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We discuss estimators for the finite-dimensional regression pa-
rameter in the current status linear regression model. It is shown that,
using a simple truncation device, one can construct

√
n-consistent

and asymptotically normal estimates of the finite-dimensional regres-
sion parameter with an asymptotic covariance matrix that is arbi-
trarily close to the matrix of the information lower bound. We illus-
trate this with a simulation study and provide algorithms for comput-
ing the estimates and for selecting the bandwidth with a bootstrap
method. The connection with results on the binary choice model in
the econometric literature is also discussed.

1. Introduction. Investigating the relationship between a response variable Y and one or more
explanatory variables is a key activity in statistics. Often encountered in regression analysis however,
are situations where a part of the data is not completely observed due to some sort of censoring.
In this paper we focus on modeling a linear relationship when the response variable is subject to
interval censoring type I, i.e. instead of observing the response Y , one only observes whether or not
Y ≤ T for some random censoring variable T , independent of Y . This type of censoring is often
referred to as the current status model and arises naturally, for example, in animal tumorigenicity
experiments (see e.g. [6] and [7]) and in HIV and AIDS studies (see e.g. [26]). Substantial literature
has been devoted to regression models with current status data including the proportional hazard
model studied in [13], the accelerated failure time model proposed by [21] and the proportional
odds regression model of [22].

The regression model we want to study is the semi-parametric linear regression model Y =
β′0X+ε, where the error terms are assumed to be independent of T andX with unknown distribution
function F0. This model is closely related to the binary choice model type, studied in econometrics
(see e.g. [2, 4], [16] and [5]), where, however, the censoring variable T is degenerate, i.e. P (T = 0) =
1, and observations are of the type (Xi, 1{Yi≤0}). In the latter model, the scale is not identifiable,
which one usually solves by adding a constraint on the parameter space such as setting the length
of β or the the first coefficient equal to one.

The maximum likelihood estimator (MLE) of β0 was proved to be consistent by [2] but nothing
seems to be known about its asymptotic distribution, apart from its consistency and upper bounds
for its rate of convergence. Since the log likelihood as a function of β, obtained by maximizing
the log likelihood with respect to the distribution function F for fixed β and substituting this
maximizer back into the likelihood, is not a smooth function of β, it is unclear if the MLE of β0 is√
n-consistent. [19] derived an n−1/3-rate for the MLE; we conjecture, based on simulation results

that this can be strengthened to a n−1/2-rate, however the efficiency and limiting distribution of
the MLE remains an open question.

Approaches to
√
n-consistent and efficient estimation of the regression parameters were con-

sidered by [16],[19], [18], [25] and [4] among others. For a derivation of the efficient information
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˜̀2
β0,F0

,

˜̀
β,F (t, x, δ) =

{
E(X|T − β′X = t− β′x)− x

}
f(t− β′x)

{
δ

F (t− β′x)
− 1− δ

1− F (t− β′x)

}
,

we refer to [3] for the binary choice model, and later to [14] and [19] for the current status regression
model.

Often appearing in the literature about the current status regression model, is the condition
that the support of the density of T − β′0X is strictly contained in an interval D for all β and
that F0 stays strictly away from 0 and 1 on D (see e.g. [14],[19] and [25]). The drawback of this
assumption is that we have no information about the whole distribution F0. This is also opposite to
the usual conditions made for the current status model, where one assumes that the observations
provide information over the whole range of the distribution one wants to estimate. We presume
that this assumption is made for getting the Donsker properties to work and to avoid truncation
devices that can prevent the problems that arise if this condition is not made, such as numerical
complications and unbounded score functions. Examples of truncation methods can be found in [4]
and [16] among others.

In this paper we present some simple estimates for the finite dimensional regression parameter
in the current status linear regression model. We construct a truncated log likelihood for the
current status linear regression model and propose three estimates of the unknown error distribution
in Section 2 that lead to three different estimates of the regression parameter. We introduce a
simulation example to illustrate the methods and discuss the connection with previous results
in the binary choice and current status regression models. In Section 3 we give the asymptotic
behavior of the plug-in estimator which is the first estimator introduced in Section 2. We show
that the estimator is

√
n-consistent and asymptotically normal with an asymptotic variance that

is arbitrarily (determined by the truncation device) close to the information lower bound. The
estimation of an intercept term, that originates from the mean of the error distribution, is outlined
in Section 4. Section 5 contains details on the computation of the estimates together with the results
of our simulation study; a bootstrap method for selecting a bandwidth parameter is also given. An
Appendix is included in Section 6 with proofs of the results given in this paper.

2. The current status linear regression model. Let (Xi, Ti,∆i), i = 1, . . . , n be indepen-
dent and identically distributed observations from (X,T,∆) = (X,T, 1{Y≤T}). We assume that Y
is modeled as

Y = β′0X + ε,(2.1)

where β0 is a k-dimensional regression parameter and ε is an unobserved random error, independent
of (X,T ) with unknown distribution function F0. We assume that the distribution of (X,T ) does
not depend on (β0, F0) which implies that the relevant part of the log likelihood for estimating
(β0, F0) is given by,

ln(β, F ) =
n∑
i=1

[
∆i logF (Ti − β′Xi) + (1−∆i) log{1− F (Ti − β′Xi)}

]
=

∫ [
δ logF (t− β′x) + (1− δ) log{1− F (t− β′x)}

]
dPn(t, x, δ),(2.2)

where Pn is the empirical distribution of the (Ti, Xi,∆i). We will denote the probability measure
of (T,X,∆) by P0. We define the truncated log likelihood,

(2.3) l(ε)n (β, F ) =

∫
F (t−β′x)∈[ε,1−ε]

[
δ logF (t− β′x) + (1− δ) log{1− F (t− β′x)}

]
dPn(t, x, δ),
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where ε ∈ (0, 1/2) is a truncation parameter. In principle one could choose ε = 0, but this choice
gives both theoretical and numerical difficulties and leads to an unbounded score function.

Remark 2.1. If we use truncation, we have to prove that maximizing the log likelihood on a
sub-interval still gives a consistent estimate of β0. This is done in Section 3. If one starts with the
score equation or an estimate thereof, the solution sometimes suggested in the literature, is to add
a constant cn, tending to zero as n→∞, to the factor F (t−β′x){1−F (t−β′x)} which inevitably
will appear in the denominator. This is done in, e.g. [18]; similar ideas involving a sequence (cn) are
used in [16] and [4]. Picking a suitable sequence is more tricky, though, than just using the simple
device in (2.3).

In what follows, we propose an estimation technique for β0 based on three types of smoothed
estimators for F0: (1) the plug-in estimator Fnh,β, (2) the smoothed maximum likelihood estimator
(SMLE) F̃nh,β and (3) the penalized maximum likelihood estimator F̄nλ,β. For fixed β, we will

construct an estimate F̂β of F0 and then maximize the truncated log likelihood l
(ε)
n (β, F̂β) as a

function of β to obtain an estimate of β0.
Throughout the paper, we illustrate our estimates by a simple simulated data example. Before

we formulate our estimates, we first describe the simulation set-up. We consider the model,

(2.4) Yi = 0.5Xi + εi,

where the Xi and Ti are independent Uniform(0, 2) and where the εi are independent random
variables with density f(u) = 384(u − 0.375)(0.625 − u)1[0.375,0.625](u) and independent of the Xi

and Ti. Note that the expectation of the random error E(ε) = 0.5, our linear model contains an
intercept,

E(Yi|Xi = xi) = 0.5 + 0.5xi.

We next list our three methods for estimating β0.

2.1. Method 1: The plug-in estimate Fnh,β. Define

(2.5) Fnh,β(t− β′x) =

∫
δKh(t− β′x− u+ β′y) dPn(u, y, δ)∫
Kh(t− β′x− u+ β′y) dGn(u, y)

,

where Gn is the empirical distribution function of the pairs (Ti, Xi), the probability measure of
(T,X) will be denoted by G, and where Kh is a scaled version of a probability density function K
given by,

Kh(·) = h−1K
(
h−1(·)

)
with bandwidth h > 0,

satisfying condition (K.1). The triweight kernel is used in the simulation examples given in the
remainder of the paper.

(K.1) The probability density K has support [-1,1], is twice continuously differentiable and sym-
metric on R.

The plug-in estimates are not necessarily monotone but we prove in Theorem 3.2 that Fnh,β is
monotone with probability tending to one as n→∞ and β → β0. Another way of writing Fnh,β is
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in terms of ordinary sums. Let

gnh,1,β(t− β′x) =
1

n

n∑
j=1

∆jKh(t− β′x− Tj + β′Xj),(2.6)

and,

gnh,β(t− β′x) =
1

n

n∑
j=1

Kh(t− β′x− Tj + β′Xj),(2.7)

then,

Fnh,β(t− β′x) =
gnh,1,β(t− β′x)

gnh,β(t− β′x)
=

∑n
j=1 ∆jKh(t− β′x− Tj + β′Xj)∑n
j=1Kh(t− β′x− Tj + β′Xj)

,

in which we recognize the Nadaraya-Watson statistic. One could also omit the diagonal term j = i in
the sums above when estimating Fnh,β(Ti−β′Xi) which is often done in the econometric literature
(see e.g. [12]). In our computer experiments however, this gave an estimate of the distribution
function which had a more irregular behavior than the estimator with the diagonal term included.

If we replace F in (2.3) by Fnh,β, the truncated log likelihood becomes a function of β only. We
can define the corresponding score equation for β by,

ψ(ε)
n (β) = 0,

where 0 is the k-dimensional vector with zeros as components and,

ψ(ε)
n (β) =

∫
Fnh,β(t−β′x)∈(ε,1−ε)

∂

∂β
Fnh,β(t− β′x)

δ − Fnh,β(t− β′x)

Fnh,β(t− β′x){1− Fnh,β(t− β′x)}
dPn(t, x, δ),

(2.8)

with

∂

∂β
Fnh,β(t− β′x) =

(
∂

∂β1
Fnh,β(t− β′x), . . . ,

∂

∂βk
Fnh,β(t− β′x)

)
,

The solution of the above equation is not necessarily unique, but by Rolle’s theorem, the max-
imizer of (2.3) will approximately satisfy the score equation. Note, however, that there are some
difficulties in defining the partial derivative of the truncated log likelihood with respect to β. For ex-
ample, the log likelihood has discontinuities, if we consider the lower and upper boundaries F−1

nh,β(ε)

and F−1
nh,β(1− ε) of the integral also as a function of β; so the score function is only an asymptotic

representation of the partial derivatives of the truncated log likelihood.
The estimates of F0 do not have a closed form expression in β; we first have to estimate for fixed

β the corresponding estimate of F0 and next maximize the profile likelihood to obtain the estimate
of β0. The estimates described in Methods 2 and 3 also follow the latter procedure.

2.2. Method 2: The smoothed maximum likelihood estimate (SMLE) F̃nh,β. For fixed β, the

MLE F̂n,β of the distribution function of Y − β′X, is a piecewise constant function with jumps at
a subset of {Ti − β′Xi : i = 1, . . . , n} and can be characterized by the left derivative of the convex
minorant of a cumulative sum diagram (see e.g. proposition 1.2 in [11] on p. 41). The SMLE is
defined by

(2.9) F̃nh,β(t) =

∫
IK

(
t− x
h

)
dF̂n,β(x),
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where,

K(u) =

∫ u

−∞
K(y) dy,

is the integrated kernel. Since the partial derivative w.r.t. β can, however, only be defined at values
β where a slight change of the parameter β does not lead to a change of ordering of the values
Ti−β′Xi, there are several (asymptotically equivalent) ways in which we can represent this partial
derivative. We choose to represent it as the derivative of the toy estimator,

F̃ toynh,β(t− β′x) =

∫
F̂n,β(u− β′y)Kh(t− β′x− u+ β′y)

fT−βX(u− β′y)
dG(u, y)(2.10)

So we use the representation

ψ(ε)
n (β, F̃nh,β)

=

∫
F̃nh,β(t−β′x)∈(ε,1−ε)

∂

∂β
F̃nh,β(t− β′x)

δ − F̃nh,β(t− β′x)

F̃nh,β(t− β′x){1− F̃nh,β(t− β′x)}
dPn(t, x, δ),(2.11)

where we estimate ∂
∂β F̃nh,β(t− β′x) by∫

(y − x)F̂n,β(u− β′y)K ′h(t− β′x− u+ β′y)

fT−β′X(u− β′y)
dGn(u, y)

+

∫
yF̂n,β(u− β′y)Kh(t− β′x− u+ β′y)f ′T−β′X(u− β′y)

fT−β′X(u− β′y)2
dGn(u, y),(2.12)

where x and y are k-dimensional vectors. Note however, that this expression is not used in the

actual computation of F̃nh,β̂n , since in this computation the log likelihood l
(ε)
n (β, F̃nh,β) is directly

maximized w.r.t. the SMLE’s F̃nh,β, and no attempt is made to solve the score equation.

