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Abstract

Consider the following inductively defined set. Given a collection U
of unit magnitude complex numbers, and a set initially containing just 0
and 1, through each point in the set, draw lines whose angles with the
real axis are in U. Add every intersection of such lines to the set. Upon
taking the closure, we obtain R(U). We investigated for which U, R(U)
is a ring.

Our main result holds for when 1 € U and |U| > 4. If P is the set of real
numbers in R(U) generated in the second step of the construction, then
R(U) equals the module over Z[P] generated by the set of points made
in the first step of the construction. This lets us show that whenever the
pairwise products of points made in the first step remain inside R(U), it
is closed under multiplication, and is thus a ring.

1 Introduction

Suppose we are given a collection U of unit length elements of C. If we have
some collection of points in C, we can draw lines through each of them with
every angle in U (with respect to the real axis). In this way we can construct
intersections of lines and repeat the process. Specifically, if we start with 0
and 1 in the complex plane and continue this construction forever until it is
completed, when is the resulting collection of points a subring of the complex
numbers?

Note that even though we are drawing lines, only the intersection points are
considered to be constructed. In [I], Buhler et al. motivated this construction
with a discussion of origami where two folds can intersect to create a reference
point.

Definition 1.1. Let p,q, o, 8 € C with |a| = || = 1. Define Lo(p) to be
the line through p with angle . In other words, Lo(p) = p + Ra. Define
I,.58(p,q) = La(p) N Lg(q) when a # £L so that an intersection exists.

Definition 1.2. Let U be a set of unit magnitude complex numbers. Set Sy =
{0,1}. For each n € N, set

Sﬂ+l = {Ia,ﬂ(P7Q) | Oé,ﬁ S U; p,q S Sn7 and o 7é iﬁ}
We then define R(U) = ,,cn Sn-
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Definition 1.3. T = {z € C | |z| = 1} which is viewed as a group under complex
multiplication. T/{£1} will be used for the collection of angles, since o and 8
are considered equivalent iff o = £8. Unless otherwise specified, U C T /{£1}.

Definition 1.4. Given U C T/{£1}, we define all elements z € R(U) of the
form I, 5(0,1) to be elementary monomials, i.e., length 1 monomials.

Neat, if m is a length k monomial, then I, 3(0,m) € R(U) is a length k+1
monomial. In this way we inductively define monomials.

Proposition 1.5 ([I]). We can calculate 1, 5(p,q) as follows for p,q € C and
a#BeT/{£1}.

8,a]"

where [x,y] = 2§ — yT and Z is the complex conjugate of z.

Ios(p,q) = [[Z"Z]]ﬂ+ 13,4]

Proposition 1.6 ([I]). We list some properties of I, g(p,q) below for w €
T/{x1} andr € R.

(Symmetry) Iu.(p,q) = Lvu(q.p)

(Reduction) I, ,(p,q) = Luv(p,0) + I,..(g,0)

(Linearity) I, ,(rp+ ¢,0) = I, ,(p,0) + I,,(q,0)
(Rotation) For w € T/{£1}, wly»(p,q) = Lyuwe(wp, wq).

Lemma 1.7 ([1]). Let |U| > 3 with 1 € U. Then, R(U) is closed under addition
and additive inverses.

Theorem 1.8 ([1]). Let |U| > 3. R(U) is the collection of integer linear com-
binations of monomials.

Remark. Since whenever |[U| > 3, R(U) is a group under addition, we need
only check closure under multiplication to ensure that R(U) is a ring.

The authors of [I] then studied the case when U is a group. Specifically,
they took the set of unit magnitude complex numbers T (i.e., the unit circle)
and considered it to be a group under complex multiplication. Then they took
the quotient of T by {—1,+1}. The result can be viewed as the top half of the
unit circle. By convention, whenever we use U, we will refer to U C T/{£1}
where the elements are viewed as complex numbers.

Theorem 1.9 ([1]). Let U be a subgroup of T/{—1,+1} with |U| > 3. Then,
R(U) is a ring.

In their paper, Buhler et al. observed that R(U) maybe be a ring even when
U is not a group. They left the question of what properties U must satisfy
exactly for R(U) to be a group open.



