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Abstract

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed
integer linear programs (MILP) with sparse formulations. We examine three kinds of prob-
lems: packing problems, covering problems, and more general MILPs with the only assump-
tion that the objective function is non-negative. Given a MILP instance of one of these three
types, assume that we decide on the support of cutting-planes to be used and the strongest
inequalities on these supports are added to the linear programming relaxation. Call the
optimal objective function value of the linear programming relaxation together with these
cuts as zcut. We present bounds on the ratio of zcut and the optimal objective function
value of the MILP that depends only on the sparsity structure of the constraint matrix and
the support of sparse cuts selected, that is, these bounds are completely data independent.
These results also shed light on the strength of scenario-specific cuts for two stage stochastic
MILPs.

1 Introduction

1.1 Motivation and goal

Cutting-plane technology has become one of the main pillars in the edifice that is a modern state-
of-the-art mixed integer linear programming (MILP) solver. Enormous theoretical advances
have been made in designing many new families of cutting-planes for general MILPs (see for
example, the review papers - [19, 21]). The use of some of these cutting-planes has brought
significant speedups in state-of-the-art MILP solvers [3, 17].

While significant progress has been made in developing various families of cutting-planes,
lesser understanding has been obtained on the question of cutting-plane selection from a theoret-
ical perspective. Empirically, sparsity of cutting-planes is considered an important determinant
in cutting-plane selection. In a recent paper [10], we presented a geometric analysis of quality of
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sparse cutting-planes as a function of the number of vertices of the integer hull, the dimension
of the polytope and the level of sparsity.

In this paper, we continue to pursue the question of understanding the strength of sparse
cutting-planes using completely different techniques, so that we are also able to incorporate
the information that most real-life integer programming formulations have sparse constraint
matrices. Moreover, the worst-case analysis we present in this paper depends on parameters
that can be determined more easily than the number of vertices of the integer hull as in [10].

In the following paragraphs, we discuss the main aspects of the research direction we consider
in this paper, namely: (i) The fact that solvers prefer using sparse cutting-planes, (ii) the
assumption that real-life integer programs have sparse constraint matrix and (iii) why the
strength of sparse cutting-planes may depend on the sparsity of the constraint matrix of the IP
formulation.

What is the reason for state-of-the-art solvers to bias the selection of cutting-planes towards
sparser cuts? Solving a MILP involves solving many linear programs (LP) – one at each node
of the tree, and the number of nodes can easily be exponential in dimension. Because linear
programming solvers can use various linear algebra routines that are able to take advantage of
sparse matrices, adding dense cuts could significantly slow down the solver. In a very revealing
study [22], the authors conducted the following experiment: They added a very dense valid
equality constraint to other constraints in the LP relaxation at each node while solving IP
instances from MIPLIB using CPLEX. This does not change the underlying polyhedron at
each node, but makes the constraints dense. They observed approximately 25% increase in
time to solve the instances if just 9 constraints were made artificially dense!

Is it reasonable to say that real-life integer programs have sparse constraint matrix? While
this is definitely debatable (and surely “counter examples” to this statement can be provided),
consider the following statistic: the average number of non-zero entries in the constraint matrix
of the instances in the MIPLIB 2010 library is 1.63% and the median is 0.17% (this is excluding
the non-negativity or upper bound constraints). Indeed, in our limited experience, we have
never seen formulations of MILPs where the matrix is very dense, for example all the variables
appearing in all the constraints. Therefore, it would be fair to say that a large number of
real-life MILPs will be captured by an analysis that considers only sparse constraint matrices.
We formalize later in the paper how sparsity is measured for our purposes.

Finally, why should we expect that the strength of sparse cutting-planes to be related to the
sparsity of the constraint matrix of the MILP formulation? To build some intuition, consider
the feasible region of the following MILP:

A1x1 ≤ b1

A2x2 ≤ b2

x1 ∈ Zp1 × Rq1 , x2 ∈ Zp2 × Rq2

Since the constraints are completely disjoint in the x1 and x2 variables, the convex hull is
obtained by adding valid inequalities in the support of the first p1 + q1 variables and another
set of valid inequalities for the second p2 + q2 variables. Therefore, sparse cutting-planes,
in the sense that their support is not on all the variables, is sufficient to obtain the convex
hull. Now one would like to extend such a observation even if the constraints are not entirely
decomposable, but “loosely decomposable”. Indeed this is the hypothesis that is mentioned in
the classical computational paper [8]. This paper solves fairly large scale 0-1 integer programs
(up to a few thousand variables) within an hour in the early 1980s, using various preprocessing
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techniques and the lifted knapsack cover cutting-planes within a cut-and-branch scheme. To
quote from this paper:

“All problems are characterized by sparse constraint matrix with rational data.”

“We note that the support of an inequality obtained by lifting (2.7) or (2.9) is
contained in the support of the inequality (2.5) ... Therefore, the inequalities that
we generate preserve the sparsity of the constraint matrix.”

Since the constraints matrices are sparse, most of the cuts that are used in this paper are sparse.
Indeed, one way to view the results we obtain in this paper is to attempt a mathematical
explanation for the empirical observations of quality of sparse cutting-planes obtained in [8].
Finally, we mention here in passing that the quality of Gomory mixed integer cuts were found
empirically to be related to the sparsity of LP relaxation optimal tableaux in the paper [9];
however we do not explore particular families of sparse cutting-planes in this paper.

1.2 The nature of results obtained in this paper

We examine three kinds of MILPs: packing MILPs, covering MILPs, and a more general form
of MILPs where the feasible region is arbitrary together with assumptions guaranteeing that
the objective function value is non-negative. For each of these problems we do the following:

1. We first present a method to describe the sparsity structure of the constraint matrix.

2. Then we present a method to describe a hierarchy of cutting-planes from very sparse to
completely dense. The method for describing the sparsity of the constraint matrix and
that for the cuts added are closely related.

3. For a given MILP instance, we assume that once the sparsity structure of the cutting-
planes (i.e. the support of the cutting-planes are decided), the strongest (or equivalently
all) valid inequalities on these supports are added to the linear programming relaxation
and the resulting LP is solved. Call the optimal objective function value of this LP as
zcut.

4. All our results are of the following kind: We present bounds on the ratio of zcut and the
optimal objective function value of the IP (call this zI), where the bound depends only
on the sparsity structure of the constraint matrix and the support of sparse cuts.

For example, in the packing case, since objective function is of the maximization type, we
present an upper bound on zcut

zI
which, we emphasize again, depends entirely on the location

of zeros in the constraint matrix and the cuts added and is independent of the actual data
of the instance. We note here that the method to describe the sparsity of the matrix and
cutting-planes are different for the different types of problems.

We are also able to present examples in the case of all the three types of problems, that
show that the bounds we obtain are tight.

Though out this paper we will constantly refer back to the deterministic equivalent of a two-
stage stochastic problem with finitely many realizations of uncertain parameters in the second
stage. Such MILPs have naturally sparse formulations. Moreover, sparse cutting-planes, the
so-called scenario-specific cuts (or the path inequalities), for such MILPs have been well studied.
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(See details in Section 2). Therefore, any result we obtain for quality of sparse cutting-planes
for sparse IPs is applicable is this setting, and this connection allows us to shed some light on
the performance of scenario-specific cuts for stochastic MILPs.

We also conduct computational experiments for all these classes of MILPs to study the
effectiveness of sparse cutting-planes. Our main observation is the sparse cuts usually perform
much better than the worst-case bounds we obtain theoretically.

Outline the paper: We present all the definitions (of how sparsity is measured, etc.) and
the main theoretical results in Section 2. Then in Section 3 we present results from a empirical
study of the same questions. We make concluding remarks in Section 4. Section 5 provides
proofs of all the results presented in Section 2.

2 Main results

2.1 Notation and basic definitions

Given a feasible region of a mixed integer linear program, say P , we denote the convex hull of
P by P I and denote the feasible region of the linear programming relaxation by PLP .

For any natural number n, we denote the set {1, . . . , n} by [n]. Given a set V , 2V is used
to represent its power set.

Definition 1 (Sparse cut on N). Given the feasible region of a mixed integer linear program
(P ) with n variables, and a subset of indices N ⊆ [n], we call αTx ≤ β a sparse cut on N if it
is a valid inequality for P I and the support of α is restricted to variables with index in N , that
is {i ∈ [n] |αi 6= 0} ⊆ N .

Clarification of the above definition: If αTx ≤ β is a sparse cut on N , then αi = 0 for all
i ∈ [n] \N , while αi may also be equal to 0 for some i ∈ N .

Since we are interested in knowing how good of an approximation of P I is obtained by the
addition of all sparse cutting-planes to the linear programming relaxation, we will study the
set defined next.

Definition 2 (Sparse closure on N). Given a feasible region of a mixed integer linear program
(P ) with n variables and N ⊆ [n], we define the sparse closure on N , denoted as P (N), and
defined as

P (N) := PLP ∩
⋂

{(α,β) |αx≤β is a sparse cut on N }

{x |αx ≤ β} .

2.2 Packing problems

In this section, we present our results on the quality of sparse cutting-planes for packing-type
problems, that is problems of the following form:

(P) max cTx

s.t. Ax ≤ b
xj ∈ Z+,∀j ∈ L
xj ∈ R+,∀j ∈ [n]\L,

with A ∈ Qm×n
+ , b ∈ Qm

+ , c ∈ Qn
+ and L ⊆ [n].
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In order to analyze the quality of sparse cutting-planes for packing problems we will partition
the variables into blocks. One way to think about this partition is that it allows us to understand
the global effect of interactions between blocks of “similar variables”. For example, in MIPLIB
instances, one can possibly rearrange the rows and columns [4, 2, 23, 1] so that one sees patterns
of blocks of variables in the constraint matrices. See Figure 1(a) for an illustration of “observing
patterns” in a sparse matrix. Moreover note that in what follows one can always define the
blocks to be singletons, that is each block is just a single variable.

The next example illustrates an important class of problems where such partitioning of
variables is natural.

Example 3 (Two-stage stochastic problem). The deterministic equivalent of a two-stage stochas-
tic problem with finitely many realizations of uncertain parameters in the second stage has the
following form:

max cT y +

k∑
i=1

(di)T zi

s.t. Ay ≤ b
Aiy +Bizi ≤ bi ∀i ∈ [k],

where y are the first stage variables and the zi variables corresponding to each realization in the
second stage. Notice there are two types of constraints:

1. Constraints involving only the first stage variables.

2. Constraints involving the first stage variables and second stage variables corresponding to
one particular realization of uncertain parameters.

Note that there are no constraints in the formulation that involve variables corresponding to
two different realizations of uncertain parameters.

It is natural to put all the first stage variables y into one block and each of the second stage
variables zi corresponding to one realization of uncertain parameters into a separate block of
variables.

To formalize the effect of the interactions between blocks of variables we define a graph that
we call as the packing interaction graph. This graph will play an instrumental role in analyzing
the strength of sparse cutting-planes.

Definition 4 (Packing interaction graph of A). Consider a matrix A ∈ Qm×n. Let J :=
{J1, J2 . . . , Jq} be a partition of the index set of columns of A (that is [n]). We define the

packing interaction graph Gpack
A,J = (V,E) as follows:

1. There is one node vj ∈ V for every part Jj ∈ J .

2. For all vi, vj ∈ V , there is an edge (vi, vj) ∈ E if and only if there is a row in A with
non-zero entries in both parts Ji and Jj, namely there are k ∈ [m], u ∈ Ji and w ∈ Jj
such that Aku 6= 0 and Akw 6= 0.
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Figure 1: Constructing Gpack
A,J .

J1 J2 J3 J4 J5 J6

(a) The matrix A with column par-
titions: Shaded boxes have non-
zero entries.

v1 v4

v2 v3

v6 v5

(b) The resulting graph.

Notice that Gpack
A,J captures the sparsity pattern of the matrix A up to partition J of columns

of the matrix, i.e., this graph ignores the sparsity (or the lack of it) within each of the blocks of
columns, but captures the sparsity (or the lack of it) between the blocks of the column. Finally
note that if each of the blocks in J were singletons, then the resulting graph is the intersection
graph [12].

Figure 1 illustrate the process of constructing Gpack
A,J . Figure 1(a) shows a matrix A, where

the columns are partitioned into six variable blocks, the unshaded boxes correspond to zeros in
A and the shaded boxes correspond to entries in A that are non-zero. Figure 1(b) shows Gpack

A,J .

Example 5 (Two-stage stochastic problem: Gpack
A,J ). Given a two-stage stochastic problem with

k second stage realizations, we partition the variables in k+1 blocks (as discussed in Example 3).

So we have a graph Gpack
A,J with vertex set {v1, v2, . . . , vk+1} and edges (v1, v2), (v1, v3), . . . , (v1, vk+1).

The sparse cuts we examine will be with respect to the blocks of variables. In other words,
while the sparse cuts may be dense with respect to the variables in some blocks, it can be sparse
globally if its support is on very few blocks of variables. To capture this, we use a support list
to encode which combinations of blocks cuts are allowed to be supported on; we state this in
terms of subsets of nodes of the graph Gpack

A,J .

