza-
tion, and finally a new UserCount() aggregation function for
fast calculation of cohort size.

4.1 Schema Management in COHANA
The catalog module of COHANA is responsible for man-

aging the schema information of activity tables. As de-
scribed in Section 2, an activity table is a special relational
table with at least three attributes Au, At and Ae. To de-
clare the schema of an activity table, we add three attribute
types: UserKey, Time, Action to the standard SQL CREATE

TABLE statement. If an attribute is declared as a type of
UserKey, ActionTime or Action, it will be served as the Au,
At or Ae attribute respectively. Attributes without type an-
notations are normal relational attributes. The schema of
Table 1 is declared as follows

CREATE TABLE GameActions (

player string UserKey,

time timestamp ActionTime,

action string Action,

role string,

country string,

Gold int

)

In addition to persisting the schema information, the cat-
alog module also checks the validity of the activity table
schema, namely there is one and only one UserKey, Action-
Time and Action attribute declared. The catalog module
also automatically adds the primary key constraint before
committing the schema information.

4.2 Storage Module
As we have mentioned, the data model for cohort analy-

sis is a relational activity table with the primary key con-
straint on (Au, At, Ae), i.e., the user, timestamp and action
attributes. To support efficient cohort analysis, multiple
optimization techniques are employed for the storage of the
activity table. Briefly speaking, we employ a two-level stor-
age format where the activity table is first horizontally and
evenly partitioned into multiple data chunks such that the
activity tuples of each users are included in only one chunk
(this is trivial as the activity table is sorted with respect to
(Au, At, Ae)), and each data chunk is then vertically parti-
tioned and persisted column by column.

We employ various compression techniques for the storage
of columns in each data chunk. To this end, we first build
a global index for each column. For a string column, the
global index is an sorted array of the unique values, and for
an integer column6, the global index just contains the MIN

6A numeric column can always be transformed into an inte-



and MAX values. The global indices of all columns form a
special meta-chunk, and is persisted in front of data chunks.

The global indices are then used to compress the columns
of each data chunk. We mainly consider three encoding
schemes for compression: Run-Length-Encoding (RLE), dic-
tionary encoding and delta encoding. The user column Au

is always compressed by RLE and represented as a sequence
of triples (u, f, n), where u is the user in Au, f is the position
of the first appearance of u in the column, and n is the num-
ber of appearances of u in the column. Integer columns, e.g.,
measure columns or timestamp columns, are compressed by
delta encoding. For an integer column A, we retrieve the
MIN value from A’s global index and subtract it from the
values in A so that the resultant delta values are within a
smaller range and hence can be represented with less num-
ber of bits. The MIN and MAX values of the delta values
are also stored preceding the delta values as a range index
to prune the residing chunk during the processing of queries
which fall outside the range. String columns such as Ae are
hierarchically represented. First, we associate each value in
a string column A with its global-id, which is the position
of this value in the global index of A, and store in ascending
order the distinct global-ids into an array called a chunk in-
dex. Second, for each value in A, we compute its chunk-id,
which is the position in the chunk index at which the respec-
tive global-id locates. The chunk-ids of all values in A are
then stored immediately after the chunk index in the same
order as the values appear in A. This two-level dictionary
encoding scheme is identical to the one introduced in [10]
where more details of this encoding scheme can be found.

As can be inferred, many columns as well as the chunk in-
dices are represented as integer arrays. We therefore further
employ integer compression techniques to reduce the stor-
age space. For each integer array, we compute the minimum
number of bits, denoted by n, to represent the maximum
value of the array, and then sequentially pack as many val-
ues as possible into a 64-bit integer such that each value only
occupies exactly n bits of the 64-bit integer. An advantage
of this compression manner is that each original value can be
directly read from the certain n bits of the respective 64-bit
integer, hence eliminating the cost of decompression.

4.3 Query Evaluation
COHANA provides a SQL SELECT like statement for spec-

ifying cohort queries. The main construct of a cohort SELECT
statement consists of BIRTH FROM, AGE ACTIVITIES IN and
COHORT BY which respectively corresponds to the σb

C,e, σ
g
C,e

and γc
L,e,fA

operations. Two keywords CohortSize and Age

are also added for data analysts to retrieve values from the
calculated attributes in the results of the γc

L,e,fA
operation.

