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Identifying the Optimal
Integration Time in
Hamiltonian Monte Carlo

Michael Betancourt

Abstract. By leveraging the natural geometry of a smooth probabilis-
tic system, Hamiltonian Monte Carlo yields computationally efficient
Markov Chain Monte Carlo estimation. At least provided that the algo-
rithm is sufficiently well-tuned. In this paper I show how the geometric
foundations of Hamiltonian Monte Carlo implicitly identify the opti-
mal choice of these parameters, especially the integration time. I then
consider the practical consequences of these principles in both existing
algorithms and a new implementation called Ezhaustive Hamiltonian
Monte Carlo before demonstrating the utility of these ideas in some
illustrative examples.
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One of the most ubiquitous computational challenges in statistics is the estima-
tion of expectations of a function with respect to a given target distribution, 7.
For example, we might need to compute expectations with respect to a sampling
distribution in a frequentist analysis or expectations with respect to a posterior
distribution in a Bayesian analysis.

Fueled by the proliferation of accessible computing resources and its applicabil-
ity to many different target distributions, Markov chain Monte Carlo (Robert and
Casella, 1999; Brooks et al., 2011) has become one of the most popular strategies
for estimating these expectations. Here a Markov chain generated by a Markov
kernel explores the target distribution, progressively building up better and bet-
ter expectation estimates. Ensuring that this strategy can be scaled up to the
high-dimensional and elaborate target distributions of applied interest, however,
requires Markov kernels capable of efficiently exploring even the most complex
distributions.

When the target distribution is smooth, Hamiltonian Monte Carlo (Duane
et al., 1987; Neal, 2011; Betancourt et al., 2014) can be employed. Here the
target probabilistic system is mapped into a Hamiltonian system whose canonical
measure-preserving flow generates a powerful Markov transition. The ultimate
performance of the resulting Markov chain, however, depends crucially on for
how long we integrate along that flow: if we integrate for only a short time then
the chain devolves into diffusive exploration, but long integration times offer only
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diminishing returns and potentially wasteful computation.

In this paper I exploit the geometry inherent to Hamiltonian Monte Carlo to
isolate the relationship between integration time and effective exploration. After
discussing how to implement various schemes for choosing the integration time in
practice, I use this relationship to construct a natural choice of integration times
known as an ezhaustion and finally demonstrate the performance of the resulting
ezhaustive Hamiltonian Monte Carlo algorithm with some illustrative examples.

1. HAMILTONIAN MONTE CARLO IN THEORY

The key to optimizing implementations of Hamiltonian Monte Carlo lies in
its geometric foundations. In this section I survey the theoretical construction
of the algorithm and then demonstrate how the latent microcanonical geometry
naturally motivates optimality criteria.

1.1 Constructing a Generic Hamiltonian Kernel

In this paper I will consider the smooth probabilistic system (Q,B(Q),),
where the sample space, ), is a positively-oriented and smooth N-dimensional
manifold, B(Q) is the canonical Borel o-algebra, and 7 is a smooth probability
distribution. Our ultimate goal is to compute expectations of functions f :  — R
with respect to w, which we’ll approximate using Markov chain Monte Carlo
estimators. The resulting computational challenge is to develop a Markov kernel
that efficiently explores the target distribution, 7.

Hamiltonian Monte Carlo constructs such a kernel by mapping the given prob-
abilistic system into a Hamiltonian system (Betancourt et al., 2014). Formally,
any choice of a disintegration on the cotangent bundle, { € E(w : T*Q — Q),
immediately lifts the target distribution onto the cotangent bundle via

Ty = w'TAE.

Denoting 6 the tautological one-form on the cotangent bundle with Q = AN_;d6
the corresponding symplectic volume form, we can then define the Hamiltonian,

d(w*m A§)

dQ ’
and the corresponding Hamiltonian system, (7*Q,d0, H) (Figure 1). The critical
feature of this construction is that the lifted target distribution is the canonical
measure on the cotangent bundle,

H = —log

= e HQ;

consequently the lifted distribution is preserved by the canonical Hamiltonian
flow, which can then be used as a basis for a Markov kernel.

First, however, let’s consider the local corollary of this construction. In a local
neighborhood of the sample space, U, C Q, the target distribution decomposes
as

r=eVd¢' A...Ad¢",

where V' is known as the potential energy. Similarly, in the corresponding neigh-
borhood of the cotangent bundle, ! (U,) C T*Q, the smooth disintegration, ¢
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Fi1G 1. Hamiltonian Monte Carlo maps a probabilistic system into a Hamiltonian one. Here, for
example, (a) a smooth probability distribution on the circle is lifted by (b) a disintegration on
the cotangent fibers to define (c) a probability distribution on the cotangent bundle. This joint
distribution then canonically defines (d) a compatible Hamiltonian system.

decomposes into

¢ =e Edpy A ... Adpy, + horizontal n-forms,

with K known as the kinetic energy. Locally the lift onto the cotangent bundle
becomes
g =w'TAE
=e VHq AL Adg* Adpr A ... Adpy,

=e HQ,

with the Hamiltonian

d
H:4%€52K+u

taking a form familiar from classical mechanics (José and Saletan, 1998).

We can now use the Hamiltonian flow of this engineered Hamiltonian system
to construct a powerful Markov transition. First we lift an initial point from
the sample space to the cotangent bundle by sampling from the corresponding
cotangent fiber,

P~y
1:Q—=T"Q
q — (q,p)

lom = Tg.
We then apply the Hamiltonian flow for a random time depending on the initial
point,

bt~ (g p)
o/ TQ—T7Q

(o), 70 = ma,
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and finally project back down to the sample space,

w:T"'Q — Q

WTH = T.
Composing these steps together,
g=wog ol,
yields a space of measure-preserving diffeomorphisms,

g€eqG
g:Q—Q

g« =T,

with the corresponding semi-direct product measure, v, = T7(4) X 5§, that im-
mediately defines a Hamiltonian kernel as an iterated random function (Diaconis
and Freedman, 1999; Quas, 1991)

'de%A>z[;mmmm4gm»,

where I is the indicator function,

o { 984 icues).