Definition 6 (Column block-sparse closure). Given the problem (P), let J := {J1, J2, . . . , Jq}
be a partition of the index set of columns of A (that is [n]) and consider the packing interaction

graph Gpack
A,J = (V,E).

1. With slight overload in notation, for a set of nodes S ⊆ V we say that inequality αx ≤ β
is a sparse cut on S if it is a sparse cut on its corresponding variables, namely

⋃
vj∈S Jj.

The closure of these cuts is denoted by P (S) := P
(
⋃

vj∈S
Jj)

.

2. Given a collection V of subsets of the vertices V (the support list), we use PV,P to denote
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the closure obtained by adding all sparse cuts on the sets in V’s, namely

PV,P :=
⋂
S∈V

P (S).

This definition of column block-sparse closure allows us to define various levels of sparsity
of cutting-planes that can be analyzed. In particular if V includes V , then we are considering
completely dense cuts and indeed in that case PV,P = P I .

Let zI = max{cTx |x ∈ P I} be the IP optimal value and zV,P = max{cTx |x ∈ PV,P }
be the optimal value obtained by employing sparse cuts on the support list V. Since we are
working with a maximization problem zV,P ≥ zI and our goal is to provide bounds on how
much bigger zV,P can be compared to zI . Moving forward, we will be particularly interested in
two types of sparse cut support lists V:

1. Super sparse closure (PS.S. := PV,P and zS.S. := zV,P ): We will consider the sparse cut
support list V = {{v1}, {v2}, {v3}, . . . , {v|V |}). We call this the super sparse closure, since
once the partition J is decided, these are the sparsest cuts to be considered.

2. Natural sparse closure: Let A1, ..., Am be the rows of A. Let V i be the set of nodes corre-
sponding to block variables that have non-zero entries in Ai (that is V i = {vu ∈ V |Aik 6=
0 for some k ∈ Ju}). For the resulting sparse cut support list V = {V 1, V 2, . . . , V m}, we
call the column block-sparse closure as the ‘natural’ sparse closure (and PN.S. := PV,P

and zN.S. := zV,P ). The reason to consider this case is that once the partition J is de-
cided, the cuts defining PN.S. most closely resembles the sparsity pattern of the original
constraint matrix. To see this, consider the case when J = {{1}, {2}, . . . , {n}}, that is
every block is a single variable. In this case, the sparse cut support list V represents
exactly the different sparsity pattern of the various rows of the IP formulation. Indeed
the cuts added in [8] satisfied this sparsity pattern.

Example 7 (Two-stage stochastic problem: Specific-scenario cuts, Natural sparse closure is
same as relaxing “nonanticipativity” constraints in some cases). Consider again the two-stage
stochastic problem with k second stage realizations as discussed in Example 5. Consider the cuts
on the support of first stages variables together with the variables corresponding to one second
stage realization, the so-called specific-scenario cuts. Such cutting-planes are well-studied, see
for example [13, 24]. Notice that based on the partition J previously discussed, the closure of
all the specific-scenario cuts is precisely equivalent to the natural sparse closure PN.S..

A standard technique in stochastic integer programming is to make multiple copies of the first
stage variables, which are connected through equality constraints, and relax these (“nonantici-
pativity”) equality constraints (via Lagrangian relaxation methods) to produce computationally
strong bound [6]. It is straightforward to see that in the case where there is complete recourse,
the closure of the specific-scenario cuts or equivalently the natural sparse closure, will give the
same bound as this nonanticipativity dual.

To the best of our knowledge there are no known global bounds known on the quality of
nonanticipativity dual. The results in this paper will be able to provide some such bounds.

In order to present our results, we require the following generalizations of standard graph-
theoretic notions such a stable sets and chromatic number.
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Definition 8 (Mixed stable set subordinate to V). Let G = (V,E) be a simple graph. Let V be
a collection of subsets of the vertices V . We call a collection of subsets of vertices M ⊆ 2V a
mixed stable set subordinate to V if the following hold:

1. Every set in M is contained in a set in V

2. The sets in M are pairwise disjoint

3. There are no edges of G with endpoints in distinct sets in M.

Definition 9 (Mixed chromatic number with respect to V). Consider a simple graph G = (V,E)
and a collection V of subset of vertices.

• The mixed chromatic number η̄V(G) of G with respect to V is the smallest number of
mixed stables sets M1, . . . ,Mk subordinate to V that cover all vertices of the graph (that
is, every vertex v ∈ V belongs to a set in one of the Mi’s).

• (Fractional mixed chromatic number.) Given a mixed stable set M subordinate to V, let
χM ∈ {0, 1}|V | denote its incidence vector (that is, for each vertex v ∈ V , χM(v) = 1 if v
belongs to a set in M, and χM(v) = 0 otherwise.) Then we define the fractional mixed
chromatic number

ηV(G) = min
∑
M

yM

s.t.
∑
M

yMχM ≥ 1 (1)

yM ≥ 0 ∀M,

where the summations range over all mixed stable sets subordinate to V and 1 is the vector
in R|V | of all ones.

Note that when V corresponds to the super sparse closure PS.S., that is the elements of V is
the collection of singletons, the mixed stable sets subordinate to V are the usual stable sets in
the graph and the (resp. fractional) mixed chromatic number are the usual (resp. fractional)
chromatic number.

The following simple example helps to clarify and motivate the definition of mixed stable
sets: they identify sets of variables that can be set independently and still yield feasible
solutions.

Example 10. Consider the simple packing two-stage stochastic problem:

max c1x1 + c2x2 + c3x3

s.t. a11x1 + a12x2 ≤ b1
a21x1 + a23x3 ≤ b2
x ∈ Z3

+.

Consider the partition J = {{1}, {2}, {3}} so that the graph Gpack
A,J equals the path v2− v1− v3.

Consider the support list V = {{1, 2}, {1, 3}} for the “natural sparse closure” setting. Then
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the maximal mixed stable sets of subordinate to V are M1 = {{1, 2}}, M2 = {{1, 3}} and
M3 = {{2}, {3}}; M4 = {{1}} is a non-maximal mixed stable set.

To see that mixed stable sets identify sets of variables that can be set independently and
still yield a feasible solution, for i = 1, 2, 3 let x(i) be the optimal solution to the above packing
problem conditioned on xj = 0 for all j 6= i; for example x(2) = (0, bb1/a12c, 0) and x(3) =
(0, 0, bb2/a23c). Taking the mixed stable set M3 = {{2}, {3}} we see that the combination of
x(2) + x(3) = (0, bb1/a12c, bb2/a23c) is also feasible for the problem.

Moreover, these solutions allow us to upper bound the ratio zV,P /zI , namely the quality
of the column block-sparse closure. First, the integer optimum zI is at least max{cT (x(2) +
x(3)), cTx(1)}. Also, one can show that zV,P ≤ cT (x(2) + x(3)) + cTx(1) (this uses the fact that
actually x(2) + x(3) is the optimal solution for the problem conditioned on x1 = 0, and x(1) the
optimal solution conditioned on x2 = x3 = 0). Together this gives zV,P /zI ≤ 2. Notice that
the upper bound on zV is obtained by adding up the solutions corresponding to the sets M3 and
M4, which together cover all the variables of the problem. Looking at the fractional chromatic
number ηV(Gpack

A,J ) allow us to provide essentially the best such bound.

Our first result gives a worst-case upper bound on zV,P

zI
that is, surprisingly, independent

of the data A, b, c, and depends only on the packing interaction graph Gpack
A,J and the choice of

sparse cut support list V.

Theorem 11. Consider a packing integer program as defined in (P). Let J ⊆ 2[n] be a partition

of the index set of columns of A and let G = Gpack
A,J = (V,E) be the packing interaction graph of

A. Then for any sparse cut support list V ⊆ 2V we have

zV,P ≤ ηV(G) · zI .

As discussed before, if we are considering the super sparse closure PS.S., ηV(G) is the usual
fractional chromatic number. Therefore we obtain the following possibly weaker bound using
Brook’s theorem [5].

Corollary 12. Consider a packing integer program as defined in (P). Let J ⊆ 2[n] be a

partition of the index set of columns of A and let Gpack
A,J be the packing interaction graph of A.

Let ∆ denote the maximum degree of G. Then we have the following bounds on the optimum
value of the super sparse closure PS.S:

1. If Gpack
A,J is not a complete graph or an odd cycle, then

zS.S. ≤ ∆ · zI .

2. If Gpack
A,J is a complete graph or an odd cycle, then

zS.S. ≤ (∆ + 1) · zI .

Thus assuming the original IP is sparse and the maximum degree of Gpack
A,J is not very high,

the above result says that we get significantly tight bounds using only super sparse cuts. In
fact it is easy to show the above Corollary’s bounds can be tight when Gpack

A,J is a 3-cycle or a
star. We record this result here.
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Theorem 13. For any ε > 0:

1. There exists a packing integer program as defined in (P) and a partition J ⊆ 2[n] of the

index set of columns of A such that the graph Gpack
A,J is a 3-cycle and

zS.S. ≥ (3− ε)zI .

2. (Strength of super sparse cuts for packing two-stage problems) There exists a packing
integer program as defined in (P) and a partition J ⊆ 2[n] of the index set of columns of

A such that the graph Gpack
A,J is a star and

zS.S. ≥ (2− ε)zI .

We mention here in passing that there are many well-known upper bounds on the fractional
chromatic number with respect to other graph properties, which also highlight that for sparse
graph we expect the fractional chromatic number to be small. For example, let G be a connected
graph of max degree ∆ and clique number ω(G). Then

1. η(G) ≤ ω(G)+∆+1
2 . ([20])

2. η(G) ≥ ∆ if and only if G is a complete graph, odd cycle, a graph with ω(G) = ∆, a
square of the 8-cycle, or the strong product of 5-cycle and K2. Moreover if ∆ ≥ 4 and G
is not any of the graphs listed above, then η(G) ≤ ∆− 2

67 . ([15])

One question is whether we can get better bounds using the potentially denser natural
sparse cuts. Equivalently, is the fractional chromatic number ηV(Gpack

A,J ) much smaller when we
consider the sparse cut support list V corresponding to the natural sparse closure? We prove
results for some special, but important, structures.

Theorem 14 (Natural sparse closure of trees). Consider a packing integer program as defined

in (P). Let J ⊆ 2[n] be a partition of the index set of columns of A and let Gpack
A,J be the packing

interaction graph of A. Suppose Gpack
A,J a tree and let ∆ be its maximum degree. Then:

zN.S. ≤
(

2∆− 1

∆

)
zI .

Compare this result for natural sparse cuts with the result for super sparse cuts on trees.
While with super sparse cuts we able able to get a multiplicative bound of 2 (this is the fractional
chromatic number for bipartite graphs), using natural sparse cuts the bound is always strictly
less than 2.

Interestingly, this upper bound is tight even when the induced graph Gpack
A,J is a star, which

corresponds exactly to the case of stochastic packing programs. The construction of the tight
instances are based on special set systems called affine designs, where we exploit their particular
partition and intersection properties.

Theorem 15 (Tightness of natural sparse closure of trees). For any ε > 0, there exists a

packing integer program (P ) and a suitable partition J of variables where Gpack
A,J is a star with

max degree ∆ such that

zN.S. ≥
(

2∆− 1

∆
− ε
)
zI .
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As discussed in Example 5, for the case of two-stage stochastic problem with the right choice
of J the packing interaction graph is a star. So we obtain the following corollary of Theorem
14.

Corollary 16 (Strength of specific-scenario cuts for packing two-stage stochastic problems).
Consider a packing-type two-stage stochastic problem with k realization. Then

zN.S. ≤
(

2k − 1

k

)
zI ,

where zN.S. is the objective function obtained after adding all specific-scenario cuts. Moreover
this bound is tight.

We note that the analysis of approximation algorithm for two stage matching problem in
the papers [11, 16] is related to the above result. We plan on exploring this relation is a future
paper.

Finally we consider the case of natural sparse cutting-planes when Gpack
A,J is a cycle. Inter-

estingly, the fractional mixed chromatic number ηV(Gpack
A,J ) depends on the length of the cycle

modulo 3.

Theorem 17 (Natural sparse closure of cycles). Consider a packing integer program as defined

in (P). Let J ⊆ 2[n] be a partition of the index set of columns of A and let Gpack
A,J be the packing

interaction graph of A. If Gpack
A,J is a cycle of length K, then:

1. If K = 3k, k ∈ Z++, then zN.S. ≤ 3
2z
I .

2. If K = 3k + 1, k ∈ Z++, then zN.S. ≤ 3k+1
2k zI .

3. If K = 3k + 2, k ∈ Z++, then zN.S. ≤ 3k+2
2k+1z

I .

Moreover, for any ε > 0, there exists a packing integer program with a suitable partition V of
variables, where Gpack

A,J is a cycle of length K such that

1. If K = 3k, k ∈ Z++, then zN.S. ≥
(

3
2 − ε

)
zI .