The query in example 1 is specified as follows. Note that the
action in the BIRTH FROM clause specifies the birth action for
the whole query.

SELECT country, CohortSize, Age,

sum(Gold) as TotalGold

FROM GameActions

BIRTH FROM action = "launch" AND

role = "dwarf"

AGE ACTIVITIES IN action = "shop"

COHORT BY country

ger column by multiplying each value in the column by an
appropriate scale.

TableScan

σb
Role = ”dwarf”, launch

σg
Action = “shop”, launch

γ
c

country, launch, sum(Gold)

Figure 4: Query Plan for Example 1

Overall, to evaluate a cohort query such as the one above,
a query plan, i.e., a tree of physical operators, is first pro-
duced. Then, we optimize this query plan by pushing down
birth selection operator, and execute the refined query plan
against each data chunk. The final results are produced
by merging all partial aggregation results obtained for each
data chunk. The query evaluation scheme is similar to other
databases, and hence we only focus on the part which is
unique to cohort query processing.

We implement four physical operators: TableScan, birth
selection σb

C,e, age selection σ
g
C,e and cohort aggregation

γc
L,e,fA

. The projection operation is implemented in a pre-
processing step: we collect all required columns at query
parsing stage and then pass those columns to the TableS-

can operator which retrieves the values for each column.
The TableScan operator is specially designed for activ-

ity tables. Since the Au column is always compressed by
RLE, in addition to the GetNext() function which returns
the next activity tuple from D, we add two new functions
GetNextUser() and SkipCurUser() to accelerate the locat-
ing of the qualified activity tuples leveraging the property of
RLE. In particular, the first function returns an RLE triple
(u, f, n), where f and n respectively represents the offset
of the first activity tuple and the number of activity tuples
of the next user u; the SkipCurUser() function sets the in-
ternal file reader pointer of each column in the TableScan

operator to f+n, thereby skipping the processing of the rest
activity tuples of u. With these two functions, the activity
tuples of unqualified users can be quickly skipped.

4.3.1 Query Optimization
For the moment, a cohort query only involves unary oper-

ations. In a query plan produced by COHANA, the root and
the only leaf node are the aggregation operator, γc

L,e,fA
, and

the TableScan operator, respectively, and between them is a
sequence of the birth selection operators and the age selec-
tion operators. We push down the birth selection operators
along the query plan so that they are always below the age
selection operators. This push-down optimization is always
feasible, since according to equation (1), we can swap the
order of σb

C,e and σ
g
C,e operators in any sequence consisting

of these two operators. Figure 4 shows the query plan for
the cohort query of example 1.

The reason we employ this push-down optimization is that
the sort-aware birth selection operator presented in Section
3.3 can be refined to efficiently skip the activity tuples of un-
qualified users by utilizing the two aforementioned auxiliary
functions, i.e., GetNextUser() and SkipCurUser(), during
the evaluation of σb

C,e. In the GetNext() function, the re-



fined σb
C,e operator calls D.GetNextUser() to retrieve the

next triple (u, f, n) for a new user, and then calls Get-

BirthTuple() to retrieve the birth activity tuple du,e of
u. If the birth activity tuple satisfies the condition, it pro-
ceeds in the same way as Algorithm 1. Otherwise, it calls
D.SkipCurUser() to skip the rest of the activity tuples of
the current user. As a result, the refined σb

C,e significantly
reduces the number of activity tuples to be processed.

We shall emphasize two additional advantages of our ap-
proach. First, we always directly process compressed Au

column and therefore avoid the cost of decompression. Sec-
ond, even though we use SkipCurUser() to skip the activity
tuples of unqualified users, we actually do not pay the cost
for random seek since we process all users sequentially.

