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Abstract. For toric Calabi-Yau threefolds, open Gromov-Witten invariants
associated to Riemann surfaces with one boundary component can be written
as the product of a disk factor and a closed invariant. When the Lagrangian
boundary cycle is preserved by the torus action and can be locally described
as the fixed locus of an anti-holomorphic involution, we prove a formula that
expresses the disk factor in terms of a gamma class and combinatorial data
about the image of the Lagrangian cycle in the moment polytope. As a corol-
lary, we construct a generating function for these invariants using Givental’s
J function. We then verify that this formula encodes the expected invariants
obtained from localization by comparing with several examples. Finally, moti-
vated by large N duality, we show that this formula also unexpectedly applies
to Lagrangian cycles on OP1 (−1,−1) constructed from torus knots.
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1. Introduction

1.1. Background and motivation. Gromov-Witten theory has a rich history,
both in physics and mathematics. Physically, Gromov-Witten invariants appear
in type IIA topological string theory as instanton counts associated to interactions
between particles. Mathematically, they are invariants associated to symplectic
manifolds that, roughly speaking, count pseudoholomorphic curves in the manifold.
The relationship between these two perspectives is conceptually straightforward: as
a string moves in time, it sweeps out a compact Riemann surface (its ‘worldsheet’).
The amplitudes in string theory encode counts of maps from Riemann surfaces
into a 3-(complex)-dimensional Calabi-Yau manifold, and Gromov-Witten theory
assigns invariants to spaces of such maps.

In general, counting holomorphic maps from Riemann surfaces to a given tar-
get space is a difficult problem in enumerative geometry. Gromov-Witten theory
has famously benefited from its connections with string dualities, first with mir-
ror symmetry [COGP, Wi1], and more recently, large N duality [GV, OV]. Be-
ginning with [Kon], for toric manifolds, Gromov-Witten invariants associated to
maps of closed surfaces have also been systematically computed using localization
[GP, CKYZ, KZ]. “Closed” Gromov-Witten theory is a natural mathematical coun-
terpart to closed topological string theory, and, in contrast to the “open” theory
(i.e., for maps of Riemann surfaces with boundary), the moduli spaces involved are
rigorously defined.

Open Gromov-Witten theory is the subject of this paper. By analogy with the
closed case, open Gromov-Witten theory is a mathematical counterpart to open
topological string theory: open strings sweep out compact Riemannian surfaces with
boundary, and the boundary of the strings are constrained to lie on branes. These
boundary constraints are expressed mathematically as Lagrangian submanifolds
L ⊂ X, and the string amplitudes are encoded by counts of holomorphic maps
f : Σ → X, with the image of the boundary constrained to lie on L: f (∂Σ) ⊂ L.
However, as observed in [AKV, KL], there are additional subtleties in adapting
the methods of the closed theory to the open case. In particular, even for well-
behaved Lagrangian boundary cycles, open Gromov-Witten invariants depend on
an additional integral parameter (in localization, this parameter corresponds to the
weights of the torus action).

In spite of this, the same computational tools of mirror symmetry, large N
duality, and localization can still be used. In fact, through these string dualities,
open Gromov-Witten theory can be connected to both classical and homological
knot theory [OV, DSV, GJKS, MV, Wi2, Wi3]. The primary goal of this paper is
to provide a concise and consistent framework for computing open Gromov-Witten
invariants directly, via localization. The main result is a formula for open Gromov-
Witten invariants expressed in terms of local combinatorial data and a gamma class.
As expected from [AKMV], the construction depends only on the local geometry
near a vertex of the moment polytope of X. In the case where the associated
moduli space of open maps is rigorously defined ([KL]), this formula is proven to
be correct. Through large N duality, it is shown that this result applies in a more
general situation motivated by knot theory.

The author hopes that the approach described herein will lead to a more general
construction of open Gromov-Witten invariants.
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1.2. Organization of the paper. The paper is organized in the following way.
Section 2 reviews some general facts about open Gromov-Witten theory, including
deformation theory and localization. Most importantly, this section describes how
to express an open Gromov-Witten invariant as the product of a “disk term” and
an invariant of closed maps. Section 3 contains the proof of the main result of this
paper:

Theorem. Let X be a Calabi-Yau 3-fold and L ⊂ X a Lagrangian submanifold
which can be described locally as the fixed locus of an anti-holomorphic involution.
Let S1 act on X such that the S1 action preserves L, and L intersects a rigid circle-
invariant curve C. Let γ ∈ H2 (X;Q). Then, the genus g, 1 boundary component,
degree d, winding w open Gromov-Witten invariant with Lagrangian boundary L is

〈γ〉g,1d,w =
(

∆X,L ◦
〈
γ,

φp
z − ψ

〉
g,d

)∣∣∣∣∣
z=α

,

where ∆X,L is the disk function

∆X,L (γ) := π

wzΓ̂X sin
(
π λz
) · γ.

Here, Γ̂X is the homogeneous Iritani gamma class, λ is the weight of the torus
action along a normal direction to L ∩ C, α = c1(T0∆) is the equivariant Chern
class of the induced representation of S1 at the attachment point of the disk, and
φp is the equivariant class of the image p ∈ X of the disk attachment point.

Section 4 describes how to apply the formula above to several examples where
the resulting invariant is already known, and demonstrates that this formula repro-
duces the expected result. Finally, Section 5 applies this formula to a novel class
of Lagrangian cycles motivated by large N duality. These Lagrangian cycles are
obtained from the conormal bundles of torus knots in S3 after the conifold tran-
sition, and do not have the same local description required in the above theorem.
Nevertheless, the main result of this paper is still found to apply to these cycles.
This hints that a version of the theorem may hold for a broader class of Lagrangian
cycles.

Acknowledgments. The author thanks H. Gao, H. Jockers, C-C. M. Liu, and
P. Zhou for valuable discussions. The author is especially grateful to R. Cavalieri
for the suggestion of this project and many related conversations, and to E. Zaslow
for guidance and suggestions.

2. Preliminaries

2.1. Deformation theory for stable maps. Open Gromov-Witten invariants are
enumerative invariants of maps f : Σ → X from Riemann surfaces with boundary
into a Calabi-Yau manifold X with a chosen Lagrangian submanifold L, such that
f (∂Σ) ⊂ L. By analogy with the definition for closed stable maps appearing in
[Kon], [KL] define the open Gromov-Witten invariant in the following way. Fix
integers g (the genus of Σ) and h (the number of connected components of ∂Σ),
and a relative homology class d ∈ H2 (X,L;Z) with ∂d =

∑
wi ∈ H1 (L;Z). Then,

the open Gromov-Witten invariant GW g,h
d,w1,...,wh

is a virtual count of continuous
maps f : (Σ, ∂Σ)→ (X,L) satisfying:
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• (Σ, ∂Σ) is a Riemann surface of genus g with boundary ∂Σ consisting of h
oriented circles,

• f is holomorphic in the interior of Σ,
• f∗ [Σ] = d, and
• f∗ [∂Σ] =

∑
wi.

