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A SURVEY ON REVERSE CARLESON MEASURES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

ABSTRACT. Thisis a survey on reverse Carleson measures for varidbertispaces of analytic
functions. These spaces include Hardy, Bergman, certamdracally weighted Dirichlet, Paley-
Wiener, Fock, model, and de Branges-Rovnyak spaces.

1. INTRODUCTION

Suppose that? is a Hilbert space of analytic functions on the open unit disk- {z € C :
|z| < 1} endowed with a nornj - || »». If u € M, (D7), the positive finite Borel measures on the
closed unit diskD~ = {z € C : |z| < 1}, we say thaj: is aCarleson measurr 7 when

(1.1) 1flle SWflle VfeA,
and areverse Carleson measuiar .7Z when
(1.2) [ flloe SISl Vf e

Here we use the notation

1= ( [ 1)’

for the L? (1) norm of f and the notatiot| f||,, < || f||.» to mean there is a constant > 0 such
that|| f||,, < cu| f]l.»~ foreveryf € s (similarly for the inequality| f||» < || f]],.). We will use

the notation| f||,, < || f||.» wheny is both a Carleson and a reverse Carleson measure. There is

of course the issue of how we defiig:-a.e. orll' = 0D so that|| f||, makes sense; but this will
be discussed later.

Carleson measures for many Hilbert (and Banach) spacesabft@nfunctions have been well

studied for many years now. Due to the large literature amghbject, it is probably impossible
to give a complete account of these results. Carleson mesasuake, and continue to make,
important connections to many areas of analysis such astgpéneory, interpolation, boundary
behavior problems, and Bernstein inequalities and the¥ leavtainly proved their worth. We

will mention a few of these results as they relate to the lggsewn topic, and the focus of this

survey, of reverse Carleson measures.
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Generally speaking, Carleson measyreme often characterized by the amount of mass that
places on £arleson window

SI::{zelD‘:1—|I\<\z|<1,é€]}
relative to the length!/| of the sidel of that window, i.e., whether or not there exists positive
constantg” anda such that
(1.3) u(Sr) < CITI
for all arcsI C T = 0D. We will write this asu(S) < |1]°.

WhenJ7 is a reproducing kernel Hilbert space, it is often the caagttie Carleson condition in
(I.1) can be equivalently rephrased in terms of the, sedynimggpker, testing condition

(1.4) B e S 1B Nloe YA €D,

wherek{” is the reproducing kernel function fo#’. This testing condition (wheré(1.4) implies
(1.2)) is often called theeproducing kernel thesi&RKT).

It is natural to ask as to whether or not reverse Carlesonunessns’ can be characterized by
replacing the conditions i (1.3) arld (IL.4) with the analegreverse” conditions

u(Sp) 2 1™ or Ik Nl 2 Ik

We will explore when this happens.

-

Reverse Carleson measures probably first appeared undanotd heading of “sampling mea-
sures” fors7, in other words, measuresfor which

1 lle = [ fll ¥f € 2,

i.e., u is both a Carlesoanda reverse Carleson measure $6f. Wheny is a discrete measure
associated to a sequence of atomB®jrihis sequence is often called a “sampling sequence” for
2 and there is a large literature on this subjéct [52]. Eqentineasures have also appeared in
the context of “dominating sets”. For example, it is ofter ttase that#’ is naturally normed

by anL?(;) norm, i.e.,

[flle =Nl Ve,

as is the case with the Hardy, Bergman, Paley-Wiener, Foxkn@odel spaces. For a Borel set
E contained in the support of, one can ask whether or not the measure= 1|z satisfies

(1.5) [ lle = N fllus Vf e

Such setd are called “dominating sets” fo#”. Historically, for the Bergman, Fock, and Paley-
Wiener spaces, the first examples of reverse Carleson nesasere obtained via dominating
sets which, in these spaces, are naturally related wittiveldensity, meaning thaf is never
too far from the set on which the norm of the space is evaluated

Though we will give a survey of reverse Carleson measuresidered on a variety of Hilbert
spaces, our main effort, and efforts of much recent work,lveilon the sub-Hardy Hilbert spaces
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such as the model spaces and their de Branges-Rovnyak spaesmligations. We will also
comment on certain Banach space generalizations when@pis

2. THE HARDY SPACE

We assume the reader is familiar with the classitaildy space/72. For those needing a review,
three excellent and well-known sources [16)20, 28].cions in /2 have radial boundary
values almost everywhere dh and H? can be regarded as a closed subspacé&?ofia the
“vanishing negative Fourier coefficients” criterion. /f is standard Lebesgue measureTn
normalized so thatw(T) = 1, thenH? is normed by the’?(m) norm]|| - ||,,. As expected, the
subject of Carleson measures begins with this well-knoveotdm of Carleson [20, Chap. I,
Thm. 5.6].

Theorem 2.1(Carleson) For 1. € M, (D) the following are equivalent:

O £l < I fllm forall f € H?;

(i) [[kxll < Nkl for all X € D, whereky(z) = (1 — Xz)~! is the reproducing kernel for
H?,

(iii) w(Sr) < || forallarcsi C T.

This theorem can be generalized in a number of ways. Firstftborem works for theé/?
classes fop € (0, c0) (with nearly the same proof). In particular, the set of Caolemeasures
for H? does not depend om Furthermore, notice that the original hypothesis of theotbm
says thay: € M, (D) and thus places no mass @n Since H? N C(D™) is dense inH? (finite
linear combinations of reproducing kernels belong to tlei§,one can replace the condition
11l S |If]lm forall f € H? with the same inequality but with? replaced withH? N C'(D™).
This enables an extension of Carleson’s theorem to meaguwvbgh could possibly place mass
on T where the functions idf? are not initially defined. In the end however, this all sotsglf
out since the Carleson window conditipS;) < || implies thatu|r < m and so the integral
in || f||, makes sense when one defidésfunctions onT by theirm-almost everywhere defined
radial limits. Stating this all precisely, we obtain a re@dsCarleson theorem.

Theorem 2.2. Suppose: € M, (D). Then the following are equivalent:
O £l < I fllm forall f € H? 0 C(D7);
(i) \kxllp S kx|l for all A € D
(iii) w(Sr) S |I|forallarcsI C T.
Furthermore, when any of the above equivalent conditiorid,tben ;| < m; the Radon-
Nikodym derivativel,|r/dm is bounded; and f||,, < || f|. forall f € H2.