2 Three Angles

In order to understand R(U), first we looked at |U| = 3 with 0 € arg(U). We
found that R(U) has the structure of a lattice and can be understood in terms
of one of the elementary monomials.

Lemma 2.1. Let U = {1,u,v}. We claim that R(U) is a lattice in C with the
form R(U) =7Z+ I, ,(0,1)Z.

Proof. Set x =1,,(0,1). From Lemmal[I.7}, we know that R(U) is a subgroup
of C with addition. Since 1 € R(U) and x € R(U), we clearly see that R(U) 2
Z+zZ.

We will prove the other containment with induction. We know that S1 =
{z,1—2,0,1} CZ+2Z. Let p,q € S,, which is assumed to be in Z + xZ. Let
a,pel.

We claim that z = Iog(p,q) € Z + xZ. Since Io3(p,q) = Ia,p(p,0) +
I5.4(q,0), it suffices to prove that 1o g(a + bx,0) € Z + xZ. Further note that

Iy p(a+bx,0) =1, g(a,0) + I, g(bz,0)
= aIaﬁﬁ(l, O) + Iaﬁﬁ(b:r, 0).

by linearity.

I,5(1,0) € S1, so I, 3(1,0) =1, 0, , or 1 —x. There are only four choices
since if one of the angles is 0 radians, the resulting point is 0 or 1. If a, 8 # 1,
then there are two choices left, « = u,8 = v or @« = v,3 = u. One of these
yields the point © and the other yields (by the parallelogram law) 1 — x. Thus
I, 5(a,0) € Z + zZ.

Nezt, note that I, p(bx,0) = bl,p(x,0). Thus it suffices to prove that
I, p(x,0) € Z+aZ. We have 6 cases.

(u,v) Since x = ru for somer € R, I, ,(2,0) =rl, ,(u,0) =0 € Z + 2Z.

(v,u) Ipn(z,0) is the projection of x on to the line ru in the direction of v, but
x € Ru, so I, y(x,0) = z.

(u,1) I,1(x,0) is the projection of x on to the real azxis in the direction of w.
It is easy to see that this must be 0, since the line from 0 (which is on the
real aris) extending in the u direction intersects x.

(v,1) I,1(x,0) =1, for a similar reason. The line extending from 1 (which is
on the real axis) in the v direction intersects x.

(1,u) Iy (x,0) is the line crossing through x + s and ru for s,r € R, but since
x € Ru, this intersection is clearly at x.

(1,v) I ,(x,0) is at x — 1 which is demonstrated by the fact that Iy ,(z,0) +
I,1(2,0) =2 and I, 1(z,0) = 1.

All of these points line in Z + xZ, so we have shown that R(U) for [U| =3
is of the form Z + xZ where x = I, ,(0,1). O



Remark. Given U = {1,u,v}, if we find v',v" such that L, . (0,1) = m +
I,,(0,1) for m € Z and set U' = {1,u/,v'}, by the above structural result
R(U) = R(U").

Theorem expands on this remark and show exactly when U and U’ of
size three generate the same lattice.

Theorem 2.2. Let I,,(0,1) = x and let Iy, (0,1) = y. Let © = a + bi and
y=c+di. Set U ={1,u,v} and U' = {1,4,v'}. We claim that R(U) = R(U’)
if and only if b= +d and a Fc € Z.

Proof. Z+ 2Z = Z + yZ means that {m+nz | m,n € Z} = {p+qy | p,q € Z}.
For arbitrarily m,n € Z, m +nx € {p+qy | p,q € Z} holds iff nx € Z + yZ,
which is equivalent to na 4+ nbi = p + qc + qdi for some p,q € 7.

In order for this to hold, the imaginary parts must equal: nbi = qdi (for any
n, there is some q). Thus d | b (usingn =1). We can make the same argument
swapping x and y, which tells us that b | d, so b = +d and thus n = *q.

Also, the real parts must be equal: na — qc = p (for any n there are such
p,q). Above we determined that n = +q, so n(a F ¢) = p. Such a p exists for
any n, so a ¥ c € Z. We showed that if Z + vZ = 7Z + yZ, then b = +d and
aFcel.