For brevity, w1, . . . , wh will sometimes be denoted by −→w . In order to define such an
invariant, [KL] construct a moduli space Mg,h (X,L; d,−→w ) of stable maps which
compactify the maps described above, and give a local description of an orientation
and a virtual fundamental class on this moduli space. In particular, the authors
generalize the deformation complex in ordinary Gromov-Witten theory to the open
case.

Recall that for smooth, closed Σ in ordinary Gromov-Witten theory, there is a
normal bundle exact sequence of vector bundles on Σ:

0 // TΣ // f∗TX // NΣ/X // 0 .

The corresponding long exact sequence in cohomology is

0 H0(Σ, TΣ) H0(Σ, f∗TX) H0(Σ, NΣ/X)

H1(Σ, TΣ) H1(Σ, f∗TX) H1(Σ, NΣ/X) 0

The terms in this sequence can be interpreted as infinitesimal automorphisms, de-
formations, and obstructions to deformations for Σ and f , so this sequence can be
re-written as the deformation complex:

(1)
0 Aut(Σ) Def(f) Def(Σ, f)

Def(Σ) Obs(f) Obs(Σ, f) 0.

Suitably interpreted, the same sequence holds for nodal, open curves in open
Gromov-Witten theory: Over a smooth point (Σ, f) inMg,h (X,L; d,−→w ),Hk (Σ, f∗TX)
are the cohomology groups associated to sections s of (Σ, f∗TX) satisfying s|∂Σ ∈
Γ (∂Σ, f∗TL).

The expected (virtual) dimension ofMg,h (X,L; d,−→w ) is

vdim Mg,h (X,L; d,−→w ) = rank Def (Σ, f)− rank Obs (Σ, f)
= µ (f∗TX , f |∗∂ΣTL)− (dimX − 3)χ (Σ) ,

where µ denotes the generalized Maslov index of the real subbundle (f |∂Σ)∗ TL ⊂
f∗TX [KL]. When X is a complex manifold and L is the fixed locus of an anti-
holomorphic involution, µ

(
f∗TX , (f |∂Σ)∗ TL

)
=
∫
d
c1 (TX), and if X is a Calabi-

Yau threefold, vdim Mg,h (X,L; d,−→w ) = 0. When Mg,h (X,L; d,−→w ) has a well-
behaved torus action, [KL] give an explicit description for the localization of the
virtual fundamental class to the fixed loci of the torus action. In contrast to closed
Gromov-Witten theory, the virtual cycle found in [KL] depends on the torus action.
Additionally, the invariants defined in [KL] depend on a choice of orientation. This
choice is reflected in the overall sign of the invariant, and the invariant formula
proposed in this note has an analogous orientation-dependent sign.
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2.2. Separating the disk term. Gromov-Witten invariants are, in general, dif-
ficult to compute. The primary computational tool is the Atiyah-Bott fixed-point
formula [AB]. When applied to computations of Gromov-Witten invariants for toric
varieties, this “localizes” integrals over the entire moduli space of stable maps to
integrals over only those maps which are fixed by the torus action [Kon, GP, KZ].
The Atiyah-Bott fixed point formula for the integral of a class φ over a manifold
(or more generally, a Deligne-Mumford stack) M is

(2)
∫
M

φ =
∑
P

∫
P

(
i∗Pφ

e (NP )

)
,

where the sum is over the fixed point sets P , iP is the embedding of P into M , and
e (NP ) is the (equivariant) Euler class of the normal bundle of P in M .

Following [GP, Kon], a stable map (Σ, f) can be naturally described as a dec-
orated graph. The vertices v of the graph correspond to contracted components
of the nodal curve Σ, and are labeled by the genus g (v) of that component. The
edges e correspond to P1’s which are not contracted by f , and are labeled by the
degree de of the map f |P1 . When the fixed stable maps are described as decorated
graphs in this way, (2) becomes

(3) GW g
d :=

∫
[Mg,0(X,d)]vir

1 =
∑

Γ

1
|AΓ|

∫
MΓ

1
e
(
Nvir

Γ
) .

As observed in [GZ], the graph description of stable maps can be extended to the
open stable maps defined in [KL] by treating the open disk component as a “leg”
of the graph. A crucial consequence of this is that open Gromov-Witten invariants
can be expressed as a closed Gromov-Witten invariant multiplied by a “disk term.”
For simplicity, restrict attention to surfaces with one boundary component. Let
X be a Calabi-Yau manifold equipped with an S1 action that fixes a Lagrangian
submanifold L ⊂ X. Suppose that f : Σ → X is a stable map from a genus g
Riemann surface with one boundary component such that f∗ [Σ] = d ∈ H2 (X;Z)
and f |∂Σ : ∂Σ → f (∂Σ) has winding w as a map between homotopy circles. Let
M := Mg,1,0 (X,L; d,w) denote the the moduli space of such maps (genus g, 1
boundary component, 0 marked points).

The S1 action on X naturally induces an S1 action onM. If (Σ, f) ∈M is fixed
by the S1 action, then Σ must take the form

Σ = Σ0 ∪ν ∆,
where Σ0 is a closed genus g Riemann surface, ∆ is a disk, and ν is a simple node
on Σ0 at which ∆ is attached. S1 invariance further requires that (Σ0, f |Σ0 , ν) is
fixed by the induced action onMg,1 (X, d).

Then, a virtual localization formula analogous to (3) for the genus g, degree d,
winding w open Gromov-Witten invariant would take the form

(4) GW g,1
d,w =

∫
Mvir

1 =
∑

Γ

1
|AΓ|

∫
MΓ

1
e
(
Nvir

Γ
) ,

where AΓ = Z/wZ×AΓ′ (Γ′ is the graph associated to the closed curve (Σ0, ν)).
Note that Mg,1 (X, d) is equipped with a natural map eν : Mg,1 (X, d) → X

given by evaluation at the marked point. The conditions on (Σ, f) specified above
(in particular, that f (ν) = p) imply that the fixed locus MΓ is isomorphic to the
fixed subspace e−1

ν (p)S1 ⊂Mg,1 (X, d)S
1
.
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As in the closed case, the equivariant normal bundle e
(
Nvir

Γ
)
and the virtual

fundamental cycle are determined, respectively, by the moving and fixed parts of
the deformation complex (1):

0 Aut(Σ) Def(f) Def(Σ, f)

Def(Σ) Obs(f) Obs(Σ, f) 0

This gives the following relationship in the representation ring of S1:

Obs (Σ, f)−Def (Σ, f) = Aut (Σ) + Obs (f)−Def (Σ)−Def (f)

with Obs (f) = H1 (Σ, f∗TX), Def (f) = H0 (Σ, f∗TX), Aut (Σ) = Ext0 (ΩΣ (D) ,OΣ),
and Def (Σ) = Ext1 (ΩΣ (D) ,OΣ). (Here, D is the divisor associated to the nodal
points of Σ. When Σ is smooth, these spaces are just H0 (Σ, TΣ) and H1 (Σ, TΣ),
respectively).

