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d Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará -
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In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the
geometry via trace of the stress-energy momentum tensor T = T µ

µ . This type of modified gravity is
called as f(R, T ) in which R is Ricci scalar R = Rµ

µ. We extend manifestly this model to include the
higher derivative term 2R. We derived equation of motion (EOM) for the model by starting from
the basic variational principle. Later we investigate FLRW cosmology for our model. We show that
de Sitter solution is unstable for a generic type of f(R,2R, T ) model. Furthermore we investigate
an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this
type of modified gravity.

PACS numbers: 95.30.Sf; 98.80.-k; 04.60.-m

I. INTRODUCTION

Different types of the observational data, namely type Ia supernovae , cosmic microwave background (CMB) ,
large scale structure , baryon acoustic oscillations , and weak lensing indicate that we live in an accelerating epoch
of the Universe [1, 2] . A simple way to address this problem is to modify the original Einstein-Hilbert action by
an arbitrary function of the curvature term(s) like R,Rµν , R

α
βµν , .... This approach is called modified gravity and

originally proposed in [3] and recently re-introduced to address current acceleration of the Universe appropriately
[4],[5]. If we replace the classical action of gravity by an arbitrary function of R, the Ricci scalar term, this type of
modified gravity theories is called as f(R) gravity [7]:

S =
1

2κ2

∫

d4x
√−gf(R) (1)

Because of simplicity and vest applications, several aspects of this type of models have been investigated in literature
[8]. A significant observation is that the f(R) gravity is Lorentz invariant and it is independent from the structure of
the Riemannian space which is under study [9]. We know that General relativity satisfies all solar tests by a highly
precision so we expect that small deviations from this theory can satisfy these local tests. It is in great advantage that
f(R) gravity satisfies all local solar system tests [10, 11] and based on this fact, we are able to successfully reconstruct
viable models of f(R) gravity for cosmological applications [12–15]. f(R) models are responsible for accelerating
expansion can be used as matter content to describe rotation curves of different galaxies without the need for dark
matter . This issue is vastly studied by authors [17–21]. Because of different types of f(R) models there are several
review works which they collected different aspects of these models(see for example [4, 22].)
If we think about a weak violation of the equivalence principle, locally we can couple gravity to the matter part

of any model. A simplest way is coupling of an arbitrary function of the Ricci scalar R with the matter Lagrangian
density Lm[23]. The model will be in the form f(R,Lm) and has been investigated in different forms. For example the
case of the arbitrary couplings in both geometry and matter has been studied in [24]. Different types of such coupled
models have been proposed and they opened a class of models as matter-geometry coupling models [25, 26]. Not only
metric approach in which the metric gµν is the variable of action but even Palatini formulation of the non-minimal
geometry-coupling models has been introduced and investigated by different researchers [27]. Also another version
of these non-minimally coupled models has been presented in [28],where they are assuming that the gravitational
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Lagrangian is given by an arbitrary function of the Ricci scalar R and of the matter Lagrangian Lm. Such non-
minimally coupled models of gravity naturally appear in different areas, for example we can mention here a class
of models in the form of f(R,Lm) gravity, this model originally was proposed in [29]. In [29], it was argued that
f(R,Lm) could represent a relativistic covariant model of interacting dark energy. The cosmological constant Λ in
the gravitational Lagrangian is defined by an arbitrary function of the trace of the associated energy-momentum
tensor Tµν . An alternative name for this model is “Λ(T ) gravity” in which the cosmological constant is variable as
a function of cosmological time . It was showed that the model has good agreement with recent cosmological data
and is consistent with ΛCDM paradigm, without the need to specify an exact form of the function Λ(T ) [29]. We
mention here that the model proposed in [29] has more generality than the Palatini f(R) gravity, and reduces to the
Palatini f(R) when we neglect the pressure of the matter.
Among all different models for gravity in the class of non-minimally coupled paradigm, a simple but powerful

model was proposed as the f(R, T ) modified theories of gravity [30]. In this model, it was assumed that gravity was
coupled to the matter through the trace of the energy(stress)-momentum tensor of matter T = T µ

µ . This simple but
efficient idea attracted several authors to investigate different aspects of the modern cosmology like exact solution of
the cosmological evolution, black holes, thermodynamic laws and etc [31]-[45] In the present work we generalized this
type of models by taking into account the higher derivatives term 2R. This term is actually appeared in string theory
and so, it can be considered as a potentially important contribution to the original idea f(R, T ). It was proposed
firstly that f(R,2R) in [46]. In that Ref. [46], the authors showed that these models reduced to scalar field models
coupled to gravity . Starting by a general higher-derivative gravity theory in action, one could show that after some
conformal transformations , the model is equivalent to canonical Einstein gravity coupled to a finite number scalar
fields, some numbers of which are propagating physically and some of them are ghost-like and the effective potential
has a single, unstable stationary point [47], [48].
The present paper is organized as follows. In Sec. (II) we present our model and derive equations of the motion in

metric formalism. In Sec. (III) we investigate double-scalar field reduction of this type of modified gravity, in details.
In Sec. (IV) we study the local stability of the model in de Sitter background. In Sec. (V) we derive the modified
geodesic equation. In Sec. (VI) we study the weak field Newtonian limit and the problem of the precession of the
perihelion of Mercury is investigated in Sec. (VII). Sections (VIII) and (IX) are devoted to the inflationary epoch
and the machinery of this type of modified gravity to explain early time acceleration. We summarize and conclude in
Sec. (X).