2. If K = 3k + 1, k ∈ Z++, then zN.S. ≥
(

3k+1
2k − ε

)
zI .

3. If K = 3k + 2, k ∈ Z++, then zN.S. ≥
(

3k+2
2k+1 − ε

)
zI .

All proofs of the above results are presented in Section 5.1.

2.3 Covering problems

In this section, we present our results on the quality of sparse cutting-planes for covering-type
problems, that is problems of the following form:

(C) min cTx

s.t. Ax ≥ b
xj ∈ Z+, ∀j ∈ L
xj ∈ R+, ∀j ∈ [n]\L
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with A ∈ Qm×n
+ , b ∈ Qm

+ , c ∈ Qn
+ and L ⊆ [n]. In this case, we would like to prove lower bounds

on the objective functions after adding the sparse cutting-planes.
Our first observation is a negative result: super sparse cuts as defined for the packing-type

problems can be arbitrarily bad for the case of covering problems. In order to present this
result, let formalize the notion of super sparse cuts in this setting. In particular, given an
instance of type (C), we assume we partition the variable indices n into J = {J1, J2, . . . , Jq}.
For all j ∈ [q] we add all possible cuts that have support on variables with index in Jj . Let
zS.S. be the optimal objective function of the resulting LP with cuts.

Theorem 18. For any constant M > 0, there exists a covering integer program (C) and
partition J := {J1, J2} of [n], such that the corresponding zS.S. and zI satisfies:

zI > M · zS.S..

Note that super sparse cuts may have support that are strict subsets of the support on the
constraints of the formulation. Theorem 18 suggests that such cutting-planes in the worst case
will not produce good bounds for covering problems.

It turns out that in order to analyze sparse cutting-planes for covering problems, the in-
teresting case is when their support is at least the support of the constraints of the original
formulation. Moreover, we need to work with a graph that is a “dual” of Gpack

A,J , namely it

acts on the rows of the problem instead of columns. For the matrix A, let Ai be the ith

row. We let supp(Ai) ⊆ [n] be the set of variables which appear in the ith constraint, that is
supp(Ai) := {j ∈ [n] |Aij 6= 0}.

Definition 19 (Covering interaction graph of A). Consider the matrix A ∈ Qm×n. Let I =
{I1, I2, . . . , Ip} be a partition of index set of rows of A (that is [m]). We define the covering
interaction graph Gcover

A,I = (V,E) as follows:

1. There is a node vi ∈ V for every part Ii ∈ I.

2. For all vi, vj ∈ V , there is an edge (vi, vj) ∈ E if and only if there is a column of A with
non-zero entries in both parts Ii and Ij, namely

⋃
r∈Ii supp(Ar) intersects

⋃
r∈Ij supp(Ar).

Definition 20 (Row block-sparse closure). Given the problem (C), let I = {I1, I2, . . . , Ip} be
a partition of index set of rows of A (that is [m]) and consider the covering interaction graph
Gcover
A,I = (V,E).

1. With slight overload in notation, for a set of nodes S ⊆ V we say that inequality αx ≤ β
is a sparse cut on S if it is a sparse cut on the union of the support of the rows in S,
namely αx ≤ β is a sparse cut on

⋃
vi∈S

⋃
r∈Ii supp(Ar). The closure of these cuts is

denoted by P (S) := P
(
⋃

vi∈S
⋃

r∈Ii
supp(Ar))

.

2. Given a collection V of subsets of the vertices V (the row support list), we use PV,C to
denote the closure obtained by adding all sparse cuts on the sets in V’s, namely

PV,C :=
⋂
S∈V

P (S).

Moreover, we define the optimum value over the row block-sparse closure

zV,C := min
{
cTx |x ∈ PV,C

}
.

12



Example 21 (Two-stage stochastic problem: Gcover
A,I , weak specific-scenario cuts). Given a

two-stage covering stochastic problem with k second stage realizations, we partition the rows
into k blocks (each block consists of constraints between first stage variables only or first stage
variables and variables corresponding to one particular realization). So we have a graph Gcover

A,I
with V = {v1, v2, . . . , vk} which is a clique. Moreover, if we consider the closure corresponding
to the row support list V = {{v1}, {v2}, {v3}, . . . , {vk}}, the cuts are quite similar to specific-
scenario cuts (although potentially weaker, since the supports of inequalities could possibly be
strictly smaller than those allowed in the “specific-scenario cuts” in Section 2.2). Therefore we
call this closure, the weak specific-scenario closure.

We now present the main result of this section. In particular, we present a worst-case upper
bound on zI

zV,C
that is independent of the data A, b, c, and depends only on Gcover

A,I and the
choice of the row support list V. We remind the reader that given a graph G and collection V
of its vertices, η̄V(G) is the mixed chromatic number with respect to V (see Definition 8).

Theorem 22. Consider a covering integer programming as defined in (C). Let I ⊆ 2[m] be a
partition of the index set of rows of A and let G = Gcover

A,I = (V,E) be the covering interaction

graph of A. Then for any sparse cut support list V ⊆ 2V we have

zV,C ≥ 1

η̄V(G)
· zI .

We make a few comments regarding Theorem 18:

1. While the result of Theorem 22 for covering-type IPs is very “similar” to the result of
Theorem 11 for packing-type of IPs, the key ideas in the proofs are different.

2. Like the previous discussion in Section 2.2, the chromatic numbers is small for graphs
with small max degree. In fact, using Brook’s Theorem [5], we can obtain a result very
similar to Corollary 12 for the covering case as well.

3. The result of Theorem 18 holds even if upper bounds are present on some or all of the
variables (in this case, we also need to assume that the instance is feasible).

Consider the case of two-stage covering stochastic problem with K scenario and I as defined
in Example 21. Since Gcover

A,I is a clique, its chromatic number is K. Therefore we obtain the
following corollary of Theorem 22.

Corollary 23 (Strength of weak specific-scenario cuts for covering stochastic problems). Con-
sider a two-stage covering stochastic problem for K scenario. Let z∗ be the optimal objective
value obtained after adding all weak specific-scenario cuts. Then

z∗ ≥ 1

K
zI .

Next we prove that the bound presented in Corollary 23 is tight (and therefore the result
of Theorem 18 is tight for Gcover

A,I being a clique).

Theorem 24. Let z∗ be the optimal objective value obtained after adding all weak specific-
scenario cuts for a two-stage covering stochastic problem. Given any ε > 0 with ε < K, there
exists an instance of the covering-type two-stage stochastic problem with K scenarios such that

z∗ ≤ 1

(K − ε)
· zI .
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The proof of Theorem 24 is perhaps the most involved in this paper, as the family of
instances constructed to prove the above theorem are significantly complicated.

All proofs of the above results are presented in Section 5.2.

2.4 “Packing-type” problem with arbitrary A matrix

Up until now we have considered packing and covering problems. We now present results
under much milder assumptions. In particular, we consider problem (P) with arbitrary matrix
A ∈ Qm×n instead of a non-negative matrix (and b is also not assumed to be non-negative).
The assumptions we therefore make in this section are: c is a non-negative vector, the variables
are non-negative and the objective is of the maximization-type as in (P).

We use the same definition of sparse-cutting planes as for the packing instances considered
in Section 2.2. All other notation used is also the same as in Section 2.2.

As it turns out, even in this significantly more general case, it is possible to obtain tight
data-independent bounds on the quality of sparse-cutting-planes. In order to present this result
we introduce the notion of corrected average constraint density. The reason to introduce this
notion is the following: the strength of cuts in this case is determined by the average density,
as long as the cuts cover all the variables. Based on this, the corrected average density captures
the best bound one can obtain using a given support list.

Definition 25 (Corrected average density). Let V = {V 1, V 2, . . . , V t} be the sparse cut support
list. For any subset Ṽ = {V u1 , V u2 , ..., V uk} ⊆ V define its density as

D(Ṽ) =
1

k

k∑
i=1

|V ui |.

We define the corrected average density of V (denoted as DV) as maximum value of D(Ṽ) over
all Ṽ’s that cover V , that is,

⋃
V ′∈Ṽ V

′ = V .

Note that DV ≥ 1 for any choice of sparse cut support list V, and for the trivial list
V = {V (Gpack

A,J )} that allows fully dense cuts we have DV = |V (Gpack
A,J )|. The following is the

main result of this section.

Theorem 26. Let (P) be defined by an arbitrary A ∈ Qm×n, b ∈ Qm, c ∈ Qn
+. Let J be

a partition of the index set of columns of A (that is [n]). Let Gpack
A,J = (V,E) be the packing

interaction graph of A and let V be the sparse cut support list. If the instance is feasible, then:

zV,P ≤ (|V |+ 1−DV) · zI .

Let us see some consequences of Theorem 26. Since DV ≥ 1 we obtain the following result.

Corollary 27. Given (P), with arbitrary A ∈ Qm×n, b ∈ Qm, c ∈ Qn
+. Let J be a partition of

the index set of columns of A (that is [n]). If the instance is feasible, then:

zV,P ≤ |V | · zI .

It turns out that the bound in Corollary 27 is tight when GPA,J (V,E) is a star.
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Theorem 28 (Strength of super sparse cuts for two-stage packing-type problem with arbitrary

A). For every ε > 0, there exists A ∈ Qm×n, b ∈ Qm, c ∈ Qn
+ such that Gpack

A,J is a star and

zS.S. ≥ |V | · zI − ε.

Now let us consider the case where the sparse cut support list V corresponds to the natural
sparse closure, when GPA,J (V,E) is a star or a cycle. Clearly in both these cases we have DV = 2.
Therefore we obtain the following Corollary.

Corollary 29 (Natural sparse cuts for two-stage packing-type problem with arbitrary A).
Given (P), with arbitrary A ∈ Qm×n, b ∈ Qm, c ∈ Qn

+. Let J be a partition of the index set of

columns of A (that is [n]). Let Gpack
A,J = (V,E) be the packing interaction graph of A which is a

star or a cycle. If the instance is feasible, then:

zN.S. ≤ (|V | − 1) · zI .

We next show that the result of Corollary 29 is tight forGpack
A,J being a star, which corresponds

to two-stage packing-type problem with arbitrary A.

Theorem 30. For every t ∈ Z++, there exists an instance of (P), with arbitrary A ∈ Qm×n,

b ∈ Qm, c ∈ Qn
+, a partition of index set of columns J such that Gpack

A,J is a star with K + 1
nodes and

zN.S. = ((K + 1)− 1) · zI .

All proofs of the above results are presented in Section 5.3.

3 Computational experiments

In this section, we present our computational results on the strength of natural sparse closure
of pure binary IP.

In Appendix A, we present the algorithm we implemented to estimate zcut, the optimal
objective function value of the natural sparse closure.

We describe the random instances we generate in section 3.1 and present the results in
section 3.2. All the experiments have been carried out using CPLEX12.5.

3.1 Instance generation

We generated two kinds of problems: two-stage stochastic programming instances and random-
graph based instances. We first discuss how we generated the constraint matrix for both types
of instances. Then, we discuss how we generated the right-hand side based on the constraint
matrix and the objective function.

3.1.1 Constraint matrix generation

To simplify the presentation consider the case of packing instances. Covering instances are
generated in the same way.

First we generate the packing-type induced graph on nv nodes. In case of the two-stage
stochastic programming, the packing-type induced graph is a star with nv nodes (i.e. nv − 1
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realizations of the second stage). For the random-graph based instances, let p (parameter) be
the probability that an edge exists between any pair of nodes. As a disconnected induced graph
implies that the original problem is decomposable, we accept connected graph only.

Next, given the packing-type induced graph, say G = (V,E) (where nv = |V |), we construct
a matrix with that can be partitioned into |E| × |V | blocks with each block of size sqr × sqr

(where sqr is a parameter). Thus the constraint matrix has |E| × sqr rows and |V | × sqr

columns. The (i, j)th block is all zeros if edge i is not incident to node j. Else the (i, j)th block
is a randomly generated dense matrix: We assign each entry the distribution of unif{1, M},
where M is a parameter. For packing-type with arbitrary matrix, we first generate the entry
which follows unif{1, M} and then with probability 0.5, we multiply −1. (Thus, each column
block has sqr variables and there are sqr rows with the same support of vertices).

3.1.2 Right-hand side generation

To guarantee that the instances generated are non-trivial, we follow the following steps: Ran-
domly select px (parameter) from the set of {0.2, 0.4, 0.6, 0.8}. A 0-1 vector x ∈ Rn is randomly
generated where for all j ∈ [n], xj ∼ Bernoulli(px). A noise vector ε ∈ Rm+ is randomly gener-
ated as: for all i ∈ [m], εi ∼ unif{1, Mε} (Mε is a parameter). For a covering instance, b = Ax−ε.
Otherwise b = Ax+ ε.

3.1.3 Objective function generation

Every entry in the objective function follows the distribution of unif{1, ObjM}. (ObjM is a
parameter.)