Now, relate the terms in this sequence to the terms concerning Σ0 and ∆: Let
f0 := f |Σ0 and f∆ := f |∆. Suppose that ∆ is parametrized by {|t| ≤ 1}, with ν
identified with the point t = 0. Then, there is an exact sequence

0 OΣ OΣ0 ⊕O∆ Oν 0.

This becomes the exact sequence on cohomology:

0 Def(f) H0(∆, T(∆,f∆))⊕Def(f0) TpX

Obs(f) H1(∆, T(∆,f∆))⊕Obs(f0) 0

which yields the following relations in the representation ring:

Obs(f)f −Def(f)f = H1(∆, T(∆,f∆))f −H0(∆, T(∆,f∆))f

+ Obs(f0)f −Def(f0)f ,

Obs(f)m −Def(f)m = H1(∆, T(∆,f∆))m −H0(∆, T(∆,f∆))m

+ Obs(f0)m −Def(f0)m + TpX,

where p = f (ν) ∈ X and the f , m superscripts denote fixed and moving terms
with respect to the S1 action.

Similarly,

Aut(Σ)m = Aut (Σ0, ν)m + Aut (∆, 0)m ,
Aut(Σ)f = Aut (Σ0, ν)f + Aut (∆, 0)f ,
Def (Σ)f = Def (Σ0, ν)f ,

and
Def (Σ)m = Def (Σ0, ν)m + TνΣ0 ⊗ T0∆.

Note that Aut (∆, 0) consists of the infinitesimal automorphisms of ∆ preserving the
origin t = 0, which are generated by the sections t∂t over R. Therefore, Aut (∆, 0)m

is trivial, and Aut (∆, 0)f = R.
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Collecting the above observations,

Obs(Σ, f)f −Def (Σ, f)f = H1(∆, T(∆,f∆))f −H0(∆, T(∆,f∆))f

+ Obs(f0)f −Def(f0)f

+ Aut(Σ0, ν)f −Def(Σ0, ν)f

+ Aut(∆, 0)f

and

Obs(Σ, f)m −Def (Σ, f)m = H1(∆, T(∆,f∆))m −H0(∆, T(∆,f∆))m

+ Obs(f0)m −Def(f0)m

+ Aut(Σ0, ν)m −Def(Σ0, ν)m

+ TpX − TνΣ0 ⊗ T0∆

The first equation implies that the virtual fundamental cycle of the fixed locus
is the restriction of the natural virtual cycle of the fixed locus

[
Mg,1 (X, d)S

1]vir
to the subspace e−1

ν (p)S1 . The second equation yields the following relationship
between the normal bundles e(Nvir

Γ ) and e
(
Nvir

Γ′

)
(where Γ′ is the graph for the

closed curve with the disk “leg” removed):

Nvir
Γ = Nvir

Γ′ − TpX +RL−1

−H1(∆, T(∆,f∆))m +H0 (∆, T(∆,f∆)
)m

.

Here R is the representation of S1 on T0∆ ∼= C induced by the pullback of the
S1 action on f (∆), and L is the tautological cotangent line bundle onMg,1 (X, d)
associated to the marked point ν, i.e., the line bundle whose fiber at the point
(f0,Σ0, ν) is T ∗νΣ0. RL−1 is contribution from the term TνΣ0 ⊗ T0∆: TνΣ0 is the
fiber of L and T0∆ is a constant vector space which carriers the representation R
by S1.

Hence,

(5)
∫
MΓ

1
e
(
Nvir

Γ
) =

eS1
(
H1 (∆, T(∆,f∆)

))
eS1 (TpX)

eS1
(
H0
(
∆, T(∆,f∆)

)) ∫
MΓ′

1
e
(
Nvir

Γ′

)
(α− ψ)

,

where α = c1 (R) and ψ = c1 (L) (so that eS1
(
RL−1) = α − ψ). Denote by DX,L

the “disk factor:”

(6) DX,L :=
(

1
w

)
eS1

(
H1 (∆, T(∆,f∆)

))
eS1

(
H0
(
∆, T(∆,f∆)

)) .
Then, (4) becomes

GW g
d,w =

∫
Mvir

1 = DX,L

(∑
Γ′

1
|AΓ′ |

∫
MΓ′

i∗ev∗ (φp)
e
(
Nvir

Γ′

)
(α− ψ)

)
,

where φp is the equivariant Thom class of the point p ∈ X, and i∗ the pullback to
the fixed locus MΓ′ . Comparing this formula with (3) shows that the parenthetical
quantity is the localization of a closed Gromov-Witten invariant:

(7) GW g,1
d,w = DX,L

∫
[Mg,1(X,d)]vir

ev∗ (φp)
(α− ψ) .
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3. Main Results

3.1. A formula for open Gromov-Witten invariants. The proposed formula
for open Gromov-Witten invariants is obtained by composition of a disk function
∆X,L and a descendant invariant. ∆X,L is built from combinatorial data about the
moment polytope, and a characteristic class. Recall that if δi are the Chern roots
of a complex vector bundle E, Iritani’s gamma class [Iri] is a characteristic class
associated to E defined by

ΓE :=
∏
δi

Γ (1 + δi) .

The gamma class appears in quantum cohomology, and can be regarded as a lo-
calization contribution from constant maps in Floer theory [GGI]. The inputs of
∆X,L are the torus weight λ of a normal direction to f (∂Σ), and the homogenized
Iritani gamma class Γ̂X ∈ H∗ (X;Q) (z), defined by

Γ̂X :=
∏
δi

Γ
(

1 + δi
z

)
,

where δi are the Chern roots of the tangent bundle TX . (When deg z = 2, deg Γ̂X =
0). With these definitions, the main result is:

Theorem 1. Let X be a Calabi-Yau 3-fold and L ⊂ X a Lagrangian submanifold
which can be described locally as the fixed locus of an anti-holomorphic involution.
Let S1 act on X such that the S1 action preserves L, and L intersects a rigid circle-
invariant curve C. Let γ ∈ H2 (X;Q). Then, the genus g, 1 boundary component,
degree d, winding w open Gromov-Witten invariant with Lagrangian boundary L is

(8) 〈γ〉g,1d,w =
(

∆X,L ◦
〈
γ,

φp
z − ψ

〉
g,d

)∣∣∣∣∣
z=α

,

where ∆X,L is the disk function

(9) ∆X,L (γ) := π

wzΓ̂X sin
(
π λz
) · γ.

Here, Γ̂X is the homogeneous Iritani gamma class, λ is the weight of the torus
action along a normal direction to L ∩ C, α = c1(T0∆) is the equivariant Chern
class of the induced representation of S1 at the attachment point of the disk, and
φp is the equivariant class of the image p ∈ X of the disk attachment point.