As a final optimization for σb
C,e, we refine the implemen-

tation of GetBirthTuple() to cache the locations of birth
activity tuples. The refined GetBirthTuple() holds a set
of in-memory hash tables, each allocated for a specific birth
action e and initialized as an empty table. Each time Get-

BirthTuple(d, e) is called, we first check whether the user
d[Au] can be found in the hash table H allocated for e. If the
check returns true, the GetBirthTuple() function directly
reads the birth activity tuple from the location cached in
H . Otherwise, it performs a sequential iteration over the
activity tuples of the given user to find the birth activity
tuple, and update H accordingly. This optimization further
reduces the time spent in searching birth activity tuples.

4.3.2 Evaluation of γc
L,e,fA

We incorporate the idea from [10] to improve the perfor-
mance of Algorithm 2 by using a two dimension array in the
inner loop for calculating aggregates.

Consider the cohort query in Example 1. To aggregate the
qualified age activity tuples in a data chunk, we first identify
the total number of unique values in the cohort column,
i.e., Country, by checking the size of the chunk index of the
Country column, denoted by n. Then, we retrieve the MIN
and MAX value of Time column from its chunk index. The
difference between MAX and MIN represents the maximum
age of users in the data chunk.

Let m = MAX−MIN, we initialize a two dimensional ar-
ray A[n][m+1] to hold the aggregation results for each data
chunk where A[c][0] holds the size of cohort c and A[c][g]
holds the sum of Gold of cohort c at age g. The aggregation
in Algorithm 2 is finally performed by replacing the two hash
tables with the array A[n][m+1] in the inner while loop. As
shown in [10], the advantage of using an array in the inner
loop of aggregation is that modern CPUs can highly pipeline
array operations and thus significantly improve the perfor-
mance of aggregation.

4.3.3 Optimization for User Count Calculation
One popular application of cohort analysis is to show the

trend in user retention [1]. These cohort queries involve
computing the distinct number of users at different ages.
This computation is very costly in terms of memory and
performance for fields with a large number of distinct values,
such as Au.

In COHANA, however, counting the number of distinct
values of the Au column is very simple. The chunk storage
format that we employ ensures that the activity tuples of
any user are included in only one chunk. Therefore, for each
cohort at each age, we can simply perform the counting on

each chunk and return the sum of the obtained numbers as
the final result. We thus implement a UserCount() aggre-
gation function which utilizes this property and a bitmap
algorithm for the efficient counting of distinct users.

5. EXPERIMENTS
This section presents the performance study of cohort

query processing. We mainly perform two sets of experi-
ments. First, we compare the performance of different query
evaluation schemes. We implement the SQL based approach
and the materialized view based approach on two relational
databases: MySQL and MonetDB, and compare the perfor-
mance of these two systems with COHANA. In the second
set of experiments, we focus on the performance study of
COHANA and evaluate the effect of each query optimiza-
tion technique that we propose for cohort query processing.

5.1 Experiment Settings
All experiments run on a high-end workstation. The work-

station is equipped with a quad-core Intel Xeon E3-1270 v3
3.50GHz processor and 16GB of memory. The disk speed re-
ported by hdparm is 15GB/s for cached reads and 150MB/s
for buffered reads.

The dataset we used is produced by a real mobile game
application. The dataset consists of 30M activity tuples con-
tributed by 57,077 users worldwide from 2013-5-19 to 2013-
06-26. In addition to the required user, action and action
time attributes, we also include the country, city and role
as dimensions and session length and gold as measures. To-
tally, users in the game played 16 actions. We choose the
launch and shop actions as the birth actions.

5.2 Benchmark Settings
For MySQL, we choose MyISAM as our storage engine.

For MonetDB, we accept all default settings without further
tuning. For the SQL based approach, we manually translate
the cohort query into a sequence of SQL commands for exe-
cution. For the materialized view based approach, we manu-
ally materialize the view using CREATE TABLE AS command.
We materialize the birth time attribute, age attribute and
a birth attribute set consisting of role, country and city at-
tribute for each birth action (launch and shop). Totally, this
materialization scheme adds ten additional columns to the
original table by performing four joins. As a final tuning for
the storage, we build an index on the birth time and each
birth attribute column to speedup birth selection operations.
For COHANA, we choose the chunk size to be 16K.

