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Abstract

We prove that the Young measure associated with a Borel function f

is a probability distribution of the random variable f(U), where U has a
uniform distribution on the domain of f . As an auxiliary result, the fact
that Young measures associated with simple functions are weak∗ dense in
the set of Young measures associated with measurable functions is proved.
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1 Introduction

One of the major problems in the calculus of variations is minimization of
functionals which are bounded from below but do not attain their infima. If
the minimize functional J is bounded, the direct method can be applied: there
always exists a minimizing sequence for J , that is a sequence (un), un : Rd → R

l,
n ∈ N, such that lim

n→∞
J (un) = inf J . Additionally, if J is coercive, (un) is

always bounded. However, if J does not attain its infimum then the elements of
(un) are functions of highly oscillatory nature. Moreover, weak∗ convergence in
L∞ of (un) to some function u0 does not guarantee, that the sequence (ϕ(un))
of compositions of un with continuous function ϕ is weak∗ convergent in L∞.
Indeed, in general it is not convergent not only to ϕ(u0), but to any function
with domain in R

d.
Laurence Chisholm Young introduced in [11] objects called by him ’generali-

zed curves’, nowadays called ’Young measures.’ These are the ’generalized li-
mits’ of sequences of highly oscillating functions. The ’mature’ form of Young’s
theorem has been proved by J.M.Ball in [3]. According to these theorems,
we say that that under their assumptions the considered sequences ’generate’
appropriate Young measures. This approach is studied for example in [8] in
detail.

Alternatively, we can look at the Young measure as at object associated with
any measurable function defined on a nonempty, open, bounded subset Ω of Rd

with values in a compact subset K of R
l. Such a conclusion can be derived
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from the theorem 3.6.1 in [10]. Thank to this theorem it can be proved that
the Young measure associated with a simple function is the convex combination
of Dirac measures. These Dirac measures are concentrated at the values of the
simple function under consideration while coefficients of the convex combinaton
are proportional to the Lebesgue measure of the sets on which the respective
values are taken on by the function, see [9] for details and more general result.

In this article we significantly generalize the above results. We prove a
theorem providing general yet simple description of Young measures associated
with Borel functions. As a consequence, the theorem enables one to compute
explicit formulae of probability density functions of the Young measures in many
interesting cases. This can be done without commonly used to calculate weak∗

limits of sequences of functions generating Young measures functional analytic
apparatus. Since Young measures are widely used in many areas of theoretical
and applied sciences (see for example [2], [4], [5], [8]), our result provide a handy
tool of obtaining their explicit form.

The main theorem of this article states that the Young measure associated
with any Borel function f defined on the setΩ ⊂ R

d with positive Lebesgue mea-
sure M and values in a compact set K ⊂ R

l, is in fact a probability distribution
of a random variable X = f(U), where U is uniformly distributed on Ω. Be-
fore this, we prove a lemma corresponding to standard measure-theoretic result,
that any Borel function is a pointwise limit of the appropriate sequence of simple
functions. Relying on this fact we prove, that for any Borel function f : Ω → K,
its Young measure is the weak∗ limit of a sequence of Young measures associated
with the elements of the sequence of simple functions convergent pointwise to f .

2 Young measures – necessary information and

an auxiliary result

The first part of this section can serve as a very brief introduction to the theory
of Young measures. In the second part we state and prove a lemma mentioned
at the end of the Introduction.

2.1 An outline of the Young measures theory

We gather now some information about Young measures. An interested reader
can find details, together with proofs and further bibliography, for example in
[1], [6], [7], [8], [10].