3.2 Computational results

3.2.1 Results for two-stage stochastic programming

We set the number of second-stage scenarios equals to 10. We set sqr = 20, that is the
number of variables for both first-stage and second-stage scenarios equals to 20. Also we set
M = Mε = objM = 10. We generated 50 instances for each of the three types of problem.

The result for packing-type problem, covering-type problem, and packing-type problem with
arbitrary matrix is shown in Table 1, Table 2, and Table 3 respectively.

Table 1: Two-stage Packing SP
Avg. zcut/zIP Theoretical bound on zcut/zIP

1.00038 1.9

Table 2: Two-stage Covering SP
Avg. zIP /zcut Theoretical bound on zIP /zcut

1.009 10
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Table 3: Two-stage Arbitrary Packing SP
Avg. zcut/zIP Theoretical bound on zcut/zIP

1 10

3.2.2 Results for Random Graph based Instances

We set nv = 10, p = 0.2, sqr = 20, M = Mε = objM = 10. For a given random graph we
generated 10 random instances, and therefore we generated 50 instances for each of the three
types of problem. The result for packing-type problem, covering-type problem, and packing-
type problem with arbitrary matrix is shown in Table 4, Table 5, and Table 6 respectively.

Table 4: Random Graph Based tests on Packing Problems
Graph Name Avg. zcut/zIP bound of zcut/zIP

Ind 1 1.0009 1.8

Ind 2 1.0028 1.75

Ind 3 1.0053 1.667

Ind 4 1.0006 1.75

Ind 5 1.003 2

Table 5: Random Graph Based tests on Covering Problems
Graph Name Avg. zIP /zcut bound of zIP /zcut

Ind 1 1.0045 2

Ind 2 1.0046 3

Ind 3 1.0059 3

Ind 4 1.0053 3

Ind 5 1.0052 3

Table 6: Random Graph Based tests on Arbitrary Packing Problems
Graph Name zcut/zIP bound of zcut/zIP

Ind 1 1 9

Ind 2 1 9

Ind 3 1 9

Ind 4 1 9

Ind 5 1 9

4 Conclusions

In this paper, we analyzed the strength of sparse cutting-planes for sparse packing, covering
and more general MILP instances. The bounds obtained are completely data independent and
in particular depend only on the sparsity structure of the constraint matrix and the support of
sparse cuts – in this sense, these results truly provide insight into the strength of sparse cuts for
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sparse MILPs. We have shown that the theoretical bounds are tight in many cases. Especially
for packing, the theoretical bounds are quite strong, showing that if we have the correct sparse
cutting-planes, then the bound obtained by using these cuts may be quite good.

The computational results are interesting: we observe that for all the types of problems
sparse cutting planes perform significantly better than the theoretical prediction. This is per-
haps not surprising since the theoretical bounds are data-free and therefore “worst-case” in
nature. Hence, the empirical experiments are another justification for the main message of this
paper: In many cases sparse cuts provide very good bounds for sparse IPs.

5 Proofs

5.1 Proofs for packing problems

For any vector x ∈ Rn and N ⊆ [n], we use x|N to denote the projection of x on the coordinates
indexed by N .

We first observe that the column sparse closure P (N) can be viewed essentially as the
projection of P I onto the coordinates indexed by N .

Observation 31. Consider a mixed-integer linear set with n variables. For any N ⊆ [n], let
P I |N be the projection of P I onto the indices in N . Then x ∈ P (N) if and only if x ∈ PLP and
x|N ∈ P I |N .

Observation 32. Consider a mixed-integer set of packing type and let P ⊆ Rn be the set of
feasible solutions. Then for any set of coordinates N ⊆ [n], x ∈ RN belongs to the projection
PI |N iff the extension x̃ ∈ Rn belongs to PI , where x̃i = xi if i ∈ N and x̃i = 0 if i /∈ N .

5.1.1 Proof of Theorem 11

Recall we want to show that zV,P ≤ ηV(Gpack
A,J ) · zI . (See Example 10 for a concrete example of

how the proof works.) In this section we use P to denote the mixed-integer set corresponding
to the packing problem (P).

There is a natural identification of sets of nodes of Gpack
A,J with sets of indices of variables,

namely if J = {J1, J2, . . . , Jq} is the given variable index partition and the nodes of Gpack
A,J are

{v1, v2, . . . , vq}, then the set of vertices {vi}i∈I corresponds to the indices
⋃
i∈I Ji ⊆ [n]. We will

make use of this correspondence, and in order to make statements precise we use the function

φ : 2V (Gpack
A,J ) → 2[n] to denote this correspondence; with slight abuse of notation, for a singleton

set {v} we use φ(v) instead of φ({v}).
Given a set of vertices S ⊆ V (Gpack

A,J ), let x(S) denote the optimal solution of the packing

problem conditioned on all variables xi outside S taking value 0, or more precisely, x(S) ∈
argmax{cTx | x ∈ P I , xi = 0 ∀i /∈ φ(S)} (we will assume without loss of generality that x(S) is
integral); since we are working with a packing problem, this is the roughly same as optimizing
over the projection of P I onto the variables in φ(S) (but notice x(S) lies in the original space).

We start by showing that, roughly speaking, the closure P (S) captures the original packing
maximization problem as long as we ignore the coordinates outside S.

Lemma 33. For any x ∈ P (S), we have (c|φ(S))
T (x|φ(S)) ≤ cTx(S).
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Proof. Given any x ∈ P (S), Observation 31 implies that x|φ(S) ∈ projφ(S)(P
I). Thus, there

exists points x̄1, . . . , x̄k ∈ P I and λ1, . . . , λk ∈ [0, 1], such that x|φ(S) =
∑k

i=1 λi · (x̄i|φ(S)) and∑k
i=1 λi = 1. Therefore,

(c|φ(S))
T (x|φ(S)) =

k∑
i=1

λi · (c|φ(S))
T (xi|φ(S)).

To upper bound the right-hand side, consider a point xi|φ(S). Let x̃ ∈ Rn (the original
space) denote the point obtained from xi|φ(S) by putting a 0 in all coordinates outside φ(S), so

x̃|φ(S) = xi|φ(S) and x̃|[n]\φ(S) = 0. Because P I is of packing type, notice that x̃ belongs to P I .

The optimality of x(S) then gives that (c|φ(S))
T (xi|φ(S)) = cT x̃ ≤ cTx(S).

Employing this upper bound on the last displayed equation gives

(c|φ(S))
T (x|φ(S)) ≤

k∑
i=1

λi · cTx(S) = cTx(S),

thus concluding the proof.

Now we lower bound the packing problem optimum zI by solutions constructed via mixed
stable sets.

Lemma 34. Given any mixed stable set M for Gpack
A,J , the point

∑
M∈M x(M) belongs to P I .

Thus, zI ≥
∑

M∈M cTx(M).

Proof. We just prove the first statement. First, notice since each x(M) is integral and non-
negative, so is the point

∑
M∈M x(M). So consider an inequality Aix ≤ bi in (P). For any two

sets M1 6= M2 ∈M, notice that the vector Ai either has all zeros on the indices corresponding
to M1 or on the indices corresponding to M2, namely either Ai|φ(M1) = 0 or Ai|φ(M2) = 0.
Applying this to all pairs of sets in M, we get that there is only one set M∗ ∈ M such that
Ai|φ(M∗) is non-zero, which implies that

Ai
∑
M∈M

x(M) =
∑
M∈M

Aix
(M) =

∑
M∈M

(Ai|φ(M))(x
(M)|φ(M)) = Aix

(M∗) ≤ bi,

where the last inequality follows from the feasibility of x(M∗). Thus, the point
∑

M∈M x(M)

satisfies all inequalities Aix ≤ bi of the system (P), concluding the proof.

Now, we present the proof of Theorem 11.

Proof of Theorem 11. Let V = {v1, . . . , vq} denote the vertices of Gpack
A,J , and let MSS denote

the set of all mixed stable sets of Gpack
A,J with respect to V. Let {yM}M∈MSS be an optimal

solution of linear problem (1) corresponding to the definition of mixed fractional chromatic
number with respect to V, and define g =

∑
M∈MSS χMyM ∈ Rq. Based on the constraints of

(1) we have that g ≥ 1.
We upper bound the optimum zV,P of the column block-sparse closure. For that let

x∗ = argmax{cTx |x ∈ PV,P },
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be the optimal solution. Then breaking up the indices of the variables based on the nodes V
and using the non-negativity of c and x∗, we have

zV,P = cTx∗ =

q∑
j=1

(c|φ(vj))
T (x∗|φ(vj)) ≤

q∑
j=1

gj · (c|φ(vj))
T (x∗|φ(vj))

=

q∑
j=1

( ∑
M∈MSS

(χM)j · yM

)
· (c|φ(vj))

T (x∗|φ(vj))

=
∑
M∈MSS

yM ·

 q∑
j=1

(χM)j · (c|φ(vj))
T (x∗|φ(vj))


=

∑
M∈MSS

yM ·

 ∑
{j | vj∈M}

(c|φ(vj))
T (x∗|φ(vj))


=

∑
M∈MSS

yM ·

(∑
S∈M

(c|φ(S))
T (x∗|φ(S))

)
.

To further upper bound the right-hand side consider someM∈ MSS, some S ∈M and the
term (c|φ(S))

T (x∗|φ(S)). First we claim that x∗ belongs to the column block-sparse closure P (S).
To see this, first recall from the definition of mixed stable set that there must be a set VS in the
support list V containing S. Moreover, since x∗ ∈ PV,P =

⋂
V ′∈V P

(V ′), we have x∗ ∈ P (VS);

finally, the monotonicity of closures implies P (S) ⊇ P (VS), and hence x∗ ∈ P (S). Thus we can
employ Lemma 33 to obtain the upper bound (c|φ(S))

T (x∗|φ(S)) ≤ cTx(S).
Plugging this bound on last displayed inequality and using Lemma 34 we then get

zV,P ≤
∑
M∈MSS

yM ·

(∑
S∈M

cTx(S)

)
≤

∑
M∈MSS

yM · zI = ηV(Gpack
A,J ) · zI .

This concludes the proof.

5.1.2 Proof of Corollary 12 and Theorem 13

Brooks’ Theorem [5] is the following result (recall that a proper coloring of a graph is an
assignment of colors to the vertices such that no edge has the same color on both endpoints).

Theorem 35 (Brook’s Theorem). Consider a connected graph G of max degree ∆. Then G
can be properly colored by ∆ colors, except in two cases either when G is a complete graph or
an odd cycle, in which case it can be properly colored with ∆ + 1 colors.

Since the fractional chromatic number is a lower bound on the chromatic number, we obtain
Corollary 12.

We now prove Theorem 13.

Proof of Theorem 13. Recall that super sparse closure corresponds to the support list

V = {{v1}, {v2}, . . . , {v|V |}}.

The proof of both parts is similar.
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Part 1. We want to show an example where zSS ≥ (3 − ε)zI for all ε > 0 where Gpack
A,J is a

3-cycle. We will construct an integer program with 3 variables and J = {{1}, {2}, {3}}. Given
ε > 0, consider the following packing integer program:

max x1 +x2 +x3

s.t. x1 +x2 ≤ 2− 2
3ε

x1 +x3 ≤ 2− 2
3ε

x2 +x3 ≤ 2− 2
3ε

x1 ∈ Z+, x2 ∈ Z+, x3 ∈ Z+

(2)

Clearly Gpack
A,J is a 3-cycle. Note that the only valid inequalities that have support on each of

the three blocks defined by J is xi ≤ 1 for i = 1, 2, 3. Thus, the point (1 − ε
3 , 1 −

ε
3 , 1 −

ε
3)

belongs to the super sparse closure PS.S., and hence the optimum value satisfies zS.S. ≥ 3− ε.
On the other hand clearly, zIP = 1, concluding the proof.

Part 2. We want to show an example where zSS ≥ (2 − ε)zI for all ε > 0 where Gpack
A,J

is a star. Take ∆ ∈ Z+. We construct a packing integer program with 2∆ variables and
J = {{1, 2, . . . ,∆}, {∆ + 1}, {∆ + 2}, . . . , {2∆}}. Given ε > 0, consider the following integer
program

max
∑2∆

i=1 xi

s.t. xi + x∆+i ≤ 2− ε ∀i ∈ [∆]

x ∈ Z2∆
+ .

Clearly Gpack
A,J is a star with ∆ leaves. Letting P be the associated mixed integer set of the above

integer program, note that the projection of P I to the first block of variables {1, 2, . . . ,∆} equals
[0, 1]∆. Also the only valid inequalities that have support on each of the other ∆ blocks {∆+ i}
is 0 ≤ xi ≤ 1 for i ∈ {∆+1, . . . , 2∆}. Thus, the point x with xi = 1 for all i ∈ [∆] and xi = 1−ε
for all i ∈ {∆ + 1, . . . , 2∆} belongs to the super sparse closure PS.S.. Thus the optimum zS.S.

is at least 2∆−∆ε. On the other hand, clearly zI = ∆, concluding the proof.

