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Analysis of a Stochastic Switched Model of

Freeway Traffic Incidents

Li Jin and Saurabh Amin

Abstract

This article models the interaction between freeway traffic dynamics and capacity-reducing incidents

as a stochastic switched system, and analyzes its long-time properties. Incident events on a multi-cell

freeway are modeled by a Poisson-like stochastic process. Randomness in the occurrence and clearance

of incidents results in traffic dynamics that switch between a set of incident modes (discrete states). The

rates of occurrence and clearance depend on the traffic densities (continuous state). The continuous state

evolves in each incident mode according to mode-dependent macroscopic flow dynamics. At steady state,

the system state resides in its accessible set, which supports an invariant probability measure. Behavior

of the accessible set is studied in terms of inputs (on-ramp inflows) and incident parameters (incident

intensity). An over-approximation of accessible set and some useful bounds on the performance metrics

(throughput and travel time) are also derived using the limiting states of individual incident modes.

These results provide following insights about the steady-state system behavior: (i) Expected loss of

throughput increases with the incident intensity for fixed incident rate, but this loss is less sensitive

to changes in the occurrence rate for fixed intensity; (ii) Operating an incident-prone freeway close to

its capacity significantly increases the expected travel time; (iii) The impact of incidents reduces when

certain inputs upstream of incident-prone sections are metered.

Index Terms

Stochastic switched systems, Freeway Incident management, Traffic control.

I. INTRODUCTION

Freeway traffic networks are prone to capacity disturbances, such as crashes, road damage,

and other incident events. These disturbances introduce considerable non-recurrent congestion;
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i.e., congestion due to factors other than the regular fluctuations of demand [31]. To explore

control policies that enable a freeway network to survive such disturbances, one has to study

congestion dynamics due to the initiation of incidents and propagation of the induced congestion.

This article introduces a stochastic switched model of freeway incident dynamics, and studies

long-time properties of this model.

The current practice of freeway incident management largely utilizes scenario-based strategies.

In this approach, traffic managers specify a set of scenarios based on the severity or likelihood

of occurrence, and assess the likely impact on the current traffic conditions using simulations of

traffic models [23], [35]. For high-impact scenarios, specific control strategies are implemented;

however their design is typically ad hoc. The main limitation of this approach is its reactive

nature; i.e. the response to an incident is triggered only after it has been detected. Moreover,

a control strategy designed for a specific scenario might not be robust to a broader range of

incident scenarios. Consequently, scenario-based approaches are prone to delayed or suboptimal

responses.

In contrast, this article argues for a model-based control approach for incident management.

Towards this end, it proposes a stochastic switched system to model random transitions in freeway

traffic dynamics due to the occurrence and clearance of incidents. In this model, the occurrence

(resp. clearance) of an incident triggers an instantaneous switch, which results in decrease (resp.

increase) in the capacity at the location of incident. The capacity reduction during an incident

is directly proportional to its intensity. At a given freeway location, incidents occur and clear

(or resolve) in a Poisson-like manner. Between transitions, the traffic density (continuous state)

evolves according to the cell transmission model (CTM) [9], where the capacity at each location

is governed by the currently active incident event at that location.

We focus on analysis of the long-time behavior of the stochastic switched system. We first

show that the accessible set assumes qualitatively different geometries depending on the input:

a singleton or a connected set. When the accessible set is a connected set, a full characterization

is hard, but we derive a useful over-approximation based on the properties of individual modes.

Finally, we show that every invariant probability measure of the stochastic switched system is

supported by the accessible set, and study the range of performance metrics (throughput and

total travel time) at steady state.

Our model is a stochastic switched system. Recently, Benaı̈m et al. [3] examined the long-time
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properties of this class of systems, specially piecewise-deterministic Markov process (PDMP)

without continuous state reset. Our analysis utlizes their results (as well as some ideas from [2]

and [15]) in the context of incident dynamics. Alternatively, one can also view the stochastic

switched model as an SHS with a set of affine dynamics and with forced transitions. This affine

representation has been reported in the context of real-time estimation and control [22], [34].

We mainly consider the former representation, while the latter is introduced in our earlier work

[17].

A property of the CTM dynamics that is frequently utilized in our analysis is monotonicity.1

Gomes et al. [14] utilized the monotonicity of the CTM and arrived at two main conclusions: first,

given a stationary input, there always exists a set of equilibrium states; second, all trajectories

converge to some equilibrium. We examine the relation between the accessible set and these

equilibria, which we refer to as limiting states in this article. Coogan and Arcak [7] reported

that network CTMs may not admit monotone dynamics. However, the lack of monotonicity

does not affect the convergence (for acyclic networks), and in fact can be utilized to improve

network throughput via ramp metering. Como et al. [5], [6] also utilized monotonicity to study

the behavior of flow networks under perturbations. Their focus was analysis of throughput that

can be achieved by distributed routing policies. In contrast to the robust routing framework of

[5], [6], we focus on the analysis of stochastic occurrence and clearance of perturbations.

Our model is consistent with previously reported studies on freeway incident/accident statistics.

Previous work (e.g. [13], [17], [18], [32]) consistently report that freeway incidents can be

modeled as stochastic processes, typically as Poisson arrivals. Knoop [21] found that capacity

reduction adequately captures the impact of incidents on freeway traffic. Khattak et al. [20]

developed a stochastic queuing model that estimates the consequences of capacity reduction.

Recent work by Miller and Gupta [28] used a classification model to assess the severity and

induced delay due to reported incidents. Similar statistical learning procedures can be used to

estimate the parameters of our SHS model.

The main contributions of our work are as follows. First, we propose a stochastic switched

model for traffic dynamics in incident-prone freeways. The main idea of the switched model is

an underlying stochastic process governing the initiation and termination of capacity-reducing

1in the sense of Hirsch [16]
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incidents. The system randomly switches among a set of pre-identified dynamics, which models

the impact due to capacity reduction/recovery. We use the CTM to estimate incident-induced

congestion. (Sec. II)

Second, we analyze the steady-state behavior of the stochastic switched model. Behavior of the

accessible set is studied in terms of inputs (on-ramp inflows) and incident parameters (incident

intensity). An over-approximation of accessible set and some useful bounds on the performance

metrics are also derived using the limiting states of individual incident modes. (Sec. III–V)

Third, we develop computational results that provide insights for incident management. We

perform a simulation-based study to validate the theoretical results. We also investigate the

sensitivity of performance metrics with respect to incident intensity and the incident rate, and

explore (static) ramp metering strategies under incident-prone conditions. (Sec. VI)

II. INCIDENT MODEL AND SWITCHED SYSTEM

In this section, we construct a stochastic switched system to model the random transitions

(jumps) in traffic dynamics due to the occurrence and clearance of incidents on a freeway.

A. Model background

1) Deterministic CTM: To model the evolution of traffic density (continuous state), we adopt

the classical cell transmission model (CTM) [9]. Let us recall the deterministic (un-switched)

CTM for an N−cell freeway; see Fig. 1. Let xi(t) denote the traffic density (in vehicles-per-mile,

or vpm) in the i-th cell at time t. The N−dimensional state x(t) = [x1(t), x2(t), . . . , xN(t)]T is

defined over the closed set X =
∏N

i=1[0, x̄i] ⊂ RN , where x̄i is the i-th cell’s jam density. With

unit cell length, the state evolves as follows:

ẋi(t) = fi−1(t) + ri(t)− fi(t)− si(t)

= fi−1(t) + ri(t)− fi(t)/βi, i = 1, 2, . . . , N, (1)

where fi(t) is the flow from the i−th to the (i + 1)−th cell, ri(t) is the on-ramp flow (input)

into the i-th cell, and si(t) is the off-ramp flow out of the i-th cell. We assume that for each

cell i, the ratio βi ≡ fi/(fi + si) is a constant [14]. All flows are in vehicles-per-hour (vph).

The (N + 1)−dimensional input vector r(t) = [r0(t), r1(t), . . . , rN(t)]T is defined over the set

R =
∏N

i=0[0, r̄i], where r̄i is the maximum admissible input for the i−th cell; see [14].
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Let F nom
i denote the nominal capacity of the i−th cell in the nominal (i.e. no-incident)

conditions. For each cell i, we define the sending flow Si and the receiving flow Ri as follows:

S0(x) = r0, Si(x) = βivixi, i = 1, . . . , N

Ri(x) = ωi(x̄i − xi), i = 1, . . . , N,
(2)

where vi denotes the free-flow speed and ωi the congestion wave speed, both in miles per hour

(mph). The flow fi(t) is given by the flow function (i.e., the so-called fundamental diagram):

fi(x) :=

 min{Si(x), F nom
i , Ri+1(x)}, 0 ≤ i < N

min{Si(x), F nom
i }, i = N.