We took some time to chase down this technical detail sirarepther Hilbert spaces, we need
to include the possibility that might place mass on the unit circleand perhaps even have
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a non-trivial singular component (with respectritg. In fact, as we will see below when one
discusses the works of Aleksandrov and Clark, there aree€aml measures, in fact isometric
measures, for model spaces which are singular with respect t

The reverse Carleson measure theorentfdis the following [22]. We include the proof since
some of the ideas can be used to obtain a reverse Carlesonméasother sub-Hardy Hilbert
spaces such as the model or de Branges-Rovnyak spaces ¢tea[3p

Theorem 2.3.Letu € M, (D). Then the following assertions are equivalent:
O £l 2 [fllm forall f € H? 0 C(D7);
(i) [1Fall Z 1kl for all A € Dy
(iii)y w(Sr) 2 |I] forevery arcl C T;
(iv) ess-infdy|r/dm > 0.

Proof. (i) = (ii) is clear.
(i) = (iv): Define
1(Sr)
C = inf
1]
Let 7 be an arc o and take any (relatively) open s@tin D~ for which I C O. Then there

exists an integeN such that: = |I|/N satisfiesS;, C O whereS;, is the modified Carleson
window defined by
V4
1,—ell.
ERa

Divide I into N sub-arcgl;, (suitable half-open except for the last one) such that= h (and
henceS;, », = Sr,). Then

N N
p(Sia) = Usfkh S ulSn) = € Il =Cl|
k=1 k=1

For every (relatively) open sé? in D~ for which I C O there exists: > 0 such thatS;;, C O.
Sincen € M, (D7) is outer regular (seé [46, Theorem 2.18]) we have

w(l) =inf{u(O) : I C O openinD™} > %n%u(SLh) > C|I.
>

SLh:{ZE]D)_Zl—h<|Z‘<

We deduce thatn is absolutely continuous with respect ¢ and the corresponding Radon-
Nikodym derivative ofi; is (essentially) bounded below ldy.

(iv) = (i): Let
A = ess-infdu|r/dm.

1tz [ 1Pz 4 [ 15Fam

Forallf € H*NnC(D™),
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(i) = (iii): Let
2.4) Ka(2) = 120
1A l[m
be the normalized reproducing kernel f# and observe that since
all =~
the quantity
1— AP
K 2 = =
G =

is the Poisson kernel for the disk. Let
o 2

and note thaBB > 0 by hypothesis.

Integrating overS; , with respect to area measutd onD we get

ENENE:
(2.5) Bu|><h</ / Ky 2y dA(N) / / L= AP A due).
Spn /DT S1.h ‘1 - )‘2‘2

Set AP
1 1-A

L Al L TN

= A

We claim that

1 ifzel
_ 1 H
0 ifzeD \I,

wherel~ denotes the closurd; the interior, and/ the boundary of the arf. Indeed, when
z¢ I, th_ere are constansh, > 0 such that for every. € (0, hy) and for every\ € S; 5, we
have|l — Az| > ¢ > 0. The result now follows from the estimate

1 1— A 1[I % h
S =+ TR <5 2h) < h.
V<o) = [ AN < 5 e S

When:z = ¢ ¢ [°, then setting\ = re for A € Sy, we have

1 1—|)\|2 1—r?
- _ i — dOrdr.
n(2) h/gm |1—)\z| /1 h/ |1 —re=1z|? e

Since distz, T \ I°) > 0 we see that when — 1 we have, via Poisson integrals,

.2 .2
L=r d9:1—/ e
T

1|1 —re=iz|? \I |1 — re=i0z|?
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Similarly, if can be shown that at the endpointsiofy, converges to}. Hencey;, converges
pointwise to a function comparable tg, andy;, is uniformly bounded irh. From [2.5) and the
dominated convergence theorem we finally deduce that

uh) = [ xdi= [ tmen@du) =i [ oG 210 O

h— D-

This theorem was proved if [22] and extendd ter p < oo with the same proof. There is a
somewhat weaker version of this result(inl[30], appearirthécontext of composition operators
on H?* with closed range, where the authors needed to assume fremnget thay: was a
Carleson measure fdif?. Observe that in this theorem we do not require absoluterogityt

of the restrictionu:|r. However, if we want to extendf|, = | f||.. originally assumed for
f € H*NC(D"), to all of H?, then, in order for the integral ifif||,, to make sense for every
function in 2 (via radial boundary values), we need to impose the condjtip < m. Note
that we are allowing the possibility that the integtdl|,, be infinite for certainf € H* when the
Radon-Nikodym derivative gf|r is unbounded.

Wheny € M, (D™) one can combine Theordm 2.2 and Theokerh 2.3 to see that
1flle = (1l ¥ € H* <= |lkall < Il YA €D <= pu(Sy) < 1] VI C T.

One might ask what are the “isometric measures”f@, i.e., ||f||, = || f|. for all f € H>.
Notice how this is a significantly stronger condition thgfj|,, < || f||.. As it turns out, there is
only one such isometric measure.

Proposition 2.6. Supposg. € M, (D~) and | f||, = ||f|l. forall f € H*n C(D™). Then
n=m.

Proof. Indeed for eaclh € NU {0} we have

L= |22, = / |22dp + u(T).

Clearly, lettingn — oo, we getu(T) = 1. Whenn = 0 this yields
(D) =0 and p=pu|T.
By Carleson’s criterion we see that < m and sodu = hdm, for someh € L'(m). To

conclude that is equal to one almost everywhere, apply the fact thigtan isometric measure
to the normalized reproducing kernéls, (seel(2.4)) to see that

_ [ 1P
T [1—CAl2
If we express the above as a Fourier series, we get

h(Q)dm(¢) YA € D.