The setup in Theorem 1 is depicted in Figure 1.
In the genus 0 case, the closed Gromov-Witten invariants in formula (7) also

appear as terms in Givental’s J function [Giv]. Givental’s J function is the map
on quantum cohomology JX : H∗ (X;Q) −→ H∗ (X;Q) (z) given by

JX (γ) = z + γ +
∞∑
n=0

∑
d∈H2(X;Z)

〈
γn,

Tα

z − ψ

〉
0,d
Tα,

where Tα is a basis for the cohomology of X, Tα is the dual basis with respect to
the Poincaré pairing, and〈

γn,
Tα

z − ψ

〉
0,d

=
∞∑
k=0

z−(k+1) 〈γn, τkTα〉0,d
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x

y ξ

L

D

Figure 1. A local picture near a vertex in the toric polytope.
A Lagrangian L, obtained as the fixed locus of an anti-holomorphic involution,
intersects an edge of the toric polytope, labeled by the local coordinate ξ. The only
torus-fixed disks are the hemispheres D with ∂D = L ∩ {x = y = 0} ∼= S1. Such a
map is given locally by t 7→ (ξ = tw, x = 0, y = 0). The x-y hyperplane is normal to
the disk. The normal directions to f (∂Σ) = ∂D are spanned by ∂x and ∂y, so the
weight λ appearing in ∆X,L (9) can be the weight of any S1-invariant line spanned
by these vectors (for example, λx or λy).

is a power series of gravitational descendant closed Gromov-Witten invariants. To
obtain the genus-g generating function, a higher-genus version of the J-function is
needed. Define the genus-g modified J-function JgX : H∗ (X;Q) −→ H∗ (X;Q) (z)
to be

(10) JgX (γ) = z + γ +
∞∑
n=0

∑
d∈H2(X;Z)

qd

n!

〈
γn,

Tα

z − ψ

〉
g,d

Tα,

where
qd = e

2πi
∫
d
ω

and ω is the complexified Kähler class of X. From (10) and Theorem 1, it is easy
to write a generating function for open Gromov-Witten invariants. The gener-
ating function for the one-boundary-component, winding w open Gromov-Witten
invariants 〈γ〉 g,1d,w is the function

Φw (γ) :=
∑
g≥0

∑
n≥0

∑
d∈H2(X;Z)

g2g−1
s

qd

n! 〈γ
n〉g,1d,w ,

where gs is the string coupling constant, γ ∈ H∗ (X;Q), and the summation is only
over combinations of g, n, and d where the summands are defined.

Corollary 2. Let X and L be as in Theorem 1. Then, a generating function for
the winding-w open Gromov-Witten invariants of Mg,1 (X,L; d,w) is given by the
formula

Φw (γ) =
∑
g≥0

g2g−1
s (∆X,L ◦ JgX (γ, φp))|z=α.

Remark. Two observations about this generating function merit mention. First, in
[BC], the authors use a similar procedure to obtain a generating function for open
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invariants from a modification of the J function. The main distinction here is the
presentation of the disk term. Second, for γ = 1, Φw has the expression

Φw =
∑
g≥0

∑
d∈H2(X;Z)

g2g−1
s qdGW g,1

d,w.

As will be discussed in Section 5, [DSV] have found that, for a certain class of
Lagrangian cycles originating from torus knots, the expression above encodes the
HOMFLY polynomial associated to the original knot.

3.2. Proof of the main result. The main content of the proof of Theorem 1 is
the comparison of the predicted disk term from (9) with an explicit localization
calculation of the open Gromov-Witten invariant.

3.2.1. Virtual localization of open Gromov-Witten invariants. First, recall the vir-
tual localization technique: As described in Section 2.2, the open Gromov-Witten
invariant GW g

d,w can be expressed as a product of a disk term DX,L and a de-
scendant invariant. The surface Σ can be written as Σ0 ∪ν ∆, with Σ0 is a closed
surface, ∆ a disk, and ν the point of attachment. In terms of the cohomology of
sheaves over ∆, DX,L was found to have the following expression:

(6) DX,L =
(

1
w

)
eS1

(
H1 (∆, T(∆,f∆)

))
eS1

(
H0
(
∆, T(∆,f∆)

)) ,
where f∆ : ∆ → X is the restriction of the map f : Σ → X to the disk ∆,
p = f (ν), and eS1 (·) denotes the S1-equivariant Euler classes of the specified
bundles. To compute the disk contribution to GW g

d,w, one must compute each of
these cohomology groups.

In contrast to the analogous computation of closed invariants, the Lagrangian L
imposes boundary conditions on the sections of T(∆,f∆). Let f∂ denote f∆|∂∆. Then,
T(∆,f∆) consists of sections of f∗∆TX satisfying s|∂∆ ∈ f∗∂TL. To obtain an explicit
presentation of the boundary conditions, let Ann (L) ⊂ T ∗X |L be the subbundle of
the cotangent bundle T ∗X which annihilates the tangent bundle TL ⊂ TX |L. Choose
a basis of sections α1, α2, α3 of Ann (L) along the boundary ∂D of the disk. (The
αi can be obtained by, for example, linearizing the equations defining L). T(∆,f∆)
consists of the sheaf of germs of holomorphic sections of the bundle f∗∆TX satisfying
the boundary conditions

f∗∂ (αj) (s|∂∆) = 0, j = 1, 2, 3.(11)

With this presentation of the boundary conditions, computing Hi
(
∆, T(∆,f∆)

)
be-

comes an exercise in Čech cohomology: Let

U = {t : 0 < |t| ≤ 1} , U ′ = {t : 0 ≤ |t| < 1}

be an open cover of ∆, and let x, y, ξ be local coordinates such that f (ν) = p is
the origin (x, y, ξ) = (0, 0, 0). Then, local sections over U and U ′ are of the form

s =
∑
k∈Z

(
akt

k∂x + bkt
k∂y + ckt

k∂ξ
)
,

s′ =
∑
k≥0

(
a′kt

k∂x + b′kt
k∂y + c′kt

k∂ξ
)
,
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and the coefficients ak, bk, and ck are subject to boundary conditions imposed by
(11). Finally, to apply localization, let ρθ : X → X denote the S1 action determined
by

ρθ (x, y, ξ) =
(
eiλxθx, eiλyθy, eiλξθξ

)
, θ ∈ S1.

The weights λx, λy, λξ are required to satisfy λx + λy + λξ = 0 so that the holo-
morphic volume form is preserved by the S1 action.

3.2.2. Boundary conditions. Now, suppose that L is described locally as the fixed
locus of an anti-holomorphic involution σ, and that L intersects a rigid S1-fixed
curve C as depicted in Figure 1. Choose the local coordinates x, y, and ξ such that
L ∩ C is defined by x = y = 0, |ξ|2 = 1. Generically, σ takes the form

σ (x, y, ξ) = (σx, σy, σξ) ,

where σx, σy, and σξ are Laurent series in the variables x, y, ξ:

σx =
∑

j,k,l∈Z
Xjklx

jykξ
l
,

σy =
∑

j,k,l∈Z
Yjklx

jykξ
l
,

σξ =
∑

j,k,l∈Z
Zjklx

jykξ
l
.