2.3. Method 3: The penalized estimate F̄nλ,β. Another interesting method to construct a smooth
estimator of F0 is via penalization (in analogy to the exposition in section 8.3 of [10]). For each β,
define F̄nλ,β as the monotonic minimizer F of

(2.13)

∫ b̄

ā
{F (x)− F̂n,β(x)}2 dx+ λ

∫ b̄

ā
F ′(x)2 dx,

where F̂n,β is again the MLE for fixed β and the interval [ā, b̄] is chosen in such a way that it
contains all observations Ti − β′Xi. We let ā and b̄ depend on β and choose ā to be the smallest of
the Ti − β′Xi minus

√
λ, where λ is the penalty parameter in (2.13), and let b̄ be the largest order

statistic of the Ti − β′Xi plus
√
λ. Other choices are also possible. For fixed β the solution of the

minimization problem, under the restriction that F (ā) = 0 and F (b̄) = 1, is given by the solution
of the second order differential equation (Euler’s equation)

F ′′(x) = {F (x)− F̂n,β(x)}/λ,

with solution

F̄nλ,β(x) =
1

2
√
λ

∫ b̄

ā
e−|x−y|/

√
λF̂n,β(y) dy + c1e

−(x−ā)
√
λ + c2e

−(b̄−x)/
√
λ,(2.14)
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where c1 and c2 are determined by the boundary conditions F̄nλ,β(ā) = 0 and F̄nλ,β(b̄) = 1. Hence
we have

c1 = −

∫ b̄
ā e
−(y−ā)/

√
λF̂n,β(y) dy + e−(b̄−ā)/

√
λ
{

2
√
λ−

∫ b̄
ā e
−(b̄−y)/

√
λF̂n,β(y) dy

}
2
√
λ
{

1− e−2(b̄−ā)/
√
λ
} ,

and

c2 =
e−(b̄−ā)/

√
λ
∫ b̄
ā e
−(y−ā)/

√
λF̂n,β(y) dy +

{
2
√
λ−

∫ b̄
ā e
−(b̄−y)/

√
λF̂n,β(y) dy

}
2
√
λ
{

1− e−2(b̄−ā)/
√
λ
} .

Using integration by parts, F̄nλ,β(u) can easily be computed as a finite sum

F̄nλ,β(u) = F̂n,β(u)− 1

2
e−(b̄−u)/

√
λ − 1

2

∫ u

ā
e−(u−v)/

√
λdF̂n,β(v) +

1

2

∫ b̄

u
e−(v−u)/

√
λdF̂n,β(v)

+ c1e
−(u−ā)

√
λ + c2e

−(b̄−u)/
√
λ,

where ∫ u

ā
e−(u−v)/

√
λdF̂n,β(v) =

∑
j:uj<u

e−(u−uj)/
√
λpj

and ∫ b̄

u
e−(v−u)/

√
λdF̂n,β(v) =

∑
j:uj≥u

e−(uj−u)/
√
λpj

are finite sums over the (weighted) masses pj at the (usually few) points of jump uj of the ordinary
MLE of the distribution function of Y − β′X. The penalized estimate has again a convolution
structure, like the SMLE, but this time the convolution is with a density of infinite support (the
Laplace density), which, moreover, has a cusp at zero.

For the partial derivative of F̄nλ,β w.r.t. β we use a similar representation as we used for the
estimate, based on the SMLE. The penalized estimate is represented by

F̄nλ,β(t− β′x) =
1

2
√
λ

∫
ā<u−β′y<t−β′x

e−(t−β′x−u+β′y)/
√
λF̂n,β(u− β′y)

fT−β′X(u− β′y)
dG(u, y)

+
1

2
√
λ

∫
t−β′x<u−β′y<b̄

e−(u−β′y−t+β′x)/
√
λF̂n,β(u− β′y)

fT−β′X(u− β′y)
dG(u, y)

+ c1e
−(t−β′x−ā)

√
λ + c2e

−(b̄−t+β′x)/
√
λ.

We estimate ∂
∂β F̄nh,β(t− β′x) by

− 1

2λ

∫
ā<u−β′y<t−β′x

(y − x)F̂n,β(u− β′y)e−(t−β′x−u+β′y)/
√
λ

fT−β′X(u− β′y)
dGn(u, y)

+
1

2
√
λ

∫
t−β′x<u−β′y<b̄

yF̂n,β(u− β′y)e−(u−β′y−t+β′x)/
√
λf ′T−β′X(u− β′y)

fT−β′X(u− β′y)2
dGn(u, y)

+
x√
λ

{
c1e
−(t−β′x−ā)/

√
λ − c2e

−(b̄−t+β′x)/
√
λ
}

+ e−(t−β′x−ā)/
√
λ ∂

∂β
c1 + e−(b̄′−t+β′x)/

√
λ ∂

∂β
c2,

(2.15)
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where x and y are again k-dimensional vectors, and where we estimate the derivatives of c1 and c2

in the same way by representing them as integrals w.r.t. dGn. The expressions are given at the end
of the Appendix.

A picture of the estimates described in Methods 1, 2 and 3 is shown in Figures 1 and 2 for

our simulation example. The function β 7→ l
(ε)
n (β, Fnh,β) and its estimate of the partial derivatives

ψ
(ε)
n (β) for the plug-in estimator are shown in Figure 3(a,b). The same is shown for the SMLE in

Figure 3(c,d) and for the penalized estimate in Figure 4, where we replace Fnh,β in (2.8) by F̃nh,β
and F̄nλ,β for the SMLE and the penalized estimate respectively and use the techniques of (2.12)
and (2.15) to construct the estimate of the partial derivative of the truncated log likelihood w.r.t.
β. It can be seen that the graphs are much smoother for the plug-in estimator. The curves are
constructed by taking 100 equidistant evaluation points between 0.45 and 0.55 (the real value of
β is 0.5) and just connecting the values of the estimator and its derivative respectively, at these
points.

0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6

0.8

1.0

Fig 1: The real F0 (red), the SMLE (dashed, blue), the plug-in estimate (green) and the penalized
estimate (solid, black) for a sample of size n = 1000 with ε = 0.001, h = 0.5n−1/5 and

√
λ =

0.125n−1/5.

In this paper, we give the asymptotic behavior of the estimator defined in Method 1. We prove
that the plug-in estimator β̂n of β0 is consistent and asymptotically normal with an asymptotic
covariance matrix that is arbitrarily close to the information lower bound. As a consequence of
the truncation device used in our method, the information lower bound is not reached, but our
simulation results suggest that the truncation effect is negligible in practice. The proofs are only
given for the plug-in method but we conjecture that our proposed theoretical approach can be used
in proving similar results for the SMLE and penalized estimates. We briefly sketch an outline of
the proof for the other methods in Subsection 2.5.
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0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig 2: (a) The MLE (step function, blue) according to the SMLE (solid, black) and the real F0

(red) and (b) The MLE (step function, blue) according to the penalized estimate (solid, black) and
the real F0 (red) .

2.4. Result on the plug-in estimates and connection with other estimates. Our main result is
the following:

Theorem 2.1. Let β0 = (β0,1, . . . , β0,k) ∈ Rk and let Jη denote the k-dimensional cube {β =
(β1, . . . , βk) : βi ∈ [β0,i − η, β0,i + η]}, for some η > 0. Let the distribution function F0 be twice
continuously differentiable on the interior of the support S of f0 = F ′0, where S is an interval and
let S be contained in the support of the density fT−βX , for each β ∈ Jη.

Furthermore, let, for β ∈ Jη, the density fT−β′X(u) of T − β′X and the conditional density
fX|T−β′X(x|T − β′X = u) of X given T − β′X be twice continuously differentiable functions w.r.t.
u, except possibly at a finite number of points, and let, for β ∈ Jη, fT−β′X stay away from zero on
the support of f0.

Finally, let β 7→ fT−β′X(v) and β 7→ fX|T−β′X(x|T − β′X = v) be continuous functions, for v

and x in the definition domain of the functions and for β ∈ Jη, and let, for some ε ∈ (0, 1/2), β̂n
be the maximizer of
(2.16)

l(ε)n (β) =

∫
Fnh,β(t−β′x)∈[ε,1−ε]

[
δ logFnh,β(t− β′x) + (1− δ) log{1− Fnh,β(t− β′x)}

]
dPn(t, x, δ),

where Fnh,β is the plug-in estimate defined in (2.5), and let the function

β 7→
∫
F0(t−β′x)∈[ε,1−ε]

[
F0(t− β′0x) logF0(t− β′x)

+(1− F0(t− β′0x)) log{1− F0(t− β′x)}
]
dG(t, x), β ∈ Jη,

have a unique maximum at β = β0, where G is the distribution function of (T,X).
Then, as n→∞, and h � n−1/5,

√
n(β̂n−β0) converges in distribution to a k-dimensional nor-

mal distribution, with expectation zero and covariance matrix Iε(β0)−1, where Iε(β0) is the matrix
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0.44 0.46 0.48 0.50 0.52 0.54 0.56

−0.060

−0.058

−0.056

−0.054

(a) l
(ε)
n (β, Fnh,β) as function of β.

0.44 0.46 0.48 0.50 0.52 0.54 0.56

−0.2

−0.1

0.0

0.1

0.2

(b) ψ
(ε)
n (β, Fnh,β) as function of β.

0.44 0.46 0.48 0.50 0.52 0.54 0.56

−0.060

−0.058

−0.056

−0.054

−0.052

(c) l
(ε)
n (β, F̃nh,β) as function of β.

0.44 0.46 0.48 0.50 0.52 0.54 0.56

−0.2

−0.1

0.0

0.1

0.2

(d) ψ
(ε)
n (β, F̃nh,β) as function of β.

Fig 3: The truncated log likelihood l
(ε)
n and its derivative w.r.t. β for the plug-in estimate Fnh,β (a,b)

and the SMLE F̃nh,β (c,d) for a sample of size n = 1000. The bandwidth h = 0.5n−1/5 and ε = 0.001.

The vertical reference line in (a,c) indicates the location of the estimators β̂plugin,1 = 0.498 and

β̂SMLE,1 = 0.493. The vertical reference line in (b,d) indicates the location of the zero of the score

function β̂plugin,2 = 0.499 and β̂SMLE,2 = 0.489.

with elements

(2.17) Iε(β0)ij =

∫
F0(u)∈(ε,1−ε)

covar(Xi, Xj |T − β′0X = u)

F0(u){1− F0(u)}
f0(u)2fT−β′0X(u) du.

Remark 2.2. [19] has (for the 1-dimensional case) the conditions that F0 and u 7→ Eβ(X|T −
βX = u} are three times continuously differentiable instead of our condition of twice differentia-
bility. Their asymptotic variance has the same form as ours, apart from the truncation parameter
ε, but their variance has an implicit truncation since in [19] the integral only extends over a region
where F0(1− F0) stays away from zero by assumption.
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(a) l
(ε)
n (β, F̄nh,β) as function of β.
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0.2

(b) ψ
(ε)
n (β, F̄nh,β) as function of β.