II. f(R,2R, T ) THEORY

We start this work by writing the general gravitational action in the following form

S =
1

2κ2

∫

d4x
√−gf(R, T,�R) +

∫

d4x
√−gLm (2)

where R = Rµνg
µν is the curvature scalar, T = Tµνg

µν the trace of the energy-momentum tensor and � = gµν∇µ∇ν

the d’Alembertian [89] .
By varying this action in metric formalism, one gets the following expression

δS =
1

2κ2

∫

d4x
[

fδ
√−g +√−g (fRδR + fT δT + f�Rδ�R) + 2κ2δ

(√−gLm

)]

(3)

some supplementary variations are given as following:

δ
√
−g = −1

2

√
−ggµνδgµν , (4)

δΓλ
µν =

1

2
gλα [∇νδgµλ +∇µδgνλ −∇λδgµν ] , (5)

and the Palatini’s contracted equation reads

δRµν = ∇αδΓ
α
µν −∇νδΓ

α
µα . (6)

Making use of (6), one gets

δR = Rµνδg
µν + gµνδRµν (7)

= Rµνδg
µν + gµν

[

∇αδΓ
α
µν −∇νδΓ

α
µα

]

. (8)
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In order to rewrite the above equation, we use (5) and the relation

δ(gανg
µν) = 0 ⇒ gµνδgαν = −gανδgµν , (9)

getting

δR = Rµνδg
µν + gµν�δg

µν −∇µ∇νδg
µν . (10)

Now, one can calculate

δT = δ (Tµνg
µν) = Tµνδg

µν + gµν (δTµν)

=

[

Tµν
δgµν

δgαβ
+ gµν

δTµν
δgαβ

]

δgαβ

= [Tµν +Θµν ] δg
µν (11)

where

Θµν = gαβ
δTαβ
δgµν

. (12)

On the other hand one has

δ�R = δ
[

gµν∂µ∂νR − gµνΓλ
µν∂λR

]

= ∇µ∇νRδg
µν +�δR− gµν∂λRδΓ

λ
µν , (13)

which, using (5), (9) and (10), becomes

δ�R = ∇µ∇νRδg
µν +�

(

Rµνδg
µν + gµν�δg

µν −∇µ∇νδg
µν
)

− gµν∂λR
1

2
gλα
(

∇µδgνα +∇νδgµα −∇αδgµν

)

= ∇µ∇νRδg
µν +�Rµνδg

µν +R�δgµν + gµν�
2δgµν + 2gαβ∇αRµν∇βδg

µν −�∇µ∇νδg
µν

− 1

2

[

∇µ

(

−gµνgναδgλα
)

+∇ν

(

−gµνgµαδgλα
)

−∇α

(

−gµνgµνδgλα
)

]

∇λR

=
[

∇µ∇νR+�Rµν +
(

Rµν�+ gµν�
2 −�∇µ∇ν −∇µR∇ν + 2gαβ∇αRµν∇β

)]

δgµν (14)

With (4), (10), (11) and (14), the variation of the action (3) becomes

δS =
1

2κ2

∫

d4x
{

− 1

2

√−ggµνδgµνf + fR
√−g

(

Rµν + gµν�−∇µ∇ν

)

δgµν +
√−gf�R

(

∇µ∇νR+�Rµν +Rµν�

+gµν�
2 −�∇µ∇ν −∇µR∇ν + 2gαβ∇αRµν∇β

)

δgµν +
√−g (Tµν +Θµν) fT δg

µν + 2κ2
δ (

√−gLm)

δgµν
δgµν

}

(15)

We define the energy-momentum tensor from the matter Lagrangian Lm density by

Tµν = − 2√−g
δ (

√−gLm)

δgµν
, (16)

and evidencing the term
√−gδgµν in (15), integrating by parts the third, the fourth , fifth[90], sixth [91] seventh[92]

terms of (15), and considering the principle of minima action (δS = 0), we get the following equation of motion for
the f(R,2R, T ) gravity:

[

fRRµν − 1

2
gµνf + (gµν�−∇µ∇ν) fR

]

+
[

2f�R

(

∇(µ∇ν)R−�Rµν

)

