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Abstract. In this note we show that gradient of Harmonic functions on a

smooth domain with Lipschitz boundary values is pointwise bounded by a
universal function which is in Lp for all finite p ≥ 1.

1. Introduction

Kellogg in [K] pioneered the study of the boundary behaviour of the gradient of
Harmonic functions on a bounded domain. Roughly speaking, he established that
in a domain of R3 near a boundary region which can represented as the graph of
a planar function, the gradient of any Harmonic function is continuous up to the
boundary provided that the gradient of the boundary function and of the Harmonic
function are Dini continuous themselves on the boundary. The celebrated theory
of Schauder estimates [GT] establishes strong relevant results for general uniformly
elliptic PDEs, providing interior and global Hölder bounds for solutions and their
derivatives in terms of the Hölder norms of the boundary values of the solution
and the right hand side of the PDE. The Schauder theory has been improved
and extended by many authors, but typically for second order elliptic PDEs with
boundary values of the solutions and right hand sides of the PDEs in the Hölder
spaces C2,α or C1,α, in order to obtain uniform estimates for the solutions in the
respective Hölder spaces.

In [GH] Gilbarg-Hörmander have extended Schauder theory to include hypothe-
ses of lower regularity of the boundary values of the solution, of the boundary of
the domain and of the coefficients of the equations. Troianiello [T] relaxed further
some conditions of Gilbarg-Hörmander [GH]. In the paper [HS] Hile-Stanoyevitch,
extending an older result of Hardy-Littlewood [HL], proved that the gradient of a
Harmonic function with Lipschitz continuous boundary values is pointwise bounded
up to a constant by the logarithm of a multiple of the inverse of the distance to the
boundary.

However, it appears that in none of these results, even for the special case of
the Laplacian, there is an explicit global bound in Lp for the gradient of Harmonic
functions which have just Lipschitz boundary values and not C1,α. In this note
establish the following consequence of the result of Hile-Stanoyevitch:

Theorem 1. Let n ≥ 2, Ω ⊆ Rn a bounded open set with C2 boundary. Let also
g : ∂Ω→ R with g ∈ Lip(∂Ω), that is g ∈ C0(∂Ω) and

Lip(g, ∂Ω) := sup
x,y∈∂Ω, x 6=y

|g(x)− g(y)|
|x− y|

< ∞.
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(1) There exists a positive function fΩ,n : Ω → (0,∞) depending on Ω, n such
that

(1.1) fΩ,n ∈
⋂

p∈[1,∞)

LpΩ) ∩ C0(Ω)

and if u ∈ C2(Ω) ∩ C0(Ω) is the Harmonic function solving

(1.2)

{
∆u = 0, in Ω,

u = g, on ∂Ω,

then we have the estimate

(1.3)
∣∣Du(x)

∣∣ ≤ Lip(g, ∂Ω) fΩ,n(x), x ∈ Ω.

(2) Let (gm)∞1 ⊆ Lip(∂Ω) satisfy for some C > 0

(1.4) Lip(gm, ∂Ω) + max
∂Ω
|gm| ≤ C, m ∈ N.

Let also (um)∞1 ∈ C2(Ω) ∩ C0(Ω) be the Harmonic functions solving

(1.5)

{
∆um = 0, in Ω,

um = gm, on ∂Ω.

Then, (um)∞1 is strongly precompact in
⋂∞
p=1W

1,p(Ω) and if

(1.6) gmk −→ g in C0(Ω), as k →∞,

then there is a unique limit point u ∈ C2(Ω) ∩ C0(Ω) of the subsequence
(umk)∞1 such that along perhaps a further subsequence

(1.7) umk −→ u in W 1,p(Ω) ∀ p ≥ 1, as k →∞,
and the limit function u solves{

∆u = 0, in Ω,

u = g, on ∂Ω.