Fig 4: The truncated log likelihood l
(ε)
n and its derivative w.r.t. β for the penalized estimate F̄nh,β

for a sample of size n = 1000. The penalty parameter
√
λ = 0.3n−1/5 and ε = 0.001. The vertical

reference line indicates the location of the estimators β̂penalized,1 = 0.500 in (a) and the location of

the zero of the score function β̂penalized,2 = 0.496 in (b).

Remark 2.3. The authors of [18] propose an estimation equation for β, derived from an in-
equality on the conditional covariance between X and ∆ conditional on T − β′X, which has a
U-statistics representation. Results on U-statistics are used to prove asymptotic normality and ef-
ficiency of their estimator. Note that the plug-in method also suggests the use of U-statistics; by
straightforward calculations, we can write the score function defined in (2.8) as

ψ(ε)
n (β) =

1

n

n∑
i=1

{
∆i − Fnh,β(Ti − β′Xi)

}
∂
∂βFnh,β(Ti − β′Xi)

Fnh,β(Ti − β′Xi){1− Fnh,β(Ti − β′Xi)}
,

=

{
1

n

n∑
i=1

∆i

1
n

∑
j 6=i ∆j(Xj −Xi)K

′
h(Ti − β′Xi − Tj + β′Xj)

gnh,1,β(Ti − β′Xi)

+
1

n

n∑
i=1

(1−∆i)
1
n

∑
j 6=i(1−∆j)(Xj −Xi)K

′
h(Ti − β′Xi − Tj + β′Xj)

gnh,0,β(Ti − β′Xi)

− 1

n

n∑
i=1

1
n

∑
j 6=i(Xj −Xi)K

′
h(Ti − β′Xi − Tj + β′Xj)

gnh,β(Ti − β′Xi)

}
1(ε,1−ε){Fnh,β(Ti − β′Xi)},(2.18)

where gnh,0,β = gnh,β−gnh,1,β, see (2.6) and (2.7). Each of the three terms on the right-hand side of
(2.18) can be rewritten in terms of a scaled second order U-statistics. Obviously, a proof based on
U-statistics would not be generalizable to proofs for the SMLE and the penalized estimators and
requires in addition, lengthy and tedious calculations which are avoided in the current approach
for proving Theorem 2.1. For this reasons, we do not further examine the results on U-statistics.

Remark 2.4. The choice of the bandwidth h (in Methods 1 and 2) and the penalty parameter λ
(in Method 3) is crucial to obtain good estimates of β0. We propose the bandwidth h � n−1/5 which
is the usual bandwidth for ordinary second order kernels; a natural choice for λ is to choose λ �
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n−2/5. Unfortunately, various advices are given in the literature on what smoothing parameters one
should use. [16] has fourth order kernels and uses bandwidths between the orders n−1/6 and n−1/8.
Note that the use of fourth order kernels needs the associated functions to have four derivatives in
order to have the desired bias reduction. [4] advises a bandwidth h such that n−1/5 � h� n−1/8,
excluding the choice h � n−1/5. Both ranges are considerably large and exclude our bandwidth
choice h � n−1/5. [19] considers, for the current status model with a 1-dimensional regression
parameter β, a penalized maximum likelihood estimator defined as the maximizer of

n∑
i=1

{∆i logF (Ti − βXi) + (1−∆i) log{1− F (Ti − βXi)} − λn
∫
F ′′(u)2 du,

where
1/λn = Op

(
n2/5

)
, λ2

n = op

(
n−1/2

)
.

Translated into bandwidth choice (using hn �
√
λn), the conditions correspond to: n−1/5 ≤ h �

n−1/8, suggesting that their conditions do allow the choice h � n−1/5 or λ � n−2/5. [18] states that
the bandwidth choice h � n−1/3 in their estimation procedure will yield an estimate of β0 that is
not efficient, which strengthens our conjecture that the MLE is

√
n-consistent but inefficient. It is

however unclear to us, how to choose the bandwidth in [18].

2.5. Road map of the proof of Theorem 2.1. The older proofs of a result of this type always
used second derivative calculations. As convincingly argued in [28], proofs of this type should only
use first derivatives and that is indeed what we do; our proof follows more or less the structure
of the proof of Theorem 25.54 in [28]. This means that we first prove a Donsker property for the
functions representing the score function, see Lemma 3.2 and next prove (in Lemma 3.3), for the
case that β is 1-dimensional, that the integral w.r.t. dPn of this score function is

op

(
n−1/2 + β̂n − β0

)
,

and that the integral w.r.t. dP0 is asymptotically equivalent to

−(β̂n − β0)Iε(β0),

where Iε(β0) is the generalized Fisher information, given by (2.17). Combining these two results
gives Theorem 2.1.

Very crucial in this proof is Lemma 3.1, which gives L2-bounds on the distance of the estimate
Fnh,β of the distribution function of Y − βX to its limit for fixed β (part (i)) and on the L2-
distance between the first derivative ∂

∂βFnh,β(t−βx) of the estimate w.r.t. the parameter β and its

limit (part(ii)). If the bandwidth h � n−1/5, the first L2-distance is of order n−2/5 and the second
distance is of order n−1/5, allowing us to use the Cauchy-Schwarz inequality on these components.

Another crucial tool is a result of [1], telling us that the functions considered belong to the
right entropy class for applying the equicontinuity lemma of empirical process theory, using that, if
h � n−1/5, the second derivative of the estimator is not consistent, but is in fact square integrable.
Here we use a result in [8] on L2-bounds for derivatives of density estimates.

A similar road map can be followed for the other estimates we introduced above. Lemma 3.1 will
again play a pivotal role. The partial derivative of the estimators, as defined here, are less smooth
than the derivative of the plug-in estimator, but the global behavior is exactly the same, as can be
seen in Figures 3 and 4. Also, the smoothness of these curves increases considerably with increasing
sample size.
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As an example (again for simplicity for the case that β is 1-dimensional), the SMLE will first be
represented by the toy estimator, defined in (2.10), and the partial derivative w.r.t. β is represented
by

∂

∂β
F̃nh,β(t− βx) =

∂

∂β

∫
F̂n,β(u− βy)Kh(t− βx− u+ βy)

fT−βX(u− βy)
dG(u, y)

=

∫
(y − x)F̂n,β(u− βy)K ′h(t− βx− u+ βy)

fT−βX(u− βy)
dG(u, y)

+

∫
yF̂n,β(u− βy)Kh(t− βx− u+ βy)f ′T−βX(u− βy)

fT−βX(u− βy)2
dG(u, y),

not using the (finite) number of points where the derivative cannot be defined. The only difference
with (2.12) is that we integrate w.r.t. dG instead of dGn. The partial derivative is next analyzed
applying smooth functional theory in a somewhat similar way as the toy estimator is used in the
proof of the asymptotic normality and efficiency of the estimate

√
n
∫
κF0 d(F̂n − F0) on the right-

hand side of (10.20) in Section 10.2 of [10]. The penalized estimate can be treated along similar
lines. We chose to prove the result in detail only for the plug-in estimate, since proving the details
for the other estimates would take this paper out of bounds.

3. Asymptotic behavior of the plug-in estimator. In this section, we give the consistency,
asymptotic monotonicity and the asymptotic distribution of the plug-in estimator β̂n defined in
Theorem 2.1.

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied. Then β̂n is a consistent estimator
of β0.

The proof of Theorem 3.1 is given in the Appendix and was inspired by the arguments in section
4 of part II of [11], which were motivated by [15]. To prove the asymptotic monotonicity of the
plug-in estimator, we follow the arguments of Theorem 3.3 of [9]. We get the following result.

Theorem 3.2. Let the conditions of Theorem 2.1 be satisfied, then we have on each interval I
contained in the support of f0:

P
{
Fnh,β̂n is monotonically increasing on I

}
p−→ 1.

For simplicity, we derive Theorem 2.1 for the one-dimensional case, using the results below. Let
β̂n be the maximizer of the truncated log likelihood, defined in (2.16), but now with k = 1. The
partial derivative of Fnh,β(t− βx), given by (2.5), w.r.t. β has the following form:

∂

∂β
Fnh,β(t− βx) =

∫
(y − x){δ − Fnh,β(t− βx)}K ′h(t− βx− u+ βy) dPn(u, y, δ)

gnh,β(t− βx)
,(3.1)

where gnh,β(t − βx) is defined in (2.7). Moreover, for the partial derivative of the truncated log

likelihood l
(ε)
n with respect to β, defined by (2.8), we get

(3.2) ψ(ε)
n (β̂n) = 0.

Although β̂n might not be a unique solution of (3.2), every solution of the score equation will satisfy
the results stated in the remainder of this section. The proof of Theorem 2.1 follows by combining
Lemma 3.2 and Lemma 3.3 given below, proofs of both can be found in the Appendix. A crucial
role in these proofs is played by the following two lemmas, also proved in the Appendix.



CURRENT STATUS REGRESSION 13

Lemma 3.1. Let the conditions of Theorem 2.1 be satisfied and let k = 1.

(i) Let the function Fβ be defined by

Fβ(t− βx) =

∫
F0(t− βx+ (β − β0)y)fX|T−βX(y|t− βx) dy.(3.3)

Then, ∫
ε<Fnh,β(t−βx)<1−ε

{Fnh,β(t− βx)− Fβ(t− βx)}2 dG(t, x) = Op

(
1

nh

)
+Op

(
h4
)
,(3.4)

uniformly in β ∈ [β0 − η, β0 + η].
(ii) Let the function aβ be defined by,

aβ(t− βx) =

∫
(y − x)f0(t− βx+ (β − β0)y)fX|T−βX(y|T − βX = t− βx) dy

+ fT−βX(t− βx)−1

∫
(y − x){F0(t− β0x+ (β − β0)(y − x))− Fβ(t− βx)}

· ∂
∂v

{
fT−βX(v) fX|T−βX(y|T − βX = v)

}∣∣
v=t−βx dy.(3.5)

Then,

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
∂

∂β
Fnh,β(t− βx)− aβ(t− βx)

}2

dG(t, x) = Op

(
1

nh3

)
+Op

(
h2
)
.

(3.6)

uniformly in β ∈ [β0 − η, β0 + η].
(iii) The results of (i) and (ii) remain valid when dG in (3.4) or (3.6) is replaced by dGn.

Under our conditions on the bandwidth h, which we assume to be of the usual order n−1/5,
Lemma 3.1 tells us that (1) the L2-distance between the estimate Fnh,β and Fβ, using dG or dGn

as dominating measure, and t− βx as argument, is of order n−2/5 and (2) the L2-distance between
the derivative of Fnh,β and the function aβ, using dG or dGn as measure, is of order n−1/5. In both
cases we restrict the integration interval for the L2-distance to the interval ε < Fnh,β < 1− ε.

This allows us, for example, to state that, by an application of the Cauchy-Schwarz inequality,

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·
{

F0(t− β0x)− Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}

}
dGn(t, x)(3.7)

= Op

(
n−1/10

)
+ op

(√
n(β − β0)

)
, β → β0,

which is an essential step in the proof of the “Donsker property” given in the next Lemma.

Remark 3.1. Under the assumption that the functions fT−β′X(u) and fX|T−β′X(x|T−β′X = u)
are three times continuously differentiable functions w.r.t. u for β ∈ Jη, the results of Lemma 3.1(i)
can be improved to∫

Fnh,β(t−βx)∈(ε,1−ε)

{
∂

∂β
Fnh,β(t− βx)− aβ(t− βx)

}2

dG(t, x) = Op

(
1

nh3

)
+Op

(
h4
)
.

All bandwidth choices in the range n−1/5 . h � n−1/8 guarantee that the integral in (3.7) is
op (1 +

√
n(β − β0)).
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Lemma 3.2 (Donsker property). Let the conditions of Theorem 2.1 be satisfied and let [a, b] be
the support of f0. Let η > 0 be chosen in such a way that a1(β) = F−1

β (ε) > a, b1(β) = F−1
β (1−ε) < b

and Fβ is bounded away from 0 and 1 on [a1(β), b1(β)], for each β ∈ [β0 − η, β0 + η] where Fβ is
defined in (3.3).