−
(

Rµν�+ gµν�
2 − �∇µ∇ν −∇µR∇ν + 2gαβ∇αRµν∇β

)

f�R

]

= κ2Tµν − fT (Tµν +Θµν) . (17)

As an unusual term, one performs 2Rµν , considering that the covariant derivative of a covariant tensor of second
order, leads to a covariant tensor of third order. Hence, one gets

�Rαβ = gµν∇µ∇νRαβ = gµν∇µ

[

∂νRαβ − Γλ
ναRλβ − Γλ

νβRλα

]

= gµν
{

∂µ
[

∂νRαβ − Γλ
ναRλβ − Γλ

νβRλα

]

− Γγ
µν

[

∂γRαβ − Γλ
γαRλβ − Γλ

γβRλα

]

−Γγ
µα

[

∂νRγβ − Γλ
νγRλβ − Γλ

νβRλγ

]

− Γγ
µβ

[

∂νRαγ − Γλ
ναRλγ − Γλ

νγRλα

]

}

(18)

It is remarkable that when f2R = 0, the Eq. (28) reduces to the Eq. in f(R, T ) gravity [30], also when f2R = fT = 0,
it is identified with the Eq.in f(R) gravity [7].
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III. SCALAR FIELD REDUCTION OF f(R,2R, T ) THEORY

It is well-known that by starting with the Einstein-Hilbert action in a higher dimensional spacetime, and using the
Kaluza-Klein reduction, we obtain a class of the BergmannWagoner bi-scalar general action of scalartensor gravity
[49]. The same technique but with a slightly different approach could be used to reduce f(R) gravity to the single
scalar field model [7]. In this Sec. we argue that our model given by (2) can be reduced to a double scalar field model
under scalar field reduction technique. Our motivation is inspired from the case fT = 0, was studied in [46]. We use
the same terminology of the Ref. [46].
Let us to consider an auxiliary Lagrangian

L = λ1 + αλ22 + 2f(T ) + µ(R− λ1) + µ1(2R− λ2). (19)

Following the general procedure of scalar field reduction in modified gravity models [46],the first step is to introduce
a set of Lagrange multipliers µ, µ1. As discussed in literature [46], we have introduced more than one auxiliary fields.
A systematic way is to eliminate λ2 by solving its equation of motion, which reads µ1 = 2αλ2. From this equation it
implies that λ2 = µ1

2α . Using the back-substitution λ2 into the action we obtain:

S =
1

2κ2

∫

d4x
√−g

[

µR+ µ12λ1 + λ1 − µλ1 −
µ2
1

4α
+ 2f(T ).

]

(20)

Now, to put canonical kinetic energy for µ1, λ1 , we define λ1 = χ1 + ψ1, µ1 = χ1 − ψ1,so we obtain

S =
1

2κ2

∫

d4x
√−g

[

µR− (∇χ1)
2 + (∇ψ1)

2 − (µ− 1)(χ1 + ψ1)−
(χ1 − ψ1)

2

4α
+ 2f(T ).

]

(21)

Finally we make conformal transformation ĝµν = eχgµν , with χ = logµ, the action transforms to the canonical form :

S =
1

2κ2

∫

d4x
√

−ĝ
[

R̂− 3

2
(∇̂χ)2 − e−χ(∇̂χ1)

2 + e−χ(∇̂ψ1)
2 − e2χ

(

(eχ − 1)(χ1 + ψ1) +
(χ1 − ψ1)

2

4α

)

+ 2f(T ).
]

(22)

We proved that the original higher-derivative gravity theory can be written in an equivalent form in which the action
is decomposed to Einstein-Hilbert action and three scalar fields. We can show that in this equivalent form of action,
one field is ghost-like. Furthermore, the interaction potential posses an unstable stationary (saddle) point. This saddle
point is located at χ = χ1 = ψ1 = 0.
Let us to consider a second simple example f = α+βR+γR2+ǫR2R+2f(T ). The first two terms are Starobinsky’s

inflationary model [54], and the next term is a non-trivial higher order correction. To reduce the model to the multi-
scalar fields, let us to suppose that λ1 = R and λ2 = 2R . We write the equation of motion for λ2, we get
∂f/∂λ2 = ǫλ1. The good point is this equation is independent of λ2. By introducing a pair of Lagrange multipliers
we obtain:

S =
1

2κ2

∫

d4x
√
−g
[

α+ βλ1 + γλ1
2 + ǫλ1λ2 + µ (R− λ1) + µ1 (2λ1 − λ2) + 2f(T )

]

. (23)

As we observe, now we have some scalar fields. If we study the λ2 equation of motion we read:

ǫλ1 = µ1, (24)

This equation cannot be solved with respect to the λ2 . However plugging this solution into the action , we can
eliminate both λ2 and µ1, the resulting action is

S =
1

2κ2

∫

d4x
√−g

[

µR− ǫ (∇λ1)2 − µλ1 + α+ βλ1 + γλ1
2 + 2f(T )