(3)

Eqn. (1)–(3) define the deterministic CTM. We say that the i-th cell is uncongested if xi ≤ xc
i

and congested if xi > xc
i , where

xc
i =

F nom
i

βivi
= xi −

F nom
i

βiwi
, i = 1, 2, . . . , N (4)

is the critical density of cell i [14].

Fig. 1. A freeway segment with no incidents.

2) Data: To motivate our incident model, we studied real-world incidents that occurred

on a segment of the US-101S freeway in the California Bay Area during a 3-month period.

Our analysis is based on the incident and flow data obtained from the Caltrans Performance

Measurement System (PeMS) [33].

First, we observe that the effective capacity during an incident, say, in the i−th cell, is less

than the nominal value F nom
i . However, incidents do not cause a significant change in other

parameters of (2)-(3); i.e., vi, ωi, x̄i are relatively unaffected by incidents. Fig. 2(a) shows

calibrated fundamental diagrams for three types of events: no incident (model 0), low intensity

incidents (model 1), and high intensity incidents (model 2).2 The calibration was performed

2By low intensity incident events, we mean single accidents at a cell. By high intensity incident events, we mean events with

multiple accidents at a given location, e.g. chain-reaction crashes.
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Fig. 2. Observations from incident data.

using the statistical procedure described in Dervisoglu et al. [11]. Fig. 2(a) indicates that the

effective capacity is maximum during nominal condition (1, 800 vph), but reduces to 1, 600 vph

(resp. 1, 400 vph) during low (resp. high) intensity incident condition.

Second, we observe that the interarrival time and duration of incidents are roughly exponen-

tially distributed, which suggests a Poisson-like model of incident occurrence/clearance events;

see Fig. 2(b). This observation is consistent with the previously reported statistical models

of incident rates; e.g. [30], [32]. In addition, previous literature suggests that the incident

occurrence (resp. clearance) rates are positively (resp. negatively) correlated with the local traffic

densities [1], [26].

B. Model

Our stochastic switched system is a hybrid process where the state (X(t), Y (t)) of the system

has a continuous component (i.e., traffic densities) X(t) taking values in the set X ⊂ RN , and

a discrete component taking values in a finite set Y := {ynom, . . . , ymax}. The set Y represents

the set of incident configurations or equivalently, the set of incident modes for the N−cell

freeway. For ease of presentation, we assume that every cell has only two states: with or without

incident. Typically, incidents are concentrated only at certain locations of the freeway, which we

call incident hotspots. We denote the set of incident hotspots by H (note that H ⊂ {1, 2, . . . , N}).

Thus, |Y|= 2|H| � 2N . We label the nominal mode as ynom and the mode with incidents in all

incident hotspots as ymax. The stochastic process (X(t), Y (t)) is given by:

X(t) = X(0) +

∫ t

0

G(X(τ), Y (τ), r(τ))dτ, (5)
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Pr{Y (t+ δ) = y|Y (t) = w,X(s), Y (s), s ≤ t}

= λ(y,X(t), w)δ + o(δ), y 6= w, (6)

X(0) = x̄ ∈ X , Y (0) = ȳ ∈ Y ,

where G : X × Y × U → X is a vector-valued function and λ : (Y × X ) × Y → R+ is

the transition rule. We will precisely define G and λ in Sec. II-B1 and II-B2, respectively. We

impose standard regularity assumptions [10]: for each y ∈ Y , G(·, y, ·) is bounded, continuous

and Lipschitz in the first argument uniformly with respect to the third.

We now specilize (5)-(6) to model switched dynamics. Starting from (X(0), Y (0)) = (x̄, ȳ),

the cumulative distribution function (CDF) of the time U at which the next mode transition

occurs is given by:

FyU(u) = 1− exp

(
−
∫ u

τ=0

λy (φyτ (x̄)) τdτ

)
, t ∈ R+,

where

λy(·) :=
∑
w∈Y

λ(y, ·, w) (7)

is the rate at which the system leaves the incident mode y and φyτ (x̄) is the orbits (or integral

curves) induced by G(·, y, r), i.e.

d

dτ
φyτ (x̄, r) = G(φyτ (x̄, r), y, r), τ > 0, φy0(x̄, r) = x̄.

With a slight abuse of notation, we use G(x, y) and φyt (x̄) for short to denote the mode-dependent

dynamics and orbits when the inputs are stationary.

Let Un be the time between the (n−1)-th and the n-th transitions, and let T0 = 0. Let yn ∈ Y

denote the realized incident mode between the (n−1)-th and the n-th transitions. Let Tn be the

epoch, i.e. Tn =
∑n

l=0 Ul; the discrete mode switches only at epochs. Then, {Tn, n > 0} is a

stochastic arrival process, and for the random process {Y (t), t ≥ 0}, we have Y (t) = yn−1, for

t ∈ [Tn−1,Tn), n ∈ Z+.

1) Effective capacity: For a given y ∈ Y , let my
i denote the i−th cell’s incident state: my

i = 1

if there is an incident in the i-th cell, and my
i = 0 otherwise. If the i−th cell is operating under

an active incident, i.e., my
i = 1 in mode y ∈ Y , its effective capacity, denoted F y

i , is less than

the nominal capacity F nom
i (recall Fig. 2(a)). The following assumption formally specifies such

capacity reduction.
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Assumption 1. In an incident mode y ∈ Y , the effective capacity upstream of the i-th cell

reduces according to:

F y
i−1 = (1− αyi−1)F nom

i−1 = (1− αi−1m
y
i )F

nom
i−1 , i = 1, · · · , N, (8)

where αi−1 ∈ (0, 1) is the incident intensity parameter when the i−th cell is under the influence

of incidents. Also define αyN = 0 for all y ∈ Y .

For each y ∈ Y and given Si(·) and Ri(·) for i = 0, . . . , N , the mode-dependent flow function

is given by:

fi(·, y) =

 min{Si(·), F y
i , Ri+1(·)}, 0 ≤ i < N ;

min{Si(·), F y
i }, i = N.

(9)

The following technical assumption guarantees that every configuration of incidents is allowed,

i.e |Y|= 2|H|:

Assumption 2. For every mode y ∈ Y and every incident hotspot i ∈ H , there exists w ∈ Y

such that mw
i +my

i = 1 and mw
j = my

j for all j 6= i.

We call αy := [αy0, . . . , α
y
N ]T the incident intensity vector for mode y, and denote the collection

of intensity vectors by (αy)y∈Y . For a random transition from mode y to mode w, if my
i = 0 and

mw
i = 1 (resp. my

i = 1 and mw
i = 0), the occurrence (resp. clearance) of incident in the i−th

cell results in an instantaneous reduction (resp. recovery) of capacity from F y
i to Fw

i . Moreover,

we define the reduced capacity as

F i := (1− αi)F nom
i , i = 0, 1, · · · , N. (10)

Under Asm. 1 and given admissible inputs r = [r0, r1, . . . , rN ]T , the dynamics of continuous

state in the i−th cell, Gi(x, y, r), is described as follows:

Gi(x, y, r) = fi−1(x, y) + ri − fi(x, y)/βi. (11)

Then G(x, y, r) = [G1(x, y, r), . . . , GN(x, y, r)]T denotes the continuous dynamics in a given

mode y. Thus, (8)–(11) along with appropriate initial conditions specify the dynamics of contin-

uous state in each mode. Note that, under our assumptions, the continuous state X(t) is not reset

after discrete mode transitions. This is consistent with the observation that, in most real-world

scenarios, only a small number of vehicles are affected immediately after an incident event.
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2) Transition rate: We adopt the standard regularity and irreducibility assumption about the

transition rules.

Assumption 3. The transition rate λ : (Y×X )×Y → R+ is bounded, continuous, and Lipschitz

(with respect to the continuous argument). Furthermore, we assume that, given x, the transition

matrix Λ = (λ(i, x, j))ij is irreducible.

The transition rate can be interpreted as the rate at which incidents occur and clear. Note

that if the transition rates are independent of the densities, the inter-transition times will be

exponentially distributed, and the occurrence-clearance cycles form a renewal process [12]; in

addition, incidents at different locations will be statistically independent. In this article, we

maintain the dependence of transition rates on densities. Other simpler models (e.g., [25], [32])

are special cases of our switched system model.

Thus, we view the incident model for an N -cell freeway segment as a triple 〈Y , (αy)y∈Y , λ〉,

where Y denotes the set of incident modes, (αy)y∈Y the collection of incident intensity vectors,

and λ the transition rule. Under these assumptions, it is easy to check that, {(X(t), Y (t)), t ≥ 0}

is a Piecewise-Deterministic Markov process (PDMP) [10], and X(t) is continuous with respect

to t.