L=h(0)+ Y h(-n)X"+ Y h(n)A\",  AeD,
n=1 n=1

and it follows thath = 1 m-a.e. onT. Thusy = m. O



A SURVEY ON REVERSE CARLESON MEASURES 7

3. BERGMAN SPACES

TheBergman spacel? is the space of analytic functiorfson D with finite norm

1
1llae = ( / |f|2dA)2 |

wheredA = dxzdy/w is normalized area Lebesgue measurédofl7,[25]. As with the Hardy
space, we begin our discussion with the Carleson measure¥ far his was done by Hastings

[23]:

Theorem 3.1.For i, € M, (D) the following are equivalent:
(i) n(Sr) < |I)? for every arcl € T;
() [[fllaz < [1f]l, for everyf € A%

We also refer ta[25] for further information about Carlespeasures in Bergman spaces, includ-
ing an equivalent restatement of this theorem involvingudsehyperbolic disks. In particular
(see[25, Theorem 2.15]) condition (i) is replaced by thedition: there exists am € (0,1)
such that

p(D(a,r)) S A(D(a,r)), aeD,

<r}

denotes a pseudo-hyperbolic disk of radicentered at. Observe that sinceis fixed, we have
A(D(z,7)) < (1 — |2]?)% Again, the geometric condition measures the amount of niasg
places on a pseudohyperbolic disk with respect to an intrarea measure of that disk. Hastings
result was generalized by Oleinik and Pavlov, and Stegeses|B85] for the references).

where
Z—Qa

1—Za

D(a,r) = {zeC:

Reverse Carleson embeddings for the Bergman spaces, adctiibely related spaces, were
discussed by Luecking [38, 35,136]. One of his first resulthis direction concerns dominating
sets, i.e., measures of the typedA (see[(1.b)). Here we have the following “reverse” of the
inequality in Hasting’s result (see [33]).

Theorem 3.2. Supposé- is a (Lebesgue) measurable subsebofThenu = ygdA is a reverse
Carleson measure fod? if and only if.(S7) > |I|? for allarcs I C T.
A similar result holds for the harmonic Bergman space [34k Wil discuss dominating sets

again later when we cover model spaces (see Defirition 6.12).

As it turns out, the general reverse Carleson measure festdergman spaces is more delicate
[35, Thm. 4.2].
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Theorem 3.3.Letd, e > 0. Then there exists & > 0 with the following property: Whenever
w € M, (D) for which

p(D(a,1/2))
3.4 pum— B —————
&9 © = A(D(a,172)

< 00,

and for which the set

(3.5) G ={z: u(D(z,B)) > ecA(D(z,8))}
satisfies
(3.6) m(GNSp) = 6|1,

then|| f|la2 < || f]], forall f e A%

Notice how this theorem requirespriori that . is a Carleson measure fa® (via (3.4)). The
next two conditions tell us that the reverse Carleson camdi3.3) must be satisfied on a set
which is, in a sense, relatively dense. Moreover, the radadiensity condition in[(316) should
hold close to the unit circle.

For simplicity we stated the results for th€ Bergman space. Analogous theorems (with the
same proofs) are true for thd Bergman spaces fare (0, co).

4. FOCK SPACES

We briefly discuss Carleson and reverse Carleson measurasface of entire functions - the
Fock space. Here the conditions are a bit different sincéuthetions are entire and there are no
“boundary conditions” or “Carleson boxes”.

Let ¢ be a subharmonic function db (often called the weight) such that

1
-<Ap<c
&

for some positive constant Theweighted Fock spacé?j is the space of entire functiorfswith

finite norm .
T ( / |f(Z)I26‘2“0(Z)dA(Z)>2
C

Recall thatiA is Lebesgue area measure@nWheny(z) = |z|?, this space is often called the
Bargmann-Fock space. A good primer for the Fock spaces |s [Btere is also a suitable?
version of this space denoted 52 and the results below apply to these spaces as well.

The Carleson measures t@j were characterized by several authors (for varipusut the final,
most general, result is found in Ortega-Celda [40]. Belei3l(a,r) = {z € C: |z —a| < 1}
be the open ball i€ centered at with radiusr.

Theorem 4.1. For a locally finite positive Borel measupe on C, a weighty as above, and
dv = e~**dy, the following are equivalent:
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O £l S 1 fll, forall f € 72

(“) SUP.ec ,LL(B(Z, 1)) < 0.
The discussion of reverse Carleson measures for Fock spaedbegun by Janson-Peetre-
Rochbergl[25], agaimia dominating sets.

Theorem 4.2.For a weightyp, a measurable sdéf c C, anddr = e~ %y zdA, the following are
equivalent:

M [Iflle S A1 forall f e
(i) there exists amk? > 0 such thatnf,..c A(E N B(z, R)) > 0.

Condition (ii) is a relative density condition which, in ayyappeared in Theorem 3.2. We will
meet such a condition again in Theorem 5.1 below when we stsitie Paley-Wiener space.

In [40] Ortega-Cerda examined the measurem C for which

112 = / FOPRduz) VS € Foa

in other words, the “equivalent measures” i@ﬁ. He called such measureampling measures
A special instance is when
H = Z 5>\n7

n>1

whereA = {\,},>1 is a sequence in the complex plane. In this cdse,},>; is called a
sampling sequen¢eneaning that

P15 = D 1f Q)P0 vf e 7.

n>1

Contrary to the approach in Bergman spaces, where Lueckargcterized Carleson and reverse
Carleson measures which, in turn, yielded information en@ang sequences, Ortega-Cerda dis-
cretizedu to reduce the general case of sampling measures to that pfisgreequencesThese
were characterized in a series of papers by Seip, Seip{daf/IBerndtsson-Ortega-Cerda and
Ortega-Cerda-Seip (s€e [52] for these references). Thesaenmary theorem is the following:

Theorem 4.3. A sequencd C C is a sampling sequence f@?j if and only if the following two
conditions are satisfied:

() A is a finite union of uniformly separated sequences.

(ii) There is a uniformly separated subsequen¢e- A such that

.. JH#H(B(z,r)NAN) 1
| f —.
Sree [, ApdA T 2n
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To state the result in terms of sampling measures, we needrtaluce some notation. For a
large integerV and positive numbergsandr, decomposé€ into big squares of side-lengthVr
and each squarg is itself decomposed int&/ little squares of side-length Letn(.S) denote
the number of little squarescontained inS such thaj:(s) > 4. In terms of sampling measures,
we have the following:

Theorem 4.4. The measurg is a sampling measure if and only if the following conditi@ns
satisfied:

(i) sup.ec p(B(z,1)) < o0;

(ii) There is anr > 0 and a grid consisting of squares of side-lengitan integerN > 0
and a positive number such that

‘ n(S) 1
4. fe— > —
(4-3) " TApdA T o
where the infimum is taken over all squargsonsisting ofN? little squares from the
original grid.