]

. (25)

Note that, here the kinetic energy for λ1 is already in canonical form. Now we apply the conformal transformation
given by eχ = µ . Using this transformation, we can put the action in the completely canonical form

S =
1

2κ2

∫

d4x
√

−ĝ
[

R̂− 3

2

(

∇̂χ
)2

− ǫe−χ
(

∇̂λ1
)2

− V (λ1, χ) + 2f(T )

]

, (26)

We see a potential term given by,

V (λ1, χ) = e−2χ
(

eχλ1 − α− βλ1 − γλ1
2
)

(27)

Our observations are as the following:
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• The original higher-derivative gravity is shown to be equivalent to ordinary Einstein gravity though now coupled
to only two scalar fields. If we want to have non-ghost fields, we should make ǫ > 0, and k = 1.

• By investigating the potential for function, we conclude that V (λ1, χ) has a single stationary point. It is an easy
task to show that near this point, we have a stable minimum . This stable point corresponds to the anti-deSitter
space with R̂ = −2α/

(

β2 − 4αγ
)

in the original higher-derivative theory.

• When k = 1 all of the scalar fields are non-ghost-like.

IV. STABILITY OF DE SITTER

In cosmological backgrounds, in early or late time, de Sitter (dS) or nearly dS is the dominant scenario,. An
unstable dS is essential to exit inflation. In this section, we’ll investigate stability of our modified gravity model under
dS space. Let us to start by trace of (28) is given by the following:

fRR− 2f + 3�fR + 2f�R�R−
(

R�+ 3�2 −∇µR∇µ + 2gαβ∇αR∇β

)

f�R = κ2T − fT (T + Θ) . (28)

Requiring R = R0, we have de Sitter existence condition in vacuum:

fR0
R0 − 2f −

(

R0�+ 3�2
)

f�R0
= 0. (29)

Perturbing around dS space, namely R = R0 + δR,we attend at the perturbation Eq.

(RfRR − fR)|0δR+ (RfR�R − 2f�R + 3fRR)|0�(δR) + 3fR�R�
2(δR) = 0. (30)

in which the scalar on effective mass and hyper -mass parameters read as the following:

M2 =
(fR −RfRR)|0

(RfR�R − 2f�R + 3fRR)|0
, (31)

N2 = − 3fR�R|0
(RfR�R − 2f�R + 3fRR)|0

(32)

We should study linear stability of the Eq. (30). It will be straightforward to define an appropriate function δR = Ψ,
so we rewrite (30) in the following form:

−�Ψ+N2
�

2Ψ+M2Ψ = 0. (33)

Thus if N = 0 when f�R = 0, we have unstable dS solution, in particular case, when we have a pure f(R) model, we

have the well known condition fR
RfRR

|0 > 1. Generally, the characteristic Eq. (33) has four distinct roots are given by

following:

λ = ±
√
2

2N

√

1∓
√

1− 4(MN)2. (34)

It is impossible to keep all roots with R(λi) < 0, so dS is still unstable for a generic form of our model.

V. THE EQUATION OF MOTION OF TEST PARTICLES IN f(R,2R, T ) GRAVITY

Taking into account the covariant divergence of Eq. (17), with the use of the following mathematical identity[50]

∇µ

[

fRRµν − 1

2
gµνf + (gµν�−∇µ∇ν) fR

]

= 0 (35)

f(R,2R, T ) is an arbitrary function of the Ricci scalar R , the trace of the stress-energy tensor T and higher derivative
term 2R, we obtain for the divergence of the stress-energy tensor Tµν the equation

∇µTµν =
1

κ2 + fT

[

∇µΣµν + (Tµν +Θµν)∇µfT − gµνfT∇µp
]

. (36)
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here Σµν is defined by

Σµν ≡ 2f�R

(

∇(µ∇ν)R−�Rµν

)

−
(

Rµν�+ gµν�
2 −�∇µ∇ν −∇µR∇ν + 2gαβ∇αRµν∇β

)

f�R (37)

and furthermore

∇µfT = ∂µRfTR + ∂µfTT + ∂µ�RfT�R. (38)

We argue here that in the general f(R,2R, T ) type gravity models, the matter sector is not decoupled from the
geometry part, as a consequence we conclude that the energy-momentum tensor of matter sector is not covariantly
conserved. We find that the test particles in this type of the modified gravity doesn’t move on the geodesic lines.
This situation is similar to the f (R,Lm) models [28] and f(R, T ) gravity [30], where the coupling between matter
and geometry induces an extra acceleration acting on the particle. In the present Section, we derive the equation of
motion of test particle in f(R,2R, T ) gravity models.
Let us to suppose that the matter Lagrangian is given by a perfect fluid with pressure p and energy density ρ. In

this case the divergence of the stress-energy tensor is written in the following form,

∇µTµν =
1

κ2 + fT

[

∇µΣµν + (Tµν +Θµν)∇µfT − gµνfT∇µp
]

. (39)

For projection formalism we need to introduce the projection operator hµλ = gµλ−uµuλ, obviously we have hµλu
µ = 0

and hµλT
µν = −hνλp, respectively.