Let R
d ⊃ Ω be nonempty, bounded open set and let K ⊂ R

l be compact.
Let (fn) be a sequence of functions from Ω to K, convergent to some function
f0 weakly∗ in L∞. Finally, let ϕ be an arbitrary continuous real valued function
on R

d. Then the sequence (ϕ(fn)) is uniformly bounded in L∞ norm and
therefore by the Banach – Alaoglu theorem there exists a subsequence of (ϕ(fn))
weakly∗ convergent to some function g. In general g 6= ϕ((f0)). L. C. Young
proved in [11], that there exists a subsequence of ϕ((fn)), not relabelled, and a
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family (νx)x∈Ω of probability measures with supports suppνx ⊆ K, such that
∀ϕ ∈ C(Rd) ∀w ∈ L1(Ω) there holds

lim
n→∞

∫

Ω

ϕ(fn(x))w(x)dx =

∫

Ω

∫

K

ϕ(s)νx(ds)w(x)dx :=

∫

Ω

ϕ(x)w(x)dx.

This family of probability measures is today called a Young measure associated
with the sequence (fn).

In 1989 J. M. Ball proved the following theorem. Let Ω be a measurable
subset of Rd, v : [0,+∞) → [0,+∞) a continuous, nondecreasing function such
that lim

t→∞
v(t) = +∞. By ψ we denote a function ψ : Ω × R

l ∋ (x, λ) → ψ(x, λ) ∈ R

satisfying Carathéodory conditions: it is measurable with respect to the first,
and continuous with respect to the second variable. Consider further a sequence
(fn) of functions on Ω with values in R

l, satisfying the condition

sup
n

∫

Ω

v(|fn(x)|)dx < +∞.

Theorem 2.1 ([3]) Under the above assumptions, there exists a subsequence
of (fn), not relabelled, and a family (νx)x∈Ω of probability measures, dependent
measurably on x, such that if for any Carathéodory function ψ the sequence
(ψ(x, fn(x)) is weakly convergent in L1(Ω), then its weak limit is a function

ψ(x) =

∫

Rl

ψ(x, λ)dνx(λ).

We now turn our attention to the presentation of the Young measures as in [10].
In general, Young measures can be looked at as the element of the space con-
jugate to the space L1(Ω,C(K)) of Bochner integrable functions on Ω ⊂ R

d

with values in C(K). The space L1(Ω,C(K)) is isometrically isomorphic to
the space Car(Ω,K;R) of the Carathéodory functions, equipped with the norm
‖h‖Car :=

∫

Ω

sup
k∈K

|h(x, k)|dx.

Let h ∈ L1(Ω,C(K)). Denote by U the set of all measurable functions on
Ω with values in K. Consider a mapping

i : U → L1(Ω,C(K))∗

defined by the formula

〈i(f), h〉 :=

∫

Ω

h(x, f(x))dx.

By Y (Ω,K) we will denote the weak∗ closure of the set i(U) in L1(Ω,C(K))∗:

Y (Ω,K) :=
{

L1(Ω,C(K))∗ ∋ η : ∃(fn) ⊂ U : i(fn)
w∗

−−−−→
n→∞

η
}

.

Denote by
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• rca(K) – the space of regular, countably additive signed measures on K,
equipped with the norm ‖m‖rca(K) := |m|(Ω), where | · | stands in this
case for the total variation of the measure m. With this norm rca(K) is
a Banach space;

• rca1(K) – the subset of rca(K) with elements being probability measures
on K;

• L∞
w (Ω, rca(K)) – the set of the weakly measurable mappings

ν : Ω ∋ x→ ν(x) ∈ rca(K).

We equip this set with the norm

‖ν‖L∞

w
(Ω,rca(K)) := ess sup

{

‖ν(x)‖rca(K) : x ∈ Ω
}

.

By the Dunford – Pettis theorem this space is isometrically isomorphic
with the space L1(Ω,C(K))∗.

Now define an element η of L1(Ω,C(K))∗ by the formula

η : L1(Ω,C(K)) ∋ h→ 〈η, h〉 :=

∫

Ω

(

∫

K

h(x, k)dνx(k)
)

dx,

which in turn will be the value of the mapping

ψ : L∞
w (Ω, rca(K)) ∋ ν → ψ(ν) := η ∈ L1(Ω,C(K))∗

Theorem 2.2 The mapping ψ defined above is an isometric isomorphism bet-
ween the spaces L∞

w (Ω, rca(K)) and L1(Ω,C(K))∗.