1.2 Specifying an Optimal Hamiltonian Kernel from the Geometry of
Microcanonical Systems

Unfortunately this construction is too general: every choice of cotangent dis-
integration, £, and distribution over integration times, Tr(g ), yields a different
kernel, and the performance of these kernels can vary substantially when applied
to a given target distribution. Consequently, a careful choice of kernel is critical
to realizing the full potential of Hamiltonian Monte Carlo.

In this section I review how Hamiltonian systems naturally disintegrate into
microcanonical systems compatible with the Hamiltonian flow. By analyzing the
interaction of the Hamiltonian flow with this microcanonical geometry we can
guide the construction of a unique kernel optimized to a given target distribution.

1.2.1 The Microcanonical Disintegration One of the special properties of Hamil-
tonian systems is that they foliate into level sets, or submanifolds of constant
energy, I,

HYE)={2€T*Q|H(z) = E}.

These level sets can be regular, in which case they contain only regular points of
the Hamiltonian, or they can be critical, in which case they contain at least one
critical point of the Hamiltonian. When the critical level sets are removed, the
cotangent bundle decomposes into disconnected components, 7*Q) = [ [; M;, each
of which foliates into level sets that are diffeomorphic to some common manifold



OPTIMAL INTEGRATION TIME 5

Fic 2. The foliation of a Hamiltonian system into level sets naturally defines a fiber bundle
on which we can disintegrate measures. For example, once the critical level sets, here shown
in red, are removed, a Hamiltonian system on the cylinder becomes a smooth fiber bundle with
fiber space F = S'. Correspondingly, the canonical distribution disintegrates into microcanonical
distributions uniform on each circular fiber.

(Figure 2). Consequently each H : M; — R becomes a smooth fiber bundle with
the level sets taking the role of the fibers.

The canonical distribution restricted to each of these components then disin-
tegrates into microcanonical distributions uniform on each level set,

- _ U0
H—l(E) - fol(E) LE (6JQ)’

and a marginal energy distribution given by

et (Juorm e (T0)
Jrge 0 dH ()

g =H.m =

where ¥ is any positively-oriented horizontal vector field satisfying dH (¢) = ¢ for
some 0 < ¢ < co. Because the critical level sets have zero measure with respect
to the canonical distribution, the component disintegrations also define a valid
disintegration of the entire cotangent bundle.

The expectation of any smooth function f : ¢ — R, with respect to the
target distribution, E.[f], then decouples into expectations with respect to the
microcanonical distributions nested in an expectation with respect to energies,

Ex[f] = Eny [f]

=/*Qf7rH

= ITE A TH-1(R)

T*Q
(1) :/TFE/ f?TH—l(E).
E H-1(E)

Critically, the microcanonical disintegration is compatible with the Hamilto-
nian flow: every Hamiltonian trajectory is confined to a single level set and,
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Fi1G 3. Every Hamiltonian Markov chain alternatives between a deterministic Hamiltonian flow
that ezplores a single level set (dark red) and a momentum resampling that transitions between
level sets with a random walk (light red). The longer the flow is integrated the more efficiently
the Markov chain can explore each level set and the smaller the autocorrelations will be. When
the flow is integrated for only an infinitesimally small time the Markov chain devolves into a
Langevin diffusion.

because the Hamiltonian flow restricted to a level set also preserves the corre-
sponding microcanoncial distribution, these trajectories will explore the micro-
canonical distribution if integrated long enough. Consequently a Hamiltonian
Markov chain decouples into a deterministic flow along levels sets, with the pro-
jection and subsequent lift, A o w : T*Q — T*@Q, resampling the momentum and
inducing a random walk between level sets (Figure 3). The autocorrelation of the
Markov chain then depends on both how effectively the Hamiltonian flow explores
each microcanonical distribution and how effectively the momentum resampling
explores the marginal energy distribution.

The exploration of the energy distribution depends on how much the Hamil-
tonian varies under a momentum resampling, AH, relative to the width of the
marginal energy distribution: the less the energy can vary in each transition the
fewer level sets can be reached and the larger the autocorrelations will be (Fig-
ure 4). Because this ratio is fully determined by the interaction of the cotangent
disintegration and the target distribution, it provides the foundations for the op-
timal choice of the cotangent disintegration itself. Formalizing this approach will
be the subject of future work.

When the cotangent disintegration is well-chosen, the performance of the re-
sulting Markov chain is then determined by how effectively the Hamiltonian flow
explores each microcanonical distribution, which in turn depends on for how long
the flow is integrated along each level set. If the flow is integrated for only a
short time then the transition will examine only a small neighborhood of each
level set and the Markov chain will suffer from large autocorrelations. As the in-
tegration time grows the flow more completely explores each level set and reduces
the autocorrelation of the chain. The additional exploration given by increasing
the integration time, however, will eventually suffer from diminishing returns and
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F1G 4. Every momentum resampling induces a change in the Hamiltonian, which allows a Hamil-
tonian Markov chain to randomly walk amongst energy level sets. (a) When the expected vari-
ation, AH, is similar to the width of the marginal energy distribution this random walk will
rapidly explore this distribution, but (b) when the expected variation is small the exploration will
suffer from large autocorrelations. Optimizing the exploration of the marginal energy distribution
provides an implicit criteria for selecting an optimal cotangent disintegration, and the energy
autocorrelations define a constructive diagnostic for a poorly chosen cotangent disintegration.

ultimately not be worth the additional cost. Formalizing this intuition into a cri-
terion for selecting an optimal compromise requires a more careful investigating
of how Hamiltonian flow explores each microcanonical distributions.

1.2.2 The FErgodicity of Hamiltonian Flow The ideal circumstance for explo-
ration is dynamical ergodicity, where almost every trajectory eventually passes
through almost every point on the corresponding level set, at least in the limit
of an infinite integration time. Under these conditions the Birkhoff ergodic the-
orem (Petersen, 1989) states that the temporal average of any function along a
trajectory converges to the the spatial average with respect to the microcanonical
distribution,

(P T) = Jm o [t 5o ol (z) =B, 1],

T—o00 0

for 77-1(p) almost all initial z € H~Y(E) ¢ T*Q. In particular, a uniform sample
from any trajectory will converge in distribution to a sample from the correspond-
ing microcanonical distribution as the integration time grows, suggesting that we
take mp(,) = U(0,T(2)) for some appropriating chosen 7'(2).