2. Proofs

Our notation is either self-explanatory or otherwise standard as e.g. in [E], [Ka].
The starting point of our proof is the following estimate of Hile-Stanoyevitch: under
the hypotheses of Theorem 1, the gradient Du of a Harmonic function u ∈ C2(Ω)∩
C0(Ω) which solves (1.2) with g ∈ Lip(∂Ω) satisfies the logarithmic estimate

(2.1)
∣∣Du(x)

∣∣ ≤ C(Ω, n) Lip(g, ∂Ω) ln

(
diam(Ω)

dist(x, ∂Ω)

)
, x ∈ Ω.

for some C depending just on Ω (and the dimension). In (2.1), diam(Ω) is the
diameter of the domain and dist(x, ∂Ω) the distance of x from the boundary:

diam(Ω) := sup
{
|x− y| : x, y ∈ Ω

}
,

dist(x, ∂Ω) := inf
{
|x− z| : z ∈ ∂Ω

}
.

Proof of (1) of Theorem 1. Fix ε > 0 smaller than the diameter of Ω and
consider the inner open ε neighbourhood of Ω:

Ωε :=
{
x ∈ Ω : dist(x, ∂Ω) > ε

}
.
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It is well known that (see e.g. [GT])

dist(·, ∂Ω) ∈ W 1,∞
loc (Rn)

and

(2.2)
∣∣D dist(·, ∂Ω)

∣∣ = 1, a.e. on Ω.

Let p ∈ [1,∞). By the Co-Area formula (see e.g. [[EG], Proposition 3, p. 118])
applied to the function

Rn 3 x 7−→ χΩε(x)

(
ln

(
diam(Ω)

dist(x, ∂Ω)

))p
∈ R

(where χΩε is the characteristic function of Ωε), we have∫
Ωε

(
ln

(
diam(Ω)

dist(x, ∂Ω)

))p
dx =

=

∫ diam(Ω)

ε

∫
{dist(·,∂Ω)=t}

(
ln

(
diam(Ω)

dist(z, ∂Ω)

))p
∣∣D dist(z, ∂Ω)

∣∣ dHn−1(z)

 dt

(2.3)

where Hn−1 is the (n − 1)-dimensional Hausdorff measure. By using (2.2), (2.3)
simplifies to∫

Ωε

(
ln

(
diam(Ω)

dist(x, ∂Ω)

))p
dx =

=

∫ diam(Ω)

ε

(∫
{dist(·,∂Ω)=t}

(
ln

(
diam(Ω)

dist(z, ∂Ω)

))p
dHn−1(z)

)
dt

Further, since

dist(z, ∂Ω) = t, for all z ∈ {dist(·, ∂Ω) = t},
by setting

(2.4) Iε,p :=

∫
Ωε

(
ln

(
diam(Ω)

dist(x, ∂Ω)

))p
dx

we obtain

Iε,p =

∫ diam(Ω)

ε

(∫
{dist(·,∂Ω)=t}

(
ln

(
diam(Ω)

t

))p
dHn−1(z)

)
dt

=

∫ diam(Ω)

ε

(
ln

(
diam(Ω)

t

))p
Hn−1

(
{dist(·, ∂Ω) = t}

)
dt.

(2.5)

As a consequence of the regularity of the boundary, standard results (see e.g. [AFP])
imply that there is a C = C(Ω) such that

sup
0<t<diam(Ω)

Hn−1
(
{dist(·, ∂Ω) = t}

)
≤ C(Ω)

and hence the inequality (2.5) gives

(2.6) Iε,p ≤ C(Ω)

∫ diam(Ω)

ε

(
ln

(
diam(Ω)

t

))p
dt.
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By the change of variables

ω :=
diam(Ω)

t
we can rewrite the estimate (2.6) as

Iε,p ≤ C(Ω) diam(Ω)

∫ diam(Ω)/ε

1

(lnω)p

ω2
dω

and by enlarging perhaps the constant C(Ω), we rewrite this as

(2.7) Iε,p ≤ C(Ω)

∫ diam(Ω)/ε

1

(
lnω

ω2/p

)p
dω.

