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Abstract

We study a sneutrino chaotic inflation model with only two right-handed neutrino
superfields, where one of them plays the role of the inflaton, while the other is necessary
to stabilize the inflaton potential. We assume that the shift symmetry of the inflaton is
explicitly broken down to discrete one in the superpotential. As a result, the neutrino
Yukawa couplings are periodic in the inflaton field, and the masses of leptons and Higgs
do not blow up even if the inflaton takes super-Planckian field values. The inflaton
potential is given by a sum of sinusoidal functions with different height and periodicity,
the so-called multi-natural inflation. We show that the predicted scalar spectral index
and tensor-to-scalar ratio lie in the region favored by the Planck data. The reheating
temperature is considered to be so high that successful thermal leptogenesis is possible.
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1 Introduction

Cosmic microwave background (CMB) temperature and polarization anisotropies have co-
herence beyond the horizon at the last scattering. This clearly shows that our Universe has
experienced accelerated expansion, i.e., inflation, at a very early stage of the evolution. In
particular, a single-field slow-roll inflation is consistent with the observations.

Among many inflation models so far, there is an interesting class of models called large-
field or chaotic inflation [1]. One of the advantages of the chaotic inflation is that it has no
initial condition problem. With the chaotic initial condition at the Planckian epoch, some
patch of the Universe will necessarily start to inflate. For this, the initial inflaton field value
has to be larger than the Planck scale MP (≃ 2.4× 1018GeV) by many orders of magnitude,
and it is customary to impose a shift symmetry on the inflaton to keep the inflaton potential
under control.

The simplest chaotic inflation is based on the quadratic potential where the inflaton
mass is fixed to be order 1013GeV by the normalization of the curvature perturbations. The
suggested inflaton mass is intriguingly close to the right-handed (RH) neutrino mass scale
required by the seesaw mechanism [2] for the light neutrino masses, making it plausible to
identify the inflaton with the supersymmetric (SUSY) partner of the RH neutrino. Another
virtue of the sneutrino chaotic inflation is that the inflaton automatically reheats the minimal
supersymmetric standard model (MSSM) particles via the decay into leptons and Higgs. As
a result, thermal (or non-thermal) leptogenesis [3] takes places naturally.

A first attempt to build a sneutrino chaotic inflation model in supergravity relied on
a rather complicated form of the Kähler potential [4, 5]. More recently, a much simpler
realization was proposed [6], based on a generic construction of chaotic inflation models
in supergravity [7] (see also [8]). The recent Planck observations [9], however, excluded the
quadratic chaotic inflation model, which requires some modifications of the inflaton potential
such as the polynomial chaotic inflation [10–12].

The purpose of the present paper is twofold. First, we study a minimal sneutrino chaotic
inflation with only two RH neutrinos, N1,2, where one of them (N1) plays the role of the
inflaton while the other (N2) is necessary to ensure the stability of the inflaton potential. The
latter is often called the stabilizer field. Interestingly, the neutrino oscillation data can be
explained with only two RH neutrinos [13], and the simple realization of the sneutrino chaotic
inflation also requires at least two RH neutrinos. In this minimal framework with the seesaw
mechanism, the inflaton as well as the stabilizer field have sizable neutrino Yukawa couplings
of O(0.1), and therefore, the chaotic initial condition with super-Planckian inflaton field
values cannot be realized. This is because the masses of the leptons and Higgs would exceed
the Planck mass for the inflaton field value greater than O(10)MP , and then, the effective
field theory description breaks down. Our second purpose is to propose a solution to the
problem and study its implications. In fact, the problem can be solved if the neutrino Yukawa
couplings are some functions of the inflaton so that the masses of the leptons and Higgs do
not monotonically increase with the inflaton field; for example, they may asymptote to a
constant value or start to decrease for super-Planckian inflaton field values. An interesting
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possibility is that the system comes back to the SM as the inflaton field exceeds a critical
value. This is the case if the shift symmetry of the inflaton is not completely broken by the
superpotential interactions, but there remains an unbroken discrete shift symmetry. That
is to say, the superpotential interactions are invariant under the following discrete shift
transformation along the imaginary direction,

ϕ → ϕ+ 2πf, (1.1)

where ϕ ≡
√
2Im[N1], and f is the decay constant. In general, the inflaton potential is

given by a sum of sinusoidal functions with different height and potential, the so-called
multi-natural inflation [14–16].#1 To avoid the blow-up of the masses of leptons and Higgs,
f should be smaller than or comparable to O(10)MP . Thus, the prediction of the scalar
spectral index (ns) as well as the tensor-to-scalar ratio (r) are naturally deviated from the
simple quadratic chaotic inflation in the minimal sneutrino inflation. As we shall see, if
f = O(10)MP , the predicted (ns, r) can lie in the range preferred by the Planck data.