Unfortunately Hamiltonian systems are not always dynamically ergodic. De-
pending on the topology of the level sets and the nonlinearity of the Hamilto-
nian, for example, trajectories may be confined to only subspaces within a level
set (Hofer and Zehnder, 2011), and identifying those systems that are dynami-
cally ergodic is challenging if not outright infeasible. The only guarantee that we
have for a generic Hamiltonian system is that the time average along the flow
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converges to the spatial expectation along the domain of the trajectory, myu ),

1 T
lim / dt f 0 3} (2) = Ex , _ I/]

T—o0 0
oS
N Jom o mH
_ oy @t
Jor 2y T (2))

)

where the domain, ¢ (2), is also known as an orbit of the Hamiltonian flow,

ot (2) = {gﬁf(z) ,VteR} C H ' (H(2)).

Although the trajectory may not explore the entire level set, it will at least
explore the entire orbit, and a uniform sample from the trajectory will converge
in distribution to a sample from 7ynu ;) as the integration time grows.

Even though integrating for ever longer times will improve convergence, yield-
ing more accurate samples and reducing the autocorrelations of the resulting
Hamiltonian Markov chain, longer integration times may not be worth the ad-
ditional cost. When the integration time is small and the trajectory is just be-
ginning to explore its orbit, for example, the convergence to the corresponding
spatial expectation can be superlinear, justifying the linear cost of increasing the
integration time. For long integration times, however, the temporal expectations
typically converge with only the square root of the integration time (Cances et al.,
2005), and the cost of additional integration begins to undermine the performance
of the chain (Figure 5).

Consequently, optimal performance requires identifying a maximal integra-
tion time for each trajectory, T'(z), with the resulting uniform measure, Tr(z) =
U(0,T(z)), that identifies the transition between these two regimes uniformly
across all level sets. Intuitively this transition should occur after the trajectory
has first traversed the extent of its orbit (Figure 6a), with the asymptotic behav-
ior corresponding to the trajectory exploring finer and finer details of the orbit
(Figure 6b). Formalizing this intuition into an explicit optimization criterion,
however, is not straightforward.

1.2.8 Poincaré Recurrence and Autocorrelation Functions One natural strat-
egy for identifying optimal integration times is to appeal to Poincaré recurrence.
If the Hamiltonian is proper and its level sets compact (Lee, 2011) then all Hamil-
tonian orbits will be bounded and the Poincaré recurrence theorem (Zaslavsky,
2008) states that the trajectories originating from almost any point will explore
the corresponding orbit and then return to any neighborhood of that point within
some finite recurrence time (Figure 7).

The recurrence corresponding to well-behaved neighborhoods then immedi-
ately formalizes and implements our above intuitions. At least it would if we
could define the necessary behavior and then explicitly define the corresponding
neighborhoods and identify recurrence exactly. Unfortunately none of these are
particularly practical for most Hamiltonian systems.
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Fic 5. (a) Temporal averages along a Hamiltonian trajectory converge to the corresponding
spatial expectation, Tyu ), as the integration time grows, (b) inducing convergence of any Monte
Carlo estimator, here represented by the number of effective samples per transition. Typically this
convergence is initially rapid and superlinear before settling into an asymptotic regime where the
convergence continues only with the square of the integration time. (c) Because cost of simulating
each trajectory scales with the integration time, those integration times, T(z), that identify the
transition between these two regimes uniformly for all z € T*Q, yields optimal performance.

F1G 6. (a) Intuitively, the temporal average along a Hamiltonian trajectory rapidly converges to
the spatial expectation over its orbit as the trajectory first spans the orbit. (b) Longer trajectories
simply refine this initial exploration, yielding better but slower convergence.
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F1c 7. When its orbit is compact, (a) a Hamiltonian trajectory (b) will return to any neighborhood
of almost every initial point within some finite recurrence time. (c) The smaller the neighborhood,
the longer the recurrence time, and the more thoroughly the trajectory will explore its orbit and
converge to the corresponding spatial expectation.

An alternative strategy that is both general and easily implemented, if less
inspired, is to use an auxiliary autocorrelation function,

R(T,2) = K(¢7 (2) ,2) ,

that monotonically converges to zero for all initial initial points,

lim |k(T,2)|=0,VzeT*Q.

T—o00

Relaxing this to a uniform bound gives an termination criterion,
(2) |k(T, 2)| < 6,0 € R,

which implicitly defines a set of integration times,

T.(z) =min{t | |k(t, 2)| < 6},

with 0 providing some control over the amount of convergence. If (T, z) is not
monotonic, for example if it oscillates around zero, then this interpretation be-
comes more complicated; although this is not ideal, the resulting integration times
may still provide some uniformity of exploration over each level set and hence
identify useful integration times.

Additionally, these two strategies are not mutually exclusive. Because there
always exists a compact neighborhood containing z with (;Si (» O its boundary,
when the level sets are compact T (z) can always be interpreted as a recur-
rence time for some implicit recurrence neighborhood. Consequently, for some
geometries Poincaré recurrence may be useful in motivating useful autocorrela-
tion functions

2. HAMILTONIAN MONTE CARLO IN PRACTICE

Regardless of how a Hamiltonian kernel is chosen, any implementation of the
underlying Hamiltonian flow requires solving a system of 2n first-order ordinary
differential equations. For all but the simplest systems analytical solutions are
unfeasible and we must instead resort to simulating the flow numerically. Fortu-
nately, there exist a family of numerical integrators that employ the underlying
symplectic geometry to conserve many of the properties of the exact flow (Hairer,
Lubich and Wanner, 2006; Leimkuhler and Reich, 2004). These symplectic inte-
grators exactly preserve the symplectic volume form with only small variations
in the Hamiltonian along the simulated flow.
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In fact, symplectic integrators simulate some flow exactly, just not the flow
corresponding to H. Backwards error analysis shows that the discrete time steps
of a k-th order symmetric symplectic integrator exactly fall onto the flow for some
modified Hamiltonian, given by an even, asymptotic expansion with respect to
the integrator step size, €,

H=H+ i GZ”H(n) + O(efc/‘f) :
n—Fk/2

Because it is exponentially small in the step size, the asymptotic error is typically
neglected and the leading-order behavior of the modified Hamiltonian is given by

H=H + "G + O("?).