In addition, in order to apply localization, L must be fixed by the S1 action. So,
for points p ∈ L, ρθ (p) must also be a point in L. In particular, p ∈ L must satisfy
ρθ (p) = σ (ρθ (p)). Because p = σ (p), this is equivalent to ρθ ◦ σ = σ ◦ ρθ on L.
This imposes restrictions on the coefficients Xj,k,l, Yj,k,l, Zj,k,l. For example, σξ
must satisfy

σξ
(
eiλxθx, eiλyθy, eiλξθξ

)
= eiλξθσξ (x, y, ξ)

for all θ ∈ S1. Expanding, this is∑
j,k,l

Zj,k,le
−iθ(jλx+kλy+lλξ)xjykξ

l = eiλξθ
∑
j,k,l

Zj,k,lx
jykξ

l
.

Hence, − (l + 1)λξ = jλx + kλy. Recalling that λx +λy = −λξ, this forces j = k =
l + 1. Similar results hold for σx and σy. Therefore, antiholomorphic involutions
commuting with the S1 action along L must take the form

σx =
∑
l∈Z

Xl

(
ξy
)l+1

xl, σy =
∑
l∈Z

Yl
(
xξ
)l+1

yl, σξ =
∑
l∈Z

Zl (xy)l+1
ξ
l
.

In fact there are further restrictions on σ. Because L is the fixed locus of σ and the
intersection L ∩ C is defined by

{
x = y = 0, |ξ|2 = 1

}
, Xl = Yl = 0 for l < 0, and

Z−1 = 1, Zl = 0 for l < −1. Substituting these relations into σ2 = 1, the equation
x = σx ◦ σ (x, y, z) becomes

x = X0Y0x+ x2g (x, y, ξ) ,

where g is a power series in x, y, and ξ. So, X0Y0 = 1.
The defining equations of L are

x = σx, y = σy, ξ = σξ.
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Linearizing these equations yields

dx = X0
(
ξdy + ydξ

)
+
∑
l≥1

Xl

[
l
(
ξy
)l+1

xl−1dx+ (l + 1)xl
(
ξ
l+1

yldy + ξ
l
yl+1dξ

)]
,

dy = Y0
(
ξdx+ xdξ

)
+
∑
l≥1

Yl

[
l
(
ξx
)l+1

yl−1dy + (l + 1) yl
(
ξ
l+1

xldx+ ξ
l
xl+1dξ

)]
,

dξ = −Z−1
(
ξ
)−2

dξ + Z0 (xdy + ydx)

+
∑
l≥1

Zl

[
l (xy)l+1

ξ
l−1

dξ + (l + 1) ξl
(
xlyl+1dx+ xl+1yldy

)]
.

At x = y = 0, these equations simplify considerably:

dx = X0ξdy, dy = Y0ξdx, dξ = −
(

1
ξ

)2
dξ.

As ξ = ξ
−1 along |ξ|2 = 1, a basis for Ann (L) along ∂D is given by the 1-forms

α1 = dx−X0ξdy, α2 = dy − Y0ξdx, α3 = ξdξ + ξdξ.

Recall that local sections over U = {t : 0 < |t| ≤ 1} are of the form

s =
∑
k∈Z

(
akt

k∂x + bkt
k∂y + ckt

k∂ξ
)
.

Parameterizing |t| = 1 by eiθ = t, the map f∂ takes the form f∂
(
eiθ
)

=
(
x = 0, y = 0, ξ = eiwθ

)
.

The boundary conditions f∗∂ (αj) (s|∂∆) = 0 impose restrictions on the coefficients
ak, bk, ck:

f∗∂ (α1) (s|∂∆) =
(
dx−X0e

−iwθdy
)(∑

k∈Z

(
ake

ikθ∂x + bke
ikθ∂y + cke

ikθ∂ξ
))

=
∑
k∈Z

(
ake

ikθ −X0e
−iwθbke

−ikθ) ,
f∗∂ (α2) (s|∂∆) =

(
dy − Y0e

−iwθdx
)(∑

k∈Z

(
ake

ikθ∂x + bke
ikθ∂y + cke

ikθ∂ξ
))

=
∑
k∈Z

(
bke

ikθ − Y0e
−iwθake

−ikθ) ,
f∗∂ (α3) (s|∂∆) =

(
e−iwθdξ + eiwθdξ

)(∑
k∈Z

(
ake

ikθ∂x + bke
ikθ∂y + cke

ikθ∂ξ
))

=
∑
k∈Z

(
cke

i(k−w)θ + cke
−i(k−w)θ

)
.

These yield the following equations for the coefficients ak, bk, ck:

ak −X0b−k−w = 0, bk − Y0a−k−w = 0, ck + c2w−k = 0.
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The first two equations are actually equivalent: after complex conjugation, relabel-
ing of indices, and substituting X0Y0 = 1, the second equation becomes the first.
So, the Lagrangian boundary conditions on sections over U are

ak = X0b−k−w, ck = c2w−k.(12)

From these boundary conditions, the cohomology groups Hi
(
∆, T(∆,f∆)

)
can be

computed explicitly.

3.2.3. Computation of cohomology groups and equivariant classes. H0 (∆, T(∆,f∆)
)

consists of the global sections, i.e., holomorphic sections s on ∆. These take the
form

s =
∑
k≥0

(
akt

k∂x + bkt
k∂y + ckt

k∂ξ
)
,

with ak, bk and ck subject to the boundary conditions in (12), and ak = bk = ck = 0
for k < 0. In particular, the equation ak = X0b−k−w implies that ak = 0 for all
k. Shifting indices k → −k − w, this equation also implies that bk = 0 for all
k. Finally, from the last boundary equation ck = c2w−k, ck = 0 for k > 2w. So,
H0 (∆, T(∆,f∆)

)
consists of sections of the form

s =
w−1∑
k=0

(
ckt

k∂ξ + ckt
2w−k∂ξ

)
+ cwt

w∂ξ,

where cw is real. As a vector space, H0 (∆, T(∆,f∆)
)
is isomorphic to

R 〈tw∂ξ〉 ⊕
w−1⊕
k=0

C
〈
tk∂ξ

〉
.

The map f∆ takes t 7→ (x = 0, y = 0, ξ = tw), so S1 action the section tk∂ξ with
weight λξ (k/w − 1). tw∂ξ is fixed by the S1 action, so H0 (∆, T(∆,f∆)

)m is just the
complex part of this vector space. Hence,

(13) eS1
(
H0 (∆, T(∆,f∆)

))
=
w−1∏
k=0

λξ

(
k

w
− 1
)
.