2 Minimal sneutrino chaotic inflation

The model we consider includes the MSSM fields plus two RH neutrinos N1 and N2, and the
Kähler and super-potentials relevant for the inflation are

K =
1

2
(N1 +N †

1)
2 + |N2|2 − k2

|N2|4
M2

P

, (2.1)

W = MN2

∑

n=1

gn
2n

f

(

e
√

2nN1

f − e
−
√

2nN1

f

)

+

[

y1α
∑

n=1

g′n
2n

f

(

e
√

2nN1

f − e
−
√

2nN1

f

)

+ y2αN2

]

LαHu,

(2.2)

where α runs over the lepton flavor e, µ, and τ , k2 is a positive constant of order unity,
and we take g1 = g′1 = 1. Here and in what follows, the summation over repeated indices
is understood. The above Kähler potential respects a continuous shift symmetry along
the imaginary direction of N1, which ensures the flatness of the inflaton potential at ϕ &

MP . The shift symmetry is explicitly broken down to a discrete one (1.1) by the above
superpotential interactions. We also impose a Z2 symmetry under which both N1 and N2

flip the sign.#2 Here we take a basis of Lα such that charged lepton yukawa sector is
diagonalized and omitted other interactions of the MSSM fields. The RH neutrino mass
parameter M can be taken real and positive without loss of generality. The coefficients gn
and g′n are assumed to be suppressed for larger n.

#1 A sizable running spectral index can be generated in large field inflation with modulations [17,18]. See
also Refs. [19–21].
#2 This Z2 can be identified with Z

(B−L)
2 under which all quarks and leptons flip the sign.
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For |N1| ≪ f , the model is reduced to

K =
1

2
(N1 +N †

1)
2 + |N2|2 − k2

|N2|4
M2

P

, (2.3)

W = MN1N2 + yiαNiLαHu, (2.4)

where i = 1, 2. Since typical values of yiα is of O(0.1) for reproducing the observed neutrino
masses (see Sec. 3.1), the masses of LαHu would exceed the Planck mass during inflation if
this effective theory holds up to |ImN1| ∼ O(10)MP . However, thanks to the discrete shift
symmetry, the actual superpotential is given by (2.2), where the masses of LαHu are periodic
with respect to ϕ(=

√
2ImN1). Thus their masses remain smaller than the Planck mass, in

which case we can safely discuss the inflaton dynamics.

2.1 Inflaton potential

In our model, the inflaton ϕ is identified with the imaginary component ofN1, ϕ =
√
2Im[N1].

The inflaton potential is then given by

V = M2

∣

∣

∣

∣

∣

∑

n

gn
n

sin

(

nϕ

f

)

∣

∣

∣

∣

∣

2

, (2.5)

where we have taken Re[N1] = N2 = Hu = Lα = 0. To be precise, Re[N1] slightly shifts from
zero, but its effect on the inflationary prediction is negligible [12]. We will check the validity
of this assumption later. The inflaton potential is given by a sum of sinusoidal functions
with different height and periodicity, and it is the so-called multi-natural inflation [14].

To proceed, let us take the first two terms:

V =
1

2
M2f 2

∣

∣

∣

∣

sin

(

ϕ

f

)

+
g2
2
sin

(

2ϕ

f

)∣

∣

∣

∣

2

,

=
1

2
M2f 2 sin2

(

ϕ

f

)[

1 + 2C cos θ cos

(

ϕ

f

)

+ C2 cos2
(

ϕ

f

)]

, (2.6)

where we have used g1 = 1 and defined g2 ≡ Ceiθ. For C = 0 this is nothing but a potential
for natural inflation, but a nonzero C deforms the inflaton potential and the prediction of
the spectral index ns and the tensor-to-scalar ratio r are modified. In Fig. 1 we show the
shape of the scalar potential (2.6) for C = 0.9 with θ = 0, π/2, 9π/16, and 3π/4 for fixed f
and M . The case of C = 0 is also shown for comparison. We have numerically checked that
there are no local minima of the potential in the field range 0 < ϕ/f < π for 0 ≤ C < 1.