Then, for β ∈ [β0 − η, β0 + η],

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

aβ(t− βx)
δ − Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}
d
(
Pn − P0

)
(t, x, δ)(3.8)

is asymptotically normal, with expectation zero and asymptotic variance∫
Fβ(t−βx)∈(ε,1−ε)

aβ(t− βx)2F0(t− β0x)− 2F0(t− β0x)Fβ(t− βx) + Fβ(t− βx)2

Fβ(t− βx)2{1− Fβ(t− βx)}2
dG(t, x)

−

{∫
Fβ(t−βx)∈(ε,1−ε)

aβ(t− βx)
F0(t− β0x)− Fβ(t− βx)

Fβ(t− βx){1− Fβ(t− βx)}
dG(t, x)

}2

,(3.9)

where aβ is defined in (3.5).

Remark 3.2. Note that the variance (3.9) given in Lemma 3.2 is for β = β0 given by:

Iε(β0)
def
=

∫
F0(t−β0x)∈(ε,1−ε)

aβ0(t− β0x)2

F0(t− β0x){1− F0(t− β0x)
dG(t, x),(3.10)

where

aβ0(t− β0x) = f0(t− β0x)Eβ0{X − x|T − β0X = t− β0x}.

When ε = 0, Iε(β0) equals the information bound for the current status linear regression model
(see e.g [14]).

Next we use that β̂n is a maximum likelihood estimator and in particular a solution of the score
equation (3.2).

Lemma 3.3. Let the conditions of Theorem 2.1 be satisfied. Then,

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dP0(t, x, δ)(3.11)

is asymptotically equivalent to −
√
nIε(β0)(β̂n − β0), where Iε(β0) is given by (3.10), and

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dPn(t, x, δ)

= op

(
1 +
√
n(β̂n − β0)

)
.(3.12)

Theorem 2.1 then follows by combining Lemma 3.2 and Lemma 3.3. The higher-dimensional
extension is straightforward. Perhaps the easiest method is to use the Cramér-Wold device and
consider linear combinations of the components of β̂n on which we apply the preceding arguments.

In Section 4 we also need the following representation of
√
n(β̂n − β0).
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Theorem 3.3. Let the conditions of Theorem 2.1 be satisfied. Then,

√
n(β̂n − β0)

= n−1/2Iε(β0)−1
n∑
i=1

f0(Ti − β0Xi){Eβ0(Xi|Ti − β0Xi)−Xi}

· ∆i − F0(Ti − β0Xi)

F0(Ti − β0Xi){1− F0(Ti − β0Xi)}
1(ε,1−ε) {F0(Ti − β0Xi)}+ op(1).

Remark 3.3. Lemma 3.3 and Theorem 3.3 show two sides of the coin, so to speak, of the
proof of the asymptotic normality and efficiency of β̂n. Using the property that β̂n is a maximum
likelihood estimator, we get that:

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dPn(t, x, δ)

= op

(
1 +
√
n(β̂n − β0)

)
.

and therefore that the leading asymptotic behavior of the integral w.r.t. d(Pn − P0) is given by

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dP0(t, x, δ),

which is asymptotically equivalent to −
√
nIε(β0)(β̂n − β0), using the Donsker property.

Theorem 3.3 shows that the leading term of
√
n(β̂n − β0) is given by a sum of independent

random variables, involving the efficient score function

f0(t− β0x){Eβ0(X|T − β0X = t− β0x)− x} δ − F0(t− β0x)

F0(t− β0x){1− F0(t− β0x)}
1(ε,1−ε) {F0(t− β0x)} .

In this case the integral w.r.t. dP0 is zero, whereas in the preceding representation the integral
w.r.t. dPn was (sufficiently close to) zero.

The last representation plays a crucial role in determining the variance of smooth functionals,
of which the intercept is an example. The representation of Theorem 3.3 also indicates that the
U-statistics representation, which can be used for proofs of the asymptotic behavior of the plug-
in estimator, does not give the most natural approach to the proof of asymptotic normality and
efficiency of β̂n.

4. Estimation of the intercept. We want to estimate the intercept

(4.1) α =

∫
u dF0(u).

We can take the plug-in estimate β̂n of β0, by using a bandwidth of order n−1/5 and the maximum
likelihood procedure, as before. However, in estimating α, as defined by (4.1), we have to estimate
F0 with a smaller bandwidth h, satisfying h � n−1/4 to avoid bias, for example h � n−1/3. The
matter is discussed in [4], p. 1253.

We have the following result of which the proof can be found in the Appendix.
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Theorem 4.1. Let the conditions of Theorem 2.1 be satisfied, and let β̂n be the k-dimensional
estimate of β0 as obtained by the maximum likelihood procedure, described in Theorem 2.1, using a
bandwidth of order n−1/5. Let Fnh,β̂n be a plug-in estimate of F0, using β̂n as the estimate of β0, but

using a bandwidth h of order n−1/3 instead of n−1/5. Finally, let α̂n be the estimate of α, defined
by ∫

u dFnh,β̂n(u).

Then
√
n(α̂n − α) is asymptotically normal, with expectation zero and variance

σ2 def
= a(β0)′Iε(β0)−1 a(β0) +

∫
F0(v){1− F0(v)}

fT−β0X(v)
dv,(4.2)

where a(β0) is the k-dimensional vector, defined by

a(β0) =

∫
Eβ0{X|T − β′0X = u}f0(u) du,

and Iε(β0) is as in Theorem 2.1.

Remark 4.1. We chose the bandwidth of order n−1/3 for specificity, but other choices are also
possible. We can in fact choose n−1/2 � h� n−1/4. The bandwidth of order n−1/3 corresponds to
the automatic bandwidth choice of the MLE of F0, also using the estimate β̂n of β0.

Remark 4.2. Note that the variance corresponds to the information lower bound for smooth
functionals in the binary choice model, given in [4]. The second part of the expression for the
variance on the right-hand side of (4.2) is familiar from current status theory, see e.g. (10.7), p. 287
of [10].

Remark 4.3. Instead of considering the plug-in estimate, we could also consider the SMLE,
described in Subsection 2.2. After having determined an estimate β̂ in this way, we next estimate
α by

(4.3) α̂ =

∫
x dF̂n,β̂(x),

where F̂n,β̂ is the MLE and not the SMLE corresponding to this β̂ to avoid bias, in accordance
with re-estimating Fnh,β̂n under a different bandwidth as done in Theorem 4.1. The MLE is roughly

comparable with a kernel estimate with a locally adaptive bandwidth of order n−1/3, and the bias
is vanishing in the local asymptotic distribution.

5. Computation and simulations. The computation of our estimates is relatively straight-
forward in all cases. For the plug-in estimate, we simply compute the estimate as a ratio of two
kernel estimators for fixed β. Next we maximize the log likelihood over β, using Brent’s optimization
procedure for non-linear optimization in one dimension. For dimensions larger than one, Broyden’s
method can be used. For the SMLE and the penalized estimator, we first compute the MLE for
fixed β by the so-called “pool adjacent violators” algorithm for computing the convex minorant of
the so-called “cusum diagram”, consisting of the points (0, 0) andi, i∑

j=1

∆j

 , i = 1, . . . , n,
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for the observations (Ti, Xi,∆i), where the ordering is according to the ordering of the Ti − β′Xi,
for fixed β: T1 − β′X1 ≤ T2 − β′X2, . . . . After the MLE is computed for fixed β, we can compute
either the SMLE or the penalized MLE. Since the SMLE is in fact a weighted sum of the few masses
of the MLE, computation is very fast. The same is true for the penalized MLE, where only the
constants c1 and c2 have to be determined from two linear equations, once we have determined the
MLE. The estimate of β0 is then again determined by an optimization algorithm.

Some results from the simulations of our model are given in Tables 1 and 2. Table 1 (resp. Table
2) contains the mean value of the estimate, averaged over N = 1000 iterations, and n times the
variance of the estimate of β0 = 0.5 (resp. α0 = 0.5) for the different methods described above for
different sample sizes n and different truncation parameters ε. We chose the bandwidth h = 0.5n−1/5

for the plug-in and SMLE methods and the penalty parameter
√
λ = 0.125n−1/5 for the penalized

method based on an investigation of the mean squared error (MSE) for different choices of c in
h = cn−1/5 and

√
λ = cn−1/5. Details on how to choose the bandwidth in practice are given in

Subsection 5.1. From Tables 1 and 2, it is seen that the estimates obtained without truncation,
i.e. ε = 0, are not favored above those obtained with our proposed truncation device. This can
be explained by the instable behavior of the likelihood at the boundary. The true asymptotic
values for the variance of

√
n(β̂n − β0) in our simulation model, obtained via the inverse of the

Fisher information Iε(β0), are 0.151707 without truncation, 0.153859 for ε = 0.0001, 0.158699 for
ε = 0.001 and 0.17596 for ε = 0.1. Our results show slow convergence to these bounds. We advise to
use a truncation parameter ε of 0.001 or smaller in practice. Tables 1 and 2 show that all proposed
methods perform reasonably well. A drawback of the plug-in method however is the long computing
time for large sample sizes, whereas the computation for the SMLE and the penalized methods is
fast even for the larger samples. Also added to Tables 1 and 2 is the performance of the MLE,
we see that the variance stabilizes when the sample sizes increases but remains larger than the
corresponding values of the variances for the other methods, strengthening our belief that the MLE
is
√
n−consistent but not efficient.

Table 1
The mean value of the estimate and n times the variance of the estimate of β0 for different methods, h = 0.5n−1/5,√

λ = 0.125n−1/5 and N = 1000.

Plug-in SMLE Penalized MLE.

ε n mean(β̂n) nvar(β̂n) mean(β̂n) nvar(β̂n) mean(β̂n) nvar(β̂n) mean(β̂n) nvar(β̂n)

0.001 100 0.499562 0.245172 0.498230 0.206338 0.496977 0.211718 0.473455 0.186408
500 0.498857 0.191857 0.498862 0.199093 0.498812 0.201979 0.498111 0.306398
1000 0.499502 0.192223 0.499433 0.197447 0.499432 0.197220 0.499528 0.296097
5000 0.500314 0.181421 0.500249 0.185238 0.500151 0.187605 0.500264 0.219442
10000 0.500120 0.172043 0.500119 0.174606 0.500118 0.179449 0.500159 0.233758
20000 0.500096 0.174197 0.500090 0.170635 0.500034 0.183646 0.500050 0.236070

0 100 0.499587 0.244887 0.498174 0.205513 0.496973 0.211676 0.473455 0.186408
500 0.498857 0.191591 0.498855 0.198557 0.498825 0.201961 0.498111 0.306398
1000 0.499498 0.191797 0.499414 0.197101 0.499438 0.196697 0.499528 0.296097
5000 0.500310 0.180752 0.500235 0.184497 0.500163 0.187588 0.500264 0.219442
10000 0.5001187 0.171181 0.500110 0.174371 0.500115 0.180662 0.500159 0.233758
20000 0.500094 0.173041 0.500091 0.169200 0.500035 0.182125 0.500050 0.236070

5.1. Bandwidth selection. We define the optimal constant copt in h = cn−1/5 and
√
λ = cn−1/5

as the minimizer of MSE,

copt = arg min
c
MSE(c) = arg min

c
Eβ0(β̂n,hc − β0)2,
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Table 2
The mean value of the estimate and n times the variance of the estimate of α0 for different methods, h = 0.5n−1/5

and
√
λ = 0.125n−1/5 are used in the estimation of β0, hα = 0.75n−1/3 is used for the estimation of α0, N = 1000.

Plug-in SMLE Penalized MLE.

