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Constraints On Holographic Cosmological Models From GammaRay Bursts
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Abstract

We use Gamma Ray Bursts (GRBs) data to put additional constraints on a set of holographic dark energy models. GRBs are among
the most complex, energetic and regular astrophysical events known universe providing us the opportunity to obtain information
from the history of cosmic expansion up to about redshift ofz ∼ 6 offering us a complementary observational test to determine
the nature of dark energy and they are also complementary to SNIa test. We found that theΛCDM model is the best fit to the
data, although a preliminary statistical analysis seems toindicate that the holographic models studied show interesting agreement
with observations, exceptRicci Scale CPLmodel. These results show the importance of GRBs measurements to provide additional
observational constraints to alternative cosmological models, which are necessary to clarify the way in the paradigm of dark energy
or potential alternatives.
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1. Introduction

In order to explain the current acceleration of the universe, the
fine-tuning problem of the value ofΛ and the cosmic coin-
cidence problem, different alternative models have been pro-
posed. In framing the question of the nature of dark energy
there are two generally direcctions. The firts is to assume a new
type of component of energy density, Which can be a constant
fluid density or dynamic density. The other direction is modify
the Einstein’s equations thinking that the metric is inappropri-
ate or that gravity works differently on large scales. The obser-
vational tests are of great importance to discriminate between
these scenarios [1]. The holographic dark energy is one dy-
namical DE model proposed in the context of quantum gravity,
so calledholographic principle, the which arose from black
hole and string theories [2]. The holographic principle states
the number of degrees of freedom of a physical system, apart
from being constrained by an infrared cutoff, it should be finite
and it should scale with its bounding area rather than with its
volume. Specifically, it is derived with the help of entropy-area
relation of thermodynamics of black hole horizons in general
relativity which is also known as the Bekenstein-Hawking en-
tropy bound, i.e.,S ≃ M2

pL2, whereS is the maximum entropy

of the system of lengthL and Mp = 1/
√

8πG is the reduced
Planck mass. This principle can be applied to the dynamics of
the universe, where L may be associated with a cosmological
scale and its energy density as:

ρH =
3c2M2

p

L2
. (1)
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If for exampleL is the Hubble’s radius, which represents the
current size of the universe, then the associated energy density
represents the density of dark energyρΛ.

2. Holographic Dark Energy Models

The Friedmann equations for a spatially flat universe can be
written as:

3H = 8πG (ρm+ ρH) , (2)

whereρm is the energy density of the matter component andρH

It is the holographic dark energy density. These components
are related by an interactionQ term as:

dρm

dt
+ 3Hρm = Q

dρH

dt
+ 3H(1+ wH)ρH = −Q, (3)

wherewH = pH/ρH is the equation of state of holographic dark
energy density. The rate of change of Hubble can be written as:

dH
dt
= −3

2
H2

(

1+ we f f
)

, (4)

wherewe f f = w/(1+ r) is the effective equation of state of the
cosmic fluid andr = ρm/ρH is the ratio of energy densities,
which is related to the saturation parameterc2 asc2(1 + r) =
1, which establishes that energy in a box of size L should not
exceed the energy of the black hole of the same size, under
the conditionL3ρH ≤ M2

pL. Different scales lead to different
cosmological models [2].
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2.1. ΛCDM

We begin our analysis with the standard cosmological model.In
this paradigm, the DE is provided by the cosmological constant
Λ, with an EoS, such thatw = −1. In this model the Friedmman
equationE2(z,Θ) for flat universe is given by

E2(z,Θ) = Ωr(1+ z)4 + Ωm(1+ z)3 + ΩΛ, (5)

whereΩm andΩΛ are the density parameters for matter and
dark energy respectively andΩr is the radiation density param-
eter. The free parameters areh,Ωm,ΩΛ and the best fit is shown
in Table 1.

Λ Cold Dark Matter model

h = 0.7009± 0.0035 ΩΛ = 0.716± 0.028
Ωm = 0.266± 0.0042

Table 1: Best fit parameters with all data set toΛCDM model.

2.2. Hubble Radius Scale

In this modelL = H−1 and his dark energy densityρH =

3c2M2
pH2 and Friedmann equation can be written as:

E2(z) =
[

(1− 2q0) + 2(1+ q0)(1+ z)3n/2
]1/n

(

1
3

)1/n

, (6)

whereq0 is the present value of the deceleration parameter. This
model is similar toΛCDM when n= 2. The free parameters are
h, q0 and n, whose best fit of parameters is shown in the Table
2.

Hubble Radius Scale

h = 0.7004± 0.0038 n = 1.71± 0.20
q0 = 0.569± 0.047

Table 2: Best fit parameters with all data set toHRSmodel.