5.3 Benchmark Queries
We design four queries (described with COHANA’s cohort

query syntax) for the benchmark by incrementally adding
the cohort operators we proposed in this paper. The first
query Q1 evaluates a single cohort aggregation operator.
The second query Q2 evaluates a combination of birth selec-
tion and cohort aggregation. The third query Q3 evaluates
a combination of age selection and cohort aggregation. The
fourth query Q4 evaluates a combination of all three cohort
operators. For each query, we report the average execution
time of six runs for each system.

Q1: For each country launch cohort, report the number
of retained users who did at least one action since they first
launched the game.



SELECT country, CohortSize, Age, UserCount()

FROM GameActions

BIRTH FROM action = "launch"

COHORT BY country

Q2: For each country launch cohort born in a specific date
range, report the number of retained users who did at least
one action since they first launched the game.

SELECT country, CohortSize, Age, UserCount()

FROM GameActions

BIRTH FROM action = "launch" AND

time BETWEEN "2013-05-21" AND "2013-05-27"

COHORT BY country

Q3: For each country shop cohort, report the average gold
they spent in shopping since they made first shop in the
game.

SELECT country, CohortSize, Age, avg(gold)

FROM GameActions

BIRTH FROM action = "shop"

AGE ACTIVITIES IN action = "shop"

COHORT BY country

Q4: For each country shop cohort, report the average gold
they spent in shopping in their birth country where they
were born with respect to the dwarf role in a given date
range.

SELECT country, CohortSize, Age, avg(gold)

FROM GameActions

BIRTH FROM action = "shop" AND

time BETWEEN "2013-05-21" AND "2013-05-27" AND

role = "dwarf" AND

country IN ["China", "Australia", "United States"]

AGE ACTIVITIES IN action = "shop" AND

country = Birth(country)

COHORT BY country

In order to investigate the impact of the birth selection
operator and the age selection operator on the query perfor-
mance of COHANA, we further design two variants of Q1
and Q3 by adding to them a birth selection condition (result-
ing in Q5 and Q6) or an age selection condition (resulting
in Q7 and Q8). The details of Q5-Q8 are show below.

Q5: For each country launch cohort, report the number
of retained users who did at least one action during the date
range [d1; d2] since they first launched the game.

SELECT country, CohortSize, Age, UserCount()

FROM GameActions

BIRTH FROM action = "launch" AND

time BETWEEN d1 AND d2
COHORT BY country

Q6: For each country shop cohort, report the average gold
they spent in shopping during the date range [d1; d2] since
they made first shop in the game.

SELECT country, CohortSize, Age, avg(gold)

FROM GameActions

BIRTH FROM action = "shop" AND

time BETWEEN d1 AND d2
AGE ACTIVITIES IN action = "shop"

COHORT BY country

Table 6: Results for Storage Space
Storage Format Disk Space (GB)
Raw 3.63
MySQL-Raw 3.41
MySQL-MV 6.14
Monet-Raw 0.94
Monet-MV 1.80
COHANA 0.31

Table 7: Query Performance Results in Seconds
Query My-S My-M Mon-S Mon-M COHANA
Q1 3.9hr 1062.12 5.10 1.88 0.27
Q2 1.6hr 14.80 0.67 0.26 0.02
Q3 2.1hr 156.49 2.55 1.29 0.32
Q4 1.1hr 5.47 0.58 0.20 0.01

Q7: For each country launch cohort at each less than g
age, report the number of retained users who did at least
one action since they first launched the game.

SELECT country, CohortSize, Age, UserCount()

FROM GameActions

BIRTH FROM action = "launch" AND

AGE ACTIVITIES in Age < g
COHORT BY country

Q8: For each country shop cohort at each less than g age,
report the average gold they spent in shopping since they
made first shop in the game.

SELECT country, CohortSize, Age, avg(gold)

FROM GameActions

BIRTH FROM action = "shop" AND

AGE ACTIVITIES IN action = "shop" AND

Age < g
COHORT BY country

5.4 Benchmark Results
Table 6 shows the space of raw data and the storage bud-

get each system spends for data import. For MySQL and
MonetDB, we report the storage space that the two systems
used for storing the raw activity table and storing the ma-
terialized view.