Now, if we assume that b = +£d and a F ¢ € Z, then for any Z + zZ =
m + na + nbi, we have

m +na + nbi = m+ n(k £ ¢) + n(£d)i
=(m+nk)tnctndi € Z+ yZ.

This shows that Z + xZ C Z + yZ. Likewise, Z + yZ C Z + xZ.
Since R(U) = Z + xZ and R(U') = Z + yZ, we have that R(U) = R(U’) if
and only if b==+d and a Fc € Z, so Z + xZ = Z + yZ. O

Now that we understand what form R(U) has for |U| = 3 with 0 € arg(U),
we can easily show exactly when R(U) is a ring. The only point that gives any
difficulty is x, one of the two elementary monomials off of the real line. If we
can square this point and the result lies in R(U), then R(U) = Z + xZ must be
closed under multiplication.

Now we characterize all U with 0 € arg(U) and |U| = 3 such that R(U) is a
ring.

Theorem 2.3. Let U = {1,u,v} and let I, ,(0,1) = x. R(U) is a ring if and
only if x is a (non-real) quadratic integer, i.e., x is the root of some monic
integer quadratic polynomial.

Proof. First we will prove that if x is a quadratic integer, then R(U) is a ring.
Note that R(U) = Z + xZ where x = I, ,(0,1). Since R(U) is already a group,
we need to show closure under multiplication. We write (a 4+ bz)(c + dx) =
ac + (bc + ad)x + bdxz?. Since x is a quadratic integer, x? = \x + u for some



A\ € Z. Then,

(a+bx)(c+ dx) = ac + (be + ad)z + bd(Az + p)
= (ac + bdp) + (be + ad + bd\)x

so in fact R(U) is closed under multiplication.
Now assume that R(U) is closed under multiplication. Then (a+bx)(c+dz) €
Z + xZ, but we can expand this:

(a+bx)(c + dx) = ac + (be + ad)x + bdx® € Z + 27

Since ac + (bc + ad)x € Z + xZ, we know that bdz? € Z + xZ for every
b,d € Z. In particular, this holds forb=d =1, so 22 € Z+xZ. In other words,
x must be a quadratic integer. Also, if x € R, then our R(U) is degenerate, so
we need x ¢ R. O

We can compute the intersection point z in terms of arg(u) and arg(v) and
rephrase Theorem 2.3

Corollary 2.4. Let arg(U) = {0,0, ¢} with ¢ < 6. Then R(U) is a ring if and

only if
tan 6 tan ¢ tan 6

tanf —tan¢  tanf — tabnqﬁZ

s a quadratic integer.
Proof. We can see from the following figure that
(1+w)tan¢ = h =wtand

S0 W = tan ¢

tanf—tan ¢ °
x
h
¢ 0
1 wo
Immediately, we see also that h = %. Thus,
tan 6 tan ¢ tan @

7 tang —tan¢ tanf —tan¢
O

Remark. In [2], Nedrenco independently characterized R(U) where |U| = 3,
describing R(U) = Z + zZ and generalized to when 0 ¢ arg(U). In the same
paper, Nedrenco also noted that R(U) is dense when |U| = 4. We present what
we found independently.



3 Four or More Angles

Since we understood R(U) for |U| = 3 in terms of an elementary monomial, we
wish to understand R(U) for |U| > 4 in terms of elementary monomials. Because
R(U) is now dense in the complex plane, we cannot hope for an integral basis.
By linearity if we have some p € RN R(U), then I, g(0,p) = pla,5(0,1). This
means we can scale points. This motivates our interest in “projections” on to
the real axis.

Proposition 3.1. Let U = {1,u,v,w} with arg(u) < arg(v) < arg(w) < 7.
There are at most eight length-two monomials on the real axis. There are at
most five length-two monomials constructed from elementary monomials of the
form I, 5(0,1) with arg(e) < arg(B). They are 0,1,2,1/z,z/(x — 1) where
x = I,1(1yw(0,1),0).