We have numerically solved the slow-roll equation of motion

ϕ̈+ 3Hϕ̇+ V ′ = 0, (2.7)

3M2
PH

2 ≃ V (ϕ), (2.8)
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ϕ/f

V
(ϕ

)

Figure 1: Shape of the scalar potential of ϕ for C = 0.9 with θ = 0, π/2, 9π/16, and 3π/4
for fixed f and M . The case of C = 0 is also shown for comparison.

and calculated the slow-roll parameters,

ǫ =
M2

P

2

(

V ′

V

)2

, η = M2
P

V ′′

V
, (2.9)

at 60 e-folding before inflation ends. Then the scalar spectral index and tensor-to-scalar
ratio are given by

ns = 1− 6ǫ+ 2η, r = 16ǫ. (2.10)

The results are shown in Fig. 2 for the same parameters as in Fig. 1. For each line, we
have varied f in the range 5MP < f < 100MP . One can see that the predicted ns and r
significantly differ from those of natural inflation, and that they can lie in the region favored
by the Planck result, ns = 0.9655 ± 0.058 and r < 0.09 [9]. The Planck normalization on
the primordial curvature perturbation can be satisfied by adjusting the oveall scale of the
inflaton potential, which results in M = O(1013)GeV unless r is smaller than O(10−3).

2.2 Stability of inflationary path

In Ref. [11] it was shown that the inflationary trajectory may be destabilized in the presence
of a coupling like λXHuHd with X being a stabilizer field, because the HuHd direction
becomes tachyonic during inflation. This constrains the coupling constant as |λ| . 10−6.
In our case, the stabilizer field N2 has large yukawa couplings to LαHu to reproduce the
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ns

r

Figure 2: The prediction of (ns, r) for the same parameters in Fig. 1. For each line, we
varie f in the range 5MP < f < 100MP .

observed neutrino masses, and hence one may think that this induces a similar instability.
Below we show that this instability does not exist thanks to the large yukawa couplings of
N1 to LαHu.

The scalar potential of Lα and Hu up to the quadratic terms during inflation is given by

V =

[

MN∗
1

(

∑

α

y2αLα

)

Hu + h.c.

]

+

∣

∣

∣

∣

∣

∑

α

y1αLα

∣

∣

∣

∣

∣

2

|N1|2 +
∑

α

|y1α|2 |N1|2|Hu|2, (2.11)

where we have taken N2 = 0. This is rewritten as

V = (My2N
∗
1L

′
2Hu + h.c.) + y1

2|N1|2
(

|L′
1|

2
+ |Hu|2

)

, (2.12)

where

y1 ≡
√

∑

α

|y1α|2, y2 ≡
√

∑

α

|y2α|2, (2.13)

L′
1 ≡

1

y1

(

∑

α

y1αLα

)

, L′
2 ≡

1

y2

(

∑

α

y2αLα

)

. (2.14)

Thus L′
1 obtains a mass of y1|N1| and hence is stabilized. The mass matrix of (Hu, L

′∗
2 ) is

given by

m2
HL′

2

=

(

y1
2|N1|2 My2N1

My2N
∗
1 kH2

)

, (2.15)
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where we have included a Hubble mass correction at the (2, 2) entry with k being a positive
constant of order unity.#3 This matrix has two eigenvalues of

M2 ≃ y1
2|N1|2, kH2 − y2

2

y1
2M

2, (2.16)

for y1|N1| ≫ y2M . Thus there are no tachyonic direction during inflation if kH2 >
y2

2M2/y1
2. Actually this condition is easily satisfied. Although the other combination

of Lα orthogonal to both L′
1 and L′

2 remains massless at this level, it can also have a positive
Hubble mass by introducing K = −|N2|2|Lα|2/M2

P . Therefore the inflationary path is stable
and we can take Hu = Lα = 0 during inflation.

As we shall see in Sec. 3.1, a typical value of y1 is of O(0.1) which may lead to super-
Planckian masses for leptons and Higgs during inflation, spoiling the effective field theory
description. This is our motivation to introduce a discrete shift symmetry on the inflaton
field and we need f . O(10)MP . We note, however, that it is in principle possible to have
y1 . O(0.01). In such a case, we can take f = O(100)MP and the predicted (ns, r) are close
to that of the quadratic chaotic inflation.