5.1.3 Proof of Theorem 14

We prove the desired upper bound zN.S. ≤
(

2∆−1
∆

)
· zI . Due to Theorem 11, it suffices to upper

bound the fractional chromatic number ηV(Gpack
A,J ) ≤ 2∆−1

∆ for V set according to the natural

sparse closure setting. Notice however, that in this setting every edge of E = E(Gpack
A,J ) belongs

to some set in V and vice-verse, and therefore ηV(Gpack
A,J ) = ηE(Gpack

A,J ). Thus, it suffices to prove

ηE(Gpack
A,J ) ≤ 2∆−1

∆ .
The following is the main tool for providing an efficient mixed stable set fractional coloring.

Lemma 36. Let T = (V,E) be a tree of maximum degree ∆. Then there is a collection of
2∆−1 sets of edges E1, E2, . . . , E2∆−1 and 2∆−1 sets of nodes V1, V2, . . . , V2∆−1 satisfying the
following:

1. For each i ∈ [2∆− 1] the collection Ei ∪ Vi is a mixed stable set for T subordinate to E

2. Each node of T is covered exactly ∆ times by the collection of mixed stable sets {Ei ∪
Vi}i∈[2∆−1].
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Proof. If T consists of a single edge, then ∆ = 1 and we can simply set E1 to be the edge of T
and set V1 = ∅ to get the desired sets. So assume that T has at least one internal node.

In order to simplify the proof we make all the degrees the same: construct the tree T ′

from T by adding new leaves to all internal nodes of T so that now every internal node of T ′

has degree exactly ∆. We will construct the desired sets {E′i}i∈[2∆−1] and {V ′i }i∈[2∆−1] for T ′

via a coloring argument reminiscent of the proof of Brook’s Theorem (although not the same
argument).

Pick any internal node v0 of T ′ and root this tree at v0. We label all edges and leaf nodes
of T ′ with numbers in [2∆− 1] according to the following BFS procedure (we use the standard
meaning of “parent”, “child”, “depth” (where v0 has depth 0, L is the maximum dept of any
node), etc. for rooted trees):

Label each of the ∆ edges incident to the root v0 with a distinct label
for i = 1 to L do

for every vertex v of depth i do
Let S denote the set of labels assigned to all the edges incident to the parent of v and
notice that |S| = ∆
if v is an internal node then

Label the ∆− 1 edges of v to its children with distinct labels from the set [2∆− 1] \S
else

Assign all ∆− 1 labels [2∆− 1] \ S to v.

Then for all j ∈ [2∆ − 1], let E′j (resp. V ′j ) be set of edges (resp. nodes) of T ′ that have
label j (notice that vertices have multiple labels).

It follows directly from the labeling procedure that each set E′i ∪ V ′i is a mixed stable set of
T ′ (and clearly subordinate to the edges of T ′). Now to see that each node v of T ′ is covered
exactly ∆ times by the collection {E′i∪V ′i }i∈[2∆−1] we consider 2 cases: If v is an internal node,
then by construction of T ′ it has degree exactly ∆ and since

⋃
iE
′
i = E(T ′) it is covered ∆

times by the collection {E′i}i and 0 times by the collection {V ′i }i, giving the desired result. On
the other hand, if v is a leaf of T ′, then it is covered once by the set E′i where i is the label
of the only edge incident to v, covered by no other set E′j , and covered by the ∆ − 1 sets V ′j
corresponding to the labels of v. Thus, the sets {E′i}i and {V ′i }i satisfy the desired properties
with respect to the modified tree T ′.

Now to get the desired sets for the original tree T , we just remove the nodes in T ′ \ T from
the sets E′i ∪ V ′i : for each {v, v′} with v ∈ V (T ) and v′ /∈ V (T ) that belongs to E′i ∪ V ′i , replace
it with the singleton {v}; denote the set obtained by Ei ∪ Vi (concretely, Ei is the set of pairs
in this collection and Vi is the set of singletons in this collection). Notice that this replacement
procedure does not add repeated singletons: this is because E′i∪V ′i contains only disjoint edges
(the labeling scheme above does not assign color i to two intersecting edges) and if it contains
an edge (v, v′) with v′ /∈ V (T ) then this implies that v is an internal node of T and hence the
singleton {v} does not belong to E′i ∪ V ′i .

It follows directly from this replacement operation that the sets Ei ∪ Vi’s are mixed stable
sets for T subordinate to E(T ) and that still each node of T is covered exactly ∆ times by
them. This concludes the proof.

The upper bound in Theorem 14 the follows from the following corollary.
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Corollary 37. Let H be a tree of maximum degree ∆. Then ηE(H) ≤ 2∆−1
∆ .

Proof. Consider the mixed stable sets Mi = Ei ∪ Vi (for i ∈ [2∆ − 1]) of H obtained from
Lemma 36. Since each vertex of H is covered exactly ∆ times by {Mi}i∈2∆−1, we have that
setting yMi = 1

∆ for all i (and yM = 0 otherwise) yields a feasible solution for the mixed
fractional chromatic number program (1) of value 2∆−1

∆ , proving the result.

5.1.4 Proof of Theorem 15

Fix ε > 0; we construct an instance where zN.S. ≥
(

2∆−1
∆ − ε

)
· zI . The construction require

the existence of the so-called affine designs.

Definition 38. Given n ∈ Z++, we call an affine n-design a collection F1, . . . ,Fn where each
Fi is a family of n-subsets of [n2] satisfying:

1. For any i ∈ [n], the sets in Fi partition [n2]

2. For any i 6= j ∈ [n] and A ∈ Fi and B ∈ Fj, we have |A ∩B| ≤ 1.

Theorem 39 ([7], Part VII, Point 2.17). For every prime n, an affine n-design exists.

So consider a prime number n ≥ ∆ and let F1, . . . ,Fn be an affine n-design. For a set
A ∈ Fi we use χA ∈ {0, 1}n

2
to denote the indicator vector of the set A.

We will construct a packing IP in Rn
2+∆

+ and partition the n2 + ∆ variables into ∆ + 1
blocks J = {J0, . . . , J∆} by setting J0 = {1, . . . , n2} and Ji = {n2 + i}, for i = 1, . . . ,∆. To
simplify the notation we use x ∈ Rn2

to represent the variables in J0, and yi, i = 1, . . . ,∆, to
represent the variables in Ji respectively.

Let Pi be the polytope in Rn2+∆ given by the convex hull of the points(x, y1, . . . , y∆) ∈ {0, 1}n2+∆

∣∣∣∣∣∣
∑
j

xj ≤ n and, if yi = 1, then x ≤ χA for some A ∈ Fi

 ;

explicitly, this is the set of solutions satisfying∑
j

xj ≤ n

xa + xb + yi ≤ 2 ∀a ∈ A, b ∈ B, A 6= B ∈ Fi (3)

(x, y1, . . . , y∆) ∈ [0, 1]n
2+∆.

Then the desired IP (P) is obtained by considering the integer solutions common to all these
polytopes:

max
∑
j∈[n2]

xj +

(
n− 1

∆− 1

) ∑
j∈[∆]

yj

(x, y1, . . . , y∆) ∈
⋂
i∈[∆]

Pi ∩ Zn
2+∆.
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Again we get the following interpretation for the feasible solutions for this problem: in any
solution (x, y) ∈ {0, 1}n2+∆,

∑
j xj ≤ n and for all i ∈ [∆]

if yi = 1, then x ≤ χA for some set A ∈ Fi (4)

Let P denote the integer set corresponding to this problem. From the explicit description
of the Pi’s we see that this is packing integer program whose induced graph Gpack

A,J is a star with
maximum degree ∆.

The intuition behind this construction is the following: first, maximizing the objective

function over just Pi ∩ Zn2+∆ (or equivalently over Pi) gives value n +
(
n−1
∆−1

)
· ∆ ≈ 2n (by

taking x = χA for any A ∈ Fi, yj = 1 for all j). Moreover, recall that the natural sparse closure
w.r.t. J of the full program (P) uses cuts that are only supported in (x, yi), for i ∈ [∆]; thus,
roughly speaking, this closure sees each Pi∩Zn

2+∆ independently, and not really capturing the
fact they are being intersected. Thus, optimizing over the natural sparse closure w.r.t. J still
gives value ≈ 2n. However, due to the fact the sets across the design’s Fi’s are almost disjoint,
intersecting the regions Pi ∩Zn

2+∆ kills most of the solutions. A bit more precisely, the almost
disjointness in the affine design and expression (4) imply that the best solution either sets many
of the yi’s to 1 and almost all xj ’s to 0, or sets all xj ’s to 1 and few yi’s to 0; these solutions
gives value ≈ n. This gives the desired gap of ≈ 2 between the natural sparse closure and the
original IP.

To make this formal, we start with the following lemma.

Lemma 40. Setting x = ( 1
n , . . . ,

1
n) and yj = 1 for all j gives a feasible solution to the natural

sparse closure PN.S. Thus, zN.S. ≥ n+
(
n−1
∆−1

)
·∆.

Proof. Let x̄ = ( 1
n , . . . ,

1
n) and ȳ = (1, . . . , 1) denote the desired solution.

We claim that it suffices to prove that (x̄, ei) belongs to P I for all i, (where ei is the ith
canonical basis vector in R∆). To see that, first notice that the natural sparse closure w.r.t. J
is PN.S. =

⋂
i∈[∆] P

(x,yi), where we use P (x,yi) to denote the sparse closure of P with cuts on

variables (x, yi) (see Definition 2). Using Observations 31 and 32, it suffices to show (x̄, ȳ) ∈ PLP
and (x̄, ei) ∈ P I . The former condition can be easily verified via equation (3), so it suffices to
show (x̄, ei) ∈ P I for all i.

So fix i ∈ [∆]. Consider the collection Fi and a point of the form (χA, e
i) for any set A ∈ Fi.

By definition of Pi, notice that (χA, e
i) belongs to Pi ∩ Zn2+∆. Moreover, notice that for j 6= i

we also have (χA, e
i) ∈ Pj : this follows from the facts

∑
j(χA)j ≤ n and eij = 0. Thus, we

have (χA, e
i) ∈ P I =

⋂
j∈[∆] Pj ∩ Zn2+∆. Then the average

∑
A∈Fi

1
n(χA, e

i) belongs to P I ;

since the sets in Fi form a partition of [n2],
∑

A∈Fi
χA = (1, . . . , 1), and hence the average is∑

A∈Fi

1
n(χA, e

i) = (x̄, ei) ∈ P I . This concludes the proof.

The next step is to understand P better.

Lemma 41. For any solution (x, y1, . . . , y∆) ∈ P with
∑

i∈[∆] yi ≥ 2 we have
∑

j∈[n2] xj ≤ 1.

Proof. Consider p 6= q such that yp = yq = 1. By definition of P , we have that the solution
(x, y1, . . . , y∆) belongs to Pp and Pq. Since yp = yq = 1, this means that there are sets A ∈ Fp
and B ∈ Fq such that x ≤ χA and x ≤ χB, which further implies x ≤ χA∩B. But by definition
of an affine design |A ∩B| ≤ 1, and hence

∑
j∈[∆] xj ≤ 1. This concludes the proof.
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Corollary 42. We have zI ≤ n∆−1
∆−1 .

Proof. Consider any feasible solution (x, y1, . . . , y∆) to P I . From the first constraint in (3) we

have
∑

j xj ≤ n. Thus, if
∑

i yi ≤ 1, the solution has value at most n+
(
n−1
∆−1

)
= n∆−1

∆−1 ; on the

other hand, using Lemma 41, if
∑

i yi ≥ 2 then the solution has value at most 1 +
(
n−1
∆−1

)
∆ =

n∆−1
∆−1 . Together these give the desired upper bound.

Lemma 40 and Corollary 42 give that

zN.S.

zI
≥
(
n+

(
n− 1

∆− 1

)
·∆
)

∆− 1

n∆− 1
=

2n∆− n−∆

n∆− 1
=

2∆− 1−∆/n

∆− 1/n
.

Since limn→∞
2∆−1−∆/n

∆−1/n = 2∆−1
∆ , for a sufficiently large choice of n we get zN.S. ≥

(
2∆−1

∆ − ε
)
zI .

This concludes the proof of Theorem 15.

5.1.5 Proof of the first part of Theorem 17: upper bound on zN.S.

Consider the packing interaction graph Gpack
A,J , which is a cycle of length K. Notice that the

natural sparse closure in this case corresponds to considering the support list V being simply
the edges of Gpack

A,J . Thus, to prove the first part of Theorem 17 is suffices to upper bound the

fractional mixed chromatic number ηE(Gpack
A,J )(Gpack

A,J ).
We can work more abstractly to simplify things: let H = (V,E) be the cycle v0 − v1 −

. . . − vK−1 − v0 on K nodes, and we need to upper bound ηE(H). To further simplify the
notation, we identify vi with vi (mod K) for i ≥ K. We consider the different cases depending
on K (mod 3).