III. MAIN RESULTS

A. Preliminaries

1) Invariant probability measure and accessible set: Following Benaı̈m et al. [3] (also see

[27]), we construct a “thinning” representation of the PDMP {(X(t), Y (t)); t ≥ 0}. Select a

λ > 0 such that

λ > maxx∈X ,y∈Y λ
y(x),

where λy is given by (7). Given x ∈ X , for every y, w ∈ Y (and y 6= w), let

Q(y, x, w) = λ(y, x, w)/λ,

Q(y, x, y) = 1−
∑

w∈Y,w 6=y

λ(y, x, w)/λ.

For a function g : X ×Y → R that is bounded, measurable, and smooth with respect to x, define

Ag(x, y) = 〈G(x, y),∇xg(x, y)T 〉, (12)

January 5, 2016 DRAFT
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Qg(x, y) =
∑
w∈Y

Q(y, x, w)g(x,w), (13)

where ∇xg(x, y) is a 1-by-N row vector. The infinitesimal generator [10] is given by

Lg(x, y) = Ag(x, y) + λ (Qg(x, y)− g(x, y)) , (14)

where the first term accounts for the deterministic dynamics and the second term accounts for

the stochastic transitions.

Let {N(t); t ≥ 0} be a homogeneous Poisson process with rate λ, and let {Un;n ∈ Z+} and

{Tn;n ∈ Z+} be the inter-transition times and epochs, respectively. With the initial condition

(X̃0, Ỹ0) ∈ X × Y , define {(X̃n, Ỹn);n ∈ Z+} such that

X̃n = φ
Ỹn−1

Un

(
X̃n−1

)
,

Pr{Ỹn = w|X̃n, Ỹn−1 = y} = Q
(
y, X̃n, w

)
, n = 1, 2, . . .

The discrete stochastic process
(
X̃n, Ỹn

)
is called the embedded chain of the PDMP [3]. The

PDMP can be defined as the interpolation of the embedded chain:

X(0) = X̃0, Y (0) = Ỹ0,

X(t) = φ
Ỹn−1

t−Tn−1

(
X̃n−1

)
,

Y (t) = Ỹn−1, ∀t ∈ [Tn−1, Tn), n = 1, 2, . . .

Both the PDMP and its embedded chain can be characterized using transition operators Kt

and K̃ defiend as follows3

Ktg(x, y) = g (φyt (x), y) , (15)

K̃g(x, y) =

∫ ∞
t=0

λe−λtKtg(x, y)dt. (16)

Let P = (Pt)t≥0 be the transition operator induced by {(X(t), Y (t)); t ≥ 0} such that

Ptg(x, y) = E [g(X(t), Y (t))|(X(0), Y (0)) = x, y] .

3One can interpret Kt as an operator propagating the continuous dynamics and K̃ as an operator accounting for the stochastic

transitions in addition to the continuous dynamics.
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Let P(X ×Y) be the set of probability measures on X ×Y . For µ ∈ P(X ×Y) and h ∈ L1(µ),

we write

µh =
∑

y∈Y
∫
x∈X h(x, y)µ(dx, y).

We say that µ is an invariant probability measure for Pt if, for every t ≥ 0, µPt = µ; the set

of invariant probability measures is denoted by Pinv. Similarly, define the transition operator P̃

such that

P̃ g(x, y) = E
[
g
(
X̃1, Ỹ1

)
|(X(0), Y (0)) = x, y

]
= K̃Qg(x, y), (17)

and the set of invariant probability measures P̃inv such that µP̃ = µ for µ ∈ P̃inv.

A natural candidate for the support of the invariant probability measure is the accessible set

of the stochastic switched system, which is the closure of the set of states that can be reached

from arbitrary initial conditions. Again, following [3], the accessible set is defined as follows:

Definition 1 (Accessible set). For all n ∈ N+, let Tn = Yn+1×Rn
+. Given (y,u) = ((y0, y1, · · · , yn);

(u1, u2, · · · , un)) ∈ Tn and x ∈ X , let φy
u(x) = φyn−1

un ◦ φyn−2
un−1
◦ · · · ◦ φy0u1 , the positive trajectory

of x is the set

γ+(x) =

{
φy

u(x)|(y,u) ∈
⋃
n∈N+

Tn

}
.

The accessible set Γ ⊂ X is a compact set defined as

Γ =
⋂
x∈X

γ+(x). (18)

2) Basic properties and metrics: Given a fixed y ∈ Y , consider the model specified by (8)–(11)

and a stationary input vector r(t) ≡ [r0, r1, . . . , rN ]T ,∀t ∈ R+, which induces an uncapacitated

(i.e. without capacity constraints) equilibrium flow func(r) = [func
0 (r), func

1 (r), . . . , func
N (r)]T

given by

func
0 (r) = r0, f

unc
i (r) = βi(f

unc
i−1(r) + ri), i = 1, . . . , N. (19)

Also, define zunc = [zunc
1 , zunc

2 , . . . , zunc
N ]T such that zunc

i = func
i /(βivi) for every i.

Definition 2 (Input feasibility). If func
i (r) ≤ F y

i for every i, then r is feasible for mode y; if

func
i (r) < F y

i for every i, then r is strictly feasible for mode y; otherwise, r is infeasible for

mode y.
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We call z ∈ X a limiting state of mode y if Gi(z, y) ≡ 0 for all i. Similarly, define limiting flow

of mode y as f y = f(z, y). Note that f y is generally different from func, since f y is subject to the

capacity constraints. Limiting flow is unique, while limiting state is not necessarily unique [14].

We denote the set of limiting states of mode y as Zy. We now argue that the convergence results

of the discrete-time CTM shown by [14] also hold for the individual modes of the switched

system, using the monotonicity of the continuous-time dynamics. The key is to show that, for

every i, Gi(x, y) is nondecreasing in xj for all j 6= i. Note that, for i = 2, 3, . . . , N − 1, we

have fi−1(x, y) = min{βi−1vi−1xi−1, F
y
i−1, wi(xi − xi)}, which is non-decreasing in xj for all

j 6= i. Similarly, fi is non-increasing in xj for all j 6= i. Thus, for i = 2, 3, . . . , N − 1, Gi(x, y)

is nondecreasing in xj for all j 6= i. The same result can be shown for i = 1 and i = N . Thus,

the dynamics are cooperative and thus monotone [16] (also see [19]). 4 The monotone CTM

dynamics lead to convergence towards the limiting states.

Definition 3 (Bottleneck). Consider y ∈ Y and z ∈ Zy. The i-th cell is a bottleneck in mode y

if zi ≥ xc
i and zi+1 < xc

i , where xc
i is as defined in (4). The set of bottlenecks is denoted as Iy.

Remark 1. Both input feasibility and bottleneck are defined with respect to stationary input,

limiting states, and particular modes.

Remark 2. Gomes et al. [14] defined bottlenecks as locations where the capacity constraint

is binding, which is essentially equivalent to our definition. They also showed that strictly

feasible inputs never result in bottlenecks, and that infeasible inputs must induce bottlenecks. At

a bottleneck, due to the insufficient capacity, demand upstream of this location cannot be fully

served, which leads to congestion in the upstream cells and queues at the upstream entrances. In

addition, a bottleneck restricts the flow into the downstream cells, which typically makes those

cells uncongested.

4Monotone dynamics are defined as follows. For given y ∈ Y and x, ξ ∈ X , let {φy
t (x); t ≥ 0} and {φy

t (ξ); t ≥ 0} be the

respective integral curves; if x < ξ (respectively x ≤ ξ), then φy
t (x) < φy

t (ξ) (respectively φy
t (x) ≤ φy

t (ξ)) for every t > 0,

then the dynamics are monotone.

January 5, 2016 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 13

B. Statement of main results

Theorem 1 (Geometry of accessible set). For an N -cell freeway segment, consider the mode-

dependent dynamics G : X × Y → RN , the incident model 〈Y , (αy)y∈Y , λ〉, and a stationary

input r ∈ U . Let Znom and fnom be the set of limiting states and the limiting flow for the nominal

mode ynom ∈ Y , respectively. Let F i be as defined in (10).

(i) If

(∀i ∈ {0, 1, . . . , N}) fnom
i ≤ F i (20)

and if Znom is a singleton, then Γ = Znom.

(ii) If

(∃i ∈ {0, 1, . . . , N}) fnom
i > F i (21)

and if ∃y ∈ Y such that Zy is a singleton, then Γ is a connected set.

The above result can be interpreted as follows. In case (i), the capacity constraint is not

active at any of the limiting states. Therefore, all modes have identical limiting states. This case

arises when r is very low or very high. In case (ii), capacity reduction changes the limiting

state. Consequently, the limiting states will be distinct across modes, and the accessible set is a

connected set. This case arises when r is intermediate.

Remark 3. There are two additional cases which Thm. 1 does not cover:

(iii) if (20) holds and if Znom is not a singleton;

(iv) if (21) holds and if there exists no y ∈ Y such that Zy is a singleton.

We will elaborate on these two cases in Sec. IV-A. Since these two cases are of limited practical

interest, unless otherwise stated, we will assume that, for every y ∈ Y , Zy is a singleton.