Explicitly, Eq. (39) can be written in the form

∇ν (ρ+ p)uµuν + (ρ+ p) [uν∇νu
µ + uµ∇νu

ν ]− gµν∇νp

= − 1

8π + fT (R,2R, T )
{T µν∇νfT (R,2R, T ) + gµν∇ν [fT (R,2R, T )p] +∇νΣ

µν} . (40)

By contracting Eq. (40) with hµλ we obtain

hµλu
ν∇νu

µ =
κ2hνλ∇νp+ hµλ∇νΣ

µν

(ρ+ p)(κ2 + fT )
. (41)

After multiplying with gαλ and by taking into account the famous identity

uν∇νu
µ =

d2xµ

ds2
+ Γµ

νλu
νuλ , (42)

we obtain the equation of motion of a test fluid in f (R,2R, T ) gravity as

d2xµ

ds2
+ Γµ

νλu
νuλ = fµ , (43)

where

fµ =
κ2 (gµν − uµuν)∇νp+ hµβ∇νΣ

βν

(ρ+ p) [κ2 + fT (R,2R, T )]
. (44)

We can demonstrate that the new appeared extra-force fµ is not perpendicular to the four-velocity, fµuµ = 0
because the extra term hµβ∇νΣ

βν . But when f2R = 0, we re-obtain the equation of motion of f(R, T ) theory [30]. In
this latter case, the extra-force will be perpendicular to the four-velocity. The pressureless limit doesn’t correspond
to a pressureless fluid (dust), consequently the motion of the test particles doesn’t obey geodesic paths.
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VI. THE NEWTONIAN LIMIT

The force term (44) can be formally rewritten as the gradient of a super potential W as follows,

κ2 (gµν − uµuν)∇νp+ hµβ∇νΣ
βν

(ρ+ p) [κ2 + fT (R, T )]
= ∇µ

(

log
√
W
)

, (45)

It is easy task to derive the geodesic Eq. (43) from the following modified (actually fractional) action of a text point
particle:

δSp = δ

∫

Lpds = δ

∫ √
W
√

gµνuµuνds = 0 , (46)

here Sp and Lp =
√
W

√
gµνuµuν are the point like action and the point like Lagrangian for the test particles,

respectively. This modified action leads to the following form of the geodesic equation:

d2xµ

ds2
+ Γµ

νλu
νuλ + (uµuν − gµν)∇ν ln

√
W = 0 . (47)

Note that in the GR limit, when
√
W → 1 we find the standard geodesic motion. For a barotropic fluid, p = wρ,w ≪ 1

we know that ρ+ p ≈ ρ, T = ρ − 3p ≈ ρ, respectively. Furthermore, we assume that the function fT is a function of
T ≈ ρ only. We expand in series fT near a critical point ρ0 :

fT (ρ) = fT (ρ0) + (ρ− ρ0) fTT |ρ=ρ0
= 8π [α0 + β0 (ρ− ρ0)] (48)

here α0 = fT (ρ0) /8π and β0 = fTT |ρ=ρ0
/8π. With this assumption we obtain:

W ≈ e
2 ln

(

C
β0

)

w(1+α0−β0r0)
−1

− 2 e
2 ln

(

C
β0

)

w(1+α0−β0r0)
−1

wβ0
−1ρ−1 +O

(

ρ−2
)

, (49)

We can show that the Eq. (45) is valid in both the non-relativistic (Newtonian) and the extreme relativistic (Modified
gravity and GR) regimes.
Now we can calculate the Newtonian limit of our modified gravity model. The weak field limit of the gravitational

field is well described by the following metric in Newtonian gauge,

ds ≈
√

1 + 2φ− ~v2dt ≈
(

1 + φ− ~v2/2
)

dt , (50)

here φ is the Newtonian potential and ~v stands for the usual spaceline velocity of the fluid. We can approximate√
W (ρ) given by Eq. (49) as

√
W ≈ 1 +

w

(1 + α0 − β0ρ0)
ln

[

Cρ

1 + α0 + β0 (ρ− ρ0)

]

= 1 + U (ρ) , (51)

Here we defined an appropriate Newtonian potential U(ρ). Now we should derive the weak field limit (first order)
of the equations of motion of a test particle in this force field, it can be explored using the variational principle

δ

∫
[

1 + U (ρ) + φ− ~v2

2

]

dt = 0 , (52)

If we calculate this variational term, we obtain:

~a = −∇φ−∇U (ρ) = ~aN + ~ap + ~aE , (53)

here ~a defines the total net non-relativistic acceleration of the system,and because the gravitational potential is
assumed to be conserved, so we can relate the acceleration to the gradient of the Newtonian potential as follows
~aN = −∇φ. Now we can define the Newtonian gravitational acceleration by the following:

~ap = − C

1 + α0 − β0ρ0

1

ρ
(∇p−∇Σ0x) = −1

ρ
(∇p−∇Σ0x), (54)
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fixing the integration constant C as C = 1 + α0 − β0ρ0, we obtain the final form of the acceleration term:

~aE (ρ, p) =
β0

1 + α0 − β0ρ0

∇p−∇Σ0x

1 + α0 + β0 (ρ− ρ0)
, (55)

We mention here that thanks to the isotropy and homogeneity of FLRW metric, using (37) we observe that the higher
order terms in Σ0x vanish, so this correction doesn’t change the acceleration. This extra acceleration is induced form
the the modified gravity action.

VII. THE PRECESSION OF THE PERIHELION OF MERCURY

Solar system tests provide good test background for theories of gravity, because the parameters are estimated with
a very high precision. In our model of gravity, the extra-forcefµ given in (44) generated as an effect of coupling
between matter sector and higher-derivative terms 2R from geometry. Its our chance that we are able to estimate
this force term using the orbital parameters of the motion of the planets around the Sun. A standard method is to
use the invariant properties of the Laplace-Runge-Lenz vector (LRL vector),is defined as

~A = ~v × ~L− α~er, (56)

here by ~v we mean the relative velocity vector from the planet with mass m to the central Sun with massM⊙ and this
vector is given by ~r = r~er and the unit vector ~er = ~r

r is the radial unit vector of the polar coordinate system (r, θ).
As usual frame work for planet motion, we use a two-body picture in which the system (planet+Sun) moves with
a relative momentum vector ~p = µ~v and the mass of this displacement vector is the reduced mass and it is defined

by µ = mM⊙/ (m+M⊙). The relative angular momentum ~L is defined in the standard form ~L = ~r × ~p = µr2θ̇~k,
where ~p is the relative linear momentum of the reduced mass, and α = GmM⊙ [51]. With gravitational field, the
orbit is an elliptic with eccentricity e, major semi-axis a, and period T . The equation of the orbit is presented by
(

L2/µα
)

r−1 = 1 + e cos θ. The LRL vector can be redefined as

~A =

(

~L2

µr
− α

)

~er − ṙL~eθ , (57)

It is illustrative to see that the derivative of ~A with respect to the polar angle θ is related to the effective potential of
the central force:

d ~A

dθ
= r2

[

dV (r)

dr
− α

r2

]

~eθ , (58)

The potential term V (r) consists of the Post-Newtonian potential, VPN (r) = −α
r − 3 α2

mr2 , µ ≈ m, plus the additional
relativistic contribution from the general coupling between matter and geometry. This vector quantity is given by:

d ~A

dθ
= r2

[

6
α2

mr3
+m~aE(~r)

]

~eθ (59)

The change in direction ∆φ of the perihelion of the planet is given in terms of the a change of θ from 0 to 2π , it
is defined by the following term

∆φ =
1

αe

∫ 2π

0

|~̇L× d ~A

dθ
|dθ (60)

If we substitute the d ~A
dθ and simplifying we obtain:

∆φ = 24π3
( a

T

)2 1

1− e2
+

L

8π3me

(

1− e2
)3/2

(a/T )3

∫ 2π

0

aE

[

L2 (1 + e cos θ)
−1
/mα

]

(1 + e cos θ)2
cos θdθ , (61)

here we use the identity α
L = 2πa

T
√
1−e2

. As usual, the second term in (61) gives the contribution to the perihelion

precession through the coupling between matter and higher-derivative terms in the geometry.
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When the extra-force is constant, aE ≈ constant, in the Newtonian limit the extra-acceleration can be expressed
in a similar form in f(R, T ) gravity [23].
Using the Eq. (61) we estimate the perihelion precession:

∆φ =
6πGM⊙
a (1− e2)

+
2πa2

√
1− e2

GM⊙
aE , (62)

here we substitute the Kepler’s third law, T 2 = 4π2a3/GM⊙. For the sample planet as Mercury a = 57.91× 1011 cm,
and e = 0.205615, respectively, while M⊙ = 1.989× 1033 g, we estimate the difference (∆φ)E = (∆φ)obs − (∆φ)GR =
0.17( arcsec

century ) can be attributed to other physical effects. Hence the observational constraints requires that the value

of the constant aE aE ≤ 1.28× 10−9cm/s2.