This discretized, approximate flow then generates a series of states,

zL = ‘ng.e(Zo) €T*Q, LeZ,

that tracks the true flow for exponentially long times. The symplectic integrator
will still introduce some error, however, and, while that error can be managed
by the choice of step size, it will still bias the resulting Markov chain if left
uncorrected. Correcting this error is a delicate problem that depends crucially on
how the numerical trajectories are used, and hence the distribution of integration
times, 7y (,).

2.1 Static Implementations

The simplest implementation of Hamiltonian Monte Carlo uses a single, static
integration time, T'(z) = T, or, equivalently, a static number of symplectic inte-
grator steps, L = T'/e.

When using only the final point of each trajectory, in other words taking a Dirac
measure on integration times, 7y .y = dr., we might naively consider treating
the numerical trajectory as a Metropolis proposal, accepting the final state with
only probability,

a(zo,z) = min|1, %(ZL) ;72{(20)

= min[l,exp(H (z1) — H(20))] .

Unfortunately the non-reversible nature of the flow renders it an invalid Metropo-
lis proposal unless augmented.

The numerical trajectory becomes a valid Metropolis proposal only when ma-
nipulated into an involution (Tierney, 1998), for example, by composing the flow
with any operator, R, satisfying

O o Ro®!  =Tdr«q.
The probability of accepting the final state is then given by

a(zo, R(2p)) = min|1, OZTT’;(R(ZL)) Cifi(zo)

= min[l,exp(H o Ro(z) — H(zp))]-
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Fi1Gc 8. If numerical trajectories are generated by integrating only forwards in time then a state
cannot be sampled from the entire trajectory without destroying the invariance of the target dis-
tribution. Sampling from trajectories while maintaining the correct invariant distribution requires
considering trajectories that integrate both forwards and backwards in time from the initial state,
z0-

Our analysis of the microcanonical geometry, however, motivated not a Dirac
measure on integration times but rather sampling uniformly from the entire tra-
jectory, mp = U(0, T'). Unfortunately, sampling from a numerical trajectory while
also correcting for the error in the symplectic integrator is a not straightforward
given that Metropolis sampling from states generated by integrating only for-
wards in time breaks detailed balance (Figure 8),

dry 40 () 92 (2)
Plat [ z0] 3¢ (20) = A
Zm:() dT(Zm)
dry
Plzo | 2] dT(Zl) =0,

and obstructs the invariance of the target distribution.

In order to guarantee detailed balance and hence maintain the invariance of
the target distribution, we need to consider not just those numerical trajectories
that begin at the initial point but also those trajectories that only contain the
initial point. Defining T ;, as the set of all numerical trajectories of length L that
contains the state z, we need to consider transitions that first sample a trajectory
t € T, 1, with probability P[t|zg] and then sample a state from that trajectory
with probabilities P[z|t].

Provided that the states within each trajectory are appropriately weighted
with the Metropolis probabilities,

) Pl = ) O
> et d(%{(z,) Do HE

then the equality of trajectory probabilities,

(4) ]P’[t\zl] = P[t’ZQ] , Vte TZI,L N QZLL = T(Zl,ZQ),L?
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is sufficient to ensure detailed balance,

d7TH d’/TH
Pler|ze] 5 (22) = > Plaly Plt]zo] ~3 (22)
t€§<zl’z2>y[‘
T (2 dm
- Z %PM@] Tg(@)
€T (21 ,29),L Zzlef W(Z)
G (22 dr
- > %P[fl/@] d—g(zl)
t€T (21 ,29).L Det W(Z )
dry 2 dor
- Z %szl] d{I; (21)
€% (2 29).L >t air ()
dT['H
- P P "
Z [ZQM [t|zl] a0 (Zl)

tei(zl ,22),L
dryg
an @)

= Plz2|21]

There are various methods for appropriately weighting the states in a numer-
ical trajectory according to (3). For example, we could simply sample from the
multinomial distribution defined by the Metropolis probabilities directly, or even
apply a slice sampler that first samples u ~ U(0,1) and then uniformly samples
from those points on the trajectory satisfying

efH(z)

Ez’et e—H(z’)

Designing a transition from an initial state to a numerical trajectory satisfying
(4) is a more subtle challenge.
One immediate solution is to simply sample trajectories in ¥, ;, uniformly,

> U.

. 0, t §‘é ‘:{zo,L
PMZO] B { 1/ ’{IzovL" te TZOaL

_ 0, fg_fTZO,L
1/L, te Lo,

Because each trajectory is equally likely regardless of the initial point, (4) holds
trivially (Figure 9). Moreover, sampling trajectories uniformly is straightforward
to implement, for example by sampling L' ~ U[0, L] and integrating backwards
for L’ steps and forwards for L — L’ steps. When sampling a final state using
the Metropolis probabilities directly, this is equivalent to Neal’s Windowed State
Algorithm with W = L (Neal, 1994).

Still, all of this effort lets us uniformly sample only from static trajectories
of constant length, L, and not the dynamic trajectories capable of expanding to
ensure uniform exploration of the underlying level sets. Sampling from trajecto-
ries that integrate for a dynamic number of steps determined by a termination
criterion such as (2) requires a careful extension of the static implementation.
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Fi1c 9. By uniformly sampling all numerical trajectories in ¥, 1 regardless of the initial z, we
ensure that P[t|z] = 1/L,Vz € t, which immediate guarantees (4) and hence detailed balance of
the resulting Markov chain.

2.2 Dynamic Implementations

In order to maintain a uniform distribution over numerical trajectories when
their length, L, is dynamic we have to build up each trajectory incrementally,
checking if a termination criterion like (1.2.3) has been satisfied after each ex-
pansion (Algorithm 1). For example, a uniformly sampled trajectory can be build
up additively by iteratively expanding the trajectory one step at a time in a ran-
dom direction (Figure 10a). If we consider trajectories of only lengths 2° then
we can also build up uniformly sampled trajectories multiplicatively, expanding
a trajectory of length L by integrating L additional steps in a random direction
(Figure 10b). In this multiplicative scheme each intermediate trajectory can also
be interpreted as a balanced binary tree (Figures 11, 12).