ε n mean(α̂n) nvar(α̂n) mean(α̂n) nvar(α̂n) mean(α̂n) nvar(α̂n) mean(α̂n) nvar(α̂n)

0.001 100 0.495729 0.332986 0.510547 0.303242 0.511939 0.307928 0.534931 0.302948
500 0.498932 0.254040 0.503088 0.265176 0.503083 0.265234 0.503871 0.374480
1000 0.498385 0.270085 0.501460 0.274942 0.501440 0.279836 0.501292 0.381873
5000 0.501594 0.241959 0.499929 0.248425 0.500031 0.249143 0.499905 0.280939
10000 0.501679 0.246909 0.499926 0.251921 0.499930 0.251029 0.499882 0.310525
20000 0.501658 0.245014 0.499930 0.240735 0.499985 0.257535 0.499969 0.313966

0 100 0.495709 0.332949 0.510465 0.301574 0.511950 0.307784 0.534931 0.302948
500 0.498930 0.257908 0.503064 0.263495 0.503062 0.265623 0.503871 0.374480
1000 0.498389 0.269702 0.501494 0.275547 0.501428 0.279513 0.501292 0.381873
5000 0.501597 0.241294 0.499941 0.257552 0.500021 0.249149 0.499905 0.280939
10000 0.501680 0.245993 0.499936 0.250405 0.499932 0.251583 0.499882 0.310525
20000 0.501660 0.244042 0.499929 0.238863 0.499983 0.255136 0.499969 0.313966

where β̂n,hc is the estimate obtained when the constant c in chosen in the estimation method. A
picture of the Monte Carlo estimate of MSE as a function of c is shown for the three methods
in Figure 5, where we estimated MSE(c) on a grid c = 0.01, 0.05, 0.10, · · · , 0.95, for a sample
size n = 1000 and truncation parameter ε = 0.001 by a Monte Carlo experiment with N = 1000
simulation runs,

M̂SE(c) = N−1
N∑
j=1

(β̂jn,hc − β0)2,(5.1)

where β̂jn,hc is the estimate of β0 in the j-th simulation run, j = 1, . . . , N . It is seen from this
picture that the optimal bandwidth for the penalized method is clearly smaller than for the other
two methods, and the plug-in estimate seems to have the largest optimal bandwidth.

0.0 0.2 0.4 0.6 0.8 1.0

0.20

0.22

0.24

0.26

0.28

Fig 5: Estimated MSE of β̂n for the plug-in estimate (blue), the SMLE (red) and the penalized
estimate (dashed), with n = 1000 and ε = 0.001, and using N = 1000 Monte Carlo samples.

Since F0 and β0 are unknown in practice, we cannot computeMSE. We use the bootstrap method
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proposed by [24] to obtain an estimate of MSE. Our proposed estimates of the distribution function
F0 satisfy the conditions of Theorem 3 in [24] and the consistency of the bootstrap is guaranteed.
Note that it follows from [17] and [23] that naive bootstrapping, by resampling with replacement
(Ti, Xi,∆i), or by generating bootstrap samples from the MLE, is inconsistent for reproducing the
distribution of the MLE.

The method works as follows (for the SMLE, the others methods work similar). We let h0 =
c0n
−1/5 be an initial choice of the bandwidth and calculate the SMLE estimates β̂n,h0 and F̃n,hc0

based on the original sample (Xi, Ti,∆i), i = 1, . . . , n. We generate a bootstrap sample (Xi, Ti,∆
∗
i ), i =

1, . . . , n where the (Xi, Ti) correspond to the (Xi, Ti) in the original sample and where the indicator
∆∗i is generated from a Bernoulli distribution with probability F̃n,h0(Ti−β̂n,h0Xi) and next estimate

β̂∗n,hc from this bootstrap sample. We repeat this B times and estimate MSE(c) by,

̂MSEB(c) = B−1
B∑
b=1

(β̂∗bn,hc − β̂n,hc0 )2,(5.2)

where β̂∗bn,hc is the bootstrap estimate in the b-th bootstrap run. The optimal bandwidth ĥopt =

ĉoptn
−1/5 where ĉopt is defined as the minimizer of ̂MSEB(c).

To analyze the behavior of the bootstrap method, we compared the Monte Carlo estimate of
MSE, defined in (5.1), (based on N = 1000 samples of size n = 1000) to the bootstrap MSE
defined in (5.2) (based on a single sample of size n = 1000) in Figure 6 for the plug-in and SMLE
method and in Figure 7 for the penalized method. The figures show that the Monte Carlo MSE
and the bootstrap MSE are in line, which illustrates the consistency of the method. The choice
of the initial bandwidth does effect the size of the estimated MSE but not the behavior of the
estimate and we conclude that this bootstrap algorithm can be used to select an optimal bandwidth
or penalty parameter in the described methods above.
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(b)

Fig 6: Estimated MSE(c) plot of β̂n obtained from 1000 Monte Carlo simulations (red, solid) versus
the bootstrap MSE for c0 = 0.25 (dashed, black) with B = 10000, n = 1000 and ε = 0.001 for (a)
the plug-in method and (b) the SMLE method.
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Fig 7: Estimated MSE(c) plot of β̂n for the penalized method, obtained from 1000 Monte Carlo
simulations (red, solid) versus the bootstrap MSE for c0 = 0.125 (dashed, black) with B = 10000,
n = 1000 and ε = 0.001.

6. Appendix. In this section we give the proofs of the results of the previous sections.

Proof of Theorem 3.1. Consider maximizing
(6.1)

l(ε)n (Fnh,β) =

∫
ε<Fnh,β(t−β′x)<1−ε

{δ logFnh,β(t− β′x) + (1− δ) log{1− Fnh,β(t− β′x)} dPn(t, x, δ),

over β, where Fnh,β is defined by (2.5). Let β̂n be the value maximizing (6.1) via Fnh,β̂n . Since β̂n

is the maximizer of l
(ε)
n (Fnh,β), we must have, for each λ ∈ (0, 1):

l(ε)n

(
(1− λ)Fnh,β̂n + λFnh,β0

)
− l(ε)n

(
Fnh,β̂n

)
≤ 0.

Hence,

lim sup
λ↓0

λ−1
{
l(ε)n ((1− λ)Fnh,β̂n + λFnh,β0)− l(ε)n (Fnh,β̂n)

}
≤ 0.

Note that

lim sup
λ↓0

λ−1
{
l(ε)n ((1− λ)Fnh,β̂n + λFnh,β0)− l(ε)n (Fnh,β̂n)

}
= lim sup

λ↓0
λ−1

{∫
ε<(1−λ)Fnh,β̂n (t−β̂′nx)+λFnh,β0 (t−β′0x)<1−ε{

δ log
{

(1− λ)Fnh,β̂n(t− xβ̂′nx) + λFnh,β0(t− β′0x)
}

+(1− δ) log
{

1− (1− λ)Fnh,β̂n(t− β̂′nx)− λFnh,β0(t− β′0x)
}}

dPn(t, x, δ)

−
∫
ε<Fnh,β̂n (t−β̂′nx)<1−ε

{
δ logFnh,β̂n(t− β̂′nx) + (1− δ) log

{
1− Fnh,β̂n(t− β̂′nx)

}}
dPn(t, x, δ)

}
.

(6.2)
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Since the areas of integration do not coincide for both integrals, we cannot combine the difference
between these two integrals into one integral. In what follows, we first show that the limits for
λ ↓ 0, considered over the regions where both terms disagree are zero with probability one. Let An
be defined by

An = {(t, x) : Fnh,β̂n(t− β̂′nx) ≤ ε, (1− λ)Fnh,β̂n(t− β̂′nx) + λFnh,β0(t− β′0x) > ε}.

and let An,λ be defined by

An,λ = {(t, x) : Fnh,β̂n(t− β̂′nx) ≤ ε− λ, (1− λ)Fnh,β̂n(t− xβ̂′nx) + λFnh,β0(t− β′0x) > ε}.

Then, for (t, x) ∈ An,λ,

λ
{
Fnh,β0(t− β′0x)− Fnh,β̂n(t− β̂′nx)

}
= (1− λ)Fnh,β̂n(t− β̂′nx) + λFnh,β0(t− β′0x)− Fnh,β̂n(t− β̂′nx) > λ,

and hence
Fnh,β0(t− β′0x)− Fnh,β̂n(t− β̂′nx) > 1,

which cannot occur. So we find that the set An is equal to the set A′n,λ, defined by

A′n,λ = {(t, x) : ε− λ < Fnh,β̂n(t− β̂′nx) ≤ ε, (1− λ)Fnh,β̂n(t− β̂′nx) + λFnh,β0(t− β′0x) > ε}.

Now note that, because of the preceding relation,

1

λ

∫
ε−λ<Fnh,β̂n (t−β̂′nx)≤ε

{
δ log

{
(1− λ)Fnh,β̂n(t− β̂′nx) + λFnh,β0(t− β′0x)

}
+(1− δ) log

{
1− (1− λ)Fnh,β̂n(t− β̂′nx)− λFnh,β0(t− β′0x)

}}
dPn

= (nλ)−1
∑

i:Fnh,β̂n (Ti−β̂′nXi)∈(ε−λ,ε]

{
∆i log

{
(1− λ)Fnh,β̂n(Ti − β̂′nXi) + λFnh,β0(Ti − β′0Xi)

}
+(1−∆i) log

{
1− (1− λ)Fnh,β̂n(Ti − β̂′nXi)− λFnh,β0(Ti − β′0Xi)

}}
−→ 0, λ ↓ 0.

In fact, there is, with probability one, a (random) λ̄ > 0 such that

{i ∈ {1, . . . , n} : Fnh,β̂n(Ti − β̂nXi) ∈ (ε− λ, ε]} = ∅ for λ < λ̄

and therefore the sum in the expression above will be zero for λ < λ̄. We can deal in a similar way
with the other situations in which parts of the integration regions in the two integrals in (6.2) do
not match. Hence,

lim sup
λ↓0

λ−1
{
l(ε)((1− λ)Fnh,β̂n + λFnh,β0)− l(ε)(Fnh,β̂n)

}
=

∫
ε<Fnh,β̂n (t−β̂′nx)<1−ε

{
δ
Fnh,β0(t− β′0x)− Fnh,β̂n(t− β̂′nx)

Fnh,β̂n(t− β̂′nx)

+(1− δ)
1− Fnh,β0(t− β′0x)− (1− Fnh,β̂n(t− β̂′nx))

1− Fnh,β̂n(t− β̂′nx)

}
dPn(t, x, δ),
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and we get,∫
ε<Fnh,β̂n (t−β̂′nx)<1−ε

{
δ
Fnh,β0(t− β′0x)

Fnh,β̂n(t− β̂′nx)
+ (1− δ)

1− Fnh,β0(t− β′0x)

1− Fnh,β̂n(t− β̂′nx

}
dPn(t, x, δ)

≤
∫
ε<Fnh,β̂n (t−β̂′nx)<1−ε

dGn(t, x),

We assume that β̂n is contained in the cube Jη, and hence the sequence (β̂n) has a subsequence

(β̂nk = β̂nk(ω)), converging to an element β. So, if β̂nk = β̂nk(ω) −→ β, we get,

Fnkh,β̂nk
(t− β̂′nkx) −→ Fβ(t− β′x)

def
=

∫
F0(t− β′x+ (β − β0)′y)fX|T−β′X(y|t− β′x) dy,

and since Fnh,β̂n(t− β̂′nx) and Fβ(t− β′x) stay away from 0 and 1, we get from the convergence of

Fnkh,β0(t− β′0x;ω) to F0(t− β′0x) and Fnkh,β̂nk
(t− β̂′nkx;ω) to Fβ(t− β′x) that

lim
k→∞

∫
ε<Fnh,β̂nk

(t−β̂′nkx)<1−ε

δ Fnkh,β0(t− β′0x;ω)

Fnkh,β̂nk
(t− β̂′nkx;ω)

+ (1− δ)
Fnkh,β0(t− β′0x;ω)

1− Fnkh,β̂nk (t− β̂′nkx;ω)

 dPnk(t, x, δ)

=

∫
ε<Fβ(t−β′x)<1−ε

{
F0(t− β′0x)2

Fβ(t− β′x)
+

(1− F0(t− β′0x))2

1− Fβ(t− β′x)

}
dG(t, x)

≤
∫
ε<Fβ(t−β′x)<1−ε

dG(t, x).