When the accessible set is a connected set, the analytical expression of the accessible set is

difficult, especially for high-dimensional systems. In Thm. 2, we give an over-approximation of

accessible set. Consider the case where the demand is feasible in the nominal mode but infeasible

in some other modes.5 To arrive at this over-approximation, we will show (in Sec. IV, Prop. 8)

5This is the case of interest, since incidents are the major concern; if the freeway were congested even in the absence of

incidents, then excessive demand would be the primary source of congestion.
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that, if r is infeasible for mode y, then zy has only one bottleneck (see Def. 3), which we denote

by i(ynom, y).

Then, for mode y, define ay1, . . . , a
y
N and by1, . . . , b

y
N as

ayi =

 znom
i , i = 1, . . . , i(ynom, y);

zyi , i = i(ynom, y) + 1, . . . , N ;
(22)

byi =

 x̄N + rN/ωN − F y
N/(βNωN), i = N ;

x̄i + ri/ωi − b
y

i , i = 1, . . . , N − 1,
(23)

where

b
y

i =
min{F y

i , ωi+1(x̄i+1 − bi+1)}
βiωi

, i = 1, . . . , N − 1. (24)

The following result gives an N -dimensional orthotope that “attracts” all integral curves in all

modes, and this orthotope is thus an over-approximation of the accessible set.

Theorem 2 (Over-approximation). Consider a stationary input r ∈ U . If r is strictly feasible

for ynom but infeasible for some y ∈ Y , and if Zy is a singleton for all y ∈ Y , then Γ is a

connected set bounded by the orthotope specified by

H := {x ∈ X |ai ≤ xi ≤ bi, i = 1, 2, · · · , N}, (25)

where ai = miny∈Y{ayi } and bi = maxy∈Y{byi }; a
y
i and byi are given by (22)–(24).

Remark 4. The lower bounds are tight, while the upper bounds may or may not be tight.

We consider two performance metrics that are typically defined for an instantaneous state

[24]. The throughput is measured in vehicle-miles-traveled (VMT) and the total travel time is

measured in vehicle-hours-traveled (VHT). For a given state (x, y) ∈ X × Y , the instantaneous

throughput JF and instantaneous total travel time JT are defined as follows:

JF (x, y) =
N∑
i=1

fi(x, y)li, JT (x, y) =
N∑
i=1

xili, (26)

where fi(x, y) is the flow function and li is the length of the i-th cell. For an invariant probability

measure µ ∈ Pinv, the expected performance metrics are denoted as JµF and JµT , respectively, i.e.

JµF = µJF =
∑

y∈Y
∫
x∈X JF (x, y)dµ,
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JµT = µJT =
∑
y∈Y

∫
x∈X

JT (x, y)dµ.

The following result states that the accessible set supports invariant probability measures of the

switched system, and that the bounding box given by Thm. 2 provides bounds on the performance

metrics at steady state. Let a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T . Let V (H) be the set of

vertices of H. Define

JF = min
x∈V (H)

JF (x, ymax), (27)

and define JF as the optimal value of the linear program

max
N∑
i=1

fili (28)

s.t. fi ≤ Si(x), fi ≤ F nom
i , ∀i ∈ {0, 1, . . . , N},

fi ≤ Ri+1(x), ∀i ∈ {0, 1, . . . , N − 1},

x ∈ H.

Theorem 3 (Bounds for performance metrics). Consider an r ∈ U which is strictly feasible

for ynom but infeasible for some y ∈ Y . Assume that Zy is a singleton for all y ∈ Y . Then, Γ

supports every µ ∈ Pinv. Furthermore, for µ ∈ Pinv, we have

JT (a, ynom) ≤ min
(x,y)∈Γ×Y

JT (x, y) < JµT

< max
(x,y)∈Γ×Y

JT (x, y) ≤ JT (b, ymax),

JF ≤ min
(x,y)∈Γ×Y

JF (x, y) < JµF < min
(x,y)∈Γ×Y

JF (x, y) ≤ JF ,

where JF and JF are given by (27)–(28).

C. A two-cell example

We illustrate the main results using a two-cell system (i.e. N = 2) in which incidents are only

allowed in cell 2; see Fig. 3. Tab. I lists the parameters of the traffic flow model. The incident

model is:

(i) Y = {ynom, ymax};

(ii) αnom = [0, 0]T , αymax = [0, 0.4]T ; and
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(iii) λ(ynom, x, ymax) = 0.5 + 0.015x2, λ(ymax, x, ynom) = 2, both in hr−1.

The capacity subject to change is F1. The inputs are r0 and r2.

Fig. 3. A two-cell, two-mode system and its transition.

TABLE I

PARAMETERS OF THE TRAFFIC FLOW MODEL.

Name Symbol Value unit

Cell length li 1 mi

Free-flow speed vi 60 mph

Congestion wave speed wi 20 mph

Splitting coefficient βi 1 N/A

Jam density xi 400 vpm

Critical density xci 100 vpm

Nominal capacity Fnom
i 6000 vph

Fig. 4 illustrates that the accessible set in this example assumes qualitatively different geometry

depending on the stationary input r = [r0, r2]T . When r is strictly feasible in both modes, the

single limiting state constitutes the accessible set (i.e. Thm. 1, case (i); also see Fig. 4(a)). As r

increases, the input remains feasible for ynom, but becomes infeasible for ymax. The accessible

set becomes a connected region containing both limiting states (Fig. 4(b)). Even in this two-cell

example, analytic characterization of the accessible set is not straightforward. However, following

Thm. 2, we can find an over-approximation of the accessible set given by H = [a1, a2]× [b1, b2],

where

a1 = znom
1 =

r0

v
= 70[vpm],
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(a) Low input: r = [2400, 0]T .

0 100 200 300 400
0

100

200

300

400

z 0

z 1
B

C

A

D

x1 [vpm]

x
2
[v
p
m
]

(b) Intermediate input: r = [4200, 600]T .
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(c) High input: r = [6000, 1200]T .

Fig. 4. Integral curves of a two-cell, two-mode system. Solid (blue) curves correspond to y = 0, and dashed (magenta) curves

correspond to y = 1. Fig. 4(b) shows the bounding box (rectangle ABCD).

b1 = x− (1− αymax

1 )F

w
= 220[vpm],

a2 = zymax

2 =
(1− αymax

1 )F + r2

v
= 70[vpm],

b2 = x+
r2

w
− (1− αymax

1 )F

w
= 130[vpm].

If we further increase r to make it infeasible for ynom (and indeed infeasible for ymax), both cells

are congested. The accessible set is again a singleton (i.e. Thm. 1, case (i); also see Fig. 4(c)).

Fig. 5 shows the empirical steady-state distributions of the continuous states (x1, x2). These

distributions approximate the invariant probability measures.
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2
 [
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Fig. 5. Invariant probability measure depends on transition rate λ. Dark shade stands for high probability density.

This probability measure tends to concentrate near the limiting states. The support of the

invariant probability does not depend on transition rate λ. The invariant probability is supported

by the accessible set, which is specified by the deterministic dynamics provided that (λ(i, x, j))ij

is irreducible for all x ∈ X . However, the probability measure itself does depend on λ. Intuitively,

high occurrence rate (or equivalently low clearance rate) tends to result in high traffic density
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upstream to an incident hotspot and low traffic density downstream.

IV. ACCESSIBLE SET

In this section, we study the geometry of the accessible set (Thm. 1) and derive an over-

approximation for the accessible set when it is not a singleton (Thm. 2).

A. Geometry of accessible set

We prove Thm. 1, which gives the conditions for which the accessible set is a singleton or a

connected set. First, we state a trivial observation:

Lemma 4. If (20) holds, then, for all z ∈ Znom and for all y ∈ Y , we have z ∈ Zy.

Proof. Note that G(z, ynom) = 0, ∀z ∈ Znom. If (20) holds, then G(z, y) = G(z, ynom) = 0,

∀z ∈ Znom, ∀y ∈ Y . This implies that z ∈ Zy.

We will use the following known results in the proof of Thm. 1. Thm. 5 is from [14], and

Prop. 6 is from [3].

Theorem 5 (Convergence of CTM). For all x ∈ X and all y ∈ Y , we have limt→∞ φ
y
t (x) ∈ Zy.

Proposition 6 (Positive invariance). For all x ∈ Γ and all t ≥ 0, we have γ+(x) ⊂ Γ.

The proof of Thm. 1 is as follows:

Proof of Thm. 1. (i) Let Znom = {znom} (singleton). On one hand, by Thm. 5, we have (∀x ∈

X ) znom ∈ γ+(x), and thus znom ∈ Γ (see Def. 1). On the other hand, by Lmm. 4, since (20)

holds, we have znom ∈ Zy, and thus G(znom, y) = 0, ∀y ∈ Y . Therefore, γ+(znom) = {znom},

and thus Γ ⊂ {znom}. In conclusion, Γ = Znom = {znom}.