Algorithm 1 Given a means to expand a trajectory, such as the additive or
multiplicative schemes discussed in the text, and a termination criterion that
implicitly identifies the optimal integration time, a uniformly sampled trajectory
can be built up recursively.

function EXPAND_TRAJECTORY (t)
function CHECK_TERMINATION(t)

function NAIVE_BUILD_TRAJECTORY (t)
thew — EXPAND_TRAJECTORY (t)
if CHECK_TERMINATION(tnew) then
return t,ew
else
NAIVE_BUILD_TRAJECTORY (tnew)

Unfortunately, when the length is chosen dynamically uniformly sampling tra-
jectories is no longer sufficient to ensure (4), as different initial states may lead
to different terminal lengths (Figure 13). In order to guarantee detailed balance
we have to treat each increment as a proposal, rejecting any extensions which in-
clude states from which P[tyew|2] = 0 (Algorithm 2). When the trajectory length
is limited by a failed proposal the resulting trajectory will not satisfy the termi-
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Fic 10. Uniformly sampling numerical trajectories of a dynamic length requires that the tra-
jectories are generated incrementally. Trajectories can be generated recursively, either with (a)
additive increments that randomly integrate the trajectory forwards or backward a single step or

(b) multiplicative increments that double a trajectory of length L by randomly integrating forward
or backwards L additional steps.

(J L J L J L ® ® o 4
24

FIG 11. A numerical trajectory of length L = 2P can be represented as the leaves of a perfect,
ordered binary tree of depth D. The initial and final points of the trajectory, labeled z— and z4
respectively, serve as the tree boundaries.
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F1G 12. In the tree representation, a multiplicative expansion of a numerical trajectory of length
L = 2P is given by randomly selecting a boundary, here z;, and integrating away from the tree
L additional steps. This process can also be considered as appending (b) a new tree of depth D
to (a) the original tree of depth D to give (¢) an expanded tree of depth D + 1.

Fic 13. Uniformly sampling a numerical trajectory around the initial state, zo, is not suffient
to ensure detailed balance when the trajectory length is dynamic. The problem is that if the
termination criterion is satisfied in the interior of the trajectory, here between 2z’ and 2, then
both P[t|z"] = 0 and P[t|z!}] = 0 despite P[t|zo] # 0.

nation criterion exactly, a price we have to pay to ensure uniform samples that
target the correct distribution.

How a given trajectory is validated to ensure that there are no states with
Pltnew|2] = 0 depends on the expansion method. Additive expansions, for exam-
ple, require that the termination criterion not be satisfied for every pair of states
in the trajectory. If checked recursively, this requires L checks after proposing a
new trajectory of length L, as well as the local storage of each state in the trajec-
tory. Multiplicative expansions have the advantage that the termination criterion
needs to be checked for only the subtrees (Figure 14), requiring only log(L) checks
for a proposed trajectory of length L and only log(L) states in memory at any
given time.
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Fi1G 14. Ensuring detailed balance requires validating each trajectory erpansion before accepting
the new trajectory. For multiplicative expansion this requires that no internal subtree of the
proposal satisfies the termination criterion. (a) If no subtree satisfies the termination criterion
then it can appended to the trajectory, resulting in an expanded trajectory that can then be checked
for termination and further expanded as necessary. (b) Conversely, when a subtree does satisfy
the termination criterion then the proposal must be rejected and the trajectory construction
immediately terminated.
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Algorithm 2 Ensuring detailed balance with dynamic trajectories requires not
just uniformly sampling a trajectory for an initial point, but also ensuring that the
final trajectory can be reached from all points in that trajectory. Given a means
of validating each intermediate trajectory the final algorithm is a straightforward
modification of Algorithm 1.

function EXPAND_TRAJECTORY (t)

function VALIDATE_TRAJECTORY (1)

function CHECK_TERMINATION(t)

function BUILD_TRAJECTORY (t)
tnew < EXPAND_TRAJECTORY (t)
if VALIDATE_TRAJECTORY (tnew) then
if CHECK_TERMINATION (thew) then
return thew
else
NAIVE_BUILD_TRAJECTORY (tnew )

else
return t

2.3 Alternative Schemes

Before considering explicit termination criteria, let us briefly pause to discuss
alternative schemes for constructing Markov chains using Hamiltonian flow. Ul-
timately, the cause of poor performance when using a poorly chosen integration
time is the momentum resampling induced by the projection and lifting needed to
map from the cotangent bundle down to the target space and back. Constructing
a Markov chain on the cotangent bundle directly, however, could invalidate the
need for the momentum resampling and conceivably yield improved performance
even with a suboptimal integration time.

The Horowitz scheme (Horowitz, 1991), for example, uses Hamiltonian flow
mixed with only partial momentum resampling to move between the level sets.
After integrating for the prescribed integration time, a Metropolis correction is
applied: if the state is accepted then the final momentum is mixed with newly
sampled momenta, maintaining some coherency in the exploration. The cost of
this approach, however, is that in order to preserve the target distribution the
momentum must be completely negated after a rejection, causing the next trajec-
tory to return to a neighborhood that has already been explored. Extra-chance
schemes (Sohl-Dickstein, Mudigonda and DeWeese, 2014; Campos and Sanz-
Serna, 2015) take this idea even further, applying a fixed number of proposals
which do not modify the momentum at all after an acceptance while continuing
to negate after rejections to ensure the correct stationary distribution.

Both schemes, however, can maintain the coherency of the exploration only
while the symplectic integrator is near the true flow, devolving into diffusive
exploration as the symplectic integrator strays and the proposals are rejected.
Optimal performance is then achieved when the total integration time, for one
proposal in a Horowitz scheme or the many proposals of an extra-chance scheme,
is matched to the first excursion of the symplectic integrator. This almost al-
ways results in premature termination, however, as the volume preservation of
the symplectic integrator ensures that it does not drift and that these excursions
are only temporary (Figure 15). To truly exploit the exploratory power of Hamil-
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0]

F1G 15. Because they are volume preserving, symplectic integrators do not drift from the true
Hamiltonian flow even over exponentially long integration times. The numerical trajectory ef-
fectively oscillates mear the true trajectory, and any increasing error is only temporary.

tonian flow with symplectic integrators, we need to be able integrate far past
these temporary excursions.