H1 (∆, T(∆,f∆)
)
consists of the cokernel to the Čech differential. Sections over

U ∩ U ′ can be written as

δ =
∑
k∈Z

(
αkt

k∂x + βkt
k∂y + γkt

k∂ξ
)

=
∑
k≤−w

αkt
k∂x +

−1∑
k=1−w

αkt
k∂x +

∑
k≥0

αkt
k∂x

+
∑
k<0

βkt
k∂y +

∑
k≥0

βkt
k∂y

+
∑
k<0

γkt
k∂ξ +

∑
k≥0

γkt
k∂ξ.
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The image of the Čech differential consists of sections δ of the form δ = s− s′. In
terms of the coefficients, this is

αk =
{
ak, k < 0
ak − a′k, k ≥ 0

, βk =
{
bk, k < 0
bk − b′k, k ≥ 0

, γk =
{
ck, k < 0
ck − c′k, k ≥ 0,

where again, ak, bk, and ck are subject to the boundary conditions (12). Solutions
always exist for γk: set ck = γk for k < 0, and set c′k = c2w−k − γk for k ≥ 0.
Similarly, because a′k and c′k are completely free, any αk and βk for k ≥ 0 can be
solved for. However, to solve for αk and βk for k < 0, it must be the case that
bk = βk. The first boundary equation ak = X0b−k−w then implies that ak is fixed
for −w < k < 0. So, there are no solutions if αk 6= X0β−k−w in −w < k < 0.
When k ≤ −w, −k − w ≥ 0, so setting b−k−w = αk and b′−k−w = αk − β−k−w will
solve these equations. Therefore, the cokernel of the Čech differential is isomorphic
to the space of sections δ of the form

δ =
−1∑

k=1−w
αkt

k∂x.

The induced S1 action on tk∂x has weight k
wλξ−λx. As a vector space,H1 (∆, T(∆,f∆)

)
is

−1⊕
k=1−w

C
〈
tk∂x

〉
,

and

(14) eS1
(
H1 (∆, T(∆,f∆)

))
=

−1∏
k=1−w

(
k

w
λξ − λx

)
.

3.2.4. Comparison of disk terms. Substituting (13) and (14) in (6) yields

(15) DX,L = 1
w

∏−1
k=1−w

(
k
wλξ − λx

)∏w−1
k=0 λξ

(
k
w − 1

) .

The proof will be complete if (15) is equivalent to the claimed expression (9):

1
w

∏−1
k=1−w

(
k
wλξ − λx

)∏w−1
k=0 λξ

(
k
w − 1

) = π

wzΓ̂X sin
(
π λz
) ∣∣∣∣∣
z=α.

First, observe that
w−1∏
k=0

λξ

(
k

w
− 1
)

=
(
−λξ
w

)w
Γ (w + 1) .

Similarly,
−1∏

k=1−w

(
k

w
λξ − λx

)
=

(
−λξ
w

)w−1 w−1∏
k=1

(
k + w

λx
λξ

)

=
(
−λξ
w

)w−1 Γ
(
w λx
λξ

+ w
)

Γ
(
w λx
λξ

+ 1
) .
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Recall that, by assumption, λx + λy + λξ = 0, so λx
λξ

= −1 − λy
λξ

. Therefore,

Γ
(
w λx
λξ

+ w
)

= Γ
(
−w λy

λξ

)
. The above manipulations show that

1
w

∏−1
k=1−w

(
k
wλξ − λx

)∏w−1
k=0 λξ

(
k
w − 1

) =
(

1
w

) Γ
(
−w λy

λξ

)
(
−λξw

)
Γ (w + 1) Γ

(
w λx
λξ

+ 1
) .

The induced action on T0∆ carries weight α = λξ
w . Substitute λξ

w = z and apply
Euler’s reflection formula to get

DX,L =
(
− 1
w

) Γ
(
−λyz

)
zΓ
(
λξ
z + 1

)
Γ
(
λx
z + 1

)
=

(
1
w

)
π

zΓ
(
λξ
z + 1

)
Γ
(
λx
z + 1

)
Γ
(
λy
z + 1

)
sin
(
π
λy
z

)
= π

wzΓ̂X sin
(
π
λy
z

) .
Generically, there are two S1-invariant normal directions to L ∩ C in X, given by
the tangent vectors ∂x and ∂y. In the formula in (9), λ may be the weight of either
of these directions, i.e., λ = λy or λx. The choice of λ changes the sign of (9)
because sin

(
π
λy
z

)
= − sin

(
π λxz

)
. This sign ambiguity reflects an overall choice of

orientation ofMg,1,0 (X,L; d,w) [AKV, GZ, KL]. This completes the proof of the
main result.

4. Comparison to Known Localization Calculations

In this section, (8) is compared to previous virtual localization calculations of
open Gromov-Witten invariants. In the interest of brevity, only the geometric
setup and final results are stated below; the reader interested in further localization
calculations is referred to the original sources, or the computation appearing in the
proof of Theorem 1.

4.1. Simple Lagrangians for OP1 (−1,−1). This situation was first described
in [KL]. Let X = OP1 (−1,−1). X appears often in Gromov-Witten theory and
mirror symmetry: it is the small resolution of the conifold singularity, the normal
bundle to a smooth rational line in a Calabi-Yau 3-fold, and it can be obtained
from a U(1) gauge theory with 4 chiral fields with charges (1, 1,−1,−1). X can be
described symplectically using symplectic reduction on C4, and in this setting it is
easiest to obtain the moment polytope of X.

Let S1 act on C4 with weights (1, 1,−1,−1). Then, the moment map for this
action is

µ : C4 −→ s1 ∼= R

(z1, z2, z3, z4) 7→ 1
2

(
|z1|2 + |z2|2 − |z3|2 − |z4|2

)
,
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and it can be seen (for example, by choosing appropriate local coordinates and
checking transition functions) that

X ∼= µ−1
(r

2

)
/S1 =

{
|z1|2 + |z2|2 − |z3|2 − |z4|2 = r

}
/S1

for r ∈ R>0 (r determines the symplectic volume of the base P1). There’s a natural
anti-holomorphic involution σ on C4 given by

σ (z1, z2, z3, z4) = (z2, z1, z4, z3) .

The fixed locus of this involution is a Lagrangian submanifold L̃ of C4 defined by
the equations

|z1|2 = |z2|2 ,

|z3|2 = |z4|2 ,
z1z2z3z4 = z1z2z3z4.

Because L̃ is preserved by the S1 action, µ−1 ( r
2
)
∩ L̃/S1 defines a Lagrangian

L ⊂ X.
This Lagrangian is easy to visualize in the moment polytope of X. The moment

polytope is the image of X in R4 under the projection zi 7→ |zi|2. Then, L is the
intersection of the two planes |z1|2 = |z2|2 and |z3|2 = |z4|2 in the polytope. L
intersects the zero section P1 along its equator, so that

L ∩ P1 =
{
|z1|2 = |z2|2 , |z3|2 = |z4|2 = 0, |z1|2 + |z2|2 = r

}
∼= S1,

as depicted in Figure 2. There are two unique disks with boundary on L, corre-

x

y

L
z

w

D

Figure 2. The toric polytope for X = OP1 (−1,−1) with a Lagrangian.
This figure depicts the geometry described in Section 4.1. A Lagrangian L, obtained
as the fixed locus of an anti-holomorphic involution, intersects the zero section of X.
Local coordinates (x, y) and (z, w) parametrize the fibers of X in a neighborhood
of the two vertices of the moment polytope. One possible torus-fixed disk D with
boundary ∂D = L ∩ P1 ∼= S1 is depicted.

sponding to the two hemispheres of the P1. In local coordinates (ξ, x, y) defined
by

ξ = z1

z2
, x = z2z3, y = z2z4,
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L is defined by the fixed locus of the antiholomorphic involution

σ (ξ, x, y) =
(

1
ξ
, ξy, ξx

)
.