VIII. INFLATIONARY DYNAMICS

To explore the very early era of the whole Universe, the idea of inflation proposed [52–54]. Inflationary scenario,
verified by several types of observational data by the recent cosmological observations such as the Wilkinson Microwave
anisotropy probe (WMAP) [55, 56], the Planck satellite [57, 58], and the BICEP2 experiment [59, 60] on the quite
tiny anisotropy of the cosmic microwave background (CMB) radiation. The first simple model was single scalar field
inflation (inflaton) as new inflation [53], with a different form of the scalar potential we have the chaotic inflation [61],
natural inflation [62], and power-law inflation with the exponential inflaton potential [63] and etc. Recently new
models of single field inflaton have been proposed in Refs. [64, 65], [66], [67]. (for reviews, see, e.g., [68–72]).
Modified gravity realized inflation first time by the model proposed by Starobinsky [54, 73] . The model inspired

from quantum corrections to the classical Einstein-Hilbert action such as R2 term. We know that the Starobinsky
or R2 inflation in vacuum is equivalent to non-minimal Higgs inflation [65]. (for reviews see, for instance, [74–84]).
There are several extensions of the Starobisky model in other types of the modified gravity theories . [85, 86]. Our
aim in this section is to develop a consistent model of inflation in the framework of f(R,2R, T ) gravity.
Let us to start by assuming that the metric of the universe is the flat Friedmann-Lemaitre-Robertson-Walker

(FLRW) one,

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (63)

and that the ordinary content of the universe is a perfect fluid, the energy-momentum tensor can be written as

Tµν = (ρ+ p)uµuν − pgµν , (64)

where ρ and p are ordinary energy density and the pressure. Moreover, we will consider that this fluid is a barotropic
one such that the equation of state EoS is p = ωρ. Therefore, one can take the matter Lagrangian density as
Lm = −ωρ, such that Θµν = −2Tµν − ωρgµν .
Within the metric (63) and the above expression of the tensor Θµν , the generalized Friedmann equations read

2Hf ′′′
2R −

(

2H2 + 3Ḣ
)

f ′′
2R −

(

5H3 + 2HḢ + Ḧ
)

f ′
2R + 2

(

−2H2Ḣ + 6Ḣ2 + 3HḦ +
...
H
)

f2R

+Hf ′
R +

(

H2 + Ḣ
)

fR − 1

6
f =

ρ

3

[

κ2 + (1 + ω) fT
]

(65)

f ′′′′
2R + 5Hf ′′′

2R +
(

5Ḣ − 8H2
)

f ′′
2R +

(

−23H3 + 2HḢ + 4Ḧ
)

f ′
2R

+2
(

−2H2Ḣ + 6Ḣ2 + 3HḦ +
...
H
)

f2R − f ′′
R − 2Hf ′

R −
(

3H2 + Ḣ
)

fR +
1

2
f = κ2ωρ (66)

We introduce the e-folds number N is used in the inflationary descriptions as

N = log
[a(tend)

a(t)

]

, (67)

By introducing N , if we set tend as the ending time of inflation, after that t > tend, the universe enters into the
radiation-dominated era and the reheating processes is started and particle production will produce the structures.
Therefore, the total e-folds of the inflationary era is given by:

Ninf = N |t=tinf
= log

[a(tend)

a(tinf )

]

. (68)
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To have thermalization epoch, we suppose that 55 < N < 65. During inflation the Hubble parameter is almost a
constant as de Sitter space. We take the model as the following:

f(R,2R, T ) = R+ αR2 + βR2R. (69)

The slow-roll approximation parameters are given by the following expressions:

2R ≈ 3HṘ, 16αH2 ≪ 1, |2βHṘ| ≪ 1. (70)

The first FLRW equation will reduce to the following approximation form:

H2 ≈ κ2ρ
(

1 + 16αH2 − 2βHṘ
)

(71)

We’re looking for an inflationary solution as H2 = H2
inf (1 +N), plugging this solution in (71) we obtain:

ρ ≈
H2

inf (1 +N)

κ2

(

1− 16αH2
inf (1 +N)2 − 24βH4

inf (1 +N)3.
)

. (72)

The dS solution is represented by H2
dS = H2

inf (Ninf + 1). A simple checking proves that ǫ ≡ H2
inf

2H2
dS

≪ 1. Now we

reconstruct the effective potential for a single non-interacting inflaton using (72). We assume that the single inflaton
φ is decoupled from the gravitational part, so, the energy density is given by :

ρ ≈ φ̇2

2
+ V (φ) ≈ V (φ) (73)

here we suppose that the scalar inflaton is slowly rolling, so φ̇2

2 ≪ V (φ). Using the expression of e folding (67) we

can write dρ
dφ = −H

φ̇

dρ
dN , and the Klein-Gordon equation is written in the following form:

dφ

dN
≈ − 1

H(N)

√

dρ/dN

3
. (74)

Now we substitue (72) in (74) we obtain:

φ(N) ≈ − 1√
3κ

(

log(1 +N)− 16αH2
inf (1 +N)− 9βH4

inf (1 +N)4
)