This can only happen if Fβ(t−β′x) = F0(t−β′0x) for all (t, x) such that ε < Fβ(t−β′x) < 1−ε (see
p. 78 of [11]). Since the argument can be repeated for each subsequence, this gives the consistency
of β̂n.

To prove Theorem 3.2, we start with some results on the consistency of the kernel estimators
gnh,β̂n , gnh1,β̂n

and their derivatives g′
nh,β̂n

and g′
nh1,β̂n

stated in the next Lemma.
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Lemma 6.1. Let the conditions of Theorem 2.1 be satisfied and let k = 1, then we have,

gnh,β̂n(t− β̂nx)− gnh,β0(t− β0x)

= (β̂n − β0)
∂

∂t

{
E{X|T − β0X = t− β0x}g(t− β0x)

}
+ op(β̂n − β0),

gnh1,β̂n
(t− β̂nx)− gnh1,β0(t− β0x)

= (β̂n − β0)

{
F0(t− β0x)

∂

∂t

{
E{X|T − β0X = t− β0x}g(t− β0x)

}
+ f0(t− β0x){E{X|T − β0X = t− β0x}g(t− β0x)}

}
+op(β̂n − β0),

g′
nh,β̂n

(t− β̂nx) = g′nh,β0(t− β0x)

= (β̂n − β0)
∂2

∂t2
{
E{X|T − β0X = t− β0x}g(t− β0x)

}
+Op(β̂n − β0),

and,

g′
nh1,β̂n

(t− β̂nx)− g′nh1,β0(t− β0x)

= (β̂n − β0)

{
f ′0(t− β0x)E{X|T − β0X = t− β0x}g(t− β0x)

+ 2f0(t− β0x)
∂

∂t

{
E{X|T − β0X = t− β0x}g(t− β0x)

}
+ F0(t− β0x)

∂2

∂t2
{
E{X|T − β0X = t− β0x}g(t− β0x)

}}
+Op(β̂n − β0).

Proof of Lemma 6.1. For the first expression, we obtain,

gnh,β̂n(t− β̂nx)− gnh,b0(t− β0x)

=

∫ {
Kh(t− β̂nx− u− β̂ny)−Kh(t− β0x− u− β0y)

}
dGn(u, y)

= (β̂n − β0)

∫
(y − x)K ′h(t− β0x− u+ β0y) dGn(u, y) + op(β̂n − β0)

= (β̂n − β0)

∫
(y − x)K ′h(t− β0x− u+ β0y) dG(u, y)

+ (β̂n − β0)

∫
(y − x)K ′h(t− β0x− u+ β0y) d(Gn −G)(u, y) + op(β̂n − β0)

Using integration by parts and standard kernel calculations, we get∫
(y − x)K ′h(t− β0x− u+ β0y) dG(u, y) =

∂

∂t
{E(X|T − β0X = t− β0x)g(t− β0x)}+O(h).

Also, ∫
(y − x)K ′h(t− β0x− u+ β0y) d(Gn −G)(u, y) = Op

(
1

nh3

)
.

This proves the first result. The second result of Lemma 6.1 follows analogously.
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For the third expression, we have using successive integration by parts,

g′
n,β̂n

(t− β̂nx)− g′n,β0(t− β0x)

=

∫ {
K ′h(t− β̂nx− u− β̂ny)−K ′h(t− β0x− u− β0y)

}
dGn(u, y)

= (β̂n − β0)

∫
(y − x)K ′′h(t− β0x− u+ β0y) dG(u, y)

+ (β̂n − β0)

∫
(y − x)K ′′h(t− β0x− u+ β0y) d(Gn −G)(u, y) + op(β̂n − β0)

Applying integration by parts twice and using standard kernel calculations, we get∫
(y − x)K ′′h(t− β0x− u+ β0y) dG(u, y) =

∂2

∂t2
{E(X|T − β0X = t− β0x)g(t− β0x)}+O(1).

Also, ∫
(y − x)K ′′h(t− β0x− u+ β0y) d(Gn −G)(u, y) = Op (1) ,

since for h � n−1/5, the order of the variance of this term is given by the order of,∫
(y − x)2(K ′′h)2(t− β0x− u+ β0y)dG(u, y) = O

(
1

nh5

)
,

The third result of the lemma follows, to obtain the last result we apply similar calculations.

Lemma 6.2. Under the assumptions of Theorem 2.1,

sup
t,x
|gn,β̂n(t− β̂nx)− g(t− β0x)| = op(1), sup

t,x
|g′
n,β̂n

(t− β̂nx)− g′(t− β0x)| = op(1),

sup
t,x
|gn1,β̂n

(t− β̂nx)− g1(t− β0x)| = op(1), and sup
t,x
|g′
n1,β̂n

(t− β̂nx)− g′1(t− β0x)| = op(1).

Proof. For the first result, we have,

sup
t,x
|gn,β̂n(t− β̂nx)− g(t− β0x)| ≤ sup

t,x
|gn,β̂n(t− β̂nx)− gn,β0(t− β0x)|

+ sup
t,x
|gn,β0(t− β0x)− g(t− β0x)|

. |β̂n − β0| sup
t,x

∣∣∣ ∂
∂t

{
E{X − x|T − β0X = t− β0x}g(t− β0x)

}∣∣∣
+ sup

t,x
|gn,β0(t− β0x)− g(t− β0x)|.

The result now follows from the convergence of β̂n to β0, the (two times) continuous differentiability
of the functions fT−β′X and fX|T−β′X and Lemma A.2 in [9]. The other results are proved similarly.
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Proof of Theorem 3.2. The proof of Theorem 3.2 follows by similar arguments as the proof
of Theorem 3.3 in [9] on p. 26, using the result of Lemma 6.2.

proof of Lemma 3.1. Part(i)
Recall that,

Fnh,β(t− βx) =
gnh,1,β(t− βx)

gnh,β(t− βx)

where

gnh,1,β(t− βx) =

∫
δKh(t− βx− u+ βy) dPn(u, y, δ),

and

gnh,β(t− βx) =

∫
Kh(t− βx− u+ βy) dPn(u, y, δ).

Moreover,

Fβ(t− βx) =

∫
F0(t− β0x+ (β − β0)(y − x))fX|T−βX(y|t− βx) dy.

We first investigate the bias part.

Egnh,1,β(t− βx) =

∫
F0(u− β0y)Kh(t− βx− u+ βy) dG(u, y)

=

∫
F0(v + (β − β0)y)Kh(t− βx− v) fT−βX(v) fX|T−βX(y|v) dy dv

=

∫
F0(t− βx+ (β − β0)y − hw)K(w) fT−βX(t− βx− hw) fX|T−βX(y|t− βx− hw) dy dw

= fT−βX(t− βx)

∫
F0(t− β0x+ (β − β0)(y − x))fX|T−βX(y|t− βx) dy +O

(
h2
)
,

uniformly in β ∈ [β0 − η, β0 + η] and t, x varying over a finite interval, due to the assumptions of
Theorem 2.1. In a similar way, we get

Egnh,β(t− βx) = fT−βX(t− βx) +O
(
h2
)
,

uniformly in β ∈ [β0 − η, β0 + η] and t, x varying over a finite interval. So we find:

Egnh,1,β(t− βx)

Egnh,1,β(t− βx)
= Fβ(t− βx) +O

(
h2
)
.

uniformly in β ∈ [β0 − η, β0 + η] and t, x varying over a finite interval, such that Egnh,1,β(t − βx)
stays away from zero.

So we obtain

Fnh,β(t− βx)− Fβ(t− βx)

=
gnh,1,β(t− βx)− Egnh,1,β(t− βx)

gnh,β(t− βx)
+ Egnh,1,β(t− βx)

Egnh,β(t− βx)− gnh,β(t− βx)

gnh,β(t− βx)Egnh,β(t− βx)
+O

(
h2
)
,
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and

{Fnh,β(t− βx)− Fβ(t− βx)}2

≤ 3

{
gnh,1,β(t− βx)− Egnh,1,β(t− βx)

gnh,β(t− βx)

}2

+ 3

{
Egnh,1,β(t− βx)

Egnh,β(t− βx)− gnh,β(t− βx)

gnh,β(t− βx)Egnh,β(t− βx)

}2

+O
(
h4
)
.

(6.3)

uniformly in β ∈ [β0 − η, β0 + η] and t, x varying over a finite interval, such that Egnh,1,β(t − βx)
stays away from zero.

Since η > 0 is chosen in such a way that a1(β) = F−1
β (ε) > a, b1(β) = F−1

β (1 − ε) < b, for
each β ∈ [β0 − η, β0 + η] and since gnh,β stays away from zero with probability tending to one if
ε < Fnh,β(t− βx) < 1− ε we get∫

ε<Fnh,β(t−βx)<1−ε

{
gnh,1,β(t− βx)− Egnh,1,β(t− βx)

gnh,β(t− βx)

}2

dG(t, x)

.
∫
ε<Fnh,β(t−βx)<1−ε

{gnh,1,β(t− βx)− Egnh,1,β(t− βx)}2 dG(t, x)

Furthermore

E {gnh,1,β(t− βx)− Egnh,1,β(t− βx)}2 = E
{∫

δKh(t− βx− u+ βy) d(Pn − P0)(u, y, δ)

}2

= O

(
1

nh

)
,

uniformly for (t, x) in a bounded region, so we get

E
∫
ε<Fnh,β(t−βx)<1−ε

{gnh,1,β(t− βx)− Egnh,1,β(t− βx)}2 dG(t, x) = O

(
1

nh

)
.

Hence ∫
ε<Fnh,β(t−βx)<1−ε

{
gnh,1,β(t− βx)− Egnh,1,β(t− βx)

gnh,β(t− βx)

}2

dG(t, x) = Op

(
1

nh

)
.

The second term on the right-hand side of (6.3) can be treated in a similar way. So we get (3.4).
This proves part (i).

We next replace dG in part (i) by dGn and we get∫
ε<Fnh,β(t−βx)<1−ε

{
gnh,1,β(t− βx)− Egnh,1,β(t− βx)

gnh,β(t− βx)

}2

dGn(t, x)

.
∫
ε<Fnh,β(t−βx)<1−ε

{gnh,1,β(t− βx)− Egnh,1,β(t− βx)}2 dGn(t, x)

=
1

n

n∑
i=1

{gnh,1,β(Ti − βXi)− Egnh,1,β(Ti − βXi)}2 1{ε<Fnh,β(Ti−βXi)<1−ε}.
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Moreover,

E
1

n

n∑
i=1

{gnh,1,β(Ti − βXi)− Egnh,1,β(Ti − βXi)}2 1{ε<Fnh,β(Ti−βXi)<1−ε}

= E {gnh,1,β(T1 − βX1)− Egnh,1,β(T1 − βX1)}2 1{ε<Fnh,β(T1−βX1)<1−ε}

. E
∫
ε/2<Fβ(t−βx)<1−ε/2

{gnh,1,β(t− βx)− Egnh,1,β(t− βx)}2 dG(t, x)

= O

(
1

nh

)
.

This implies by the Markov inequality,∫
ε<Fnh,β(t−βx)<1−ε

{
gnh,1,β(t− βx)− Egnh,1,β(t− βx)

gnh,β(t− βx)

}2

dGn(t, x) = Op

(
1

nh

)
.

The other term on the right-hand side of (6.3) is treated similarly and the first part of (iii) follows.