It is readily checked that at L ∩ P1 =
{
|ξ|2 = 1

}
, and the disk based at the z1 = 0

pole of the P1 takes the form |ξ| ≤ 1. The winding w disk map is

t 7→ (ξ = tw, x = 0, y = 0) .

In this situation, [KL] computed(
1
w

)
eS1

(
H1 (∆, T(∆,f∆)

))
eS1

(
H0
(
∆, T(∆,f∆)

)) =
(

1
w

) ∏−1
k=1−w

(
k
wλξ − λx

)∏w−1
k=0 λξ

(
k
w − 1

) .

Comparing with (15) in Section 3.2.4, this is i∗ (∆X,L)z=α, so this result agrees
with the proposed formula.

4.2. The canonical bundle of P2. This situation was described in [GZ]. As in
the previous example, X = OP2 (−3) can be obtained via symplectic reduction. Let
S1 act on C4 with weights (1, 1, 1,−3). Then,

X ∼= µ−1
(r

2

)
/S1 =

{
|z1|2 + |z2|2 + |z3|2 − 3 |z4|2 = r

}
/S1

for r ∈ R>0. [GZ] consider the Lagrangian submanifold L̃c ⊂ C4 defined by

|z1|2 − |z3|2 = c,

|z2|2 − |z4|2 = 0,
z1z2z3z4 = z1z2z3z4,

where −r < c < r. Because L̃c is preserved by the S1 action, it descends to
a Lagrangian Lc ⊂ X, as depicted in Figure 3. Note that c parametrizes the

L
D

Figure 3. The toric polytope for X = OP2 (−3) with a Lagrangian.
This figure depicts the geometry described in Section 4.2. A Lagrangian L, obtained
as the fixed locus of an anti-holomorphic involution, intersects the zero section of
X along one edge of the moment polytope. One possible torus-fixed disk D with
boundary ∂D = L ∩ P2 is depicted.

intersection of Lc with the P1 given by the image of |z1|2 + |z3|2 = r in the quotient
space. At c = 0, Lc intersects this curve along its equator. For simplicity, restrict
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attention to L = L0 (locally, other values of c can be obtained by a coordinate
transformation). In local coordinates

ξ = z1

z3
, x = z2

z3
, y = z3

3z4,(16)

the Lagrangian L is the fixed locus of the anti-holomorphic involution

σ (ξ, x, y) =
(

1
ξ
, ξy, ξx

)
.

The disk is |ξ|2 ≤ 1, and the winding w disk map is

t 7→ (ξ = tw, x = 0, y = 0) .

So, locally, the situation computed in [GZ] is identical to [KL]. As seen in Sec-
tion 4.1, this agrees with Theorem 1.

Slightly extending the computation in [GZ], Theorem 1 can also be used to
compute the invariants associated to a Lagrangian cycle intersecting an external
leg of the moment polytope. Let L̃ be the submanifold of C4 defined by

|z1|2 − |z2|2 = 0,
|z3|2 − |z4|2 = 0,

z1z2z3z4 = z1z2z3z4.

Again, these equations are preserved by the S1 action, so the image of L̃ in the
quotient space X is a well-defined Lagrangian submanifold L. L can be equivalently
described as the fixed locus of the anti-holomorphic involution (z1, z2, z3, z4) 7→
(z2, z1, z4, z3). In local coordinates (ξ, x, y) (16), L is defined by

|y|2 = 1,
|x|2 = |ξ|2 ,
ξxy = ξxy.

(This Lagrangian cycle is shown in Figure 4). The disk is |y|2 ≤ 1, and the winding

L

D

Figure 4. X = OP2 (−3) with a Lagrangian brane on an external leg.
A Lagrangian cycle intersects an external leg of the moment polytope of X. The
Lagrangian is obtained as the fixed locus of an anti-holomorphic involution. There
is only one torus-fixed disk D with boundary on L, as depicted above.
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w disk map is t 7→ (ξ = 0, x = 0, y = tw). So, α = λy/w. Applying Theorem 1,(
1
w

)
eS1

(
H1 (∆, T(∆,f∆)

))
eS1

(
H0
(
∆, T(∆,f∆)

)) = π

wzΓ̂X sin
(
π
λξ
z

)
∣∣∣∣∣∣
z=α

=
−πΓ

(
−w λξ

λy

)
λyΓ

(
w λx
λy

+ 1
)

Γ (w + 1)

= 1
w

∏−1
k=1−w

(
k
wλy − λξ

)∏w−1
k=0 λy

(
k
w − 1

) .

Here, the normal direction weight λ = λξ has been chosen in (9). Choosing λ = λx
instead changes the sign, reflecting the overall dependence of these counts on the
choice of torus weights. This can be seen from the product identity:

−1∏
k=1−w

(
k

w
λy − λξ

)
= (−1)w−1

−1∏
k=1−w

(
k

w
λy − λx

)
.

5. Lagrangian Cycles in Large N Duality

5.1. Lagrangian cycles and the conifold transition. In addition to Lagrangians
appearing as the fixed loci of anti-holomorphic involutions, there is another family
of Lagrangians on X = OP1 (−1,−1) motivated by large N duality and knot theory.
Recent work in this area has yielded many connections between knot theory and
Gromov-Witten theory ([BEM, DSV, GJKS]); this section reviews the geometric
relationship between knots on S3 and open Gromov-Witten theory on X.

Recall that X can be identified with the resolved conifold—X is the small reso-
lution of the conifold singularity

xy − zw = 0

in C4. In particular, by blowing up the subspace y = z = 0, X can be described by
the equations

xy − zw = 0, xλ = wρ, yλ = zρ,

where (x, y, z, w) ∈ C4 and [λ : ρ] ∈ P1. The conifold singularity is also the singular
limit of the smooth hypersurface threefold Yµ ⊂ C4 defined by

xy − zw = µ,

where µ ∈ R>0. As described in [DSV], Yµ is symplectomorphic to the cotangent
bundle T ∗S3 . The base Sµ ∼= S3 is the fixed locus of the anti-holomorphic involution
σ (x, y, z, w) = (z,−w, x,−y), expressed by the equations |x|2 + |y|2 = µ.