Proof. With the exception of 0 and 1, the only way to construct a length-two
monomial on the real axis is to intersect a line through an elementary monomial
and the line passing through 0 and 1. For any given elementary monomial, there
are already two lines passing through the point: one passes through 0 and one
passes through 1. Thus there can be at most 6 extra length-two monomials on
the real axis, at most three of which created from z1, 22, z3 in the form described
in the claim, and at most three of which created from 1 — z1,1 — 29,1 — z3 which
are of the opposite form.

z3

22

b5 D4 Do

].—ZQ
1—2:3

Note that p1 =1 — pg, po =1 — ps, and ps =1 — pg. As proof, we calculate

Il,oz(ov I,@W(Ov 1)) = Il,a(ov 1- I%ﬂ (07 1))
= ILa(O, 1) — Il)a(o, I%,@(O, 1))
=1- ILQ(O, L),ﬁﬁ((), 1))

Now we will show that the projections have the described form. Set x = p;.
Note that the triangle 0 — py — 21 1s similar to the triangle 0 — 1 — z3, so B2 = £

T~ =z
Also, the triangle 0 — 1 — 21 is similar to the triangle 0 — py — 2, so + = 2L,

p2 Z2
Thus, ps = 1/x.



22

<3

D3 0 D1 1 D2

Next, the triangle 0 — py — 21 is similar to the triangle ps — 0 — z3, so

% = %. Also, the triangle 0 — 1 — z1 is similar to the triangle ps — 1 — 23,
50 ‘Z?!Z_IZLS‘ = m. We conclude
[z 1
[ps| — |1 —ps]
lps — 1] [z| = |ps]
x
ml=| 2]

To remove the absolute value signs, we note that since arg(zz) > arg(z1),
the line through zs with angle arg(z1) must intersect the negative real azis, so
X

p3 < 0. Furthermore, since x < 1, —%5 <0, so we deduce that p3 = z/(x —1).
O

Now that we understand a small amount of R N R(U), we can quickly con-
struct an entire ring inside R N R(U) with the scaling mentioned earlier. Later
we will show that what we construct next is exactly RN R(U)

Proposition 3.2. Let 0 € arg(U) with |[U| > 4. Let P be the set of length-two
monomials on the real axis. For any x € R(U) and anyp € P, pr € R(U). As
a result, the ring Z[P) is constructible, i.e., Z[P] C R(U).

Proof. Let p be a projection. Since R(U) is the collection of finite linear com-
binations of monomials, it suffices to construct pm for a given monomial m,
since if we have x € R(U), we can simply represent @ = Y ., ¢;m; for ¢; € Z
and then write pxr =, ¢;(pm;).

The proof that pm € R(U) follows from linearity. Formally, we rely on
induction.

Base Case: The length of m is one, so m = I, 3(0,1) for some o, € U.
Then, pm = I, g(0,p) by linearity, which is in R(U) since p € R(U).

Inductive Step: Suppose every length n — 1 monomial satisfies the claim. Let
m be of length n. Then, m = I, g(0,q) for some length n — 1 monomial
q. By linearity, pm = I, g(0,pq) which is constructible since pq € R(U)
by the inductive hypothesis.



Thus every monomial can be arbitrarily multiplied by projections, so in fact
everything in R(U) can be arbitrarily multiplied by projections. In particular, so
can the projections themselves. This means that arbitrary powers of projections
are in R(U). Furthermore, since R(U) is a group under addition, Z[P] C R(U).

O

Remark. Since the above result does not rely on the previous two results, this
holds even when |U| > 4.

Our current goal is to characterize all monomials in terms of Z[P] and el-
ementary monomials. By Theorem [[.§ if the monomials have a nice enough
form, we will be able to understand all of R(U). Characterizing all monomials
starts with the length two monomials. First, however, we need a quick lemma.

Lemma 3.3. Let 0,a, 8 € arg(U). Let p,q € R(U), and let x = I, 3(p,q) and
y=1ga(p.q). Then, x=p+q—y.
Proof. Since the lines from x to q and from p to y are parallel, and also the lines
from x to p and from q to y are parallel, this forms a parallelogram. It is clear
that 0, z —q, p—q, and y— q form a parallelogram and that t —q+y—q=p—q,
sor+1Yy—q=np.

p

O

Lemma 3.4. Let |U| > 4 and let 0 € arg(U). Let P be the set of projections
from the elementary monomials to the real axis along angles in U. Every length
two monomial is a Z[P)-linear combination of elementary monomials.