Case 1: K = 3k, k ∈ Z++. For i = 0, 1, 2, let Mi denote the set of edges {vj , vj+1} where
j = i (mod 3). It is clear that eachMi is a mixed stable set for H subordinate to E. Moreover,
since

⋃3
i=0Mi = E covers each node of H exactly twice, we can find a solution for the fractional

mixed chromatic number LP (1) by setting yMi = 1
2 for i = 0, 1, 2. This gives the desired bound

ηE(H) ≤ 3
2 .

Figure 2: Constructions of all mixed stable sets for 6-cycle
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v4 v5

Case 2: K = 3k + 1, k ∈ Z++. We show ηE(H) ≤ 3k+1
2k . If k = 1, we have that H is a

4-cycle and define M0 = {(v0, v1)}, M1 = {(v1, v2)}, M2 = {(v2, v3}) and M3 = {(v3, v0)}.
Clearly these Mi’s are mixed stable sets for H subordinate to E and

⋃
iMi covers each node

of H exactly twice; then as in the previous case, this gives ηE(H) ≤ 4
2 = 2 = 3k+1

2k .
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For k ≥ 2, define

Mi =
{
{vi, vi+1}, {vi+3, vi+4}, . . . , {v3(k−2)+i, v3(k−2)+i+1}, {v3(k−1)+i, v3(k−1)+i+1}

}
for i = {0, . . . , 3k}. It is straightforward to check that eachMi is a mixed stable set subordinate
to E and that

⋃3k
i=0Mi covers every node exactly 2k times. Thus again we get ηE(H) ≤ 3k+1

2k .

Figure 3: Constructions of all mixed stable sets for 7-cycle
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Case 3: K = 3k + 2, k ∈ Z++. Let

Mi =
{
{vi, vi+1}, {vi+3, vi+4}, . . . , {v3(k−2)+i, v3(k−2)+i+1}, {v3(k−1)+i, v3(k−1)+i+1}, {v3k+i}

}
for i = {0, . . . , 3k + 1}. It is straightforward to check that each Mi is a mixed stable set
subordinate to E and that

⋃3k+1
i=0 Mi covers every node exactly 2k + 1 times. Thus we have

ηE(H) ≤ 3k+2
2k+1 . This concludes the proof of the first part of the theorem.

Figure 4: Constructions of all mixed stable sets for 5-cycle
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5.1.6 Proof of second part of Theorem 17: tight instances

The construction of the tight instances is similar to the one used in Theorem 15. So consider a
prime number n ≥ K and let F1, . . . ,Fn be an affine n-design. For a set A ∈ Fi again we use
χA ∈ {0, 1}n

2
to denote the indicator vector of the set A.

We will construct a packing IP with Kn2 variables, which are partitioned into K equally
sized blocks J = {J0, . . . , JK−1}, namely Ji = {n2i, n2i+ 1, . . . , n2i+ n2 − 1}. To simplify the
notation, we use xi ∈ Rn2

to represent the variables corresponding to Ji, so a solution of the
IP has the form (x0, . . . , xK−1). For i ≥ K, we use xi to denote xi (mod K).

First, define the integer set Q = {x ∈ {0, 1}n2 | 1Tx ≤ n}. Then, for i ∈ {0, . . . ,K − 1} let
Pi be the polytope in RKn2

given by the convex hull of the points{
(x0, . . . , xK−1) ∈ QK

∣∣∣∣ if xi 6= 0, then xi+1 ≤ χA for some A ∈ Fi, and
if xi+1 6= 0, then xi ≤ χA for some A ∈ Fi

}
;

explicitly, this is the set of solutions satisfying

1
Txj ≤ n ∀j
xia + xib + xi+1

c ≤ 2 ∀a ∈ A, b ∈ B, A 6= B ∈ Fi, ∀c (5)

xi+1
a + xi+1

b + xic ≤ 2 ∀a ∈ A, b ∈ B, A 6= B ∈ Fi, ∀c

(x0, . . . , xK−1) ∈ [0, 1]Kn
2
.

Then the desired IP (P) is obtained by considering the integer solutions common to all these
polytopes:

max

K−1∑
i=0

1
Txi

(x0, . . . , xK−1) ∈
K−1⋂
i=0

Pi ∩ ZKn
2
.

Again we get the following interpretation for the feasible solutions for this problem: in any
solution (x0, . . . , xK−1) ∈ {0, 1}Kn2

, 1Txi ≤ n for all i, and also for all i

if xi 6= 0, then xi+1 ≤ χA for some set A ∈ Fi, and (6)

if xi+1 6= 0, then xi ≤ χA for some set A ∈ Fi.

Let P denote the integer set corresponding to this problem. From the explicit description
of the Pi’s we see that this is packing integer program whose induced graph Gpack

A,J is a K-cycle.

We now consider the natural sparse closure PN.S. and the integer hull P I for this problem
and lower bound the ratio zN.S./zI . For that, given x = (x0, . . . , xK−1), let high(x) = {i |
1
Txi ≥ 2}, namely the set of block of variables with “high” value. We say that three integers

are adjacent mod K if they are of the form i (mod K), i+ 1 (mod K), i+ 2 (mod K).

Lemma 43. For any solution x ∈ P , the set high(x) does not contain any three adjacent mod
K integers.
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Proof. By contradiction, assume that high(x) contains the integers i (mod K), i+ 1 (mod K),
and i + 2 (mod K). In particular, all of xi, xi+1 and xi+2 are different from 0, and hence
expression (6) implies that xi+1 ≤ χA and xi+1 ≤ χB for some A ∈ Fi (mod K) and B ∈
Fi+1 (mod K); this implies that xi+1 ≤ χA∩B. But by definition of affine design, we have

|A ∩B| ≤ 1, and hence 1Txi+1 ≤ 1, reaching a contradiction.

The following lemma can be easily checked.

Lemma 44. Let S be a subset of {0, . . . ,K − 1} that does not contain any three adjacent mod
K integers. Then: (i) if K = 3k or K = 3k + 1 for k ∈ Z++ we have |S| ≤ 2k, and; (ii) if
3k + 2 for k ∈ Z++ we have |S| ≤ 2k + 1.

Lemma 45. The optimal value of the integer program (P) can be upper bounded as follows:
if K = 3k or K = 3k + 1 for k ∈ Z++, zI ≤ (n − 1) · 2k + K; if K = 3k + 2 for k ∈ Z++,
zI ≤ (n− 1) · (2k + 1) +K.

Proof. Let x̄ = (x̄0, . . . , x̄K−1) be an optimal solution to (P). Using the fact that 1T x̄i ≤ n and
the definition of high(x̄) we get

zI =
K−1∑
i=0

1
T x̄i =

∑
i∈high(x̄)

1
T x̄i +

∑
i/∈high(x̄)

1
T x̄i

≤ n · |high(x̄)|+K − |high(x̄)| = (n− 1) · |high(x̄)|+K.

Upper bounding |high(x̄)| using Lemmas 43 and 44 gives the desired result.

Lemma 46. The point x̄ = ( 1
n1, . . . ,

1
n1) is a feasible solution to the natural sparse closure

PN.S. Thus, zN.S. ≥ Kn.

Proof. To simplify the notation, let zeroi(x, x′) ∈ Rn2 × . . .Rn2
denote the vector

(0, . . . , 0, x, x′, 0, . . . , 0)

where x is in the ith position and x′ is in position i+ 1 (mod K).
We claim that it suffices to prove that zeroi(1/n,1/n) belongs to P I for all i. To see that,

first notice that the natural sparse closure w.r.t. J is PN.S. =
⋂K−1
i∈0 P (xi,xi+1), where we use

P (xi,xi+1) to denote the sparse closure of P on variables (xi, xi+1). Using Observations 31 and
32, it suffices to show x̄ ∈ PLP and zeroi(1/n,1/n) ∈ P I . The former condition can be easily
verified via equation (3), so it suffices to show zeroi(1/n,1/n) ∈ P I .

So fix i. Consider the collection Fi. By the definition of Pi, for each A,B ∈ Fi the point
zeroi(χA, χB) belongs to Pi ∩ ZKn2

. If also follows directly from the definition of Pj that

zeroi(χA, χB) ∈ Pj for all j 6= i. Thus, we have zeroi(χA, χB) ∈ P I =
⋂K−1
j=0 Pj ∩ Zn2+∆. Then

the following average belongs to P I :

∑
A∈Fi

1

n

∑
B∈Fi

1

n
zeroi(χA, χB) =

∑
A∈Fi

1

n
zeroi

χA, ∑
B∈Fi

1

n
χB

 = zeroi

∑
A∈Fi

1

n
,
∑
B∈Fi

1

n

 .

Recalling that
∑

A∈Fi
χA = 1, this average is zeroi

(
1
n1,

1
n1
)
∈ P I . This concludes the proof.
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Putting Lemmas 45 and 46 together, we get that if K = 3k for k ∈ Z++, zN.S.

zI
≥

Kn
(n−1)·2k+K = n

(n−1)·(2/3)+1 = 1
2/3+1/3n . Since limn→∞

1
2/3+1/3n = 3

2 , for sufficiently large n

we have zN.S. ≥ zI(3
2 − ε), proving this part of the theorem. The other cases of K (mod 3) are

similar. This concludes the proof.

5.2 Proof for covering problem

5.2.1 Proof of Theorem 18

In order to prove Theorem 18, we begin with a classical bad example for the LP relaxation of
the set cover problem.

Definition 47 (Special set covering problem (SSC)). Consider q ∈ Z+. The ground set of
the set cover problem will be {0, 1}q, and the covering sets S(v) = {u ∈ {0, 1}q \ {0} | vTu =
1 (mod 2)} for v ∈ {0, 1}q. Then the Special Set Covering (SSC(q)) problem is defined by:

(SSC(q)) min
∑

v∈{0,1}q
xv

s.t.
∑

v:u∈S(v)

xv ≥ 1 ∀u ∈ {0, 1}q

xv ∈ {0, 1} ∀v ∈ {0, 1}q.

We refer to the left-hand matrix of SSC as Aq.

Theorem 48 ([18]). The IP optimal value of SSC(q) is at least q, while the LP relaxation
optimal value is at most 2.

We are now ready to present the proof of Theorem 18. For that, we consider the following
problem:

(DSC(q)) min
∑

v∈{0,1}q
xv +

∑
v∈{0,1}q

yv

s.t. Aqx+Aqy ≥ 1

x, y ∈ {0, 1}2q

We first argue that DSC(q) preserves the gap between IP and LP from SSC(q).

Lemma 49. The IP optimal value of DSC(q) is at least q, while the LP relaxation optimal
value is at most 2.

Proof. (zLP ≤ 2): By Theorem 48, there exists a feasible solution x̄ of the LP relaxation of
SSC(q) such that

∑
v x̄v ≤ 2. Then (x̄, 0) is a feasible solution of the LP relaxation of DSC(q),

giving the desired bound.

(zIP ≥ q): Assume by contradiction that (x̄, ȳ) is a feasible solution of DSC(q) with objective
function less than q. Note that if x̄v = ȳv = 1, then we may set ȳv = 0 and still obtain a
feasible solution with a better objective function value; similarly, if x̄v = 0 and ȳv = 1 we may
set x̄v = 1 and ȳv = 0 and obtain a feasible solution with same objective value. Therefore, we
may assume that ȳ = 0. In this case, x̄ is a feasible solution of SSC with objective function less
than q, contradicting the statement of Theorem 48.
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We consider a partition on the columns of DSC(q) into two blocks: J = {J1, J1} where J1

corresponding to variables x and J2 corresponding to variables y. To complete the proof of the
theorem it is sufficient to prove that the super sparse closure optimal value zS.S. of DSC(q) is
equal to optimal LP value zLP of DSC(q).

Lemma 50. zS.S = zLP for DSC(q).

Proof. Let P be the integer set for DSC(q). Since PS.S = P (J1) ∩ P (J2), Observation 31 gives
that (x̄, ȳ) ∈ PS.S iff (x̄, ȳ) ∈ PLP and x̄ ∈ P I |J1 and ȳ ∈ P I |J2 . But since P is of covering-type
and SSC(q) is feasible, we have that P I |Ji = [0, 1]2

q
, and thus (x̄, ȳ) ∈ PS.S. iff (x̄, ȳ) ∈ PLP .

This concludes the proof.

5.2.2 Proof of Theorem 22

Consider a covering problem (C). As in the packing case, there is an identification of sets of
nodes of Gcover

A,I with sets of indices of variables (the “indices in the union of their support”),
namely if I = {I1, I2, . . . , Iq} is the given row index partition and the nodes of Gcover

A,I are
{v1, v2, . . . , vq}, then the set of vertices {vi}i∈I corresponds to the indices

⋃
i∈I
⋃
r∈Ii supp(Ar) ⊆

[n]. We will make use of this correspondence, and in order to make statements precise we use the

function usupp : 2V (Gcover
A,I ) → 2[n] to denote this correspondence; with slight abuse of notation,

for a singleton set {v} we use usupp(v) instead of usupp({v}).
Given a set of vertices S ⊆ V (Gcover

A,I ), let x(S) be the optimal solution of the covering problem

projected to the variables relative to S, namely x(S) ∈ argmin{(c|usupp(S))
T y | y ∈ P I |usupp(S)}.