As can be seen from Table 6, the raw data dumped in
CSV format from the game application occupies 3.63GB disk
space. MySQL requires 3.41GB and 6.14GB for storing the
raw activity table and the materialized view respectively.
MonetDB adopts a more compact storage format and only
spends 0.94GB and 1.80GB space budget for storing the raw
activity table and the materialized view. With the combi-
nation of RLE, delta and two-level dictionary compression
scheme, COHANA only uses 0.31GB storage space for per-
sisting the raw activity table, which means a compression
ratio of 12X.

Table 7 reports the execution time that each system takes
to execute the four queries. As expected, the SQL based ap-
proach is the slowest approach as it needs joins for process-
ing cohort queries. On the raw table format, MySQL spends
more than an hour to process a cohort query (My-S), mainly
because it employs the nested loop join algorithm for join
processing. For large tables, the nested loop join technique
becomes the bottleneck of the query processing. MySQL
runs much faster on the materialized view storage format



(My-M) since, under this storage format, it does not require
joins on source tables for query evaluation. However, for Q1,
MySQL still takes more than 15mins to complete. This is
because Q1 is a retention query which requires performing
distinct count aggregation. The evaluation of the expensive
distinct count aggregation therefore becomes the bottleneck
of this query.

As a very fast columnar database, MonetDB is able to
perform all four queries on both storage formats (raw and
materialized view) within a reasonable time. However, as
we have expected, performing cohort queries on raw format
(Mon-S) is much slower (2X ∼ 3X) than processing cohort
queries on materialized view (Mon-M) format.

COHANA is obviously much faster than the other two
systems. Compared to MonetDB, for all queries but Q3,
COHANA runs 6X - 20X and 18X - 58X faster than Mon-M
and Mon-S, respectively. For MySQL, COHANA runs 500X
- 4000X faster thanMy-M and three orders faster than My-S.
The main reasons are: 1) a fine tuned compressed columnar
storage format, 2)efficiently skipping unqualified users, 3)
array based aggregation, and 4) an efficient implementation
of UserCount().

The reason for the small performance gap between CO-
HANA and other systems on Q3 is that this query does not
have a birth selection condition and employs the avg() func-
tion for aggregation. Therefore, COHANA cannot speedup
this query using birth selection optimization and the opti-
mized UserCount() aggregate function. However, with the
benefit from the array based aggregation and caching lo-
cations of birth activity tuples, COHANA stills runs 3.4X
faster than Mon-M and 6.7X faster than Mon-S.

5.5 Performance Study of COHANA
The results in Table 6 and Table 7 show that, overall, the

optimizations we made for COHANA are promising. How-
ever, we are still interested in the effect of each optimization
technique we implemented in COHANA. This section con-
ducts a set of experiments to study the performance of CO-
HANA by evaluating the effect of each query optimization
technique that we propose for cohort query processing.

5.5.1 Effect of Chunk Size
We first study the effect of chunk size on the storage space

and query performance of COHANA. To this end, we vary
the chunk size from 1K (1024 activity tuples per-chunk)
to 1M and study the corresponding variance in the storage
space and query performance of COHANA.

Figure 5 presents the storage space COHANA requires
for the activity table compressed with different chunk size,
and Figure 6 presents the query performance of COHANA
under different chunk size. It is clearly seen that, in Figure
5, increasing the chunk size also augments storage cost. This
is because that an increase in the size of a chunk will lead to
more players included in that chunk. As a result, the number
of distinct values in the columns of each chunk also increases,
which in turn requires more bits for encoding values. On the
other hand, although a smaller chunk size results in a better
compression ratio, it increases the overhead for processing
the chunk header and loading chunk index. Consequently,
we see a slight increase in query time as shown in Figure 6.
There exists another negative effect of large chunk size that
can be found in Figure 6. Specifically, a large chunk size
will introduce more cache misses in chunk level aggregation.