(ii) Let y be a mode such that Zy = {z} is a singleton. by Thm. 5, z ∈ γ+(x), ∀x ∈ X .

Hence z ∈ Γ, which implies that Γ is not an empty set. If ∃i such that func
i > F i, then there

exists w ∈ Y such that fw 6= fnom, and thus that zw 6∈ Znom.

If y is such that z ∈ Znom, then γ+(z) ⊃ {φwt (z); t ≥ 0} 6= {z}. By positive invariance of Γ

(see Prop. 6), we have γ+(z) ⊂ Γ. Therefore, Γ is not a singleton. Finally, because of continuity

of the trajectories, Γ is a connected set.
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If y is such that z 6∈ Znom, then γ+(z) ⊃ {φnom
t (z); t ≥ 0} 6= {z}, which in turn implies that

Γ is a connected set.

Now we elaborate on Rem. 3. In case (iii), if (20) holds and if Znom is not a singleton, consider

z, ζ ∈ Znom, z 6= ζ . By Lmm. 4, since (20) holds, we have z ∈ Zy, and thus G(z, y) = 0, ∀y ∈ Y .

Therefore, given the initial condition (X(0), Y (0)) = (z, ·), we have G(X(t), Y (t)) = 0 and

X(t) = z for all t ≥ 0. Therefore, γ+(z) = {z}, and thus Γ ⊂ {z}. Similarly, we can show that

Γ ⊂ {ζ}. Hence Γ ⊂ {z} ∩ {ζ} = ∅. In case (iv), if there exists i such that fnom
i > F i and if

there is no y ∈ Y such that Zy is a singleton, then proof of the existence of accessible set is an

open question which is not pursued here due to its limited significance for incident management.

In fact, for a given y, Zy is a singleton unless there exist some z ∈ Zy and some i such

that F y
i = Ri+1(z), i.e. both the capacity and the receiving flow constraints are simultaneously

binding. Only a small set of peculiar values of r will lead to this situation. An arbitrarily

small perturbation in r will prevent this from happening. This technicality causes substantial

mathematical complexity but brings limited practical insights. Therefore, in the rest of this

article, we will only consider r such that Zy is a singleton for all y ∈ Y . Also, we denote this

unique limiting state by zy.

B. Over-approximation

We now consider the case where r is strictly feasible for ynom but infeasible for some y ∈ Y .

Prop. 8 and Cor. 9 study how capacity reduction impacts the location of bottlenecks. Location

of bottlenecks implies congestion pattern at limiting states, and enables derivation of the over-

approximation.

We first recall a known result from [14]:

Theorem 7 (Structure of limiting states). At limiting states, a freeway can be partitioned into

sections of uncongested and congested segments. Furthermore, a congested section must be

located immediately upstream of a bottleneck, while an uncongested section must be located

immediately downstream of a bottleneck.

Next, we study how capacity reduction changes structure of limiting states.

January 5, 2016 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 20

Proposition 8 (Impact on bottlenecks). Consider two modes y, w ∈ Y such that αyi(y,w) < αwi(y,w)

for a unique i(y, w) and αyi = αwi for every i 6= i(y, w).

(i) If αwi(y,w) < 1 − f yi(y,w)/F
y
i(y,w), then zw = zy, and fw has the same bottlenecks, if any, as

f y does.

(ii) If αwi(y,w) > 1 − f yi(y,w)/F
y
i(y,w), the i(y, w)-th cell is the only bottleneck for fw. Moreover,

every cell upstream to the i(y, w)-th cell is congested, while every cell downstream is

uncongested. 6
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(a) Case (i): identical limiting flows.
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(b) Case (ii)a: distinct limiting flows.
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(c) Case (ii)b: distinct limiting flows.

Fig. 6. Illustration of various cases in Prop. 8.

Proof. Parts (i) is obvious, since the capacity reduction does not affect the limiting flow, and

thus f y = fw; see Fig. 6(a). To show Part (ii), we need to account for two sub-cases:

Case (i)a: If f y = [f y0 , f
y
1 , · · · , f

y
N ]T has no bottlenecks, then f yi < F y

i for all i; see Fig. 6(b).

At limiting state, by conservation of flow, we have, for all i,

f yi = βi(f
y
i−1 + ri), fwi = βi(f

w
i−1 + ri).

Since αwi(y,w) > 1− f yi(y,w)/F
y
i(y,w), i.e. f yi(y,w) > Fw

i(y,w), we have

fwi(y,w)+1 ≤ βi(y,w)+1(Fw
i(y,w) + ri(y,w)+1)

< βi(y,w)+1(f yi(y,w) + ri(y,w)) < F y
i(y,w)+1 = Fw

i(y,w)+1.

Since fwi(y,w)+1 < f yi(y,w)+1, we can show in a similar manner that fwi(y,w)+2 < F y
i(y,w)+2, fwi(y,w)+3 <

F y
i(y,w)+3, and so forth. Hence, we have shown that fwi < Fw

i for all i > i(y, w). Since fwN < Fw
N ,

6 If αw
i(y,w) = 1− fy

i(y,w)/F
y
i(y,w), then Zy may not be a singleton. We do not consider this case.
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the N -th cell has to be uncongested. Since fwi < Fw
i for all i > i(y, w), by Thm. 7, all cells

downstream to the incident location have to be uncongested.

Next, we show that the upstream cells, including the incident location, have to be congested.

By conservation of flow, we have fwi(y,w) ≤ Fw
i(y,w) and fwi < Fw

i for i = i(y, w) + 1, . . . , N . If

i(y, w) were uncongested, then, since none of the first i(y, w) cells is a bottleneck, they would

have to be uncongested (see Thm. 7). Thus, the first cell would be uncongested, and it would

have to be true that fw0 = r0 = f y0 , which contradicts with fw0 < f y0 . Therefore, i(y, w) has to be

congested, and thus we have fwi(y,w) = Fw
i(y,w), which means that i(y, w) is a bottleneck. Since

fw0 < f y0 , the first cell has to be congested. Since there are no bottlenecks between the first cell

and the incident location, by Thm 7, all of the first i(y, w) cells have to be congested.

Case (ii)b: If f y has bottlenecks, the arguments above still hold; see Fig. 6(c). Since fwi(y,w) <

f yi(y,w), we can deduce that fwi < f yi for all i, using the conservation of flow argument. Therefore,

we have fwi < F y
i = Fw

i for every i 6= i(y, w). Therefore, by definition, every i 6= i(y, w) cannot

be a bottleneck. Then i is uncongested for every i ≥ i(y, w) + 1. Since fw0 < f y0 = r0, the

first cell has to be congested, the implication being that one of its downstream cells has to be

a bottleneck. Since i(y, w) is the only possible bottleneck, it has to be so.

For a multi-incident mode, one only needs to consider it as a superposition of a sequence of

individual incidents, and apply Prop. 8 repeatedly. The result is as follows:

Corollary 9. For an incident mode y ∈ Y with multiple incident locations, if zy 6= znom, then

zy has at most one bottleneck.

Proof. This proof is based on the fact that the limiting flow of a multi-incident mode can be

derived from the limiting flow of modes with fewer incidents. Specifically, we can prove this

result by sequentially adding incidents and repeatedly applying Prop. 8.

Suppose that mode y has K incidents, which are located at cells i1, i2, · · · , iK . Let y1 denote

the mode with an incident at i1, y2 denote the mode with incidents at i1 and i2, y3 denote the

mode with incidents at i1, i2, and i3, and so forth; then yK = y.7

Next, consider zy1 and f y1 . If fnom
i < F y1

i for all i, then f y1 = fnom is the limiting flow of

mode y1 and zy1 = znom. If fnom
i > F y1

i for some i, by Prop. 8, zy1 6= znom, and i1 is the only

7Asm. 2 makes this construction possible.
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bottleneck.

If f yk−1

i < F yk
i for all i, then f yk = f yk−1 is the limiting flow of mode yk and zyk = zyk−1 .

If f yk−1

i > F yk
i for some i, by Prop. 8, zyk 6= zyk−1 , and ik is the only bottleneck. Then, by

applying the inductive arguments above from y1 to yK , we complete the proof.8

When Γ is a connected set, it is hard to analytically express the exact shape of Γ. Fortunately,

we are able to determine a bounding box for the accessible set. In Fig. 4(b), we have a rectangle

that approximates the accessible set. Analogously, in high dimensions, we can derive a high-

dimensional “rectangle”, or an orthotope [8], to approximate an accessible set. Before presenting

the proof of Thm. 2, we construct the bounding box for an N -cell, two-mode system.