3. EXPLICIT TERMINATION CRITERIA

Now that we know how to implement Hamiltonian Monte Carlo with dynamic
integration times we just need to select an explicit termination criterion capa-
ble of identifying optimal, or at least approximately optimal, integration times.
Fortunately, the underlying geometry proves ever fruitful, naturally motivating a
canonical autocorrelation function that yields a set of integration times known as
an exhaustion. After constructing these objects for both exact and numerical tra-
jectories I also consider termination criteria that arise naturally when the target
space is equipped with a Riemannian metric.

3.1 Theoretical Exhaustions

A particularly natural way to define autocorrelation functions on a Hamiltonian
system is through the temporal expectation of the temporal derivative of any
scalar function, u,

1T du gy, uo M (2) —u(z)
/ﬁ)u(T,Z):T/O' dtaogbt (Z)— L T .

Provided that the scalar function is bounded,
}uo o (2) — u(z)’ < o0, Vt € R,

then every such expectation vanishes asymptotically,

Hey
lim ky(t,2) = lim wodr (2) — ulz)
t—o00 t—o0 t

:07

making it a potential termination criterion. Care must be taken, however, as the
scalar function may recur, uo ¢{?(z) = u(z), preventing #,, from being monotonic
and possibly resulting in premature integration times.

There aren’t many scalar functions available to construct such an autocor-
relation function for a generic Hamiltonian system. One canonical scalar func-
tion is the Hamiltonian itself, but, because the Hamiltonian is conserved by the
Hamiltonian flow, its time rate of change vanishes trivially making it unsuitable
for tracking convergence. The only other scalar function canonical to a general
Hamiltonian system is the wirial, G = ¢'p;. When the Hamiltonian is proper
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and all trajectories bounded, the virial itself is always bounded and provides a
potential candidate.
Collecting the resulting integration times together defines an exhaustion.

Definition 1 An exhaustion, T5(z), is the family of integration times at each
point in the cotangent bundle such that the temporal average of the rate of change
of the virial along the resulting Hamiltonian flow is uniformly bounded,

Go¢f(2) — G(2)
Ts

I L R [
Té/o dtdtoﬁbt(?«’)‘—

Provided that the Hamiltonian is proper a valid exhaustion can always be con-
structed.

Although exhaustions are canonical to any Hamiltonian system, they will not,
in general, identify optimal integration times for any choice of §. The real utility of
an exhaustive termination criterion is that it ensures uniform convergence across
all level sets and reduces the tuning problem to the single exhaustion threshold,
6. How to identify an optimal threshold for a given problem remains an open
problem.

<8, Y2 € T*Q.

3.2 Numerical Exhaustions

Because the exact flow is approximated with a symplectic integrator, exhaus-
tions defined using exact expectations are not quite applicable to any practical
implementation of Hamiltonian Monte Carlo. Instead we can replace the exact
expectation with a Metropolis-corrected expectation over the numerical trajec-
tory,

with

d —H
Pljy = — o) _ "D
d —H(z)"
et () e ()
Because this expectation converges to the continuous expectation in the limit of
infinite steps,

1 dG 1 (T da@
lim — Y Pz —(2) = lim — | dt — o¢(2)=0
oo ] ; 21 7 (%) TgréoT/O a o) =0,

the numerical expectation will converge to the true expectation and provide simi-
lar termination behavior. Hence we can define an equivalent numerical exhaustion.

Definition 2 A numerical exhaustion, %s, is the set of numerical trajectories
such that the Metropolis-corrected expectation of the rate of change of the virial
along any element, t is uniformly bounded,
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As in the exact case, the modified Hamiltonian foliates the manifold and we
can define corresponding modified level sets,

H7(B) = {a.p e M|H(g.p) = B}.

Provided that the asymptotic error is negligible and the symplectic integrator
is topologically stable (McLachlan, Perlmutter and Quispel, 2004), the modified
level sets will have the same topology as the exact level sets. In particular, when
the exact Hamiltonian is proper and its level sets compact, then negligible asymp-
totic error and topological stability imply that the modified Hamiltonian is also
proper and its level sets also compact. Consequently the virial remains bounded
on the numerical trajectories and the Poincaré recurrence theorem still applies,
guaranteeing that numerical exhaustions are nonempty. When the topological sta-
bility and negligible asymptotic error do not hold, the numerical trajectories will
rapidly diverge; these numerical divergences then serve as immediate diagnostics
of an ill-posed numerical exhaustion.

Hence we can define a trajectory termination criterion by checking if t € s,
with the resulting implementation of Hamiltonian Monte Carlo denoted Ezhaus-
tive Hamiltonian Monte Carlo.

3.3 Riemannian Termination Criteria

Although the virial is the only candidate scalar function canonical to every
Hamiltonian system, there are additional candidates once we endow the sample
space with additional structure, such as a Riemannian metric. In particular, a
Riemannian metric, g, allows us to define an entire family of disintegrations given
in local coordinates by the kinetic energy

_ 1
K(q,p) = A- f(95 " (p,p)) + 5 log|gq| + comst,
for some constant A and function f : R — R. Given such a Riemannian disinte-
gration we can then define two new scalars: the effective potential energy,

~ 1
Vig) =Vi(g) + 3 log |ggq| + const.

and the effective kinetic energy,

K(q.p)=A- f(9; (p,p)) -

Because the Hamiltonian is conserved, the autocorrelation functions induced by
these two functions are simply negations of each other and the resulting integra-
tion times identical. The difficulty with these functions is that they recur quickly,
long before any reasonable recurrence of the trajectory. More formally, if the
disintegration is Gaussian then the functions will recur at turning points of the
orbits (Hofer and Zehnder, 2011), which are rampant in the Hamiltonian systems
resulting from strongly-correlated target distributions.

A Riemannian metric also admits the construction of a completely differ-
ent termination criterion. Instead of considering the temporal expectation of a
scalar function we can appeal to the generalized No-U-Turn criterion (Betancourt,
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2013), which terminates when

knuts(T) = g7 (p, pr) <0

where

1 [T H
PT:T/O de (¢t )*9-

Note that when the metric is Euclidean the generalized No-U-Turn criterion re-
duces to the usual No-U-Turn criterion (Hoffman and Gelman, 2014). In fact,
the use of the No-U-Turn criterion with multiplicative trajectory expansion and
a slice sampler to draw a state from the final trajectory is exactly Hoffman and
Gelman’s No-U-Turn sampler.