3 Implications

3.1 Neutrino masses and mixings

Here let us show that our model can reproduce the observed neutrino masses and mixings [13,
22, 23]. To this end, it is convenient to work with a basis in which the RH neutrino masses
are diagonalized:

W =
1

2
M̃iÑiÑi + ỹiαÑiLαHu, (3.1)

with

M̃1 = M̃2 = M, (3.2)

ỹ1α =
1√
2
(y1α + y2α), ỹ2α =

i√
2
(−y1α + y2α), (3.3)

Ñ1 =
1√
2
(N1 +N2), Ñ2 =

i√
2
(N1 −N2), (3.4)

where we have expanded the interactions at the potential minimum. After integrating out
the RH neutrinos in (3.1), we obtain

W = −1

2
ỹiαỹjβ(M̃

−1)ij(LαHu)(LβHu). (3.5)

#3 Other entries also receive Hubble mass corrections, but they are subdominant since |N1| & MP during
inflation.
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Thus the light neutrino mass matrix is given by

m
(ν)
αβ =

v2 sin2 β

M
ỹiαỹiβ, (3.6)

where v = 174GeV and sin β ≡ 〈Hu〉/v. Note that since the mass matrix (M̃−1)ij is rank 2,

m
(ν)
αβ can only have two non-zero eigenvalues. Therefore, among the total 9 real parameters

to characterize the neutrino mass matrix (three masses, three mixing angles and three CP
phases), one mass parameter and one phase vanish. Thus we are left with 7 low energy
parameters. On the other hand, ỹiα is a general 2 × 3 complex matrix having 12 real
parameters, but three phases can be absorbed by redefining the phase of Lα.

#4 Thus the
total physical degrees of freedom in the neutrino sector is 2 (RH neutrino mass) +(12 − 3)
(neutrino yukawa: ỹiα) = 11 if the RH neutrino masses are taken freely. Of these, the overall
rescaling M̃i → λ2

i M̃i combined with ỹiα → λiỹiα does not affect the light neutrino masses.
This rescaling has two parameters, hence we are left with the 9 parameters in the high
energy to parameterize the light neutrino masses and mixings. This number is larger than
the number of the low energy parameters, which is 7, hence a model with two RH neutrinos
has enough parameters to reproduce the light neutrino mass matrix.

In our case, the RH neutrino mass matrix has only one parameter M and its value is fixed
by the normalization of the primordial curvature perturbations. Since M is fixed, there are 9
parameters in the neutrino yukawa sector, which cannot be reduced further by the rescaling.
Hence the situation remains intact.

By using the MNS matrix [24], neutrino mass eigenvalues are expressed as

m
(ν)
ᾱ δᾱδ̄ = U

(MNS)T
ᾱβ m

(ν)
βγU

(MNS)

γδ̄
, (3.7)

where ᾱ = 1, 2, 3 denotes the mass eigenstate basis. Here we impose m
(ν)
1 < m

(ν)
2 , so that

m
(ν)
1 = 0 for the normal hierarchy (NH) and m

(ν)
3 = 0 for the inverted hierarchy (IH). The

MNS matrix is parametrized as

U
(MNS)

αβ̄
=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



× diag
(

1, eiα/2, 1
)

,

(3.8)

where cij = cos θij , sij = sin θij , δ is the Dirac phase and α is the Majorana phase. The
neutrino yukawa is given by

ỹiαỹiβ =
M

v2 sin2 β
U

(MNS)∗
αγ̄ m

(ν)
γ̄ δγ̄δ̄U

(MNS)†

δ̄β
. (3.9)

#4 The phase redefinition of Lα combined with those of right handed charged leptons Eα can leave charged
lepton yukawa matrix real and diagonal.
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As mentioned above, this does not uniquely determine all the matrix elements of ỹiα: there
are additional two degrees of freedom in the yukawa sector to determine the light neutrino
mass matrix. This can be explicitly seen by solving (3.9) as [22, 25]

ỹiα =
M1/2

v sin β
Riγ̄

√

m
(ν)
γ̄ δγ̄δ̄U

(MNS)†

δ̄α
, (3.10)

where

Riγ̄ =

(

0 cos z − sin z
0 sin z cos z

)

for NH, (3.11)

and

Riγ̄ =

(

− sin z cos z 0
cos z sin z 0

)

for IH, (3.12)

with z being an arbitrary complex parameter, corresponding to the additional degrees of
freedom.