Proposition 10 (Bounding box for two modes). Consider an N -cell freeway system with Y =

{ynom, y} such that αynomi(ynom,y) < αyi(ynom,y) for a unique i(ynom, y) and αynomi = αyi for every

i 6= i(ynom, y). Let r be an input that is strictly feasible for ynom but infeasible for y. Let zynom

and zy be the unique limiting states of ynom and y, respectively. Then Γ ⊂ Hy := {x ∈ X |ayi ≤

xi ≤ byi , i = 1, 2, · · · , N}, where ayi and byi are given by (22)-(24).

Proof. We need to show that the orthotope “absorbs” every admissible trajectory φy
u(x) for all

x ∈ X . Fig. 7 illustrates the intuition of this proof via the two-cell example (see Sec. III-C).

Define

A1 = {ξ ∈ X : ξ1 < ay1},

Ai = {ξ ∈ X : ξ1 ≥ ay1, ξ2 ≥ ay2, . . . , ξi < ayi },

BN = {ξ ∈ X : ξN > byN},

Bi = {ξ ∈ X : ξN ≤ byN , ξN−1 ≤ byN−1, . . . , ξi > byi },

We need to show that the accessible set Γ ⊂ (Ac1 ∩ . . . AcN ∩Bc
1 ∩ . . . ∩Bc

N). Fig. 7 shows that

the orbits in all modes are absorbed by a subset of the continuous state space X . This behavior

results from the cooperative property of the dynamics G. The details are as follows.

(i) Lower bounds: We first show that Γ ⊂ Ac1. Since r is strictly feasible for ynom, we know

that znom is uncongested everywhere. Therefore, for all x ∈ Ac1, we have f0(x, ·) = r0 = fnom
0

8Once again, we omit the case where fyk−1

i = F
yk
i for some k and some i; otherwise the limiting states may not be unique

for yk.
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Fig. 7. Construction of the bounding box for the two-cell example.

and f1(x, ·) ≤ S1(x) ≤ fnom
1 . Also note that fi(x, ynom) ≥ fi(x, y) for all x ∈ X . Hence, for

all x ∈ Ac1, we have G1(x, ·) ≥ fnom
0 + r1 − fnom

1 /β1 = 0, where the second argument of G1

can be either ynom or y. Now we show that every x ∈ A1 is not accessible from Ac1. Consider

the initial condition (x, ·) such that x ∈ Ac1. Assume by contradiction that there exists ζ ∈ A1

such that ζ ∈ γ+(x); then there exists n > 0 and (y,u) ∈ Tn such that ζ = φy
u(x) (see Def. 1

for notations). Since x1 ≥ zynom1 and ζ1 < zynom1 , continuity implies that there exists k ≤ n

and 0 ≤ s1 < s2 < uk such that (φyks1 )1 = zynom1 and (φyks )1 < zynom1 for all s ∈ [s1, s2]. Thus

G1(φykτ , yk) ≥ 0 for all s ∈ [s1, s2], no matter whether yk = ynom or yk = y. Then we have

(φyks2 )1 =

∫ s2

τ=s1

G1(φykτ , yk)dτ + (φyks1 )1 ≥ zynom1 ,

which contradicts with (φyks )1 < zynom1 . Therefore, A1 ∩ Γ = ∅, and thus Γ ⊂ Ac1; see Fig. 7(a).

Next, we show that Γ ⊂ Ac1∩Ac2. Note that, for any x ∈ A2, we have f1(x, ·) ≥ min{S1(x), F y
1 } ≥

fnom
1 and f2(x, ·) ≤ S2(x) ≤ fnom

2 . Hence, for all x ∈ A2, we have

G2(x, ·) ≥ fnom
1 + r1 − fnom

2 /β2 = 0.

Following the contradiction argument that we made for A1, we can conclude that Γ ⊂ Ac1 ∩Ac2.

We can similarly show that Γ ⊂ Ac1 ∩ Ac2 ∩ . . . ∩ Aci for all i ≤ i(y, w).

For i = i(y, w) + 1, note that every cell downstream of i(y, w) is uncongested at zy. Thus,

for all x ∈ Ai(y,w)+1, we have Gi(y,w)+1(x, ·) ≥ f yi(y,w) + ri(y,w)+1 − f yi(y,w)+1/βi(y,w)+1 = 0,

where we have utilized the fact that f yi(y,w)+1 = fi(y,w)+1(zy, ynom). Once again, by following

the contradiction argument, one can show that Γ ⊂ Aci(y,w)+1. Similarly, one can show that
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Γ ⊂ Ac1 ∩ Ac2 ∩ . . . ∩ Aci for all i(y, w) + 1 ≤ i ≤ N ; see Fig. 7(a). Here we have also covered

the case where i(ynom, y) = 0.

In conclusion, Γ ⊂ Ac1 ∩ Ac2 ∩ . . . ∩ AcN , which implies the lower bounds.

(ii) Upper bounds: We first show that Γ ⊂ Bc
N . We claim that bN = x̄N+rN/ωN−F y

N/(βNωN)

is a valid upper bound. Now we verify this bound. By (4), we know that bN > xcN . Also

note that fN(x, ynom) ≥ fN(x, y) for all x ∈ X . Thus, for x ∈ BN , we have GN(x, ·) ≤

wN(xN − bN) + rN − F y
N ≤ 0, Then we can conclude Γ ⊂ Bc

N by following the contradiction

arguments that we made in part (i).

Next, we search for bN−1 such that GN−1(x, ·) ≤ 0 over BN−1. By the cooperative property,

the worst case is when xN = bN . We can apply the arguments for i = N to i = N − 1, by

simply shifting the cell indices, and replacing FN−1 with min{FN−1, ωN(x̄N − bN)}. Thus one

can show Γ ⊂ Bc
N−1 ∩ Bc

N . The above logic applies to every i = N − 2, . . . , 2. For i = 1, one

can replace Fi−1 with r0 and proceed similarly.

In conclusion, Γ ⊂ Bc
1 ∩Bc

2 ∩ . . . ∩Bc
N , which implies the upper bounds.

Proof for Theorem 2. We need to show that Γ ⊂ H = {x ∈ X |ai ≤ xi ≤ bi, i = 1, 2, · · · , N},

where ai = miny∈Y{ayi } and bi = maxy∈Y{ayi }.

If a1 = znom
1 , then we have zy1 ≥ znom

1 for all y. By the way that we constructed ay1, we have

G1(x, y) ≥ 0 for all x ∈ {ξ : ξ1 < a1} and for all y ∈ Y . Thus, by contradiction method (see

the proof of Prop. 10), we can show that x ∈ {ξ : ξ1 < a1} is disjoint with Γ. Similarly, we can

show {ξ ∈ X : ξ1 ≥ a1, . . . , ξi−1 ≥ ai−1, ξi < ai} is disjoint with Γ for all i. The same logic

applies to the upper bounds.

By Prop. 8, if a1 = zy1 6= znom
1 for some y, then we must have that F y

0 < F nom
0 and zyi < xci

for all i. Now consider an arbitrary mode w 6= y. If w has no incident in cell 1, then f0(x,w) >

f0(x, y). Apparently we have f1(x,w) ≤ f1(x, y). Thus, as we showed in the proof of Prop. 10,

G1(x,w) > G1(x, y) ≥ 0 for all x ≤ a1 = zy1 ≤ znom
1 . If w has incident in cell 1, then

f0(zy, y) = f0(zy, w) and f1(zy, y) ≤ f1(zy, w). Thus, G1(x,w) ≥ G1(x, y) ≥ 0. Then one can

proceed as the previous case for i = 2, . . . , N and then for the upper bounds.
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V. STEADY-STATE PERFORMANCE METRICS

In this section, we first show that the accessible set supports the invariant probability mea-

sure(s), by following [3]. Then we utilize properties of the flow dynamics to derive the bounds

for performance metrics.

A. Support of invariant probability measure

The authors of [3] developed their results for smooth vector fields. Here we show that their

results regarding the support of the invariant probability measure also hold for the dynamics

G defined by (8)–(11), a continuous but non-smooth vector field. Specifically, we will show in

sequence that

(i) The discrete process
(
X̃n, Ỹn

)
and the continuous process (X(t), Y (t)) has the same

support for their invariant probability measures (Prop. 11);

(ii) For the discrete process
(
X̃n, Ỹn

)
, every state in the accessible set can be reached with

positive probability (Lmm. 12);

(iii) The accessible set of the discrete process (X̃n, Ỹn) supports the invariant probability mea-

sure (Lmm. 13).

First, we verify the correspondence between Pinv and P̃inv

Proposition 11. If µ ∈ P̃inv, then µK̃ ∈ Pinv. If µ ∈ Pinv, then µQ ∈ P̃inv. Furthermore,

supp(µ) = supp
(
µK̃
)

Proof. (i) Consider a smooth (with respect to the continuous argument) function g : X ×Y → R.