Proof. Let z = 1, 3(0,1) for some o, 8 € U and let our length two monomial
m = 1,5(0,2). We will prove that m is a Z[P]-linear combination of elementary
monomials by cases.

(6 =1): Note that
L, 0(0,2) 4+ 1p,(0,2) = z,

s0 I1,5(0,2) = z — Iy(0,2). Since Iy(0,2) € P, m is a Z[P]-linear
combination of elementary monomials.



(6 = a): Since the line through z = I, g(0,1) with angle arg(c) passes through
the origin, m = I, 4(0,z) = 0. This is trivially a Z[P]-linear combination
of elementary monomials.

0 = B): Since the line through z = I, 5(0,1) with angle arg(B3) passes through
B
1, m=1,3(0,2) = I, 3(0,1), which is an elementary monomial.

(6 €UN\A{L,,8}): Let p = Io~(0,2) be the projection from z to the real axis
in the direction of y. Note that I 5(0,p) = pI, s(0,1) by linearity.

Set x = I,5(0,p). We that x + z —p = m, and since x = pl,(0,1),
this is enough to prove that m is a Z[P]-linear combination of elementary
monomials. Restated, the claim is that

I, 5(0,10.~(0,2)) + 2 — Io.4(0,2) = I, 5(0, 2)

To prove this, we will show that I, s(x,z) = m. This follows by the fact
that x € Ry, so the line through x with angle argd also passes through 0
and thus I, 5(z,z) = I, 5(0,2) = m.

Furthermore, Is~(z,z) = p. To see this, first note that I, o(z,0) = p.
Also, Iso(x,0) = p, because

I(5,0($7 0) = I6,0(I’y,5(07p)7 0)

and both x and p lie along the same line through p with angle arg(d) (by
construction of x).

This means that x and z lie on opposite corners of a parallelogram which
has a corner at p through the real axis and another corner through m.
Thus, 0, (x —p), (z—p), and (m —p) form the corners of a parallelogram
and (x —p)+ (z —p) =m —p so x + z — p = m, concluding the proof.

Since in all cases m is a Z[P]-linear combination of elementary monomials, we
know that every length two monomial is of this form. (]

Now that we understand length two monomials, we can apply induction to
characterize all monomials, and thus all of R(U).

Theorem 3.5. Let 0 € arg(U). Let P be the set of projections of elementary
monomials along lines with angles from arg(U) on to the real axis. Then, ev-
ery monomial in R(U) is a Z[P]-linear combination of elementary monomials.
Indeed, R(U) is the set of Z[P]-linear combinations of elementary monomials.

Proof. We will prove this by induction on the length of the monomial. Length
one monomials are already elementary and length two monomials follow from
the above theorem. Letm be length n and suppose that all length n—1 monomials



are of this form. Then,

m = I, 3(0,m’)

k
= I,5(0, Z cizi)
=1

= Z CiIa,B(Oa Zi)

i=1

-
Il

[
W

14
Ci E diz;
Jj=1

using linearity and the fact that all length two monomials are of this form.
The ¢; and d; are in Z[P] and the x; and z; are elementary monomials. After
simplification, it is easy to see that m is in fact a Z[P]-linear combination of
elementary monomials.

Since everything in R(U) is an integer linear combination of monomials,
everything in R(U) is a Z[P)-linear combination of elementary monomials.

Furthermore, since Z[P) is constructible by Proposition [32, and pR(U) C
R(U) for all p € P, we can construct every Z[P]-linear combination of ele-
mentary monomials. Thus, R(U) equals the set of Z|[P]-linear combinations of
elementary monomials. O

i=1

Remark. We can alternatively say that R(U) is a Z[P]-module in C generated
by the elementary monomzials.

As in the three-angle case, understanding the structure of R(U) led us to
understand when R(U) is a ring in terms of products of elementary monomials.
In fact Theorem 23] could probably be seen as a special case of the following
theorem.

Theorem 3.6. Let U with |U| > 4 and 0 € arg(U) and let P represent the
collection of projections. R(U) is a ring if and only if every pairwise product of
elementary monomials is a Z[P]-linear combination of elementary monomials.