The best-fit values of the observed parameters are [26]

∆m2
12 = 7.54× 10−5 eV2, ∆m2

23 = 2.43× 10−3 eV2, (3.13)

sin2 θ12 = 0.308, sin2 θ23 = 0.437, sin2 θ13 = 2.34× 10−2. (3.14)

for NH, and

∆m2
12 = 7.54× 10−5 eV2, ∆m2

23 = 2.38× 10−3 eV2, (3.15)

sin2 θ12 = 0.308, sin2 θ23 = 0.455, sin2 θ13 = 2.40× 10−2. (3.16)

for IH. We can determine the yukawa matrix yiα by using these values for arbitrary values
of δ, α and z. Note that y1 and y2 in (2.13) are independent of δ and α. Also they are
independent of z as long as z is real and in such a case we have y1 = y2. If z is real, we
obtain

y1 = y2 = 0.139 for NH, (3.17)

y1 = y2 = 0.180 for IH, (3.18)

for M = 2 × 1013GeV and sin β = 1. We regard them as “typical” values. On the other
hand, if z has an imaginary component, the prediction changes. For example, for z = i we
obtain

y1 = 0.0511, y2 = 0.377 for NH, (3.19)

y1 = 0.0660, y2 = 0.488 for IH. (3.20)

By taking a large value of imaginary component of z, we can make a hierarchy between y1
and y2. For |z| . O(1), y1 and y2 are of O(0.01− 1).
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3.2 Reheating

Now let us consider the reheating after inflation. In our model, the reheating process is
slightly nontrivial because of the large yukawa coupling of the inflaton. Just after inflation,
the inflaton ϕ begins a coherent oscillation with its amplitude of order MP , and the coupled
charged leptons and Higgs (and their superpartners) obtain masses of order ∼ yϕ where
y collectively denotes the neutrino yukawa coupling. Since this is much larger than the
inflaton massM , the perturbative decay of the inflaton is not kinematically allowed. Instead,
non-perturbative particle production, called preheating, happens when ϕ passes the origin
ϕ ≃ 0 [27]. The produced particles decay into lighter ones before the inflaton again moves
back to ϕ ≃ 0 [28]. For example, Higgs boson decays into quarks through yukawa couplings.

The effective decay rate of ϕ through this process is estimated as [29]

Γφ ∼ 2y2M

π7/2g
≡ bM, (3.21)

where g collectively denotes the Higgs coupling to lighter particles and b ∼ O(0.01 − 0.1).
Thus after a few Hubble time after inflation, a significant fraction of the inflaton energy
density is transferred to radiation:

ρr ∼ bρφ. (3.22)

If this process continues to produce radiation even after the radiation energy density begins
to dominate the universe, the reheating temperature is given by

TR ∼ 1015GeV

(

b

0.01

)1/2(
M

2× 1013GeV

)1/2

. (3.23)

On the other hand this preheating process may become ineffective due to the thermal
mass correction to the Higgs particles. Then the main process that transfers the inflaton
energy to radiation becomes the scattering of light particles in thermal plasma with inflaton.
In our case, at the high inflaton amplitude regime yϕ & T , it is the effective inflaton coupling
with SU(2) gauge bosons after integrating out heavy Higgs and leptons that is responsible
for such an effective dissipation rate. The oscillation-averaged dissipation rate is estimated
as [29]

Γ
(dis)
φ ∼ b′yα2

WT 2

ϕ̃
, (3.24)

where b′ is an order one numerical constant, αW is the SU(2) fine structure constant and ϕ̃
denotes the oscillation amplitude of ϕ. The inflaton is thermalized when this rate becomes
comparable to the Hubble scale. This occurs at H ∼ (α2

W b1/2b′y)2/3M ∼ O(10−3)M . Thus
the reheating temperature in this case is estimated to be

TR ∼ O(0.01)×
√

MMP ∼ 1014GeV

(

M

2× 1013GeV

)1/2

. (3.25)

In either case, the reheating temperature is so high that the RH sneutrino inflaton becomes
thermalized.
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3.3 Leptogenesis

Now let us consider implication for the leptogenesis scenario [3]. In our model, two RH
neutrino masses are nearly degenerate, and so, we must take account of the resonant ef-
fect [30–35]. It should be noticed that the effective CP asymmetry in the RH neutrino decay
vanishes in the exact degenerate limit.#5 Thus we need a small diagonal mass matrix ele-
ment of ∼ δM (|δM | ≪ M) in (2.4).#6 After diagonalizing the RH neutrino mass matrix,
we obtain

W =
1

2
M̃iÑiÑi + ỹiαÑiLαHu, (3.26)

M̃1 = M − δM, M̃2 = M + δM. (3.27)

The lepton asymmetry is generated via the CP asymmetric decay of Ñ1 and Ñ2. The CP
asymmetry parameter is given by [35]

ǫi =
Im
[

(ỹiαỹ
†
αj)

2
]

8π(ỹiαỹ
†
αi)

M̃iM̃j(M̃
2
i − M̃2

j )

(M̃2
i − M̃2

j )
2 + (M̃iΓi − M̃jΓj)2

, (3.28)

where Γi denotes the decay width of Ñi. The ǫi parameter is maximized and can be O(1)
for M̃2

1 − M̃2
2 ∼ M̃1Γ1 assuming M̃1Γ1 & M̃2Γ2.