By (15), we have
d

dt
Ktg(x, y) = (∇g(φyt (x), y))G(φyt (x), y) = KtAg(x, y),

where A is defined by (12). Therefore,

K̃(λI − A)g(x, y) =

∫ ∞
t=0

λe−λtKt(λI − A)g(x, y)dt

=

∫ ∞
t=0

λe−λt
(
λKtg(x, y)− d

dt
Ktg(x, y)

)
dt = λg(x, y),

where I is the identity matrix. Similarly, one can show that (λI −A)K̃g = λg. Then, recalling

(13)-(17), we have

µK̃Lg(x, y) = −λ
(
µ− µP̃

)
g(x, y).
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If µ ∈ P̃inv, then µ− µP̃ = 0, and thus µK̃Lg(x, y) = 0. Hence, µK̃ ∈ Pinv. Also note that

µLK̃g(x, y) = −λ
(
µ− µQK̃

)
g(x, y).

If µ ∈ Pinv, then µLK̃g(x, y) = 0, and thus µ = µQK̃. Hence µQ = µQK̃Q = µQP̃ , i.e.

µQ ∈ P̃inv.

(ii) Then we show that the invariant probability measures of the discrete process
(
X̃n, Ỹn

)
and

that of the continuous process (X(t), Y (t)) are supported by the same set. We first show that µK̃

is strictly positive everywhere over supp(µ). Let (x, y) ∈ supp(µ) and B(x) be a neighborhood

of x. Then, for a sufficiently small t0 > 0 and t ∈ [0, t0], continuity of trajectories implies that

φy−t(B(x)) ⊂ B(x). Thus

(µK̃) (B(x)× {y}) =

∫ ∞
t=0

λe−λtµ (B(x)× {y}) dt

≥ λ

∫ t0

t=0

e−λtµ (B(x)× {y}) dt > 0,

which proves that supp(µ) ⊂ supp
(
µK̃
)

. Conversely, let ν = µK̃, (x, y) ∈ supp(ν), and B(x)

be a neighbothood of x. Then, by part (i),

µ (B(x)× {y}) =
∑
w∈Y

∫
B(x)

Q(y, x, w)ν (B(x)× {y})

≥
∫
B(x)

Q(y, x, y)ν (B(x)× {y}) > 0,

which proves that supp
(
µK̃
)
⊂ supp(µ).

Next, we construct the set of all “possible” trajectories starting from some x ∈ X .

Definition 4 (Adapted sequences). For all n ∈ Z+, let

T y,w
n = {(y,u) ∈ Tn : y0 = y, yn = w} ,

where Tn is defined in Def. 1. Given (y,u) ∈ Tn, define (xk)0≤k≤n by induction by setting x0 = x

and xk+1 = φ
yk−1
uk (xk). Define t = (t0, t1, . . . , tn) such that t0 = 0 and that tk = tk−1 + tk for

k = 1, 2, . . . , n. Define

ηx,y,u(t) =


x if t = 0,

φ
yk−1

t−tk−1
(xk−1) if tk−1 < t ≤ tk, k = 1, . . . , n,

φynt−tn(xn) if t > tn.
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Finally, let p(x,y,u) =
∏n

k=1 Q(yk−1, xk, yk), and define

Tn,ad(x) = {(y,u) ∈ Tn : p(x,y,u) > 0} .

An element of Tn,ad(x) is said to be adapted to x ∈ X .

Let Prx,y be the probability conditional on initial condition (x, y). Next, we show that every

adapted trajectory can be realized with a positive probability.

Lemma 12. Let ξ ∈ Γ and B(ξ) be a neighborhood of ξ. There exist m ∈ Z+ and δ > 0 such

that, for all y, w ∈ Y and x ∈ X ,

Prx,y
{(
X̃m, Ỹm

)
∈ B(ξ)× {w}

}
≥ δ. (29)

In particular, if Γ is a connected set, then

Pr {(∃s ≥ 0)(∀t ≥ s)X(t) ∈ γ} = 1. (30)

Proof. We first show that, for any (y,u) ∈ Tn, (x, y) ∈ X × Y , any T ≥ 0, and any δ > 0, we

have

Prx,y

{
sup

0≤t≤T
‖X(t)− ηx,y,u(t)‖≤ δ

}
> 0. (31)

Consider an arbitrary (y,u) ∈ Tn,ad(x). Let v ∈ Rn
+. If maxi=1,...,n|vi−ui|≤ δ1 for some δ1 > 0,

then there exists some δ2 > 0 such that

sup
0≤t≤T

‖ηx,y,v(t)− ηx,y,u(t)‖≤ δ, p(x,y,v) ≥ δ2.

Let (U1, . . . , Un+1) be n+ 1 independent rv s with Ui ∼ Exp(λ) for all i. Then

Prx,y

{
sup

0≤t≤T
‖X(t)− ηx,y,u(t)‖≤ δ

}
≥ δ2Pr

{
max
i=1,...,n

|Ui − ui|≤ δ1, Un+1 ≥ T − tn + δ1

}
≥ δ2

(
n∏
i=1

(
e−λ(ui−δ1) − e−λ(ui+δ1)

))
e−λ(T−tn+δ1) > 0.

Now consider the case where (y,u) is not adapted, say, starting from an arbitrary initial mode w.

Then, since Q is by construction irreducible and aperiodic, a transition from w to y0 can happen

in any arbitrarily short time interval with positive probability. Finally, (29) and (30) follow from

(31) and Lmm. 3.16 in [3].
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By summarizing the above results, we have the following lemma:

Lemma 13 (Support of invariant probability measure). Every invariant probability measure

µ ∈ Pinv is supported by the accessible set Γ.

Proof. If Γ is a singleton, the proof is trivial. If Γ is a connected set, by Lmm. 12, every state in

Γ (of the continuous-time process) is positively recurrent. Therefore, every µ ∈ P̃inv is supported

by Γ. Thanks to the equivalence between P̃inv and Pinv (see Prop. 11), the invariant probability

measure(s) of the continuous-time process is (are) supported by Γ.

B. Bounds for performance metrics

Now we consider the long-time behavior of performance metrics. Once again, we only consider

the case where r is strictly feasible for ynom but infeasible for some y ∈ Y , and Zy is a singleton

for all y ∈ Y . Without of loss of generality, we assume unit length of cells.

Lemma 14. If Zy = {z}, then z ∈ Γ.

Proof. Recall that, when z is the unique limiting state in mode y, every orbit {φyt (x); t ≥ 0}

converges to z. Therefore, z ∈ γ+(x) for all x ∈ X . Hence z ∈ Γ.

Lemma 15. for µ ∈ Pinv, we have

JT (a, ynom) < min
(x,y)∈Γ×Y

JT (x, y) < JµT

< max
(x,y)∈Γ×Y

JT (x, y) < JT (b, ymax), (32)

min
x∈V (H)

JF (x, ymax) ≤ min
(x,y)∈Γ×Y

JF (x, y) < JµF

< max
(x,y)∈Γ×Y

JF (x, y) ≤ JF , (33)

where JF is the optimal value of the LP (28).

Proof. The inequalities (32) naturally follow from Thm. 2 and Lmm. 13. The proof of (33) is

as follows.

Note that, for every i ∈ {0, 1, . . . , N} and every y ∈ Y , fi(x, y) is concave in x (see

(9)). Therefore, JF (x, y) is concave in x. Since H is a polyhedron, by standard results from
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optimization [4], we have

min
x∈V (H)

JF (x, ymax) = min
x∈H

JF (x, ymax)

≤ min
x∈Γ

JF (x, ymax) = min
(x,y)∈Γ×Y

JF (x, y),

where V (H) is the set of vertices of H. Hence the lower bound follows.

To show the upper bound, note that

max
(x,y)∈Γ×Y

JF (x, y) ≤ max
x∈Γ

JF (x, ynom) ≤ max
x∈H

JF (x, ynom).

Since JF (x, ·) is concave and piecewise-affine in x, standard results in linear programming (LP,

see e.g. [4]) imply that maxx∈H JF (x, ynom) = JF , where JF is the optimal value of the LP

(28).

Thm. 3 follows from Lmm. 13 and 15.

VI. COMPUTATIONAL STUDY

We present a computational study to numerically analyze both qualitative and quantitative

properties of the stochastic switched model of random incidents.

Fig. 8. A ten-cell freeway segment with two incident hotspots, upstream of cell 4 and cell 8.

A. Freeway segment with two incident hotspots

Consider a freeway segment with ten cells (N = 10) and two incident hotspots, i.e. H = {4, 8};

see Fig. 8. This system has four modes: no incident (y = 0), incident in cell 4 (y = 1), incident

in cell 8 (y = 2), and incidents in both cells (y = 3); let Y = {0, 1, 2, 3}. The model transitions

between these discrete modes, as depicted in Fig. 9. The incident rate at each hotspot is given by

kxi + b, i ∈ {4, 8}, where k and b are constant parameters. For simplicity, the incident clearing

rate is assumed to be a constant µ (independent of xi) for each hotspot i. Numerical values of

the parameters are given in Fig. 9. Unless otherwise specified, we nominally assume that an
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incident in either location results in a 1/3 capacity drop, i.e. α3 = 0.33 and α7 = 0.33. All

other parameters are specified in Tab. I. The aforementioned parameters completely specify the

stochastic switched model (8)–(11).