As mentioned before, COHANA adopts a two-dimensional
array based algorithm for aggregating age activity tuples in
data chunks. This algorithm works best if the entire array
fits into L2 cache. As the chunk size increases, there are
more and more users in the data chunk,. Hence, the total
number of cohort in each chunk increases, resulting in a large
array which may not be fit into L2 cache. If this happens,
the query performance is affected (as demonstrated by the
slight increase in the query execution time of Q1, Q2 and Q3
in Figure 6). Overall, the optimal chunk size is collectively
determined by data distribution and query workload. We
leave the study of optimal chunk size as a future work.

Based on the results of this experiment, we choose the
chunk size to be 16K for all the rest of experiments.

5.5.2 Effect of Birth Selection
In Section 4.3.1, we claim that the running time of CO-

HANA is bound by O(n) where n is the total number of
qualified users. This experiment studies the query perfor-
mance of COHANA with respect to the birth selection se-
lectivity. We run Q5 and Q6, which are an variant of Q1
and Q3, respectively. The date range [d1, d2] of Q5 and Q6
is chosen such that the qualified players account for 10% to
100% of the whole population.

Figure 7 presents the results of this experiment, which
clearly shows that the performance of COHANA grows lin-
early with the number of qualified users. We attribute this
expected linear growing trend to the optimization of pushing
down the birth selection operator and the refined birth se-
lection algorithm which is capable to skip unqualified users.

5.5.3 Effect of Caching Birth Location
To improve the performance of fetching birth activity tu-

ples, COHANA employs additional memory to cache the
locations of birth activity tuples for each birth action at
query time. This experiment studies the effect of birth lo-
cation caching. Since the launch action is the first action of
all players, caching the location of the launch birth action
does not make sense as it cannot reduce the time to locate
the launch birth tuple. Thus, we again choose Q6 for this
experiment. We run Q6 with varying birth selection selec-
tivity and compare the query performance between the cases
with/without birth locations caching enabled.

Figure 8 presents the results for this experiment. Overall,
enabling birth location caching improves the query perfor-
mance by a factor of 10%, and this performance improve-
ment is consistent over all selectivity.

5.5.4 Effect of Age Selection
The main work of a cohort query is aggregating age ac-

tivity tuples. Therefore, this experiment studies the query
performance of COHANA under different age selection con-
ditions. To this end, We run Q7 and Q8 by varying g from
1 day to 14 days. 7.

Figure 9 presents the results of this experiment. It can
be seen from this figure that the processing times of Q7 and
Q8 exhibit different trend. Specifically, the processing time
of Q7 increases almost linearly, while for Q8, the processing
time increases slowly. The reason for this difference is that
the performance of Q7 is bounded by the number of distinct

7We observed that the total number of actions players pro-
duced per-day is relatively stable in their first 14 days and
drops dramatically afterwards – the aging effect
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users within the given age range, which grows almost linearly
with age range. For Q8, the processing time mainly depends
on the aggregation performed upon the shop age activity
tuples, whose number grows slowly with the age – the aging
effect.

5.5.5 Scalability Experiments
With compression, COHANA reduces the size of raw dataset

from 3.63GB to 309MB. Thus, the compressed dataset can
be entirely memory-mapped into main memory. We are in-
terested in the scalability of COHANA. Namely, how does
the performance of COHANA vary with the size of the com-
pressed activity table, especially in the case where the com-
pressed table can not be accommodated into memory?

We treat the original 3.63GB dataset as scale 1 and scale
the dataset by replication. The replication is performed by
replacing the player IDs with new 57,077 player IDs and
countries in the original dataset with new countries. As
such, in scale 2, we have 7.26GB data composed of the orig-
inal dataset and one replicated dataset. We vary the scale
from 10 to 70 for the scalability experiment. For scale 50
upwards, the sizes of the raw dataset and the compressed
activity table are at least 180GB and 15GB, respectively.
Given that the total size of our memory is 16GB and only
12GB is free for memory mapping (the rest 4GB is reserved
by OS), it is obviously impossible for OS to cache the entire
compressed activity table in memory for scale 50 upwards,
and in such cases, we expect the time of query processing to
be gradually dominated by hard disk accesses.