Proof. First note that R(U) equals the collection of Z[P)-linear combinations
of elementary monomials. We that the Z[P]-linear combinations of elementary
monomials are closed under multiplication if and only if every pairwise product
of elementary monomials is a Z[P]-linear combination of elementary monomi-
als.

Assume that every pairwise product of elementary monomials is as above.
Then, for any x,y € R(U), we write x = > cix; and y = 37" djy; for
¢i,d;j € Z[P] and x;,y; elementary monomials.

Then, xy = Zi,j cidjz;y;. Since x;y; is a Z[P]-linear combination of ele-
mentary monomials, so is xy. Thus R(U) is a ring.

Now, suppose that R(U) is a ring. It must be closed under multiplication,
so the pairwise product of elementary monomials must be in R(U), but R(U) is
the Z[P]-linear combinations of elementary monomials, so the claim holds. O

10



Since we have at least one projection p € (0,1), we can construct points
close to zero. Because elements of R(U) scaled by p are still in R(U) and R(U)
is a group, it is actually dense in C as we will prove below.

Theorem 3.7. If 1 € U and |U| > 4, then R(U) is dense in C.

Proof. Since R(U) is the set of Z|P)-linear combinations of elementary mono-
mials, if z is a non-real elementary monomial and p € Z[P] N (0,1), we can
construct p"™ and p"z which go to zero from, two different directions.

Let ¢ > 0 and let x € C. Since R(U) is a group under addition, we can
construct ap™* + bp™2z for all N, Ny € N.

Since p € (0,1), we can find Ny such that [Im(z)p™N2| < e/2. To simplify

the following expression, write § = Im(z)p™2. Then there exists a unique b € 7
such that
bo1< Im;x) <b

So we can show that
|bIm(z)p™i — Im(z)i| = [b0 — Im(z)| < /2

Likewise we can find a,Ny such that |ap™ — (Re(z) — bp™? Re(p))| < £/2.
Once we have such a € Z and N1 € N, we have
|apN1 + bpMV2z — x| = |chN1 + bp™2 Re(z) — Re(z) + bp™2 Tm(2)i — Im ()i
< |ap™* + bp™> Re(z) — Re(z)| + |bp™? Im(2) — Im()|
<e
Since ap™Nt + bp™2z € R(U), and this holds for any x € C and for every
e > 0, we can always find a point in R(U) arbitrarily close to any point of C.

Thus, R(U) is dense in C.
O

4 Some U for Which R(U) Is a Ring

Now we can use Theorem to prove that R(U) is a ring for a particular
example of U.

Example 1. Let U = {1,¢"™/6 ¢i™/3 ¢7/2} R(U) is a ring.

Proof. It suffices to show that all products of elementary monomials are Z[P]-
linear combinations of elementary monomials. Our elementary monomials are
0,1,21,20,23,1 — 21,1 — 29,1 — 23, where

23

2 = ﬁelﬁ/ﬁ
3

29 = \/geiﬂ'/G

23 = 2¢im/3

11



First we calculate the projections and get 2/3,3/2,—2. Note that Z[2/3,3/2,—2] =
Z[2/3,3/2] =Z[1/3,1/2] = Z[1/6].
We calculate all pairwise products of z1, ze, z3, since calculating more would
be redundant, as the others are either 0, 1, or an integer linear combination of
{1, 21522, 23}.
%eiﬂ/S — 223
2129 = 2e/3 = 23

2 _
21 =

2123 = iei”/2 M 4(z; — 1)

V3 V3

2
9 2% 9 2 3
29 = 21

2T 13m T

2923 = 2—22123 =6(21 —1)
2

z§ = 212023 = 6(zf —21) =423 — 621

These are all in R(U), so R(U) is closed under multiplication and is a ring.
O

Remark. We suspected that perhaps any subset U of a finite group containing

a generator for that finite group would result in a ring. The following example
shows that this cannot be necessary.

Example 2. Let U = {1,¢"™/6 ¢im/4 ¢7/3) . R(U) is a ring.