Fig. 9. Incident modes and mode transitions.

TABLE II

LIMITING STATES AND PERFORMANCE METRICS IN EACH INCIDENT MODE.

Mode (y)
Limiting states

Jy
F Jy

Tzy1 zy2 zy3 zy4 zy5 zy6 zy7 zy8 zy9 zy10

0 100 100 100 100 100 100 100 100 100 100 52800 1000

1 238 222 210 87 89 91 93 95 96 97 45658 1317

2 351 313 282 258 238 223 210 87 89 91 35364 2141

3 351 313 282 258 238 223 210 87 89 91 35364 2141

This freeway segment is subject to a stationary demand specified by the (N + 1)-dimensional

vector r = [4800, 1200, . . . , 1200]T . Here ri denotes the fixed arrival rate (in vph) at the on-ramp

of cell i. Table II shows the values of the limiting states and the performance metrics (VHT and

VMT) obtained by running a deterministic model simulation for each mode.

We conducted 100, 000 simulation runs of the stochastic switched model with random initial

conditions. To study the invariant measure, we consider the empirically estimated steady-state

marginal distribution of individual continuous states (i.e. traffic densities in specific cells). The

empirical distributions for the i-th cell approximates the invariant measure, µ, marginalized over

the continuous states xj in other cells (j 6= i) and over all incident modes y ∈ Y .

Fig. 10 shows the empirical steady-state marginal distribution of traffic densities in cell 3,

which is located upstream of an incident hotspot. The figure also shows the limiting states

given in Table II (columns for zy3 ). Since each of the individual mode dynamics converge to the
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corresponding limiting state, the continuous state of the stochastic switched system, in steady

state, resides in the vicinity of these limiting states with higher probability (compared to the

regions in the accessible set that are further away from the limiting states). Fig. 10 validates this

observation.
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Fig. 10. Marginal distribution of density in the 3rd cell.

In addition, Fig. 10 shows the bounding intervals [a3, b3] and [a7, b7] defined by (22)-(23)

in Thm. 2. These intervals bound the projections of the accessible set Γ (see Def. 18) on the

respective dimensions. Consequently, these intervals bound the support of corresponding steady-

state marginal distributions. These bounds are tight for this particular example.

In Fig. 11, we plot the empirical distributions of the performance metrics (VMT and VHT),

which also exhibit similar properties: these metrics are concentrated in the neighborhood of the

mode-specific values (columns for JyF and JyT in Tab. II). Fig. 11 also shows the accuracy of the

bounds given by Thm. 3.
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(a) Distribution of throughput (VMT).
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Fig. 11. Empirical distribution of limiting-state throughput and VHT, both concentrated at the limiting states.
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B. Impact of Incident Characteristics (α and λ)

Intensity α
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(a) Impact of incident intensity.
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(b) Impact of incident rate.

Fig. 12. Sensitivity of throughput with respect to incident characteristics: changing α from 0.3 to 0.4 is equivalent to changing

λc from 0.35 to 1.1 hr−1.

Impact of incident intensity: We now assume α ≡ α3 = α7, and vary α from 0 (no capacity

drop) to 0.5 (50% capacity reduction). Fig. 12(a) shows how the expected throughput (VMT)

in steady state varies with α. The figure mainly illustrates two points. First, there is a critical

intensity (αc = 0.2), below which incidents do not reduce expected throughput; see Prop. 8, case

(i). Second, for α ≥ αc, the expected throughput decreases with α. Again, this is a consequence

of the behavior of the limiting states.

Impact of incident rate: Fig. 12(b) shows that, in steady state, the expected throughput

decreases with incident rate. We varied the coefficient k for the density-dependent incident rate.

For the purpose of presentation, w define the nominal incident rate λc, which is the λ evaluated

at the critical densities. Note that the sensitivity of expected throughput to incident rate is lesser

in comparison to its sensitivity to incident intensity. Even at a high incident rate (e.g. more than

1 incident per hour), the expected throughput only reduces to 46,610 vehicle-mile, merely 10%

less than the nominal value (52,800 vehicle-mile). In contrast, an increase from 0.2 to 0.3 in the

intensity α would cause roughly 25% loss of expected throughput. This observation indicates

that less frequent but severe incidents could lead to more loss in expected throughput relative

to a more frequent but less intense incidents.
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C. Impact of static ramp control in the wake of incidents

From a traffic operations viewpoint, a traffic controller has the capability of controlling inputs

r by metering on-ramp flows. Previous control policies [14], [24], [29] do not explicitly account

for the incident-induced congestion. Using our stochastic switched model, we would like to

investigate the impact of metering inputs upstream of incident hotspots on long-term expected

performance metrics. Unfortunately, the dependence of these metrics on r is not straightforward.

So we use model simulation to determine which entrances/exits should be metered, and how

much traffic should be metered at these entrances/exits.9
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(b) Ramp metering of different magnitudes.

Fig. 13. Ramp metering impacts throughput.

Fig. 13(a) shows the fraction of recovered throughput as a result of a 600/1200 vph reduction

at each entrance metered individually. We note that the closer an input to a downstream incident

hotspot, the more significantly it improves the expected throughput. In addition, r7 plays a more

significant role than r3, because metering r7 reduces congestion in cells 1 through 7, while

metering r3 only affects cells 1 through 3. Thus, r7 is most effective for throughput recovery. If

multiple entrances can be metered, the inputs r3, r5, and r6 can all be metered. However, metering

wrong locations could result in loss of throughput! For example, if r0 were reduced, the loss

would increase: reducing r0 wastes available capacity in cells 1 through 3. Similar behavior is

observed when the inputs r8, r9, and r10 are inappropriately metered. This also indicates that

reallocating some demand from cell 7 to the downstream cells would improve throughput.

9We only consider static inputs, but our analysis also provides hints for dynamic traffic control.
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Next, we studied the impact of varying r7; see Fig. 13(b). For low inflow rates, the capacity

is underutilized, so throughput increases with r7. Between 500 and 800 vph, roughly 25%

throughput is recovered. Further increasing r7 quickly results in throughput drop. As shown

in Fig. 14(c), if we reduce r7 from 1200 vph to 800 vph, the congestion in the upstream cells

is reduced in comparison to the unmetered case in Fig. 14(b). Although this metering policy

will cause a queue (growing at a rate of 400 vph) at entrance of ramp 7, it increases the total

throughput by 500 vph. If traffic can be diverted from entrance 7 to entrance 8, then even more

throughput can be recovered. Further, the nominal capacity allows r7 to increase to 2,400 vph

without causing congestion; however, the throughput loss would be increased by almost 150% if

r7 were increased to 2,400 vph, due to the impact of incidents. Therefore, operating a freeway

close to its nominal capacity can be highly suboptimal under incident-prone conditions.

(a) In the nominal mode, the unmetered demand induces no

congestion.

(b) Due to incidents, the unmetered demand tends to cause

congestion. Incidents cause congestion in the cells upstream to

hotspots; and cells 1 through 3 have the most severe congestion,

since they are affected by both hotspots.

(c) Ramp metering strategy alleviates congestion induced by

incidents.

Fig. 14. The idea of incident-aware ramp metering.

Our analysis is consistent with the arguments regarding the effect of ramp metering location

on throughput made by Gomes et al. [14], although they did not focus on control in incident-

prone conditions. They showed that throughput can be improved by reallocating demand at a

bottleneck to an upstream location. We showed that, in incident-prone conditions, an incident

hotspot is a potential bottleneck. Therefore, controlling the demand at incident hotspots will
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improve the expected throughput.

VII. CONCLUDING REMARKS

The main contributions of this article are: (i) a switched stochastic model for traffic dynamics in

incident-prone freeways, (ii) an analysis of steady-state properties of the switched system model,

and (iii) simulation-based validation of the technical results and insights for incident management.

The main idea of the switched model is an underlying stochastic process governing the initiation

and termination of capacity-reduction incidents. The system randomly switches among a set of

incident modes, and captures the impact due to mode-dependent dynamics. The accessible set

(for the continuous state) of the stochastic switched system may be a singleton or a connected

set. When the input is sufficiently low or sufficiently high (see Thm. 1), the accessible set is a

singleton. When the accessible set is a connected set, we provide a bounding box to approximate

it. Analytical characterization of the steady-state probability distribution of the continuous state is

generally hard, but this distribution tends to concentrate near the limiting states. Interestingly, the

expected performance is more sensitive to incident intensity than to incident rate. For stationary

ramp metering, the incident-aware strategy is able to improve expected throughput.
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