Figure 10 presents the results of this experiment. It can
be inferred from this figure that the execution time of Q1,
Q2 and Q4 undergoes an almost linear increase when the
scale goes from 10 to 60, and then a dramatic jump on scale
70. The similar trend also applies to Q3, with the excep-
tion that the linear increase in processing time terminates
at scale 50, instead of scale 60. The reasons for the trend in
query processing time are as follows. At first, when the scale
increases from 10 to 60 (50 for Q3), the whole data needed

for query processing can be entirely memory-mapped into
the main memory, and the processing time hence increases
linearly as a result of the linear increase in the number of
processed activity tuples. Afterwards, the data required for
query processing is no longer able to be completely memory-
mapped, leading to disk accesses which are several orders of
magnitude slower than the accesses of memory. Hence, the
execution time of the four queries is gradually dominated
by disk accesses, and increases much faster than before. As
shown in Figure 10, the processing time of each query at
scale 70 (60 for Q3) is one or two orders of magnitude higher
than that at a smaller scale.

One may notice that our free memory is 12 GB in the
experimental platform, and may expect the linear increase
in the processing time to terminate at scale 40, at which the
compressed activity table occupies all the available mem-
ory. But it does not happen. The actual execution time
jump occurs at scale 50 and scale 60. This is because of the
way the operating system performs memory mapping, which
only loads the necessary data, i.e., data to be accessed, from
the disk. For Q1, thanks to the columnar storage, we only
need to read from the disk two columns (country and ac-
tion), both of which have a limited cardinality (150 and 16,
respectively ) and hence can be compressed in a very com-
pact manner. For Q2 and Q4, although more columns need
to be accessed, many of the chunks that do not satisfy the
predicates will be pruned and hence not loaded, leading to
less memory usage. For Q3, since all chunks must be pro-
cessed and the compression ratio of column gold is not as
high as the other two (country and action), the tuning point
of execution time thus comes earlier than that of the other
three queries, as shown in Figure 10.

6. RELATED WORK
The work related to ours is the relational database sup-

port for data analysis and cohort analysis. The work in
[9] introduces a CUBE operator to SQL and enables the so
called OLAP data analysis. A typical OLAP query requires



an aggregation over a large dataset, an operation which is
not well supported by traditional row-oriented databases.
Hence, columnar databases are built for solving the effi-
ciency issue [7, 13, 15]. Techniques such as data compres-
sion [16, 18], query processing on compressed data [4, 6, 11],
array based aggregation [5, 17], and materialized view ap-
proaches [14] are proposed for speeding up OLAP queries.
Similar to OLAP, a cohort query also requires large aggrega-
tions. Therefore, we adopt many techniques from columnar
databases for accelerating cohort queries, a columnar storage
format similar to [10], directly processing RLE compressed
columns and a two dimensional array based aggregation al-
gorithm.

In social science literatures, the term cohort is referred to
a number of individuals who experienced a particular event,
e.g., birth, marriage, during a specified period of time [8],
e.g., a day, week or year. For example, people who were born
in 1977 form a 1977 birth cohort. The definition of cohort
presented in this paper is more general than the definition
used in social science. Similar to a social science’s cohort, the
cohort in this paper is also a group of people who were born
with respect to a specific birth action. However, instead
of solely using the time attribute associated with the birth
action for identifying a cohort, we can choose any values
in the attribute set (exclude Au and Ae) of birth tuples to
define a cohort. At of this writing, Google has released a
beta version of cohort report plugin for its popular Web
analytic service [3]. This cohort report tool, however, only
supports cohorting people by acquisition date. MixPanel [1]
and RJMetrics [2] offer more advanced and social science
style cohort query facilities.

7. CONCLUSIONS
Cohort analysis is a general and powerful analysis tool

for finding unusual activity trend in large activity tables. In
this paper, we have investigated database support for cohort
analysis, which is the first of its kind. We have introduced
an extended relational data model for representing activity
data and proposed several novel cohort operators to facili-
tate a cohort analysis task. We have also investigated three
query evaluation schemes. Our experimental results show
that our newly proposed cohort query evaluation scheme
achieves significantly better performance than the other two
schemes. This empirical evidence confirms the effectiveness
of building a special purpose query engine for cohort query.
For future work, we plan to consider binary operations on
activity tables and optimization techniques for age selection.
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