Notice how (i) is a Carleson measure condition while (ii) is@erse Carleson measure condition.

To deduce Theorem 4.3 from Theorém]4.4, Ortega-Cerda fimted that it is sufficient to
consider the measuye which is the part ofx supported only on the little squaregor which
u(s) = 6 and then he discretized by p; = > 111(s,,)da, , Wherea,, is the center of,,. In order

to show thatu, is sampling exactly whep; is sampling, he used a Bernstein-type inequality.
This naturally links the problem of sampling measures tadéecription of sampling sequences.
Note that Bernstein inequalities also appear in the cordéxZarleson and reverse Carleson
measures for model spaces (see Sefion 6).

5. PALEY-WIENER SPACE

Though the Paley-Wiener space enters into the generalsdiscuof model spaces presented in
Section 6, we would like to present some older results whidihhelp motivate the more recent
ones. ThdPaley-Wiener spacV is the space of entire functiodsof exponential type at most
T, l.e.,

log |F
og|F(z)| _

lim sup <,

|z]—o00 |Z|

and which are square integrable BnThe norm onPW is

1Pl = ( |F<t>|2dt)%

A well-known theorem of Paley and Wiener [15] says tR&t’ is the set of Fourier transforms of
functions inZ? which vanish orR \ [—7, 7r]. Authors such as Kacnelsdn [27], Panejah [41, 42],
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and Logvinenko[[32] examined Lebesgue measurable/setsR for which
/ |F|?dt =< / |F|?dt VF € PW.
R E
Following (1.5), such sets will be call@bminating setfor P1V. Clearly we always have
/ |F|%dt < / |F|*dt YF € PW.
E R

The issue comes with the reverse lower bound. The summaoyetimehere is the following:
Theorem 5.1. For a Lebesgue measurable getC R, the following are equivalent:

(i) the setF is a dominating set foPI/;

(ii) there exists @ > 0 and ann > 0 such that
(5.2) [EN[z—n,z+n]| =9, VreR
Notice how condition (ii) is a relative density condition Wwave met before when studying the
Bergman and Fock spaces.

Lin [31] generalized the above result for measyresn R. We say that a positive locally finite
measurg: onR is h-equivalent to Lebesgue measifrthere exists & > 0 such that

p(lx —h,z+h)=<h VYreR |z|> K.
Theorem 5.3. Suppose: is a locally finite Borel measure dR.

(i) There exists a constant> 0 such that ifu is h-equivalent to Lebesgue measure for some
h < ~ then

/|F|2dtx/|F|2du VF € PW.
R R

(i) If
/|F\2dtx/|F\2du VF € PW,
R R

theny is h-equivalent to Lebesgue measure for sgme 0.

6. MODEL SPACES

A bounded analytic functio® on D is called annner functionif the radial limits of© (which
exist almost everywhere dh[16]) are unimodular almost everywhere. Examples of innac
tions include the Blaschke produdis with (Blaschke) zerod C D and singular inner functions
with associated (positive) singular measuren T. In fact, every inner function is a product of
these two basic typeis [[16].
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Associated to each inner functiéhis amodel space
Ko := (6H*)* = {feHQ:Af@_gdmZOVgeH2}.
Model spaces are the generic (closed) invariant subsp&dés for the backward shift operator
(5 )z = 1A= T0)

z
Moreover, the compression of the shift operator

(Sh)(z) = 2f(2)

to amodel space is the so-called “model operator” for cetigies of Hilbert space contractions.

It turns out that the Paley-Wiener spaé#&’ can be viewed as a certain type of model space. We

follow [47]. Let
U(z) :=exp (27TZ i 1)

z—1
be the atomic inner function with point mass:zat 1 and with weighr,

1 —ixt
(Fle) = / e f(1)dt,

the Fourier transform oh?(R), and

1 (2= i)
CVma 4t ‘o il

It is well known that# is a unitary operator of?(R) and a change of variables will show that
J is a unitary map fronL?(m) onto L*(R). It is also known[[47, p. 33] that

(ZFJ)Ky = L*|0, 27].

J: L*(m) — L*(R), (Jg)(x)

T : L*[0,27] — L*[-7, 7], (Th)(z)=h(z+n)
is the translation operator then
(TFJ)Ky = L*|-7, ]
and
(FTFJ)Ky = PW.
Thus the Paley-Wiener space is an isometric copy of a certaitel space in a prescribed way.

An important set associated with an inner function ivsindary spectrum

(6.1) 7(0) == {geT: lim |© ()| :o}.

z—€

Using the factorization oP into a Blaschke product and a singular inner function, omesteow
that whens (©) # T, there is a two-dimensional open neighborhébcbntainingT \ ¢(©) such
that© has an analytic continuation f@.
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Functions in model spaces can have more regularity thanrigeio@ctions in /2. Indeed, a
result of Moeller[[37] says every function ifg follows the behavior of its corresponding inner
functions and has an analytic continuation to a two dimeraiopen neighborhood af\ ¢(O).

In fact, one can say a little bit more. Indeed, for everg T \ ¢(©) the evaluation functional
E¢f = f(¢) is continuous orke with

[ Ee|l = /[©(E)].
Thus
(6.2) sup | Eel| < oo
cew

for any compact sét’ C D~ \ ¢(O).

In terms of a measure € M, (D) being a Carleson measure #6g, let us make the following
simple observation.

Proposition 6.3. Suppose: € M (D) with support contained ifd~ \ ¢(©). Thenyu is a
Carleson measure fo€g.

Proof. Let W denote the support gi. From our previous discussion, evefye Ko has an
analytic continuation to an open neighborhoodiof Furthermore, usind (G.2) we see that

sup | f(E)] S [[fllm V€ Ke.
Eew

It follows that|| f||, < || f|l.» and hence: is a Carleson measure fiig . O

Two observations come from Proposition]6.3. The first is thate are Carleson measures for
Ko which are not Carleson falf* sincep(S;) < |I| need not hold for all arcé c T. In fact
one could even put point masses®n ¢(0). This is in contrast with thé7? situation where
we have already observed in Theorem 2.2 that if M, (D™) is a Carleson measure féf?,
thenu|r < m. The second observation is that if there is to be a Carlessimgecondition like
w(Sr) < |I|, the focus needs to be on the Carleson bdkeshich are, in a sense, closed(O).