Part(ii)

We have:

∂

∂β
Fnh,β(t− βx) =

∫
(y − x){δ − Fnh,β(t− βx)}K ′h(t− βx− u+ βy) dPn(u, y, δ)

gnh,β(t− βx)
.(6.4)

We consider the numerator of (6.4). It can be rewritten as∫
(y − x){δ − F0(u− β0y)}K ′h(t− βx− u+ βy) dPn(u, y, δ)

+

∫
(y − x){F0(u− β0y)− Fβ(t− βx)}K ′h(t− βx− u+ βy) dGn(u, y)

+ {Fβ(t− βx)− Fnh,β(t− βx)}
∫

(y − x)K ′h(t− βx− u+ βy) dGn(u, y).

The first term can be written as

An(t, x, β)
def
=

∫
(y − x){δ − F0(u− β0y)}K ′h(t− βx− u+ βy) d

(
Pn − P0

)
(u, y, δ),

and we have:

E
∫
Fnh,β(t−βx)∈(ε,1−ε)

An(t, x, β)2 dG(t, x) ≤ E
∫
An(t, x, β)2 dG(t, x)

∼ 1

nh3

∫
var(X|v)F0(v){1− F0(v)}fT−βX(v) dv

∫
K ′(u)2 du, n→∞.

In the second term we must compare F0(u− β0y) with

Fβ(t− βx) =

∫
F0(t− β0x+ (β − β0)(z − x))fX|T−βX(z|t− βx) dz.
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We can write

F0(u− β0y)− Fβ(t− βx)

=

∫
{F0(u− β0y)− F0(t− β0x+ (β − β0)(z − x))} fX|T−βX(z|t− βx) dz.

So we find for the second term

Bn(t, x, β)
def
=

∫
(y − x) {F0(u− β0y)− Fβ(t− βx)}K ′h(t− βx− u+ βy) dGn(u, y)

=

∫ ∫
(y − x) {F0(u− β0y)− F0(t− β0x+ (β − β0)(z − x))} fX|T−βX(z|t− βx) dz

·K ′h(t− βx− u+ βy) dGn(u, y)

=

∫
(y − x)

∫
{F0(u− β0y)− F0(t− β0x+ (β − β0)(z − x))} fX|T−βX(z|t− βx) dz

·K ′h(t− βx− u+ βy) dG(u, y)

+

∫
(y − x)

∫
{F0(u− β0y)− F0(t− β0x+ (β − β0)(z − x))} fX|T−βX(z|t− βx) dz

·K ′h(t− βx− u+ βy) d
(
Gn −G

)
(u, y).

We now get for the first term on the right-hand side∫
(y − x)f0(v + (β − β0)y)Kh(t− βx− v) fT−βX(v)fX|T−βX(y|v) dv dy

+

∫
(y − x)

∫
{F0(v + (β − β0)y)− F0(t− β0x+ (β − β0)(z − x))} fX|T−βX(z|t− βx) dz

·Kh(t− βx− v)
∂

∂v

{
fT−βX(v)fX|T−βX(y|v)

}
dv dy

=

∫
(y − x)f0(v + (β − β0)y)Kh(t− βx− v) fT−βX(v)fX|T−βX(y|v) dv dy

+

∫
(y − x)

∫
{F0(v + (β − β0)y)− Fβ(t− βx)}

·Kh(t− βx− v)
∂

∂v

{
fT−βX(v)fX|T−βX(y|v)

}
dv dy

= fT−βX(t− βx)

∫
(y − x)f0(t− βx+ (β − β0)y) fX|T−βX(y|t− βx) dy

+

∫
(y − x) {F0(t− βx+ (β − β0)y)− Fβ(t− βx)}

· ∂
∂v

{
fT−βX(v)fX|T−βX(y|v)

}∣∣∣
v=t−βx

dy +O (h)

= fT−βX(t− βx)aβ(t− bx) +O (h) .

Since

gnh,β(t− βx) = fT−βX(t− βx) +Op(h
2),

we get, ∫
Fnh,β(t−βx)∈(ε,1−ε)

{
Bn(t, x, β)

gnh,β(t− βx)
− aβ(t− βx)

}2

dG(t, x) = Op

(
1

nh3

)
+Op

(
h2
)
.
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Finally, defining

Cn(t, x, β)
def
= {Fβ(t− βx)− Fnh,β(t− βx)}

∫
(y − x)K ′h(t− βx− u+ βy) dGn(u, y),

we get, using,∫
(y − x)K ′h(t− βx− u+ βy) dGn(u, y)

=

∫
(y − x)K ′h(t− βx− u+ βy) dG(u, y) +

∫
(y − x)K ′h(t− βx− u+ βy) d(Gn −G)(u, y)

=

∫
(y − x)K ′h(t− βx− v)fT−βX(v)fX|T−βX(y|v) dv dy +Op

(
1

nh3

)
=

∫
(y − x)Kh(t− βx− v)

d

dv

{
fT−βX(v)fX|T−βX(y|v)

}
dv dy +Op

(
1

nh3

)
= Op(1),

and using Lemma 3.1 for the factor Fβ(t− βx)− Fnh,β(t− βx) that∫
Fnh,β(t−βx)∈(ε,1−ε)

Cn(t, x, β)2 dG(t, x) = Op

(
1

nh

)
+Op

(
h4
)
.

This proves part (ii). The second part of (iii) is proved in the same way as the first part of (iii).

Proof of Lemma 3.2. The function Fnh,β is the ratio of two kernel estimators. If h � n−1/5,
the derivative has the property∫

ε/2<Fβ(u)<1−ε/2

{
F ′nh,β(u)− F ′β(u)

}2
du = Op(1),

using Proposition 5.1.9, p. 393 in [8], with m = 1, p = 2 and h � n−1/5. So we may assume that
Fnh,β belongs to a class of functions F with the property that∫

ε/2<Fβ(u)<1−ε/2
f ′(u)2 du ≤M.

if f ∈ F , for a fixed M > 0. It now follows from [1] that the entropy for the supremum norm H∞
satisfies:

H∞(ζ,F) = O
(
ζ−1
)
,

see also the discussion in [27] in section 2.4, since these functions (seen as functions of t−βx) belong
to F with probability tending to one. We can deduce from this that, for fixed β, the functions in
the class F ′:

(t, x) 7→ Fnh,β(t− βx)

also have entropy H∞(ζ,F ′) = O
(
ζ−1
)
, and since

H2,B(ζ,F ′, G) ≤ H∞(ζ,F ′)

for the entropy with bracketing for the L2(G) metric, we also have

H2,B(ζ,F ′, G) = O
(
ζ−1
)
.
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The function δ can be represented in the form 1[e,∞)(t − βx), where e denotes a realization of
the errors εi, and it is clear that this class of functions, for varying β, also has an ζ-entropy with
bracketing for the L2(Q0) metric bounded by a constant times ζ−1, where Q0 is the probability
measure of (T,X, ε). Finally the functions

(t, x, e, β) 7→ aβ(t− βx)
1[e,∞)(t− βx)− Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}
,

where we let also the parameter β vary, clearly still have the ζ-entropy with bracketing for the
L2(Q0) metric of order ζ−1.

Applying the equicontinuity lemma to these functions,using the envelope function

(t, x, ε, β) 7→ sup
β∈[β0−η,β0+η]

8|aβ(t− βx)|
ε(1− ε)

,

and the seminorm

ρQ0(f1,β, f2,β′) =

{∫
ε/2<F0(t−β0x)<1−ε/2

{f1(t, x, e, β)− f2(t, x, e, β′)}2 dQ0(t, x, e)

}1/2

combined with the first result of Lemma 3.1 yields that the limit distribution of

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

aβ(t− βx)
δ − Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}
d
(
Pn − P0

)
(t, x, δ)

is the same as the limit distribution of

√
n

∫
Fβ(t−βx)∈(ε,1−ε)

aβ(t− βx)
δ − Fβ(t− βx)

Fβ(t− βx){1− Fβ(t− βx)}
d
(
Pn − P0

)
(t, x, δ)

where we assume that {ε < Fβ(t− βx) < 1− ε} is contained in {ε/2 < F0(t− β0x) < 1− ε/2}, for
all β ∈ [β0 − η, β0 + η]. This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. Let β ∈ [β0 − η, β0 + η]. We have:

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·

δ − Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}
dPn(t, x, δ)

=
√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·
{

δ − F0(t− β0x)

Fnh,β(t− βx){1− Fnh,β(t− βx)}

}
dPn(t, x, δ)

+
√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·
{

F0(t− β0x)− Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}

}
dGn(t, x).
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The first term on the right can be written

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

∣∣
β=β

}
·
{

δ − F0(t− β0x)

Fnh,β(t− βx){1− Fnh,β(t− βx)}

}
d
(
Pn − P0

)
(t, x, δ),

Now note that

∂

∂β
Fnh,β(t− βx) =

∫
(y − x){δ − Fnh,β(t− βx)}K ′h(v − u+ βy) dPn(u, y, δ)

gnh,β(t− βx)

and that the function

v 7→
∫

(y − x){δ − Fnh,β(v)}K ′h(v − u+ βy) dPn(u, y, δ)

gnh,β(v)

has a derivative which is square integrable on the set {v : ε/2 < Fβ(v) < 1− ε/2}, with probability
tending to one. So we may assume that the function, as a function of t− βx, belongs to a class of
functions F with the property that∫

ε/2<Fβ(u)<1−ε/2
f ′(u)2 du ≤M.

if f ∈ F , for a fixed M > 0 (see also the proof of Lemma 3.1; we use Proposition 5.1.9, p. 393 in
[8], with m = 1, p = 2), and h � n−1/5).

So we can apply the equicontinuity lemma (see [20], p. 151) which tells us that

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·
{

δ − F0(t− β0x)

Fnh,β(t− βx){1− Fnh,β(t− βx)}

}
d
(
Pn − P0

)
(t, x, δ)

= op(1),

(see again the proof of Lemma 3.1).
Furthermore, an application of the Cauchy-Schwarz inequality and Lemma 3.1 yield that

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·
{

F0(t− β0x)− Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}

}
dGn(t, x)

= Op

(
n−1/10

)
+ op

(√
n(β − β0)

)
, β → β0.

The conclusion is that

√
n

∫
Fnh,β(t−βx)∈(ε,1−ε)

{
aβ(t− βx)− ∂

∂β
Fnh,β(t− βx)

}
·

δ − Fnh,β(t− βx)

Fnh,β(t− βx){1− Fnh,β(t− βx)}
dPn(t, x, δ)

= op
(
1 +
√
n(β − β0)

)
, β → β0,
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and hence that

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dPn(t, x, δ)

= op

(
1 +
√
n(β̂n − β0)

)
,

since

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

∂

∂β
Fnh,β(t− βx)

∣∣
β=β̂n

δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dPn(t, x, δ)

= 0.

We now find

√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
δ − Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dP0(t, x, δ)

=
√
n

∫
Fnh,β̂n (t−β̂nx)∈(ε,1−ε)

aβ̂n(t− β̂nx)
F0(t− β0x)− Fnh,β̂n(t− β̂nx)

Fnh,β̂n(t− β̂nx){1− Fnh,β̂n(t− β̂nx)}
dG(t, x)

∼
√
n

∫
F0(t−β0x)∈(ε,1−ε)

aβ̂n(t− β̂nx)
F0(t− β0x)− Fβ̂n(t− β̂nx)

F0(t− β0x){1− F0(t− β0x)}
dG(t, x)

∼ −
√
n(β̂n − β0)Iε(β0),

where the last equality follows from an expansion of aβ̂n(t− β̂nx){F0(t−β0x)−Fβ̂n(t− β̂nx)}. The
result now follows.