The final baryon asymmetry, after the sphaleron conversion of the lepton number to the
baryon number, is given by

nB

s
=

8

23

nL

s
=

8

23
κ
∑

i=1,2

ǫi
nNi

s
, (3.29)

where κ represents the suppression factor due to the washout effect [36]. In our case, RH
neutrinos are expected to be in thermal equilibrium at T ∼ Mi: ΓN1

/HT=Mi
∼ O(100). Thus

we have κ ∼ O(0.01). To explain the observed value nB/s ≃ 9×10−11, we need ǫi ∼ 10−5.#7

3.4 Gravitino problem

Finally we discuss the gravitino problem. In general, there are two contributions to the
gravitino production: thermal production and nonthermal production. The nonthermal
gravitino production rate from the direct decay of the inflaton depends on the inflaton

#5 This can be seen in (2.4) that we can rotate a phase of N1 and N2 without affecting the RH mass term,
while it can absorb the phase of yukawa matrix which appears in the CP asymmetric decay of RH neutrinos.
This phase rotation is allowed only for the degenerate case, i.e., there are no diagonal elements in the mass
matrix of RH neutrinos.
#6 As long as |δM | ≪ 10−2M , it does not much affect the inflaton dynamics.
#7 For |M̃2

1 − M̃2
2 | ≪ |M̃iΓi − M̃jΓj |, the calculation based on the Boltzmann equation becomes invalid.

Instead, we may need Kadanoff-Baym approach to estimate the lepton asymmetry. In any case, we can
obtain small ǫi in a degenerate limit [35].
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vacuum expectation value [37–41]. In our model, thanks to the Z2 symmetry, the inflaton
VEV is zero and hence there is no significant production of the gravitino from the inflaton
decay.

Thermal gravitino production, on the other hand, is very efficient in the present model
because of high reheating temperature. The gravitino abundance in terms of the number to
the entropy density ratio is estimated as [42]

n3/2

s
≃ 2× 10−12

(

1 +
m2

g̃

3m2
3/2

)

(

TR

1010GeV

)

, (3.30)

where mg̃ and m3/2 denote the gluino mass and gravitino mass, respectively. The cosmo-
logical consequences depend on the gravitino mass. For the unstable gravitino, in order to
avoid the constraint from big-bang nucleosynthesis (BBN) [43], we need m3/2 ∼ 100TeV so
that it decays before BBN begins. However, even in such a case, the lightest SUSY parti-
cles (LSP) produced by the gravitino decay give a too large contribution to the relic dark
matter abundance independently of the gravitino mass, if we assume the anomaly mediation
relation between the gaugino and gravitino mass [44]. A solution to the LSP overproduction
is to introduce a small R-parity violation so that LSP decays quickly before BBN. Another
way to avoid the gravitino problem is to assume an ultra light gravitino scenario in which
m3/2 . 16 eV [45, 46].

4 Conclusions

In this paper we have revisited a chaotic inflation model in which the inflaton is identified
with a RH sneutrino. We have introduced only two RH neutrinos, which is minimal in the
sense that at least two heavy fields are required for both successful chaotic inflation and
explaining the neutrino masses and mixings. To avoid super-Planckian masses of the leptons
and Higgs during inflation, we have assumed that the shift symmetry of the inflaton is not
completely broken by the superpotential interactions, but there remain an unbroken discrete
shift symmetry, which modifies the shape of the inflaton potential. As a result, we can
obtain the prediction of (ns, r) within 1σ range of the Planck result if the decay constant f
is O(10)MP .

Since we have only two RH neutrinos, one of the light neutrinos is massless. Although the
rate of neutrinoless double beta decay is suppressed compared to the (quasi) degenerate case,
it is within the reach of forthcoming experiments because 〈mee〉 is bounded below [47–49].
Inflaton has rather large yukawa couplings to explain observed neutrino masses and hence
the reheating automatically happens. The predicted reheating temperature is high and
leptogenesis works efficiently.
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