So far we have avoided the issue of making sense of the imsggfa, for f € Ko when the
measure: could potentially place mass dh Indeed, we side stepped this in Proposition 6.3 by
stipulating that the measure places no mass (@), where the functions ifCq are not well-
defined. In order to consider a more general situation, aadhere to the notation used In [54],
we make the following definition.

Definition 6.4. A measureu € M (D™) will be called©-admissiblef the singular component
of u|r (relative to Lebesgue measure) is concentrated 9 (O).

Since functions fronfCg are continuous (even analytic) on this set, it follows tbat-admissible
measures and functiorfse Ko, the integral| ||, makes sense.
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As was done with the Hardy spaces in Theokem 2.2, one coulel thia definition of a Carleson
measure folkCe to be au € M (D™) for which

(6.5) 1l S fllm Yf € KenCD).

Indeed, an amazing result of AleksandroV [2] says figtn C'(D™) is dense ing and so
this set makes a good “test set” for the Carleson (reverske€tar) condition. Furthermore, if
p € M, (D7) and [6.5) holds, thep is ©-admissible, every function ifg has radial limits
p|r-almost everywhere off, and|| f |, < || f |l for every f € Ke.

Carleson measures fiiig were discussed in the papers of Cohn [13] and Treil and VglJ&t].
Their theorem is stated in terms of

(6.6) (0,6) ={zeD:|0(z) <}, O0<e<l,

the sub-level setfor ©. Note that boundary spectrusm©) is contained in the closure of any
Q2(0,¢),0 <e < 1.

Theorem 6.7. Suppose: € M, (D™) and define the following conditions:
() pu(Sy) < || forallarcs C T for whichS; N (0, ) # @;
(ii) uis a Carleson measure f@e;
(iii) uis ©-admissible and S|, < [|k9]|.. holds for every\ € D.
Then(i) = (ii) = (¢i7). Moreover, if for some € (0, 1), the sub-level seR(©,¢) is
connected, thefy) <= (i) <= (ii).

The condition thaf2(0, ) is connected for some € (0, 1) is often called theonnected level
set condition(CLS). Cohn|[[13] proved that (O, ¢) is connected and € (¢, 1), then2(O, 0)
is also connected. Any finite Blaschke product, the atormeiiriunction

6(2) = exp (2“) |

z—1

and the infinite Blaschke product whose zeros{dre- r"},~;, where0 < r < 1, satisfy this
connected level set condition.

The sufficient condition appearing in assertiehof Theoren 6.7 is, in general, not necessary.
More precisely, Treil and Volber@ [54] proved that this ciiwth is necessary for the embedding
of Kg into L?(p) if and only if © € (CLS). Nazarov—Volberg[38] proved that the RKT (repro-
ducing kernel thesis) for Carleson embeddingsiferis, in general, not true. In[3], Baranov
obtained a significant extension of the Cohn and Volberghigsults, introducing a new point
of view based on certain Bernstein-type inequalities. ueaicently, in answering a question
posed by Sarasoh [61], Baranov—Besonnov—Kapustin [Sfielda nice link between Carleson
measures fokCe and an interesting class of operators — the truncated Te@plerators — which
have received much attention in the last few yelars [51].

We now state the main reverse embedding results for modeésgeom [7]. The first result is
a reverse embedding theorem along the lines of Treil-Vgllber which we need the following
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notation: given an ar¢ C T and a numben > 0, we define the amplified arel as the arc with
the same center dsbut with lengthn x m(I).

Theorem 6.8.Let© be inner,u € M, (D~), ande € (0,1). There exists aw = N(0,¢) > 1
such that if
(6.9) u(Sr) 2 m(I)
forall arcs I C T satisfying
SN[ N 9(9,6) 7& I,
then
(6.10) [fllm S I flle V€ KenCDT).

This theorem is a more general version than the one appearjidgTheorem 2.1] and does not
require the (direct) Carleson condition. Indeed, it can lbecked that the Carleson condition
is not really needed in the proof. It was initially proved lifj for (CLS)-inner function using
a perturbation argument from![4, Corollary 1.3 and the profoTheorem 1.1], but Baranov
provided a proof (found in_[7]) based on Bernstein ineqiediind which does not require the
CLS condition.

Corollary 6.11. Under the hypotheses of Theoreml 6.8, and if, moreover, thsurey is as-
sumed to b&-admissible, thexg.10)extends to all ok s.

Our second reverse Carleson result involves the notion ahairthting set foiCo, defined in
(1.5) and discussed earlier for the Bergman and Fock spaces.

Definition 6.12. A (Lebesgue) measurable subset T, withm (X) < 1, is called alominating
setfor g if

[1pan s [ 12am v e Ko,

This is equivalent to saying that the measdiie= ys.dm is a reverse Carleson measure £Qy.
Here we list some observations concerning dominating setsddel spaces. We will use the
following notation for setsi, B and a point::

d(A,B) :==inf{la—0b|:a € A,be B}, d(z,A):=d({x}, A).
Throughout the list below we will assume tttais inner ands(©) is its boundary spectrum from
(6.1). All of these results can be found in [7, Section 5].
(i) If X is a dominating set fokg then, for every € ¢(0), we haveli((, >) = 0.
(i) If X is a dominating set foke thend(:, ¢(0)) = 0.

(iii) Let ¢ € 0(©) andX dominating. Then there exists ar> 0 such that for every sequence
A, — Cwith ©(),,) — 0, there is an integeN with

m(ENIy )2 m(ly ), n=N.
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In the above/§ is the subarc of centered a%' with lengtha (1 — |A|).

(iv) Every open subseét of T such that(©) C X andm(X) < 1is a dominating set foCe.

(v) Let © be an inner function such that(c(©)) = 0. Then for every € (0, 1) there is a
dominating seb for g such thatn(X) < . In particular, this is true for (CLS)-inner
functions.

(vi) If 0(©) =T and if X is a dominating set fokCe then is dense irfl.

(vii) There exists a Blaschke produBtwith o(B) = T and an open subsgtC T dominating
for Kp.

(vi) Every model space admits a dominating set.