(75)

consequently we obtain the effective potential as follows:

V (φ) =















Hinf
2e

−
1
4

LambertW(−4Be−4 κ
√

3φ)
eκ

√

3φκ2
− Hinf

2Ae
−

3
4

LambertW(−4 Be−4 κ
√

3φ)
e3κ

√

3φκ2
− 8

3
Hinf

2e
− LambertW(−4Be−4 κ

√

3φ)
e4κ

√

3φκ2
, A≪ B

H2
inf

(

1−Ae
−2 LambertW(−Ae−κ

√

3φ)−2 κ
√

3φ− 8
3
e
−3 LambertW(−Ae−κ

√

3φ)−3 κ
√

3φ

)

κ2e
LambertW(−Ae−κ

√

3φ)+κ
√

3φ
, B ≪ A

.(76)

here A ≡ 16αH2
inf , B ≡ 9βH4

inf and the the “LambertW” function satisfies

LambertW (x)eLambertW (x) = x. (77)

IX. GRACEFUL EXIT FROM INFLATION

We need to exit the inflationary era because the thermal history will start after t > tend and we need also large
scale structure formation. So, our scenario should define a quasi (unstable) dS solution. In this section we analyse
the instability of the dS solution (H = Hinf (> 0)= constant) during inflation by taking the linear first perturbations
of the Hubble parameter as follows [87]:

H(t) ≈ Hinf (1 + δ(t)) (78)
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Where we suppose that |δ(t)| ≪ 1, and thus Hinf δ(t) defines the linear first order perturbation beyound the de Sitter
solution Hinf . We write the first FLRW as the following:

−228Hβ ḢḦ + 24 βHḢ
...
H + Ḣ +H2 + 96 βH4Ḣ + 6 β

...
HḦ − 12HαḦ − 84αH2Ḣ (79)

−18Hβ
....
H − 108H2β

...
H − 264 βH2Ḣ2 − 108 βH3Ḧ − 12αḢ2 − 24H4α− 24 β Ḣ3 = 0

when H = HdS , (1− 12αH2
dS) = 0, α = 1

12H2
dS

. We perturb (79) , the associated differential equation for δ(t) is forth

order linear differential equation:

Hinf(1− 24Hinf
2α) +

(

−96Hinf
3α+ 2Hinf

)

δ +
(

1− 84αHinf
2 + 96 βHinf

4
)

δ̇ (80)

+
(

−12Hinfα− 108 βHinf
3
)

δ̈ +
(

−108Hinf
2β
) ...
δ − 18Hinfβ

....
δ = 0.

An exponential function in the form δ(t) = eλt is supposed to be a solution of (80),where λ is a constant, so that we
can investigate the instability of the de Sitter solution. If we can find a positive solution of λ, the dS solution can be
unstable. Therefore, the universe can exit from inflation . Eq. (80) reduces to a quartic equation for λ, in the form

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0. (81)

Using the Vieta’s formulas [88]:

∑

λi = 108Hinf
2β, (82)

∑

λiλj = −− 1

Hinf
− 108 βHinf

3, (83)

∑

λiλjλk = 8Hinf
2 − 2Hinf (84)

Πλi = −Hinf , (85)

Because Πλi < 0, all roots could not have the same sign, it is possible to have λ1 >, λ2,3,4 < 0, so the system could
be unstable under linear perturbations. This feature is independent of the sign of β. This is because for λ1 > 0,
the amplitude of δ(t) increases in time. We note that even if the other forms of inflaton fields are supposed, the
method to check the instability of the dS solution is basically the same as the one demonstrated above. We should
examine the linear perturbations of the Hubble parameter by using the gravitational field equation in f(R,2R, T )
with solutions for the equation of motions in terms of inflaton. Although we expect that , the form of the solution for
the perturbations will be altered, but in principle we can find a solution to mimic the property that the dS solution
is unstable.

X. CONCLUSION

If gravity is a fundamental force of nature, particular attention must be directed to the type, mechanism, arrange-
ment of early and late time behavor of the model. In spite of the modified theories of gravity , this report merely
presented and approved a matter-geometry coupling model of gravity, with higher derivative terms 2R. We developed
systematically the model of gravity in the form of f(R, T ) to f(R,2R, T ), a motivation is due to the scalar reduction
of this types of models to bi-scalar models in which we have only one ghost field and furthermore, the vacuum is
considered as a non-trivial state for theory. This theory for special cases, is free of ghost. It is possible to test it
by solar system tests as well as inflationary data. Theory has a unstable de Sitter solution and it is possible to
reconstruct families of scalar potentials for a prescribed form of the Hubble parameter as function of e-folding. It was
demonstrated that in this theory, we can exit always from quasi de Sitter era to radiation domination epochs. So, we
can consider it as a viable generalization of the Einstein-Hilbert action in favour of the modified theories of gravity.
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