Proof. As above, it suffices to show that the products of all elementary mono-
mials are Z[P]-linear combinations of elementary monomials. We go by the con-
vention that zZ1 = eim/6 gim/2 (0, 1), zo = eim/6 gim/3 (0, 1), and z3 = eim/3 eim/2 (0, 1)
and that p1,p2, p3 are projections from zi, zo, z3 to the real axis.
We calculated
2122 = p3(1 — 23)
2123 = —p122 — (p2p3)23 + 2p3
za23 = —p3z2 — (p2p3)zs + 2p2ps
2 = pips(1 — z3)
z5 = pap3(1 — 23)
23 = —620 — 3popszs + 3ps

O

Remark. We then suspected that any subset of a finite group might result in a
ring. Our next result shows this too cannot be necessary.

Example 3. Let U = {1,¢,¢e%,e%}. R(U) is a ring.

This example is a special case of Theorem (1]
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Remark. We strongly suspect that R({1,e!™/5 ei™/4 ei™/3}) is not a ring, so
we suspect that it is not sufficient for U to just be a subset of a finite group.

Theorem 4.1. Let U = {1,a,a?,a%}. R(U) is a ring.

Proof. Set z1 = I, 43(0,1), 220 = I, 42(0,1), and z3 = I,2 ,3(0,1). Since the
only elementary monomials are 0,1, 21, 22, 23,1 — 21,1 — 22, 1 — 23, it suffices to
check pairwise products of {z1, z2, 23} .
Set pr = I1,52(0,21), p2 = 11,43(0,22), and p3 = I1,o(0,23). Then Z[P] =
Zlp1, p2, p3], since the other projections are 0, 1, 1 —p1, 1 — pa, and 1 — ps.
First we claim that z129 = z3. We will prove this by calculation.

[L 053] [17 a2] 2

A= [, @3] [04,042]&
o310 _ 310 ,—2i0 _ ,2i0
o200 _ (20 o—i0 _ 4if
_ [Lag] 2 [17(13] 2
T et T e
=23

Next we claim that z1/2z2 = p1 and z2/21 = pa. These can also be calculated
but a geometrical figure makes it clear.

The first claim follows from the fact that the triangles 0—p1—2z1 and 0—1—2z9

are similar. The second claim follows from the similarity of the triangles 0—1—z;
and 0 — ps — 2.

23

22

D3 0 P11 D2

So far we can construct the following pairwise products of elementary mono-
maals.

2 _ 21
2] = Z122— = P1%3
22

R1%2 = 23

2 2
Z9 = PaP123 = P223
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We need only construct z§ and zoz3 Since 2123 = P12223.
First we show z3 = p3(z3 — 22) algebraically. We calculated 23 using the
formula given in Proposition and obtained

22 =1+20% 4 3a* +2a° +o®

which is exactly what we found by calculating p3(z3 — 22), so the two must be
equal.
Likewise, we calculated z9z3 to be

2oz3 =1 +2a% 4+ 2a* + b

which precisely equals p3(1 — z3).
Thus all 6 pairwise products of {z1, z2, 23} are Z[P]-linear combinations of
elementary monomials, so R(U) is a ring. O

This characterization of R(U) makes finding examples of rings R(U) a mat-
ter of verifying that finitely many products are contained in R(U). However,
finding counterexamples is more difficult. Some U that are difficult to work
with, like {1, e?, e?!, €3}, yield rings. Other U that are nicer to work with, such
as {1,e"/5 eim/4 ¢im/3) are suspected to not yield rings.

5 Open Questions
Some open questions we considered in research are posed below.

1. How does 1 ¢ U affect our current results? Can we still express R(U) as
a module over some ring generated by elementary monomials?

2. When exactly are the products of elementary monomials Z[P]-linear com-
binations of elementary monomials?

3. Is R({1,e"™/%, /% ¢i™/31) a ring?
4. What subrings of C are of the form R(U) for some U?
5. Given p € C, for which U is p € R(U)?

[u,p] [v,q]
a0V T To,u]

[,y] is an alternating bilinear map. If V is some vector space equipped
with [+, -], an alternating bilinear map into R and we have some S C V of
allowable “angles”, we can define I : S2 x V2 = V via

6. We can write I, »(p, q) = u where [z, y] = 2§ — yZ. Note that

[u, p] [v,4]
o’ " [l

Iu,v(p7 Q) = u

Do similar results hold for this generalization? Perhaps we could require
V to be a normed vector space and say that S is the sphere of radius one.
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