For simple level set geometries the generalized No-U-Turn criterion is satisfied
when a trajectory has traveled from one side of a level set to to the other, matching
of the intuition we developed for an optimal integration time in Section 1.2.2.
Although there is no guarantee that the generalized No-U-Turn criterion always
identifies the optimal integration time, its impressive empirically success suggests
that it applies even in when targeting complex distributions.

One weakness that has arisen in some applications is that, because the crite-
rion is always small in a neighborhood around the initial point, small oscillations
in a trajectory can cause the criterion to vanish prematurely. Additionally, eval-
uating the No-U-Turn criterion is more computationally expensive than checking
a numerical exhaustion, especially in the general Riemannian case.

4. EXPERIMENTS

In this section I present a series of illustrative experiments to corroborate the
theory and intuition developed above. I begin first with a graphical study of the
exhaustive termination criteria and then follow with performance studies of var-
ious Hamiltonian Monte Carlo implementations targeting various distributions.

4.1 Graphical Experiments

To illuminate the qualitative behavior of the exhaustive termination criterion
relative to the No-U-Turn criterion, consider a two-dimensional Gaussian distri-
bution with a Euclidean-Gaussian disintegration, given in local coordinates by
the effective potential energy

1, ;65 — (1 —dij)

‘7((]) = 5q q 1= 2 P + const

and the effective kinetic energy

- 1 g
K(q,p) = ipipjcw,

where §;; is the discrete Dirac-delta function not to be confused with the exhaus-
tive termination threshold, 4.

For p = 0.99 the target distribution is highly correlated (Figure 16a). The
strong correlations induce premature termination of the No-U-Turn criterion but
the exhaustive termination criterion yields substantially longer integration times
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for any choice of ¢ (Figure 16b). Like the No-U-Turn criterion, the temporal
expectations of the effective kinetic energy and effective potential energy vanish
long before the exhaustive termination criterion is satisfied (Figure 16c¢).

When the correlations are relaxed to p = 0.7, however, the No-U-Turn criterion
no longer suffers from premature termination and provides integration times that
are far more optimal than those given by the exhaustive termination criterion
(Figure 17).

4.2 Performance Experiments

More quantitative evaluations of the termination criteria require comparing
the resulting Hamiltonian Markov chains. Both the No-U-Turn Sampler (NUTS)
and Exhaustive Hamiltonian Monte Carlo (XHMC) were implemented using a
second-order symplectic leapfrog integrator with multiplicative trajectory expan-
sion. NUTS is implemented with a slice sampler over the final trajectory while
XHMC utilizes multinomial sampling. Following the original implementation of
the No-U-Turn Sampler, I also added an integrator error cutoff which rejects any
trajectory t sampled around the initial state, zg, satisfying

H(zp) — H(z) > 1000, Vz € t.

Without any guidance on how to tune the exhaustion threshold, §, in all experi-
ments XHMC is run with two nominal thresholds, § = 0.1 and § = 0.01.

All implementations were implemented in STAN (Stan Development Team,
2015a) and run with CMDSTAN (Stan Development Team, 2015b) using the
exhaustions branch (commit: c04d34ee77d831a2817cf3c7671aebc50a3bf825).

Here I consider the performance of both samplers on an identically and inde-
pendently distributed Gaussian target, a correlated Gaussian target, and a more
realistic item response theory model.

4.2.1 IID Gaussian Target The 100-dimensional IID Gaussian target with
p = 0 is particularly nice because the optimal implementation can be identi-
fied analytically. For example, the marginal energy distribution is x? with 100
degrees of freedom while the variation in the momentum resampling is given by a
x? with 50 degrees of freedom, sufficiently wide to ensure rapid mixing between
the level sets (Figure 18a).

Similarly, because every trajectory oscillates with the period 27 independent
of the level set or the initial point, the optimal maximal integration time is given
by T'(z) = 27 with the corresponding optimal trajectory length given by L =
27 /e ~ 64 leapfrog steps. NUTS integrates to half of this time, but XHMC tends
to integrate for much longer (Figure 18b), resulting in worse effective samples per
transition (Figure 18c) and even worse effective samples per leapfrog step (Figure
18d).

The redundant exploration in XHMC is a result of the non-stationarity of the
exhaustive termination criterion. For IID targets the time rate of the chance of
the virial decomposes into a contribution from each dimension,

N
dG

— =9 T —

5T nzl(n Va),

which oscillate to zero at different times depending on the initial state. These
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Fic 16. (a) Strong correlations in a two-dimensional Gaussian target distribution, (b) cause
the No-U-Turn criterion to terminate (circle) long before the exhaustive criterion for any §
(triangle). Similarly, (c) the temporal expectations of the effective kinetic energy and effective
potential energy vanish after only an incredibly short integration time, making them poor criteria
for identifying optimal integration times.
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Fi1G 17. When targeting a two-dimensional Gaussian distribution with weaker correlations the
No-U-Turn criterion terminates (triangle) after traversing the level set once, and long after the
exhaustion for any exhaustion threshold, &, (circle), ultimately yielding more effective explo-
ration.

contributions add incoherently and the exhaustive termination criterion isn’t sat-
isfied until after each dimension has oscillated through a full period, biasing the
final samples towards the initial state and actually increasing the autocorrela-
tions. NUTS, on the other hand, is approximately stationary here and is able to
identify near optimal integration times.

4.2.2 Correlated Gaussian Target Now consider correlating the independent
Gaussian components with the covariance

9 = pli=il p = 0.95.

In this case the trajectories are no longer periodic but they are dynamically
ergodic, and the rate of convergence to the microcanonical distribution is uniform
across all level sets. To see the various phases of convergence I sampled uniformly
from static trajectories of varying lengths as described in Section 2.1. Up to
lengths of around 27 = 128 leapfrog steps the trajectories converge superlinearly,
but afterwards the convergence slows to the expected v/t asymptotic rate (Figure
19). Per intuition, optimal performance is achieved when trajectories do not grow
into the asymptotic regime.