Also, let zeroS(x(S)) ∈ Rn denote the solution appended by zeros in the original space, namely

zeroS(x(S))i = x
(S)
i if i ∈ usupp(S) and zeroS(x(S))i = 0 if i /∈ usupp(S).

Notice the following important property of zeroS(x(S)) (denote S = {vi}i∈I): for any row
r ∈

⋃
i∈I Ii, since the support of Ar is contained in usupp(S), the constraint Arx ≥ br is valid

for P I |usupp(S); therefore Arzero
S(x(S)) = Ar|usupp(S)x

(S) ≥ br. This gives the following.

Observation 51. For any subset S = {vi}i∈I of nodes of Gcover
A,I and any row r ∈

⋃
i∈I Ii,

Arzero
S(x(S)) ≥ br.

We start by showing that the solutions x(M), for M in a mixed stable set M, can be used
to provide a lower bound on the optimal value of PV,C .

Lemma 52. Let M be a mixed stable set for Gcover
A,I subordinate to V. Then

zV,C ≥
∑
M∈M

(c|usupp(M))
Tx(M).

Proof. Consider an optimal solution x∗ ∈ argmin{cTx |x ∈ PV,C} of the row block-sparse
closure. Since PV,C =

⋂
S∈V P

(S), Observation 31 implies that x∗|usupp(S) ∈ P I |usupp(S) for all
S ∈ V. Moreover, since for every set M in the mixed stable set M there is S ∈ V containing
M , this implies that x∗|usupp(M) ∈ P I |usupp(M) for all M ∈M. Then by the optimality of x(M),

we get (c|usupp(M))
T (x∗|usupp(M)) ≥ (c|usupp(M))

Tx(M) for all M ∈M.
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Then we can decompose the optimal solution x∗ based on the variables usupp(M) and use
the non-negativity of c:

zV,C = cTx∗ =
∑
M∈M

(c|usupp(M))
T (x∗|usupp(M)) +

∑
i/∈
⋃

M∈M usupp(M)

cix
∗
i ≥

∑
M∈M

(c|usupp(M))
Tx(M),

where the first equality uses the fact that if M1,M2 ∈ M, then usupp(M1) ∩ usupp(M2) = ∅.
This concludes the proof.

Now show how to put solutions x(M) together to get a feasible solution for the covering
problem, thus providing an upper bound on zI . Recall the definition of mixed chromatic
number η̄ = η̄V(Gcover

A,I ) and consider covering mixed stable sets M1, . . . ,Mη̄ (i.e., V (Gcover
A,I ) =⋃

i

⋃
M∈Mi

M).

Define u ∈ Rn as the pointwise maximum of the solutions {zeroM (x(M)))}i,M∈Mi . Since the
matrix A in the problem is non-negative, Observation 51 implies that u is a feasible solution
for the covering problem (C). Thus, using the non-negativity of c and of the zeroM (x(M))’s:

zI ≤ cTu ≤
∑

i,M∈Mi

cT zeroM (x(M)) =
∑

i,M∈Mi

(c|usupp(M))
Tx(M) ≤

∑
i

zV,C = η̄ · zV,C ,

where the first inequality follows from definition of zI and feasibility of u, the second inequality
follows from non-negativity of c, and the last inequality follows from Lemma 52. This concludes
the proof of Theorem 22.

5.2.3 Proof of Theorem 24

Now we prove Theorem 24 by constructing a covering instance. Since the construction is quite
involved, we start with an example.

Example of the construction. We exemplify the construction for K = 2 and with a worse
gap, and then we generalize/strengthen it (the discussion here will be somewhat informal). In
this case the covering IP is the following (notice the indices of the x variables in the different
constraints):

min
∑
i

xi +∞ · (y1 + y2) (7)

s.t.




1
1
0
0

x1 +


0
0
1
1

x2

+




1
0
1
0

x3 +


0
1
0
1

x4

+ 1 · y1 ≥ 1 (8)




1
1
0
0

x1 +


0
0
1
1

x3

+




1
0
1
0

x2 +


0
1
0
1

x4

+ 1 · y2 ≥ 1 (9)

x ∈ Z4
+, y ∈ Z2

+. (10)

We will use the partition of rows I = {I1, I2}, where I1 = {1, 2, 3, 4} (so corresponds to the
first sets of covering constraints) and I2 = {5, 6, 7, 8}.
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The only (minimal) ways to satisfy the first set of constraints is to set either x1 = x2 = 1
(and all else to 0), or x3 = x4 = 1 (and all else to 0), or y1 = 1 (and all else to 0); because
of the cost of the y variables, actually we will always have y = 0 in an optimal solution. To
satisfy the second set of constraints the situation is similar, but the indices on the x variables
are permuted so that we need x1 = x3 = 1 or x2 = x4 = 1. So the best way to satisfy both of
the constraints simultaneously is to set almost all x variables to 1 (actually we can just set
x1 = x2 = x3 = 1). This gives cost of 3 for the IP.

Now consider optimizing over the weak specific-scenario cuts closure PV,C (where the row
support list is V = {{v1}, {v2}}), i.e., the closure corresponding to the cuts on (x, y1) variables
and on (x, y2) variables. Since the yi variable can be used to satisfy the ith set of covering
constraints, it is easy to see that the only undominated (x, y1)-cuts are the ones implied only
the first set of covering constraints (8), and similarly the only undominated (x, y2)-cuts are the
ones implied only by the second set of covering constraints (9). Thus, the point x1 = x2 = x3 =
x4 = 1

2 , y1 = y2 = 0 belongs to PV,C , giving z∗ = zV,C ≤ 2.

Together, these observations give that zI

zV,C
≥ 3/2.

General construction. We start with the special set system that is used to define the
columns of the covering program.

Lemma 53. Let n ∈ Z++. There is a collection G1,G2, . . . ,Gn with the following properties:

1. For each i ∈ [n], Gi is a partition of [nn] and each set G ∈ Gi has size nn−1.

2. For any selection G1 ∈ G1, G2 ∈ G2, . . . , Gn ∈ Gn, the intersection
⋂n
i=1G

i is non-empty.

Proof. Since |[nn]| = |[n]n|, let g : [n]n → [nn] be any bijection between the two sets. For
j ∈ [n], define the set Gij = {g(u) |u ∈ [n]n, ui = j}. Define Gi = {Gij | j ∈ [n]}. It is easy to
check the following properties:

1. Given i, for any j ∈ [n],
∣∣∣Gij∣∣∣ = nn−1 and

⋃n
j=1G

i
j = {g(u) |u ∈ [n]n} = [nn].

2. For a selection G1
j1
∈ G1, G2

j2
∈ G2, . . . , Gnjn ∈ G

n, consider u = (j1, j2, . . . , jn). Then

according to the definition, g(u) ∈
⋂n
i=1G

i
ji

, so the intersection of these sets is non-empty.

This concludes the proof.

Lemma 54. Let n ∈ Z++. Consider a collection G1, . . . ,Gn satisfying the properties of Lemma
53, and consider Ḡi ⊆ Gi for i = 1, . . . , n. If the sets in

⋃n
i=1 Ḡi cover the whole of [nn], then

there is i ∈ [n] such that Ḡi = Gi.

Proof. By contradiction, suppose there is G1
j1
∈ G1 \ Ḡ1, . . . , Gnjn ∈ G

n \ Ḡn. Then part 2

of Lemma 53, there exists an element u ∈
⋃n
i=1G

i
ji

, and since the sets in Gi partition [nn]

this means that u is not covered by sets in Ḡi, for all i; then
⋃n
i=1 Ḡi does not cover [nn], a

contradiction.

Now pick a prime number n ≥ max{K, 2}. We will construct an instance with variables
x1, . . . , xn2 and y1, . . . , yK , and each row-block will have nn constraints. Let G1, . . . ,Gn be a
collection satisfying the properties from Lemma 53, and let F1, . . . ,Fn be an affine n-design
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(we remind the readers – each Fi partitions [n2] with n-subsets, and for A ∈ Fi, B ∈ Fj with
i 6= j, |A ∩ B| ≤ 1); this affine design will be used to “permute” the indices of the x variables
from one set of covering constraints to the next (see example above). We consider the explicit
enumeration Fi = {F 1

i , . . . , F
n
i }.

For k ∈ [K], we define the set

Pk =

(x, y) ∈ {0, 1}n2+K

∣∣∣∣∣∣
n∑
i=1

∑
j∈Fk

i

Akjxj + 1 · yk ≥ 1

 ,

where the set of vectors {Akj }j∈Fk
i

is equal to the set of vectors {χGi
j′
}j′∈[n]; we note that it is

not important which Akj is assigned to which χGi
j′

.

Then the covering integer program we consider is the following:

min

n2∑
j=1

xj + nn ·
K∑
k=1

yk

s.t.
n∑
i=1

∑
j∈Fk

i

Akjxj + 1 · yk ≥ 1 ∀k ∈ [K]

(x, y) ∈ {0, 1}n2+K .

(or equivalently (x, y) ∈
⋂
k∈[K] Pk). Let P denote the set of solutions for this problem.

Notice that this program has K sets of nn covering constraints. We consider the partition of
the covering constraints I = {I1, . . . , IK} where Ik = {(k−1)nn+1, . . . , knn} (so Ik corresponds
to Pk). It is easy to see that the covering interaction graph Gcover

A,I is a clique.

For V = {{v1}, . . . , {vK}}, remember that z∗ = zV,C . Therefore, we want to show that
zI

zV,C
≥ K − ε (for sufficiently large n). We start by analyzing each Pk.

Lemma 55. A vector (x̄, 0) ∈ {0, 1}n2 × {0, 1}K belongs to Pk if and only if there is F ki such
that x̄j = 1 for all j ∈ F ki .

Proof. (⇒) Let Ḡi be the subset of the sets in Gi picked by x̄, namely Git belongs to Ḡi iff
χGi

j′
= Akj for some j with x̄j = 1. Since ȳ = 0, the fact that (x̄, ȳ) belongs to Pk implies that

the sets in
⋃n
i=1 Ḡi must cover the whole of [nn]. Lemma 54 then implies that there is one Ḡi

that equals Gi, which translates to having x̄j = 1 for all j ∈ F ki .

(⇐) This follows from the fact that the sets in Gi cover the whole of [nn].

We can use this to lower bound the optimal value zI of the covering program P .

Lemma 56. zI ≥ Kn−K2.

Proof. First, we claim that if (x̄, 0) ∈ P , then
∑

j∈[n2] x̄j ≥ Kn − K2. Let S ⊆ [n2] be

the support of x̄, so it is equivalent to show |S| ≥ nK − K2. Since (x̄, 0) ∈ P =
⋂K
k=1 Pk,

using Lemma 55 we have that for every k ∈ [K] there is i(k) such that S contains F ki(k),

so S ⊇
⋃K
k=1 F

k
i(k). By the inclusion-exclusion principle, we have that |S| ≥

∣∣∣⋃K
k=1 F

k
i(k)

∣∣∣ ≥
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∑K
k=1 |F ki(k)| −

∑
k 6=k′ |F ki(k) ∩ F

k′

i(k′)|. Using the definition of an affine n-design, get the lower

bound |S| ≥ nK −K(K − 1) ≥ nK −K2.
Now consider any solution (x̄, ȳ) ∈ P . If ȳ = 0, we have just shown that this solution has

value at least Kn−K2; if ȳ 6= 0, this solution has value at least nn > Kn−K2. This concludes
the proof.

Finally we upper bound the optimal value of the zV,C .

Lemma 57. zV,C ≤ n.

Proof. It suffices to show that the point (x̄, ȳ) =
(

1
n1, 0

)
∈ PV,C . Recall that PV,C =⋂

k∈[K] P
({vk}), so we show (x̄, ȳ) belongs to all P ({vk})’s. Note that (x̄, ȳ) satisfies the linear

programming relaxation; therefore, using Observation 31, to show that (x̄, ȳ) belongs to P ({vk})

it suffices to prove that (x̄, ȳk) ∈ P I |(x,yk), where we use P I |(x,yk) to denote the projection onto
the variables (x, yk).

Consider the following points (xu, y), for u ∈ [n], constructed as:

yk = 0,

yk′ = 1 ∀ k′ ∈ [K] \ {k},

xuj =

{
1 if j ∈ F ku
0 otherwise.

It is straightforward to verify that (xu, y) ∈ P for u ∈ [n]. Thus, the average 1
n

∑
u∈[n](x

u, y)

belongs to P I . It then follows that (x̄, ȳk) = ( 1
n1, 0)|(x,yk) belongs to P I |(x,yk). This concludes

the proof.

Putting Lemmas 56 and 57 together we get zI

zS.S.
≥ Kn−K2

n = K − K2

n . For large enough n,

we get zI

zV,C
≥ K − ε. This concludes the proof of Theorem 24.