2.3. Future Event Horizonξ = 1

With L = RE the holographic DE densityρH = 3c2M2
pR−2

E
whereRE is the future event horizon. The Friedmann equation
is given by:

E2(z) = (1+ z)3/2−1/c

√

1+ r0(1+ z)
r0 + 1

[ √
r0(1+ z) + 1− 1
√

r0 + 1+ 1

]2/c

, (7)

whereRE = c
√

(1+ r)H−1 andr0 = Ω0/(1− Ω0). The best fit
of free parametersh, r0 andc is given in the Table 3.

Future Event Horizonξ = 1

h = 0.6799± 0.0025 r0 = 0.322± 0.032
c = 1.046± 0.017

Table 3: Best fit parameters with all data set toFEH model.

2.4. Ricci Scale CPL

The Ricci scalarR= 6(2H2+Ḣ) is relate to cutoff-scale through
L2 = 6/Rand energy density:

ρH = 3c2M2
p
R
6
= α

(

2H2 + Ḣ
)

, (8)

whereα = 3c2/8πG. If we use the CPL parameterization
w(a) = w0 + (1 − a)w1, the Friedmann equation can be writ-
ten as:

E2(z,Θ) = (1+ z)
3
2

1+r0+w0+4w1
1+r0+3w1

















1+ r0 + 3w1

(

z
1+z

)

1+ r0

















− 1
2

1+r0+3w0
1+r0+3w1

. (9)

The free parameters of this model areh, r0, w0 andw1. The best
fit is given in the Table 4.

Ricci Scale CPL

h = 0.6518± 0.0021 r0 = 9.39+0.51
−0.47

w0 = −2.64+0.49
−0.55 w1 = 0.46+0.34

−0.33

Table 4: Best fit parameters with all data set toRSCPLmodel.

2.5. Ricci Scale Q

If interaction term is given byQ = 3HβρH, then

β =
1

1+ r

[

rw − ẇ
H

]

(10)

and the EoS is given by:

w = −1
6

u− s− (u+ s)Aas

1− Aas
(11)

whereu ≡ r0 − 3w0 + 3β, v ≡ r0 + 3w0 + 3β, s≡ (u2 − 12β(1+
r0−3w0))1/2 y A ≡ (v− s)/(v+ s). The Friedmann equation can
be writen as:

E2(z,Θ) =

[

n(1+ z)−s −m
n−m

]
3
2

lm−kn
mns

(1+ z)
3
2(1− k

m), (12)

such thatm ≡ 1+ r0 − 1/2(v− s), n ≡ [1 + r0 − 1/2(v+ s)] A,
k ≡ 1/6(u− s) y l ≡ 1/6(u+ s)A. The free parameters areh, r0,
w0 andβ, whose best fit is shown in the Table 5.
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Ricci Scale Q

h = 0.6999± 0.0038 r0 = 0.201+0.025
−0.022

w0 = −0.842+0.055
−0.056 β = −0.011+0.015

−0.019

Table 5: Best fit parameters with all data set toRSCPLmodel.

3. Gamma-Ray Bursts

3.1. GRBs Model

Gamma-ray bursts (GRBs) are the most luminous astrophysi-
cal events observable today, because they are at cosmological
distances. The duration of a gamma-ray burst is typically a
few seconds, but can range from a few milliseconds to several
minutes. The initial burst at gammay-ray wavelengths is usu-
ally followed by a longer lived afterglow at longer wavelengths
(X-ray, ultraviolet, optical, infrared, and radio). Gamma-ray
bursts have been detected by orbiting satellites about two to
three times per week. Most observed GRBs appear to be colli-
mated emissions caused by the collapse of the core of a rapidly
rotating, high-mass star into a black hole. At least once a day,
a powerful source of gamma rays temporarily appears into the
sky in an unpredictable location and later disappears, which last
for milliseconds to minutes. In the location of the gamma ray
event it is usually observed a dominant afterglow in X-rays,op-
tical and radio after long decays.

3.2. GRBs Data

We use GRB data in the form of the model-independent dis-
tance from Wang (2008) [6], which were derived from the data
of 69 GRBs with 0.17 ≤ z ≤ 6.6 from Schaefer (2007). The
GRB data are included in our analysis by adding the following
term to the given model:

χ2
GRB =

[

∆r̄p(zi)
]

.(C−1
GRB)i j .

[

∆r̄p(zi)
]

, (13)

where∆r̄p(zi) = r̄data
p (zi) − r̄p(zi) and ¯rp(zi) is given by

r̄p(zi) =
rp(z)

rp(0.17)
(14)

where

rp(z) =
(1+ z)1/2

z
H0

ch
r(z) (15)

andr(z) is the comoving distance atz. The covariance matrix is
given by:

Cgrb

i j = σ(r̄p(zi))σ(r̄p(zj))C̄
grb

i j (16)

whereC̄grb

i j is the normalized covariance matrix:

C̄grb

i j =





















1.0000
0.7056 1.0000
0.7965 0.5653 1.0000
0.6928 0.6449 0.5521 1.0000
0.5941 0.4601 0.5526 0.4271 1.0000
0.5169 0.4376 0.4153 0.4242 0.2999 1.0000





















(17)