The large N duality conjecture states that the large N limit of the topological A-
model on Yµ with N Lagrangian branes wrapping Sµ is equivalent the topological
A-model on X [GV]. This has been checked in several ways. First, according
to [Wi2], the topological A-model on Yµ with N Lagrangian branes wrapping Sµ
is equivalent to the U (N) Chern-Simons theory on Sµ. Then, in the large N
expansion, the partition function ZCS (k,N) is equivalent to the topological A-
model partition function ZX (gs, t) [GV]. The parameters determining the A-model
theory on X are the string coupling constant gs and the symplectic area t of the
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zero section P1 ⊂ X, which are related to the Chern-Simons parameters k and N
by

gs = 2π
k +N

, t = − 2πiN
k +N

.

Large N duality is extended to incorporate Wilson loops in [OV]. Following
[Wi3], Wilson loop observables in the Chern-Simons theory on S3 correspond to
colored HOMFLY polynomials of knots K ⊂ S3. The conormal bundle N∗K to a
knot K ⊂ S3 is Lagrangian submanifold of T ∗S3 . The main difficulty in extending
large N duality in this manner is determining the corresponding A-model on X:
N∗K intersects the zero section S3 in the knot K, which becomes contracted after
the conifold transition. To remedy this difficulty, the Lagrangian cycle N∗K must
be lifted to a new Lagrangian L̃ disjoint from the zero section before performing
the conifold transition [AMV, MV], as depicted in Figure 5.

L̃ L

S3

Yµ Y0 X

K

C D

φµ σε

Figure 5. The conifold transition for lifted Lagrangian cycles.
This figure depicts the conifold transition. The Lagrangian L̃ ⊂ Yµ ∼= T ∗S3 is
constructed by shifting the conormal bundle of a knot K ⊂ S3 off of the zero
section. This lift introduces a holomorphic cylinder C connecting the knot on S3

to its image in L̃. Y0 is the conifold singularity xz − yw = 0 in C4. The map
φµ : Yµ → Y0 is a symplectomorphism away from the zero section, so φµ

(
L̃
)
is

a Lagrangian submanifold of Y0. X ∼= OP1 (−1,−1) is the small resolution of the
conifold singularity, and σε : X → Y0 is the corresponding natural map. In fact,
there are a family of such symplectomorphisms, where ε parametrizes the symplectic
form on the zero section P1 ⊂ X. Hence, L := σ−1

ε ◦ φµ
(
L̃
)
is a Lagrangian

submanifold of X. The holomorphic disk D is the image of C under the conifold
transition.

Such a lift is easy to construct: define coordinates (−→u ,−→v ) for T ∗S3 by
T ∗S3 =

{
(−→u ,−→v ) ∈ R4 × R4 : |−→u | = 1,−→u · −→v = 0

}
.

Any knot K ⊂ S3 is given by a parametrization −→u = f (θ). Then, the conormal
bundle N∗K can be expressed as

N∗K =
{

(−→u ,−→v ) ∈ T ∗S3 : −→u = f (θ) , df
dθ
· −→v = 0

}
.
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Lifts of N∗K can be specified by maps g : S1 → T ∗f(θ)S
3 such that df

dθ · g (θ) 6= 0: for
such a g, define the lifted conormal bundle L̃ to be

L̃ :=
{

(−→u ,−→v ) ∈ T ∗S3 : −→u = f (θ) , df
dθ
· (−→v − g (θ)) = 0

}
.

The image of L̃ under the conifold transition will be a Lagrangian L ⊂ X, and the
open A-model on X with this Lagrangian boundary can be computed. Shifting N∗K
off of the zero section modifies large N duality in the following ways: The lift of
N∗K to L̃ introduces corrections to the Wilson loop observables in the Chern-Simons
theory proportional to the area of the holomorphic cylinder C connecting the lift of
the knot to its image in the zero section [DSV]. Instead of the closed A-model on X,
the corresponding theory should be an open A-model with Lagrangian boundary
L. This statement of large N duality is found to be true for torus knots in [DSV],
and their construction provides a novel source of Lagrangians.

5.2. Toric Lagrangian cycles and Theorem 1. It is important to note that
the Lagrangians considered in [DSV] are not obtained as the fixed loci of anti-
holomorphic involutions, so there is no a priori reason to expect that the formula
proposed in Theorem 1 should apply in this situation. For the (r, s) torus knot, the
corresponding Lagrangian L is found to be fixed under the torus action

ρθ ((x, y, z, w) , [λ : ρ]) =
(
eisθx, eirθy, e−isθz, e−irθw

)
,
[
e−i(r+s)θλ : ρ

]
.

There is only one holomorphic disk in X fixed by this S1 action, and it lies entirely
in the x-y face of the moment polytope, as depicted in Fig. 6. A neighborhood of

x

y

L

z

w

D

Figure 6. A moment polytope picture of torus knot Lagrangians.
This figure depicts the geometry described in Section 5.2. The Lagrangian L is the
image of a shifted conormal bundle to a knot in S3 under the conifold transition.
Local coordinates (x, y) and (z, w) parametrize the fibers of X in a neighborhood of
the two vertices of the moment polytope. The boundary of the disk D is symplec-
tomorphic to the torus knot (in the depiction above, the trefoil). D is contained
entirely in the x-y face of the polytope, and the disk map can be written in local
coordinates as t 7→ (ξ = 0, x = bs1t

ws, y = br1t
wr).

the disk can be described by local coordinates x, y, ξ = λ/ρ. In these coordinates,
the disk map is

t 7→ (ξ = 0, x = bs1t
ws, y = br1t

wr) ,
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where |t| ≤ 1 and b1 ∈ R>0 is a constant obtained from the geometric construction
in [DSV]. After a lengthy localization calculation, [DSV] compute the winding-1
open Gromov-Witten invariants with Lagrangian boundary L. This computation
readily generalizes to higher winding [GJKS], and gives the following expression for
DX,L:

(17) DX,L = (−1)ws
∏ws−1
k=1

(
r + s− k

w

)
w
∏ws−1
k=0

(
s− k

w

) .
This can be re-written in terms of gamma functions in the following way:∏ws−1

k=1
(
r + s− k

w

)∏ws−1
k=0

(
s− k

w

) = Γ (wr + ws)( 1
w

)
Γ (ws+ 1) Γ (wr + 1)

.

Locally (Figure 6), the weights of the torus action are λξ = −r− s, λx = s, λy = r.
The induced torus action on ∆ is t 7→ eiθ/wt, so α = 1

w . Replacing α = z and
substituting these weights into the above formula yields

=
Γ
(
−λξz

)
wzΓ

(
λx
z + 1

)
Γ
(
λy
z + 1

) = π

wzΓ̂X sin
(
π
λξ
z

)
after Euler’s reflection identity. As remarked above, the Lagrangian L is not the
fixed locus of an anti-holomorphic involution. However, λξ is the weight of an S1-
invariant normal direction to ∂D: the boundary of the disk is entirely contained in
the x-y plane of the moment polytope. The author finds it curious that the result
of Theorem 1 appears to apply in this situation, and hopes that this is evidence
that, properly formulated, a more general version of this theorem exists.
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