Theoreni 6.8 shows, in the special case of the Paley-Wieraeesthat wher (5.2) is satisfied for
sufficiently smallp, thenFE' is a dominating set foP 1V .

For reverse Carleson measures there is the following rizeutt [7].

Theorem 6.13.Let © be an inner functiony be a dominating set fokCg, andu € M, (D).
Suppose that

.. 1(S1)
f
0 m (1) >0,
where the above infimum is taken over all afcs T such that/ N> # @. Then
(6.14) 1fllm S Wl Vf€eKenC(DT).

Corollary 6.15. Under the hypotheses of Theorem 6.13, and if moreover theuresa is as-
sumed to b&®-admissible, then the inequality {6.14)extends to all oK.

For the Hardy space, the reverse Carleson measures weeetgtered by the reverse reproduc-
ing kernel thesis, i.e||ky|/., < ||kall, for all A € D. For model spaces, however, the reverse

~Y

reproducing kernel thesis is a spectacular failuré [22].

Theorem 6.16.Let © be an inner function that is not a finite Blaschke product. rnTheere
exists a measurg € M (T) such thatu is a Carleson measure fd€e, the reverse estimate on
reproducing kernelg?,

kN 2 11k YA €D,
is satisfied, but: is not a reverse Carleson measure G .

Let us see this counterexample worked out in the special afabe Paley-Wiener spadelV,
which, recall from our earlier discussion, is isometriggglomorphic to the model spaé&, with

z+1
z—l)'

O(z) = exp (27
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Consider the sequencée= {z,, }ncz\ (0}, Where

n—1/8 if nisodd.

By the Kadets-Ingham theorem |39, Theorem D4.12]s a minimal sampling (or complete
interpolating) sequence if we include the pdinSincesS is not sampling, the discrete measure

M= Z Oz,

n#0

{n+ 1/8 if niseven
T, =

does not satisfy the reverse inequality
1@y S N fllzeqy VS € PW.

However, thel?(1)-norm of the normalized reproducing kernels

sin(m(z — A))
w(z—A)

is uniformly bounded from below. Indeed,J)fis such thatIm A| > 1 then

| sin(m(x, — \))| =~ eI m AL

Ky (z) = cysine(m(z — A)) = ¢y 2~ (14 | Im A|)e 2rIm AL

and hence

sin(m(x, — \))

/|K>\ )[Pdu(x Z

g ‘xn _ )\|2 ~

Thus it is enough to consider pointse C with | Im | < 1. Let x,, be the point ofS closest to
A. Then there i$ > 0, independent ok, such that

1 dute) = 3 1K) >

n#0
It is interesting to point out that is a Carleson measure f@tlV since S is in a strip and
separated.

m(x, — )

2

sin(m(x,, — A)) S5

ﬂ-('rno - )‘>

As was asked for the Paley-Wiener sp&tié’, what are the, € M (T) for which

[fllm =Nl Vf € Ke?

In [53] Volberg generalized the previous results and gaveraptete answer for general model
spaces and absolutely continuous meastes wdm, wherew € L>(T), w > 0. Let

o) = [wOt L dn(),  zep

w(z) = , z ,
|z —¢[?

be the Poisson integral af and note thatv is harmonic (and positive) o and has radial

boundary values equal i0 m-almost everywhere [16].

Theorem 6.17.Letdu = wdm, withw € L>(T), w > 0, and let© be an inner function. Then
the following assertions are equivalent:



18 FRICAIN, HARTMANN, AND ROSS

@) N fllm = I f]l. forall f € Ke;
(ii) if {\}ns1 C D, then
lim @(A\,) =0 = lim [O(\,)] = 1;

(i) inf{@(\) + |O(\)| : A € D} > 0.

In particular, this theorem applies to the special case wiheg ys.dm, with 32 a Borel subset of
T. However the conditions obtained from Volberg’s theoremrast expressed directly in terms
of a density condition as was the case " (see Theoreri 5.1). It is natural to ask if we can
obtain a characterization of dominating sets ka5 in terms of a relative density. Dyakonov
answered this question in[18]. In the following result;? is the Hardy space of the upper-half
plane{Im z > 0}, ¥ is an inner function ofIm z > 0}, and#y = (¥.#?)* is a model space
for the upper-half plane.

Theorem 6.18.For an inner function? on {Im z > 0} the following are equivalent:
(i) ¥ e L*(R);

(i) Every Lebesgue measurable getC R for which these exists ah > 0 and ann > 0
such that
|[EN[z—nz+n]>d VreR

is dominating for the model spack.

In the case corresponding to the Paley-Wiener sgaidg ¥ (z) = ¢*™ and thug¥'(z)| = 27
onR. As was shown by Garnetlt [20], the conditiagh € L>(R) is equivalent to one of the
following two conditions:

(i) 3~ > 0 such that
inf{|¥(2)|: 0 < Im(z) < h} > 0;

(i) W is invertible in the Douglas algebfa’>, ¢=**] (the algebra generated B> and the
space of bounded uniformly continuous functionsfn

For instance, the above conditions are satisfied when = ¢“*B(z), wherea > 0 and B
is an interpolating Blaschke product satisfyitigt(5-'({0}),R) > 0 (e.g., the zeros oB are

{n + i}nGZ)-
What happens if we were to replace the condition

[ f 1l = Lf Il VS € Ko
with the stronger condition
[fllm = Lf 1l VS € Ke.
Such “isometric measures” were characterized by Aleksandi (see alsa7]).

Theorem 6.19.For 1. € M (T) the following assertions are equivalent:
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@) [ f[l,e = [l f[l for all f € Ke;
(i) © has non-tangential boundary valugsalmost everywhere dfi and

_ 2
1 -06(2)0(¢) 116 ,
/T 1o d#(()—W7 z €Dy
(iii) there exists @ € H* such thatl|¢||., < 1 and
- |Z|2 1+ ¢(2)0(z)
20 o -m(Toge0m) *<”

The condition in[(6.20) says thatis one of the so-calledleksandrov-Clark measurésr b =

©0. It is known that the operatdr; : L*(n) — (b)) = Ko ® O (p) introduced in[(7.14)
below is an onto partial isometry, which is isometricA(1.), the closure of the polynomials in
L?(u) (see Section]7 for more o#¥’(b)-spaces and Aleksandrov-Clark measures). By a result
of Poltoratski[44],V,g = ¢ us-a.e. whereug is the singular part of. with respect ton. In
particular, whenp is inner, then’(b) = Ko, = Ko ® OK, andu = p is singular, and hence
forevery f = Vg € Ko, Whereg € H?(u), we have

[Fllm = Vogllm = llgllu = [1/14-

When is not inner, Aleksandrov proves Theorem 6.19 by using tlwvelfact for inner func-
tions along with the fact that the isometric measures foriosed subset of the Borel measures
M(T) in the topologys (M (T), C(T)).