Consider now the function

g(ω) :=
lnω

ω2/p
, g : (1,∞)→ (0,∞).

Since

g′(ω) =
1− (2/p) lnω

ω(2/p)+1
,

we have that g is strictly increasing on (1, e2/p) and strictly decreasing on (e2/p,∞).
Further, note that t 7→ gp(t) also enjoys the exact same monotonicity properties
since s 7→ sp is strictly increasing. Moreover, since

e2/p ≤ 10

for all p ∈ [1,∞) and by using that ε 7→ Iε,p is decreasing (in view of (2.4)), we
have

lim
ε→0

Iε,p ≤ C(Ω)

[∫ 10

1

(lnω)p

ω2
dt +

∫ ∞
10

(lnω)p

ω2
dt

]
≤ C(Ω)

[
10

(
sup

1<ω<10

(lnω)p

ω2

)
+

∫ ∞
10

(lnω)p

ω2
dt

]
= C(Ω)

[
10

(
(lnω)p

ω2

)∣∣∣
ω=e2/p

+

∫ ∞
10

(lnω)p

ω2
dt

]
= C(Ω)

[
10

(2/p)p

e4/p
+

∞∑
k=10

∫ k+1

k

(lnω)p

ω2
dt

]

≤ C(Ω)

[
10

(2/p)p

e4/p
+

∞∑
k=10

(
sup

k<ω<k+1

(lnω)p

ω2

)]
which gives

(2.8) lim
ε→0

Iε,p ≤ C(Ω)

[
10

(2/p)p

e4/p
+

∞∑
k=10

(ln k)p

k2

]
.

Since the sequence
(ln k)p

k2
, k = 10, 11, 12, ...

is decreasing, by the Cauchy condensation test the series
∞∑
k=10

(ln k)p

k2
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converges if and only if
∞∑

m=10

2mA2m < ∞, Ak :=
(ln k)p

k2
.

Since

2m+1A2m+1

2mA2m

=
(m+ 1)p (ln 2)p 2−m−1

mp (ln 2)p 2−m
=

1

2

(
1 +

1

m

)p
−→ 1

2
,

as m→∞, by the Ratio test we have that
∞∑
k=10

(ln k)p

k2
= C(p) < ∞

since
∑∞
m=10 2mA2m converges. By (2.4) and (2.8) we have that there is a constant

C(Ω, n, p) depending only on Ω, n, p such that∫
Ω

(
ln

(
diam(Ω)

dist(x, ∂Ω)

))p
dx = lim

ε→0
Iε,p

≤ C(Ω, n, p).

(2.9)

By combining (2.9) with (2.1), we see that by setting

fΩ,n(x) := C(Ω, n) ln

(
diam(Ω)

dist(x, ∂Ω)

)
, x ∈ Ω

(1) of Theorem 1 is established. �

Proof of (2) of Theorem 1. Let um solve (1.5). By standard interior bounds on
the derivatives of Harmonic functions in terms of their boundary values (see e.g.
[GT]) and (1.4), we have that the Hessians (D2um)∞1 are bounded in C0(Ω,Rn×n),
that is uniformly over the compact subsets of Ω. The same is true for the 3rd order
derivatives as well; thus, for any Ω′ b Ω, there is C(Ω′) such that

3∑
k=1

∥∥Dkum
∥∥
C0(Ω′)

≤ C(Ω′) ‖um‖C0(Ω)

and by the Maximum Principle we have

‖um‖C0(Ω) ≤ max
∂Ω
|gm| ≤ C.