Proof of Theorem 3.3. Using the equicontinuity lemma, we have for all sequences (βn) such
that βn → β0:

√
n

∫
Fnh,β(t−βnx)∈(ε,1−ε)

aβn(t− βnx)
δ − Fnh,βn(t− βnx)

Fnh,βn(t− βnx){1− Fnh,βn(t− βnx)}
d
(
Pn − P0

)
(t, x, δ)

=
√
n

∫
Fnh,β0 (t−β0x)∈(ε,1−ε)

aβ0(t− β0x)
δ − Fnh,β0(t− β0x)

Fnh,β0(t− β0x){1− Fnh,β0(t− β0x)}
d
(
Pn − P0

)
(t, x, δ)

+Op (βn − β0)

=
√
n

∫
Fnh,β0 (t−β0x)∈(ε,1−ε)

aβ0(t− β0x)
δ − F0(t− β0x)

F0(t− β0x){1− F0(t− β0x)}
d
(
Pn − P0

)
(t, x, δ)

+ op(1),

where

aβ0(t− β0x) = f0(t− β0x)Eβ0{X − x|T − β0X = t− β0x}.

Since

√
n

∫
Fnh,β0 (t−β0x)∈(ε,1−ε)

aβ0(t− β0x)
δ − F0(t− β0x)

F0(t− β0x){1− F0(t− β0x)}
dP0(t, x, δ) = 0,
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we get:

√
n

∫
Fnh,β0 (t−β0x)∈(ε,1−ε)

aβ0(t− β0x)
δ − F0(t− β0x)

F0(t− β0x){1− F0(t− β0x)}
d
(
Pn − P0

)
(t, x, δ)

= n−1/2
n∑
i=1

f0(Ti − β0Xi){Eβ0(Xi|Ti − β′0Xi)−Xi}

· ∆i − F0(Ti − β0Xi)

F0(Ti − β0Xi){1− F0(Ti − β0Xi)}
1(ε,1−ε) {F0(Ti − β0Xi)} .

Hence, using Lemma 3.3, we get

√
nIε(β0)(β̂n − β0)

= n−1/2
n∑
i=1

f0(Ti − β0Xi){Eβ0(Xi|Ti − β0Xi)−Xi}

· ∆i − F0(Ti − β0Xi)

F0(Ti − β0Xi){1− F0(Ti − β0Xi)}
1(ε,1−ε) {F0(Ti − β0Xi)}+ op(1).

Proof of Theorem 4.1. We will denote dx1 . . . dxk by dx. We have

α̂n − α0 =

∫
u dFnh,β̂n(u)−

∫
u dF0(u) =

∫ {
F0(u)− Fnh,β̂n(u)

}
du

=

∫ F0(t− β̂′nx)− Fnh,β̂n(t− β̂′nx)

fT−β̂′nX
(t− β̂′nx)

dG(t, x)

=

∫
F0(t− β̂′nx)− F0(t− β′0x)

fT−β̂′nX
(t− β̂′nx)

dG(t, x) +

∫ F0(t− β′0x)− Fnh,β̂n(t− β̂′nx)

fT−β̂′nX
(t− β̂′nx)

dG(t, x)(6.5)

For the first term in the last expression we get∫
F0(t− β̂′nx)− F0(t− β′0x)

fT−β̂′nX
(t− β̂′nx)

dG(t, x)

=

∫ {
F0(u)− F0(u+ x′(β̂n − β0))}fX|T−β̂′nX(x|T − β̂′nX = u) du dx

∼ −
∫
x′(β̂n − β0)f0(u)fX|T−β′0X(x|T − β′0X = u) du dx

∼ −
{∫

Eβ0{X ′|T − β′0X = u}f0(u) du

}
(β̂n − β0)

This term, multiplied with
√
n, is asymptotically normal, with expectation zero and variance

σ2
1

def
= a(β0)′Iε(β0)−1 a(β0),

where a(β0) is the k-dimensional vector, defined by

a(β0) =

∫
Eβ0{X|T − β′0X = u}f0(u) du.
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For the second term in (6.5), we first note that,

Fnh,β̂n(t− β̂′nx)− F0(t− β′0x) =

∫
{δ − F0(t− β′0x)}Kh(t− β̂′nx− u+ β̂′ny) dPn(u, y, δ)

gnh,β̂n(t− β̂′nx)
.(6.6)

We write (6.6) as the sum of the integral over dP0 and the integral over d(Pn − P0) and show that
the contribution of the dP0 integral, evaluated in (6.5) is negligible and that the contribution of
the d(Pn − P0) integral will yield an asymptotic normal distribution.

We have∫
{δ − F0(t− β′0x)}Kh(t− β̂′nx− u+ β̂′ny) dP0(u, y, δ)

=

∫
{F0(u− β′0y)− F0(t− β′0x)}Kh(t− β̂′nx− u+ β̂′ny) dG(u, y)

=

∫
{F0(v + (β̂n − β0)y)− F0(t− β′0x)}}Kh(t− β̂′nx− v)

· fT−β̂′nX(v)fX|T−β̂′nX
(y|T − β̂′nX = v) dv dy

= fT−β̂′nX
(t− β̂′nx)

∫
{F0(t− β̂′nx+ (β̂n − β0)y)− F0(t− β′0x)}

· fX|T−β̂′nX(y|T − β̂′nX = t− β̂′nx) dy +Op
(
h2
)

= fT−β̂′nX
(t− β̂′nx)f0(t− β′0x)

(
β̂n − β0

)′
E{X − x|T − β̂′nX = t− β̂′nx}

+Op
(
h2
)

+ op
(
‖β̂n − β0‖

)
,

where ‖x‖ is the euclidean norm of the vector x. Hence we get∫ ∫
{δ − F0(t− β′0x)}Kh(t− β̂′nx− u+ β̂′ny) dP0(u, y, δ)

gnh,β̂n(t− β̂′nx)fT−β̂′nX
(t− β̂′nx)

dG(t, x)

= (β̂n − β0)′
∫
f0(t− β′0x)E{X − x|T − β0X = t− β′0x}

gnh(t− β̂′nx)
dG(t, x) +Op

(
h2
)

+ op(β̂n − β0)

= (β̂n − β0)′
∫
f0(v)E{X − x|T − β0X = v}fX|T−β0X(x|T − β0X = v) dx dv

+Op
(
h2
)

+ op
(
‖β̂n − β0‖

)
= Op

(
h2
)

+ op
(
‖β̂n − β0‖

)
,

which is op(n
−1/2) if h� n−1/4.

Finally,

√
n

∫ ∫
{δ − F0(t− β′0x)}Kh(t− β̂′nx− u+ β̂′ny) d

(
Pn − P0

)
(u, y, δ)

gnh,β̂n(t− β̂′nx)fT−β̂′nX
(t− β̂′nx)

dG(t, x)

=
√
n

∫∫
{δ − F0(t− β′0x)}Kh(t− β̂′nx− u+ β̂′ny)

gnh,β̂n(t− β̂′nx)fT−β̂′nX
(t− β̂′nx)

dG(t, x) d
(
Pn − P0

)
(u, y, δ)

=
√
n

∫
{δ − F0(u− β′0y)}
fT−β0X(u− β′0y)

d
(
Pn − P0

)
(u, y, δ) +Op

(
h2
)

+Op
(
‖β̂n − β0‖

)
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is asymptotically normal, with expectation zero and variance∫
F0(v){1− F0(v)}

fT−β0X(v)
dv,(6.7)

if h� n−1/4.
Both terms in the representation on the right of (6.5) are, apart from a negligible contribution,

sums of independent variables with expectation zero. By Theorem 3.3 we have
√
n(β̂n − β0)

= n−1/2Iε(β0)−1
n∑
i=1

f0(Ti − β0Xi){Eβ0(Xi|Ti − β′0Xi)−Xi}

· ∆i − F0(Ti − β0Xi)

F0(Ti − β0Xi){1− F0(Ti − β0Xi)}
1(ε,1−ε) {F0(Ti − β0Xi)}+ op(1).

and the second term of (6.5) has the representation

n−1/2
n∑
i=1

∆i − F0(Ti − β′0Xi)

fT−β′0X(Ti − β′0Xi)
.

By the independence of the summands with indices i 6= j, the only contribution to the covariance
of the two terms in the representation can come from summands with the same index. But,

Eβ0

{
f0(Ti − β′0Xi){Eβ0(Xi|Ti − β′0Xi)−Xi}{∆i − F0(Ti − β′0Xi)}2

F0(Ti − β′0Xi){1− F0(Ti − β′0Xi)}fT−β′0X(Ti − β′0Xi)
1(ε,1−ε){F0(Ti − β′0Xi)}

}
.

=

∫
F0(u−β′0y)∈(ε,1−ε)

f0(u− β′0y){Eβ0(X|T − β′0X = u− β′0y)− y}{δ − F0(u− β′0y)}2

F0(u− β′0y){1− F0(u− β′0y)}fT−β′0X(u− β′0y)
dP0(u, y, δ)

=

∫∫
F0(v)∈(ε,1−ε)

f0(v){Eβ0(X|T − β′0X = v)− y}F0(v){1− F0(v)}
F0(v){1− F0(v)}

fX|T−β′0X(y|v)dvdy

=

∫
F0(v)∈(ε,1−ε)

∫
{Eβ0(X|T − β′0X = v)− y}fX|T−β′0X(y|v)dy

f0(v)F0(v){1− F0(v)}
F0(v){1− F0(v)}

dv

= 0

So the covariance is zero and Theorem 4.1 follows.

Finally, for completeness, we give the representation of the partial derivatives of the constants

c1 and c2 w.r.t. β, which was used in computing the derivative ψ
(ε)
n (β, F̄nh,β) in Figure 4. We have

∂

∂β
c1

= −
∫
ā<u−β′y<b̄ y e

−(u−β′y−ā)/
√
λF̂n,β(u− β′y)/fT−β′X(u− β′y) dGn(u, y)

2λ
{

1− e−2(b̄−ā)/
√
λ
}

−
e−(b̄−ā)/

√
λ
∫
ā<u−β′y<b̄ y e

−(b̄−u+β′y)/
√
λF̂n,β(u− β′y)/fT−βX(u− β′y) dGn(u, y)

2λ
{

1− e−2(b̄−ā)/
√
λ
}

−
∫
ā<u−β′y<b̄ e

−(u−β′y−ā)/
√
λy F̂n,β(u− β′y)f ′T−βX(u− β′y)/fT−β′X(u− β′y)2 dGn(u, y)

2
√
λ
{

1− e−2(b̄−ā)/
√
λ
}
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−
e−(b̄−ā)/

√
λ
∫
ā<u−β′y<b̄ y e

−(b̄′−u+β′y)/
√
λF̂n,β(u− β′y)f ′T−βX(u− β′y)/fT−β′X(u− β′y)2 dGn(u, y)

2
√
λ
{

1− e−2(b̄−ā)/
√
λ
} ,

and

∂

∂β
c2

=
e−(b̄−ā)/

√
λ
∫
ā<u−β′y<b̄ y e

−(u−β′y−ā)/
√
λF̂n,β(u− β′y)/fT−βX(u− β′y) dGn(u, y)

2λ
{

1− e−2(b̄−ā)/
√
λ
}

+

∫
ā<u−β′y<b̄ y e

−(b̄−u+β′y)/
√
λF̂n,β(u− β′y)/fT−βX(u− β′y) dGn(u, y)

2λ
{

1− e−2(b̄−ā)/
√
λ
}

+
e−(b̄−ā)/

√
λ
∫
ā<u−β′y<b̄ y e

−(u−β′y−ā)/
√
λF̂n,β(u− β′y)f ′T−βX(u− β′y)/fT−β′X(u− β′y)2 dGn(u, y)

2
√
λ
{

1− e−2(b̄−ā)/
√
λ
}

+

∫
ā<u−β′y<b̄ y e

−(b̄−u+β′y)/
√
λF̂n,β(u− β′y)f ′T−βX(u− β′y)/fT−β′X(u− β′y)2 dGn(u, y)

2
√
λ
{

1− e−2(b̄−ā)/
√
λ
} .

7. Acknowledgements. The authors want to thank Richard Nickl for useful comments and
his reference to relevant theory in the book [8] (to appear). The research of the second author
was supported by the Research Foundation Flanders (FWO) [grant number 11W7315N]. Support
from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy) is gratefully
acknowledged.

References.
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