5.3 Proof for packing-type problem with arbitrary A matrix

5.3.1 Proof of Theorem 26

In this section, we use the same notation as that used in Section 5.1.1. So, let J be a partition
of the index set of columns of A (that is [n]). Let V = {v1, . . . , vq} be the vertices of Gpack

A,J
(based on Definition 4). Let Ṽ = {V u1 , V u2 , . . . , V uk} ⊆ V be the subset of sparse cut support
list corresponding to the definition of corrected average density DV (see Definition 25), so
V =

⋃k
i=1 V

ui and 1
k

∑k
i=1 |V ui | = DV .

Recall from Section 5.1.1 a couple of definitions: first, the function φ maps subsets of vertices
of V to the corresponding variable indices, namely if S = {vi}i∈I then φ(S) =

⋃
i∈I Ji.

For the purpose of this section, let x(S) = argmax
{

(c|φ(S))
T (x|φ(S)) | x ∈ P I

}
. (Notice that

this is different from the definition used in Section 5.1.1.)

Lemma 58. For any set Ṽ ∈ Ṽ we have zV,P ≤ cTx(Ṽ ) +
∑

v∈V \Ṽ c
Tx(v).

Proof. Fix any Ṽ ∈ Ṽ and S ⊆ Ṽ . Let x∗ = argmax{cTx |x ∈ PV,P } be an optimal solution

corresponding to the optimization over PV,P . Since PV,C =
⋂
Ṽ ′∈Ṽ P

(Ṽ ′), we have that x∗ ∈
P (S) ⊇ P (Ṽ ′). From Observation 31 we then get x∗|φ(S) ∈ P I |φ(S).

34



Thus we get (c|φ(S))
T (x∗|φ(S)) ≤ (c|φ(S))

T (x(S)|φ(S)) ≤ cTx(S), where the first inequality

follows from optimality of x(S) and the second inequality follows from non-negativity of c and
x(S).

In particular, since Ṽ covers V , we can apply this to the any singleton S = {v} and get
(c|φ(v))

T (x∗|φ(v)) ≤ cTx(v).

Applying this bound, we obtain that for any Ṽ ∈ V

zV,P = cTx∗ = (c|φ(Ṽ ))
T (x∗|φ(Ṽ )) +

∑
v∈V \Ṽ

(c|φ(v))
T (x∗|φ(v)) ≤ cTx(Ṽ ) +

∑
v∈V \Ṽ

cTx(v).

This concludes the proof.

Now we are ready to complete the proof of the theorem. Using Lemma 58 for all sets in Ṽ
and adding up these inequalities we obtain that

k · zV,P ≤
k∑
i=1

cTx(V ui ) +

k∑
i=1

 ∑
v∈V \V ui

cTx(v)


=

k∑
i=1

cTx(V ui ) +
∑
v∈V

miss(v) · cTx(v), (11)

where miss(v) = |{i ∈ [k] | v 6∈ V ui}|, that is the number of sparse-cut types in V in which the
variables corresponding to vertex v do not appear.

Moreover it follows from the definition of x(S) that xS ∈ P I and therefore we have that
zI ≥ cTx(S) for every subset S ⊆ V . Thus, we obtain that

zI ≥ max

{
max
i∈[k]
{cTx(V ui )} , max

v∈V
{cTx(v)}

}
≥ 1

k +
∑

v∈V miss(v)

(
k∑
i=1

cTx(V ui ) +
∑
v∈V

miss(v) · cTx(v)

)

≥ k

k +
∑

v∈V miss(v)
· zV,P .

where the second inequality follows from taking a weighted average, the third inequality follows
from (11). Finally, the next lemma shows that k+

∑
v miss(v) = k+ kq− kDV , concluding the

proof of the theorem.

Lemma 59. kDV +
∑

v∈V miss(v) = kq.

Proof. We perform a simple double counting. Consider the V/{V i}i incidence matrix B ∈
{0, 1}k×q defined as Bi,v = 1 if v ∈ V i and Bi,v = 0 if v /∈ V i. Using the definition of DV we
have:

kDV = |{(i, v) ∈ [k]× V |Bi,v 6= 0}| . (12)

On the other hand, from the definition of miss(v) we have that∑
v∈V

miss(v) =
∑
v∈V
|{i ∈ [k] | v 6∈ V i}| = |{(i, v) ∈ [k]× V |Bi,v = 0}| . (13)

By (12) and (13), we have that kDV +
∑

v∈V miss(v) = kq. This concludes the proof.
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5.3.2 Proof of Theorem 28

We consider the following integer program with 2K − 1 variables:

max xK +
2K−1∑
j=K+1

xj

s.t.

K∑
i=1

xi = 1 (14)

xi + xj ≤ 2− ε ∀i ∈ {1, . . . ,K − 1}, ∀j ∈ {K + 1, . . . , 2K − 1} \ {K + i} (15)

xK + xj ≤ 2− ε ∀j ∈ {K + 1, . . . , 2K − 1} (16)

x ∈ {0, 1}2K−1.

(We assume ε < K−1
K .) Let P denote the integer set relative to this problem.

We consider the partition J = {J1, . . . , JK} of the columns given by J1 = {1, . . . ,K},
Ji = {K + i − 1} for i ∈ 2, . . . ,K. Notice that the packing interaction graph Gpack

A,J for this

program is a star on K nodes. Writing explicitly Gpack
A,J = (V,E) with V = {v1, . . . , vK} and

E = {(v1, v2), (v1, v3), (v1, v4), . . . , (v1, vK)}.

Since we are in the context of the super sparse closure, we have the support list

V = {{v1}, {v2}, . . . , {vK}} .

We show the bound zS.S. ≥ K · zI − ε, and start by lower bounding zS.S..

Lemma 60. zS.S. ≥ K − ε

Proof. We claim that the point x̄ given by x̄j = ε
K−1 for all j = {1, . . . ,K − 1}, x̄K = 1 − ε,

x̄j = 1 for all j ∈ {K + 1, . . . , 2K − 1} belongs to the natural sparse closure PS.S., proving it
using Observation 31.

First, it is easy to check that x̄ belongs to the LP relaxation PLP . Moreover, note that
P I |J1 = {(x1, . . . , xK) ∈ [0, 1]K |

∑K
i=1 xi = 1}, and hence x̄|J1 ∈ P I |J1 . In addition, P I |Jj =

[0, 1] for j ∈ {2, . . . , |V |}, and thus x̄|Jj = x̄K+j−1 ∈ P I |Jj . Since PS.S. =
⋂K
j=1 P

(Jj), from

Observation 31 we get that x̄ ∈ PS.S..

To complete the proof, we show that the optimal value of the IP is (at most) 1, namely
exactly one of the variables xK , xK+1, . . . , x2K−1 can take a value of 1 and the others are zero.
So consider any feasible solution x̄ ∈ {0, 1}2K−1. If x̄K = 1, then the constraints (16) imply
that xK+1 = xK+2 = · · · = x2K−1 = 0. On the other hand if x̄K = 0, then by constraint
(14) there is some i ∈ [K − 1] with x̄i = 1, and so constraints (15) imply x̄j = 0 for all
j ∈ {|V |+ 1, . . . , 2K + 1} \ {K + i}, and so at most x̄j can take value 0.

Since zI ≤ 1 and zS.S. ≥ K − ε, we get the desired bound zS.S. ≥ K · zI − ε, concluding the
proof of Theorem 28.
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5.3.3 Proof of Theorem 30

We will construct an example with 2K variables. To start, for k ∈ [K] let P Ik be the convex
hull of the points

Pk :=
{

(x, y) ∈ {0, 1}K+K
∣∣

yk = 1 if and only if either [xk = 1, xi = 0 ∀i 6= k] or [xk = 0, xi = 1 ∀i 6= k]}

We then consider the integer program

max
K∑
k=1

yk

s.t. (x, y) ∈
⋂
k∈[K]

P Ik ∩ {0, 1}2K .

Let P denote the associated integer set. The partition of variable indices we consider is
J = {J0, J1, J3, . . . , JK}, where J0 corresponds to the variables x, and each Jk corresponds

to variable yk for k ∈ [K]. Notice that the packing interaction graph Gpack
A,J is a star on K + 1

nodes; explicitly, Gpack
A,J = (V,E) with V = {v0, . . . , vK} and E = {{v0, v1}, . . . , {v0, vK}}. Re-

call we are in the natural sparse closure setting, so the support list V in this case equals the
edge set E.

We show that zN.S. ≥ K · zI . For that, we start by lower bounding zN.S..

Lemma 61. zN.S. ≥ K.

Proof. We show that the solution (x̄, ȳ) given by x̄ = 1
21 and ȳ = 1 belongs to PN.S.. Following

Observation 31, to show (x̄, ȳ) ∈ PN.S. it suffices to show (x̄, ȳ) ∈ PLP and (x̄, ȳk) ∈ P I |(x,yk)

for all k ∈ [K]. Notice that PLP =
⋂
k∈[K] P

I
k and P I |(x,yk) = P Ik |(x,yk) (the latter uses the fact

P Ij |(x,yk) = [0, 1]K+1 for j 6= k). Thus it suffices to show (x̄, ȳ) ∈ P Ik for all k ∈ [K]

For that, fix k ∈ [K] and consider the points (xk1, ek) and (xk2, ek), where ei is the ith
canonical basis vector and

xk1
i =

{
1 if i = k,
0 otherwise

xk2
i =

{
0 if i = k,
1 otherwise

.

By definition both these points belong to Pk; the average 1
2(xk1, ek) + 1

2(xk2, ek) = (1
21, e

k) also
belongs to Pk. Moreover, since the constraints defining P Ik are independent of variable yi for
i 6= k, we have that (1

21,1) = (x̄, ȳ) also belongs to P Ik . This concludes the proof.

Now it is easy to see from the definition of Pk that no feasible solution to the IP can set
more than one y variable to 1, and hence the optimal value zi is at most 1. Together with the
previous lemma, this gives the desired bound zN.S. ≥ K · zI , thus concluding the proof of the
theorem.
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A Upper bound on zcut

Assume we have the general formulation

max cTx

s.t. Ax ≤ b
x ∈ Bn,

where A ∈ Rm×n. Recall that we are interested in three type of problems: packing, covering
and packing with arbitrary constraint matrix. All these categories will be written in the form of
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the formulation above with different restrictions on A and c. Let Ni = {j ∈ [n] |Aij 6= 0} be the
index set of non-zero entries of ith row of A. LetN = {N1, N2, . . . , Nt}, denote PN =

⋂t
i=1 P

(Ni)

and zcut = maxx ∈ PN cTx.
Our basic strategy is the following: we keep adding cuts on the support of some Ni and

checking whether the LP solution will improve. We stop adding cuts when the objective function
value does not change, thus obtaining an upper bound on zcut. The formal algorithm is shown
as Algorithm 1.

Algorithm 1 Estimating zcut

input: P = {x|Ax ≤ b},N = {N1, N2, . . . , Nt}, zold = −∞, znew = −∞, ε = 10−6

i← 1, count← 0
loop

Solve x∗ = argmaxx∈P c
Tx,znew = cTx∗

if x∗ is integral then
zcut = znew

Exit Loop.
else if znew − zold > ε then
zold ← znew

Generate a valid cut αx ≤ β on the support of Ni based on Algorithm 2
P ← P

⋂
{x|αx ≤ β}

count← 0
else
zold ← znew

if count = t then
zcut = znew

Exit Loop.
else
i← i+ 1(mod t)
count← count+ 1

end loop

Once we stop adding cut on some Ni, we check whether there is a valid cut on Ni+1. The
index count is the number of groups of supports that adding cuts will not improve the optimal
objective function value. Also, as long as adding a cut produces improvement on the objective
value, count will be reset as 0. The algorithm terminates when one of the following happens:

1. An integral feasible solution is found.

2. The parameter count equals to the number of supports t.

In the algorithm, we call a routine to generate the cut on Ni that is formally shown as
Algorithm 2. Assume that αTx ≤ β is a valid cut on Ni for some i, then αT x̂ ≤ β holds
for all x̂ ∈ P I . However, as the formulation of P I is implicit, we apply the technique of row
generations. Let X be a subset of all integral points in P I . At the beginning, X = ∅. And we
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generate a valid cut (α∗, β∗) for X. Then we solve the following IP

max α∗x− β∗

s.t. x ∈ P I .

If the optimal value is less or equal to 0 then it means the cut is valid for P I , otherwise let
X = X

⋃
{x∗}, where x∗ is the optimal solution. By re-applying this process, we will either

obtain a valid cut or a certificate that no valid cut exists.

Algorithm 2 Cut generation on Ni

Input: P = {x|Ax ≤ b}, P I = conv hull{x|x ∈ P, x ∈ Zn}, x∗
X ← ∅, ε← 10−6

loop
Solve (α∗, β∗) = argmaxxTα≤β,∀x∈X,‖α‖1=1,support of α=Ni

x∗Tα− β
if x∗Tα− β > ε then

Solve x0 = argmaxx∈P I α∗x− β∗
if α∗x0 − β∗ > ε then
X ← X

⋃
{x0}

else
Return (α∗, β∗)
Exit Loop

Return (α, β) = (~0, 0)
Exit Loop

end loop
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