Data point (z) r̄p(zi)dat σ(r̄p(zi))+ σ(r̄p(zi))−

0 0.17 1.0000 - -
1 1.036 0.9416 0.1688 0.1710
2 1.902 1.0011 0.1395 0.1409
3 2.768 0.9604 0.1801 0.1785
4 3.634 1.0598 0.1907 0.1882
5 4.500 1.0163 0.2555 0.2559
6 6.600 1.0862 0.3339 0.3434

Table 6: Distances independent model GRBs.

and

σ(r̄p) =

{

σ(r̄p(zi))+, i f r̄p(zi) ≥ r̄p(zi)dat

σ(r̄p(zi))−, i f r̄p(zi) < r̄p(zi)dat (18)

whereσ(r̄p(zi))+ andσ(r̄p(zi))−, are 68% C.L errors given in
the Table 6.
As complementary tests we use SNIa (580-Data point), CMB
(1-Data point) and BAO (1-Data point) [4] (See Appendix).

4. Analysis and results

The maximum likelihood estimate for the best fit parameters is:

Lmax= exp

[

−1
2
χ2

min

]

(19)

If Lmax has a Gaussian errors distribution, thenχ2
min =

−2 lnLmax, So, for our analysis:

χ2
min = χ

2
GRBs+ χ

2
S NIa+ χ

2
CMB + χ

2
BAO. (20)

The Figure 1 we shows the diagrams of statistical confidence
at 1σ, 2σ and 3σ for different cosmological models and
several parameter space, from a joint analysis of 69 GRBs
(independent-model 6-Data point), SNIa (580-Data point),
CMB (1-Data point), BAO (1-Data point) [4] [2].

In this paper we use the Akaike and Bayesian information crite-
rion (AIC, BIC), which allow to compare cosmological models
with different degrees of freedom, with respect to the observa-
tional evidence and the set of parameters [5]. The AIC and BIC
can be calculated as:

AIC = −2 lnLmax+ 2k, (21)

BIC = −2 lnLmax+ k ln N, (22)

whereLmax is the maximum likelihood of the model under con-
sideration,k is the number of parameters. BIC imposes a strict
penalty against extra parameters for any set withN data. The
prefered model is that which minimizes AIC and BIC, however,
only the relative values between the different models is impor-
tant [3]. The results are showes in the Table 7.
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Figure 1: Diagrams of statistical confidence marginalizingdifferent cosmolog-
ical parameters at 1σ, 2σ and 3σ for the cosmological models.

Model χ2
min AIC BIC ∆AIC ∆BIC

ΛCDM 608.5 614.5 627.6 0.0 0.0
Hubble Radius S. 609.7 615.7 628.8 1.2 1.2
Future Event H. 657.3 663.3 676.4 48.8 48.8
Ricci scale CPL 917.3 925.3 924.8 310.8 315.2
Ricci scale Q 609.8 617.8 635.3 3.3 7.7

Table 7: AIC and BIC analysis to diferent dark energy models using all data
sets.

5. Summary and discussion

We implement GRBs model-independent to complement SNIa
Union2.1 sample to high redshift. We found that model-
independent GRBs to provide additional observational con-
straints to constrain holographic dark energy models. Our anal-
ysis shows thatΛCDM model is preferred by∆AIC and∆BIC
and theRicci Scale CPLmodel can be ruled out for this analysis
(Table 7).
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Appendix

Appendix .1. SNIa

Here, we use the Union 2.1 sample which contains 580 data.
The SNIa data give the luminosity distancedL(z) = (1+ z)r(z).
We fit the SNIa with the cosmological model by minimizing the
χ2 value defined by

χ2
S NIa =

580
∑

i=1

[µ(zi) − µobs(zi)]2

σ2
µi

, (.1)

whereµ(z) ≡ 5 log10[dL(z)/Mpc] + 25 is the theoretical value
of the distance modulus, andµobs the corresponding observed.

Appendix .2. CMB

We also include CMB information by using the WMAP data.
Theχ2

cmb for the CMB data is constructed as:

χ2
cmb=

(1.7246− R)2

0.032
. (.2)

HereR is “shift parameter”, defined as:

R=

√
Ωm

c(1+ z∗)
DL(z). (.3)

wheredL(z) = DL(z)/H0 and the redshift of decouplingz∗ is
z∗ = 1048[1+ 0.00124(Ωbh2)−0.738][1 + g1(Ωmh2)g2] and

g1 =
0.0783(Ωbh2)−0.238

1+ 39.5(Ωbh2)0.763
, g2 =

0.560
1+ 21.1(Ωbh2)1.81

. (.4)

Appendix .3. BAO

Similarly, for the DR7 BAO data, theχ2 can be expressed as:

χ2
6dFGS =

(

dz− 0.469
0.017

)2

. (.5)

wheredz = rs(zd)/DV(z) denotes the distance ratio. Here,
rs(zd) is the comoving sound horizon at the baryon drag epoch
(zd = 0.35) andDV(z) is the acoustic scale.
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