The set of the Young measures on the compact set K ⊂ R
l will be denoted by

Y(Ω,K):

Y(Ω,K) :=
{

ν = (ν(x)) ∈ L∞
w (Ω, rca(K)) : νx ∈ rca1(K) for a.a x ∈ Ω

}

.

We will write νx or (νx)x∈Ω instead of ν(x).
Finally, we define the Dirac mapping δ: ∀x ∈ Ω

δ : U ∋ f → [δ(f)](x) := δf(x) ∈ Y(Ω,K)

Theorem 2.3 The diagram

U

Y(Ω;K)
||②②
②②
②②
②②
②②
②②
②②
②

δ

U

Y (Ω;K)
""❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊

i

Y(Ω;K) Y (Ω;K)oo //

ψ

is commutative.

This means, that for any f ∈ U there exists a Young measure associated with it.
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2.2 An auxiliary lemma

The notion of quasi-Young measure was introduced in [9]. We state it now in a
slightly more general form.

Let Ω be an open subset of Rd with Lebesgue measure M > 0, dµ(x) := 1
M
dx,

where dx is the d – dimensional Lebesgue measure on Ω and let K ⊂ R
l be com-

pact.

Definition 2.1 We say that a family of probability measures ν = (νx)x∈Ω is
a quasi-Young measure associated with the measurable function f : Rd ⊃ Ω →
K ⊂ R

l, if for every continuous function β : K → R there holds an equality
∫

K

β(k)dνx(k) =

∫

Ω

β(f(x))dµ(x).

In [9] it was proved that in many application important cases the quasi-
Young measures associated with functions satysfying appropriate assumptions
were identical with the Young measures with them. In particular, quasi-Young
measures associated with simple functions are Young measures associated with
them. Denote by µ the normalized Lebesgue measure on a nonempty, bounded
subset Ω of Rd with positive measure M : dµ(x) := 1

M
dx with a d-dimensional

Lebesgue measure dx. Let {Ω}ni=1 be a partition ofΩ into open, pairwise disjoint

subsets Ωi with Lebesgue measure mi > 0, such that
n
⋃

i=1

cl(Ωi) = cl(Ω), where

’cl’ stands for ’closure’. By 1A we denote the characteristic function of the set A.

Theorem 2.4 [9] Choose and fix points pi ∈ R
l, i = 1, 2, . . . , n, and let f be a

simple function:

f :=

n
∑

i=1

pi1Ωi
.

Then the Young measure associated with f is of the form

νx =
1

M

n
∑

i=1

miδpi
.

Remark 2.1 Observe that νx does not depend on the variable x ∈ Ω; this is
a homogeneous Young measure.

Definition 2.2 The (quasi-)Young measure associated with simple function will
be called a simple (quasi-)Young measure.

We now recall the notion of weak∗ convergence of measures on compact sets.

Definition 2.3 We say that a sequence (νn) of bounded measures on a compact
set K ⊂ R

l converges weakly∗ to a measure ν0, if ∀β ∈ C(K,R) there holds

lim
n→∞

∫

K

β(k)dνn(k) =

∫

K

β(k)dν0(k).

5



We now prove a lemma which needed further.

Lemma 2.1 Let f : Ω → K be a measurable function and let (fn) be a pointwise
convergent to f sequence of simple functions. Then the Young measure νf

associated with f is a weak∗ limit of the sequence of the simple Young measures
associated with respective elements of (fn).

Proof. Choose and fix ε > 0. Using change of variable theorem, continuity of
the function β and the finiteness of the measure of Ω, we infer the existence of
n0 ∈ N such that ∀m, n > n0 we have

∣

∣

∣

∫

K

β(k)dνn −

∫

K

β(k)dνm

∣

∣

∣
=

∣

∣

∣

∫

Ω

β(fn(x))dµ −

∫

Ω

β(fm(x))dµ
∣

∣

∣
≤

≤

∫

Ω

|β(fn(x)) − β(fm(x))|dµ ≤ ε · µ(Ω).