As a consequence,∣∣Dkum(x)−Dkum(y)
∣∣ ≤ C(Ω′)|x− y|,∣∣Dkum(x)
∣∣ ≤ C(Ω′),

}
x, y ∈ Ω′, k = 0, 1, 2, 3, m ∈ N

and by the Ascoli-Arzela theorem, the sequence(
um,Dum, D2um

)∞
m=1

is precompact uniformly over the compact subsets of Ω. Again by (1.4), we have∣∣gm(x)− gm(y)
∣∣ ≤ C|x− y|,∣∣gm(x)
∣∣ ≤ C,

}
x, y ∈ ∂Ω, m ∈ N

which gives that (gm)∞1 is bounded and equicontinuous on ∂Ω. Thus, by the Ascoli-
Arzela theorem and by the lower semicontinuity of the Lipschitz seminorm with
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respect to uniform convergence, there is a subsequence (gmk)∞1 and g ∈ Lip(∂Ω)
such that

gmk −→ g, as k →∞ in C0(∂Ω).

Along perhaps a further subsequence, by the above bounds on (um)∞1 ⊆ C2(Ω) ∩
C0(Ω), there is u ∈ C2(Ω) such that

(2.10)


umk −→ u, in C0(Ω),

Dumk −→ Du, in C0(Ω,Rn),

D2umk −→ D2u, in C0(Ω,Rn×n),

as k → ∞. By passing to the limit in the equation ∆um = 0 we get that ∆u = 0.
Since the measure of Ω is finite, for any p ∈ [1,∞) by Hölder inequality we have
that

‖um‖Lp(Ω) ≤ |Ω|1/p
(
‖um‖C0(Ω)

)
≤ C(Ω, p).

By item (1) of the theorem and by (1.4), we have that

‖Dum‖Lp(Ω) ≤ C(Ω, n, p).

Hence, we have the bound

‖um‖W 1,p(Ω) ≤ C(Ω, n, p), p ≥ 1.

By the Morrey embedding theorem, by choosing p > n we have that (umk)∞1 is
precompact in C0(Ω) and hence by (2.10) we have that

(2.11) umk −→ u, in C0(Ω) as k →∞.

Hence, u = g on ∂Ω and as a consequence u solves the limit Dirichlet problem.
Finally, if E ⊆ Ω is a measurable subset, by the Hölder inequality we have that∫

E

∣∣Dum(x)
∣∣p dx ≤ |E|1− p

p+1

(∫
E

∣∣Dum(x)
∣∣p+1

dx

) p
p+1

= |E|1−
p

p+1

(
‖Dum‖Lp+1(Ω)

)p
≤ |E|1−

p
p+1C(Ω, n, p).

Hence, the sequence of gradients (Dumk)∞1 is p-equi-integrable on Ω. By (2.10), we
have

Dumk −→ Du in measure on Ω, as k →∞.

Since Ω has finite measure, the Vitali Convergence theorem (e.g. [FL]) implies that

Dumk −→ Du in Lp(Ω), as k →∞.

Item (2) of Theorem 1 has been established. �
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[GH] D. Gilbarg, L. Hörmander, Intermediate Schauder estimates, Arch. Rational Mech. Anal.,
Vol. 74 (1980), 297-318.

[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, Berlin-Heidelberg, 1983.
[HL] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic

functions, Quart. J. of Math. (Oxford) 3, 221-256 (1932).

[HS] G. Hile, A. Stanoyevitch, Gradient bounds for harmonic functions Lipschitz on the boundary,
Applicable Analysis 73, Issue 1-2 (1999).

[Ka] N. Katzourakis, An Introduction to viscosity Solutions for Fully Nonlinear PDE with Ap-

plications to Calculus of Variations in L∞, Springer Briefs in Mathematics, 2015, DOI
10.1007/978-3-319-12829-0.

[K] O. D. Kellogg, On derivatives of harmonic functions at the boundary, Trans. Amer. Math.

Soc., Vol. 33 (1931), 486-510.
[T] G. M. Troianiello, Estimates of the Caccioppoli-Schauder type in weighted function spaces,

Trans. Amer. Math. Soc. 334 (1992), 551-573.

Department of Mathematics and Statistics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, Reading, UK
E-mail address: n.katzourakis@reading.ac.uk


	1. Introduction
	2. Proofs
	References