L. de Branges [15] proved a version of Theoflem 5.19 for merpimo inner functions and Krein
[21] obtained a characterization of isometric measureskigrusing more operator theoretic
langage.

7. DE BRANGES-ROVNYAK SPACES

These spaces are generalizations of the model spaces. Let
Hye ={f € B : || fll < 1}

be theclosed unit ball in7*°. Recall that wher® is inner, the model spad€g is a closed
subspace off? with reproducing kernel function

kg (z) = L=200)

Using this as a guide, one can, for a givea H{°, define thede Branges-Rovnyak spag€ (b)
to be the unique reproducing kernel Hilbert space of amafytictions oD for which

1 —b(N\)b(2)
1— Xz

, A,z €D.

k() = , Az €D,
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is the reproducing kernel [43]. Note that the functiiiz, \) := k5(z) is positive semi-definite
onD,i.e.,

> @a; K (M, N;) >0,

i,j=1
for all finite sets{\, ..., A\, } of points inD and all complex numbers, . .., a,. Hence, we can
associate to it a reproducing kernel Hilbert space and tbheeabefinition makes sense. There is
an equivalent definition of#’ () via defects of certain Toeplitz operators[[48].

It is well known that though these spaces play an importaetirounderstanding contraction
operators, the norms on theg€(b) spaces, along with the elements contained in these spaces,
remain mysterious. Whelfb||., < 1 (i.e., b belongs to the interior off{°), then#(b) = H*

with an equivalent norm. Whehis an inner function, theo#’(b) = K, with the H* norm.

For generab € H°, 7 (b) is contractively contained it/? and this space is often called a
“sub-Hardy Hilbert space’ [48]. The analysis of the#€(b) spaces naturally splits into two
distinct cases corresponding as to whether omnsian extreme function fol °, equivalently,

log(1 — [b]) & L' (m).

Whenb € H{* is non-extreme, there is a unique outer funcion H7° such that:(0) > 0 and
(7.1) ()P +b(6))*=1 m-ae.feT.

Sucha is often called th&ythagorean matéor b and the paifa, b) is called aPythagorean pair

There is the, now familiar, issue of boundary behaviorz6fb) functions when defining the
integrals|| f||,, in the Carleson and reverse Carleson testing conditiongh ¥ model spaces
(and with /?) there is a dense set of continuous functions for which omesaanple in order
to test the Carleson|f|, < |/f]|») and reverse Carleson conditionsf{,,, < | f/,.). For a
general’Z’(b) space however, it is not quite clear whether or %6tb) N C'(D~) is even non-
zero. In certain circumstances, for example whenon-extreme or wheis an inner function,
2 (b) N C(D™) is actually dense io7Z’(b). For general extremig this remains unknown. Thus

we are forced to make some definitions.

Definition 7.2. For . € M, (D~) we say that an analytic functiofion D is py-admissibleif
the non-tangential limits of exist.-almost everywhere off. We let#(b),, denote the set of
p-admissible functions ig?’(b).

With this definition in mind, iff € J#(b),, then definingf on the carrier ofu| via its non-
tangential boundary values, we see thf,, is well defined with a value ifD, +oo].

Of course when is carried orD, i.e., u(T) = 0, thens#(b),, = 7 (b). Hence Definitio_7]2
only comes into play when has part of the unit circl& in its carrier. Note that#’(b) = (D).,
sinces7 (b) C H?. However, there are often othereven ones with non-trivial singular parts on
T with respect tan, for which .2#(b) = 2 (b),. The Clark measures associated with an inner
functionb have this property [7, 12].

Definition 7.3. A measureu € M, (D™) is aCarleson measuréor 7 (b) if 7(b),, = (b)
and|[f{l,. < |l ]l forall f € (D).
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Whenb = 0, i.e., whens#(b) = H? then, as a consequence of Carleson’s theorem (see Theorem
2.2) for H?, we see that whep satisfiesu(S;) < |I| for all arcsI, thenu|r < m and so
J€(b),, = J€(b). Whenb is an inner function, recall a discussion followirig_{6.5)iethsays

that if the Carleson testing conditidfy|, < | f|/. holds for all f € J#(b) N C(D™), then

7€ (b),, = €(b). So in these two particular cases, the delicate issue ofidgfihe integrals in

| fll,. for f € s (b) seems to sort itself out. For genebalve do not have this luxury.

Lacey et al.[[29] solved the longstanding problem of chaming the two-weight inequalities
for Cauchy transforms. Let us take a moment to indicate heiv thsults can be used to discuss
Carleson measures fo#’(b). Leto be the Aleksandrov-Clark measure associated yithat is
the uniquer € M, (T) satisfying
L LGl Y I el
[1=0(z)*  Jrlz =P

LetV, : L?(c) — (D) be the operator defined by

do(¢), =ze€D.

(7.9 0iH) = 1= [ L o) = - s,
whereC, is the Cauchy transform
€anie) = [ L)

It is known [48] thatl}, is a partial isometry froni? (o) onto.#(b) and
KerV, = Ker C, = (H*(0))*.

Here H?(o) denotes the closure of polynomials Ii(c) and the L is in L?*(c). As a conse-
quence, since every functighe 7 (b) can be written ag = V,g for someg € H?(o), pis a
Carleson measure fo’(b) if and only if

Vagllu = 11fllu S 1flls = Vaglle = llglls Vg € H*(0).

Settingw,,, := |1 — b|*u, we have

Wiglli = [ 1= b1Coal? e = I Cugl,,.
This yields the following:

Theorem 7.5.Lety € M, (D™), b a u-admissible function iff{°, andv, , := |1 — b|*u. Then
the following are equivalent:

(i) v is a Carleson measure fot?(b);

(i) The Cauchy transfornt’, is a bounded operator fromi?(o) into L*(D~, v, ,,), whereo
is the Aleksandrov-Clark measure associated With
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We refer the reader tb [29, Theorem 1.7] for a descriptiohefttoundedness of the Cauchy trans-
form operatorC,. However, it should be noted that the characterization aoféSan measures
for 27 (), obtained combining Theorem 7.5 and|[29, Theorem 1.7], ipuocely geometric.