In another strong showing, NUTS is able to identify the optimal integration
times quite well, while XHMC with the nominal tunes selects integration times
that fall into the inefficient asymptotic regime (Figure 20). These longer integra-
tion times yield smaller autocorrelations and larger effective sample sizes, but the
increases are sublinear and hence computationally inefficient (Table 1). A more
careful choice of the exhaustion threshold § should lead to better performance,
but without any guidance in selecting an optimal value it remains a challenging
tuning problem.
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Fi1c 18. (a) A Euclidean-Gaussian disintegration is well-suited to an IID Gaussian target distri-
bution, but the ultimate sampling efficiency is sensitive to the choice of integration time. (b) Both
XHMC tunes identify integration times that are too long, resulting in (c) larger autocorrelations
and (d) substantially worse computational performance.
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Fic 19. Two phases of convergence are evident in the autocorrelations of a Hamiltonian Markov
chain targeting a correlation Gaussian target distribution. For trajectory lengths below approxi-
mately 27 = 128 leapfrog steps the effective sample sizes grows superlinearly, but past that initial
window the effective sample sizes grow only with the square root of the number of leapfrog steps.

Compare to Figure 5.
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F1G 20. As in the IID case NUTS outperforms both naive tunes of XHMC when targeting a corre-
lated Gaussian distribution. (a) Once again the Fuclidean-Gaussian disintegration is well-suited
and (b) both XHMC tunes identify long integration times. In this case the longer integration
times lead to (c) smaller autocorrelations and larger effective sample sizes, but (d) the increase
in the effective sample size is not enough to warrant the increase computation.

XHMC Increase in Total Increase in Median

Tune Leapfrog Steps Effective Sample Size

0.1 ~ bx ~ 2x &~ /5x
0.01 ~ 43x ~ Tx ~ V43x
TABLE 1

When targeting a correlated Gaussian distribution, the nominal XHMC' tunes select long
integration times that fall into the asymptotic window where the effective sample size grows
only with the square root of the number of steps as expected. These diminishing returns
ultimately compromise the performance of the XHMC' tunes compared to NUTS. Larger
ezhaustion thresholds tuned to this target distribution should yield better performance, but
identifying the optimal tuning is nontrivial.
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Fic 21. When targeting the highly-correlated posterior distribution of a 1-PL item response
theory model (b) XHMC integrates for much longer than NUTS, (c) yielding much larger effective
sample sizes for each parameter and (d) correspondingly higher computational performance.

4.2.83 Nonlinear Target Finally let’s consider a target distribution more char-
acteristic of applied problems: 1-PL item response theory model for 50 students,

y; ~ Bernoulli(logistic (0 — b;))
b; ~ N (0,10)
6 ~ N(0,10),

where the normal distributions here are specified with a mean and standard de-
viation. Because the data constrain only the sum of the # and the individual b;,
the likelihood is non-identified, and, although the weakly-informative priors offer
some regularization, the posterior suffers from strong nonlinear correlations. Be-
cause of these nonlinearities, uniform level set exploration also requires dynamic
integration times, providing a significant challenge to the termination criteria.

Not surprisingly, the nonlinear correlations cause the No-U-Turn Sampler to
terminate prematurely (Figure 21b), resulting in much smaller effective sample
sizes relative to the nominal XHMC tunes (Figure 21c) and correspondingly lower
computationally efficiency (Figure 21d). The superior performance of XHMC
is ultimately due to the fact that the nominal tunes identify integration times
that are long without reaching the asymptotic regime (Table 2), which is more
coincidental than deliberate.
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XHMC Increase in Total Increase in Median
Tune Leapfrog Steps Effective Sample Size
0.1 ~ 13x ~ 20x > 13x

0.01 ~ 110x ~ 60x < 110x
TABLE 2

The nominal XHMC tunes not only identify longer integration times than NUTS when

targeting the 1-PL posterior, the identified integration times largely avoid the asymptotic
regime. In particular, 6 = 0.1 yields superlinear exploration and improved performance. When
the threshold is reduced to § = 0.01, however, the improvement becomes sublinear indicating
that the increased integration times are beginning to become asymptotic and yield only
diminishing returns.

5. CONCLUSIONS AND FUTURE WORK

Careful analysis of its rich geometric foundations demonstrates that Hamil-
tonian flow efficiently explores a given target distribution, and admits high-
performance Markov Chain Monte Carlo estimation, when the flow is integrated
long enough to avoid diffusive behavior but not so long to waste computational
resources. This analysis not only provides a theoretical framework for identify-
ing optimal integration times, it also presents new motivation for the No-U-Turn
Sampler and inspires the complementary Exhaustive Hamiltonian Monte Carlo
algorithm.

The mixed performance of the two algorithms shows that neither criteria is able
to robustly identify optimal integration times in all cases and suggests that better
termination criteria can still be developed. In particular, the intriguing associa-
tions between the No-U-Turn criterion and Poincaré recurrence times intimates
that a more explicit application of recurrence may be critical to constructing
better criteria.

One substantial benefit of exhaustive termination criterion over the No-U-Turn
criterion, however, is the stronger theoretical foundation which makes Exhaus-
tive Hamiltonian Monte Carlo ripe for rigorous formal analysis. This includes,
for example, an update of the step size optimality criterion of static Hamiltonian
Monte Carlo (Betancourt, Byrne and Girolami, 2014) and a thorough analysis of
the statistical ergodicity properties of the algorithm. In particular, the uniform
exploration induced by the exhaustive termination criterion has the potential to
substantially expand the scope of target distributions to which the implementa-
tion is geometrically ergodic.

Finally, we have not yet fully exploited the geometry of the microcanonical
disintegration. As noted in Section 1.2, for example, thorough analysis of the
marginal autocorrelation on the energy levels can be used to identify poorly cho-
sen cotangent disintegrations and, ideally, motivate optimal ones. Additionally,
the natural ergodicity of the Hamiltonian trajectories on their orbits suggest that
we should sample not a single point but rather average over the entire trajectory.
This averaging gives a Rao-Blackwellization of the microcanonical expectations
with the potential to reduce the variance of the overall Markov Chain Monte
Carlo estimators, yielding more precise estimators with little added computa-
tional burden.
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