This means that (νn) is a weak∗ Cauchy sequence, so its weak∗ accumulation
point belongs to Y (Ω,K). By the injectivity of ψ, there is exactly one Young
measure ρ = (ρx)x∈Ω ∈ Y(Ω,K) corresponding to this accumulation point.
Then we have

∣

∣

∣

∫

K

β(k)dρx −

∫

K

β(k)dνfx

∣

∣

∣
≤

∣

∣

∣

∫

K

β(k)dρx −

∫

K

β(k)dνn

∣

∣

∣
+

+
∣

∣

∣

∫

K

β(k)dνn −

∫

K

β(k)dνfx

∣

∣

∣
.

Since ρ is an accumulation point of (νn) and (fn) converges pointwise to f , the
result follows. �

Remark 2.2 Observe that νf need not be a homogeneous Young measure.

Corollary 2.1 The set of all simple Young measures is weak∗ dense in the set
of the Young measures associated with functions from U .

3 Some necessary notions from probability the-

ory and notation

To set up notation, we recall now standard probabilistic notions needed in the
sequel. If Σ is a σ-algebra of subsets of a nonempty set A and P – a measure
on Σ, then the triple (A, Σ, P ) is called a measure space, and a probability
space if P is a probability measure. A random variable (or a random vector)
X : A → R

d is a function such that for any Borel set B ⊆ R
d there holds

X−1(B) ∈ Σ. Obviously, if ϕ : Rd → R
l is a Borel function, then ϕ(X) is a

random variable. The probability distribution on R
d is any probability measure
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P on the σ-algebra B(Rd) of Borel subsets of Rd. The probability distribution of
a random variableX with values in R

d is a probability measure PX on R
d defined

for any B ∈ B(Rd) by the equality PX(B) := P (X−1(B)). Consequently, for
the distribution of the random variable ϕ(X) we have: for any C ∈ B(Rl)

Pϕ(X)(C) = P (ϕ(X)−1(C)) = PX(ϕ−1(C)).

If P is a probability distribution on R
d and for some Lebesgue integrable func-

tion g : Rd → R there holds: ∀A ∈ B(Rd) P (A) =
∫

A

g(x)dx, then the function

g is called a density of P .
Let Ω be a Borel subset of Rd with Lebesgue measure M > 0. We say that

random variable U : Rd → R
l is uniform on Ω, if its density gu is of the form

gU (x) =

{

1
M
, x ∈ Ω

0, x /∈ Ω.

The probability distribution PU is then called the uniform distribution.

4 Main result

As in the previous sections, letΩ be an open subset of Rd with Lebesgue measure
M > 0, dµ(x) := 1

M
dx, where dx is the d – dimensional Lebesgue measure on

Ω and let K ⊂ R
l be compact. Denote P := 1

M
dx.

Finally, we are ready to formulate the main theorem of the article.

Theorem 4.1 Let f : Rd ⊃ Ω → K ⊂ R
l be a Borel function with Young

measure µf . Then µf is the probability distribution of the random variable
Y = f(U), where U has a uniform distribution on Ω.

Proof. The distribution of a random variable Y is of the form: ∀C ∈ B(K),
Pf(U)(C) = PU (f−1(C)). Let f be constant on Ω with value p and vanish on

the complement of Ω. By lemma 2.1 we have µf = δp. For any C ⊆ K we have

µf (C) =

∫

Rl

1C(p)dδp =

{

1, p ∈ C

0, p /∈ C.

On the other hand,

PU (f−1(C)) =

∫

f−1(C)

gudP =
1

M

∫

{x:f(x)∈C}

dx =

{

1
M

·M = 1, p ∈ C
1
M

· 0 = 0, p /∈ C.

Thus PY = µf . This equality also holds when f is a simple function, due to the
linearity of the integral. Since functions under consideration have values in the
compact set K, the dominated convergence theorem yields the result for any
Borel f . �
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