The following result froml[[6], similar in flavor to Theordm# discusses the Carleson measures
for 72(b).

Theorem 7.6.For b € H° ande € (0, 1) define
Qb,e) :={2€D:|b(2)] < e},

£(b) = {< € T lim ()] < 1},

Q(b,e) := Q(b,e) U X(D).
Lety € M, (D~) and define the following conditions:

(i) w(S;) < |I)forallarcs I c T for whichl N Q(b, ) # ;
(i) A2(b), = (b) and||f||. < || f[l, forall f € F2(b);
(i) A (b), = (b) and k.|, < ||K2]|, for all A € D.

Then(i) = (ii) = (iii). Moreover, suppose there exists are (0, 1) such that2(b,¢) is
connected and its closure contaifigh). Then(i) <= (ii) <= (it).

It should be noted here that, contrary to the inner case, dhtamment:(b) C clos(€2,¢) is
not, in general, automatic. Indeed, whgn) = (1 + z)/2, one can easily check that the above
containment is not satisfied.

Here is a complete description of the Carleson measuresvieryaspecifich [8]. Note that ifb
is a non-extreme rational function (e.g., rational but nBlaschke product), one can show that
the Pythagorean matefrom (Z.1) is also a rational function.

Theorem 7.7.Letb € H* be rational and non-extreme and letc M, (D~). Then the follow-
ing assertions are equivalent:

(1) pis a Carleson measure for”’(b);

(2) |a|* dp is a Carleson measure fdi 2.

If b(z) = (1+2)/2thena(z) = (1—2)/2 and, ifu is the measure supported @h 1) defined by
du(t) = (1 —t)~Pdt, for 3 € (0,1], we can use Theoren 7.7 to see thas Carleson measure
for 27 (b). However,u is not a Carleson measure fé’. One can see this by considering the
arcsly = (e=% "), ¥ € (0,7/2), and observing that

n(S(y))

9 |1yl
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If b is ap-admissible function, then so are all of the reproducing&ksk (along with finite
linear combinations of them) and thus, with this admisgibéssumption o, 7 (b),, is a dense
linear manifold in#(b). This motivates our definition of a reverse Carleson medsure?’ (b).

Definition 7.8. Foru € M, (D) andb € H{°, we say thaj. is areverse Carleson measure for
JC(b) if (D), is dense inzZ(b) and|| f||, < ||f|l, forall f € 52(b),. In this definition, we
allow the possibility for the integralf ||, to be infinite.

Here is a reverse Carleson measure result fidm [8] whichsiegwn the case whénis non-
extreme.

Theorem 7.9.Let € M, (D™) and letb € H{° be non-extreme and-admissible. Ifh =
dul|r/dm, then the following assertions are equivalent:

(i) v is areverse Carleson mesure fé#°(b);
(i) [I&S]ls < [1&3 ], for all A € Dy
(iii) dv := (1 — |b|)du satisfies

(iv) essinfp(1 — |b])h > 0.

The proof of this results is in the same spirit as Thedrerh &I80 note that the conditiofiv)
implies that(1 — |b])~! € L'. As a consequence of this observation, we see thatifH is
non-extreme and such that — o)~ ¢ L', then there ar@o reverse Carleson measures for
(D).

As was done with many of the other spaces discussed in thisysume can say something about
the equivalent measures f6#’(b) [8].

Theorem 7.10.Letb € H;* be non-extreme and € M, (D). Then the following are equiva-
lent:

(i) (b)), = 2 (b) and|| f[|,. =< [|f], forall f € 72(b);
(i) The following conditions hold:

(@) ais p-admissible,

(b) (a,b) is a corona pair, i.e.,

inf{|a(z)| +|b(2)| : z € D} > 0;

(c) |a|? satisfies the Muckenhouft,) condition, i.e.,

e Gy 7 0m) (g [ ) <=

wherel runs over all subarcs df;
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(d) dv := |a|? du satisfies

. V(S[) I/(S[)
—< -
O<H}f m(I) \SU}p m(I) < 0%

where the infimum and supremum above are taken over all opsii af T.

One should note that ifa, b) is a corona pair anth|* € (A,), thens#(b) = .# (a), where
A (a) = aH? equipped with the range norm, i.€ag| 4 = ||9|m, for anyg € H? [49, IX-5].
Hence the above result says that it is possible to obtain aivagnt norm ons#(b) expressed
in terms of an integral only whesy?’(b) = .# (a).

Surely an example is important here: lét) := ¢,(1 — z)*, wherea € (0,1/2) andc, is
suitable chosen so thate H*. When( < « < 1/2, one can show that|? satisfies the A,)
condition. Choos# to be the outer function id/ satisfying|a|?> + |b|> = 1 onT. Standard
theory [24], using the fact thatis Holder continuous ofd~, will show thatb is continuous on
D~. From here it follows thata, b) is a corona pair. I € M, (D™) is any Carleson measure
for H?, then one can show thdf := |a|~2dm + do satisfies the conditions of Theorém 7.10.

For 27 (b) spaces whehnon-extreme, the isometric measurgsi|, = || ||, for all f € J2(b),
are not worth discussing as illustrated by the followingites

Theorem 7.11.Whenb is non-constant and non-extreme, there are no positiveesicrmea-
sures fors(b).

Also not worth discussing for genera#’(b) spaces is the notion of dominating seéts [B]:C T,
0 < m(FE) < 1, for which

I3 S [ I5Pdm s e ),
E
Indeed, we have the following:
Theorem 7.12.Letb € H{° such thats#(b) has a dominating set. Then eithieis an inner

function or||b||» < 1.

As one can see, the case for extrelgeems to be very much open. Wheis inner, much has
been said about the Carleson and reverse Carleson measuss) = IC,. Whenb is extreme
but notinner, there are a few things one can say [8] but tisareich work to be done to complete
the picture.

8. HARMONICALLY WEIGHTED DIRICHLET SPACES

Foru € M (T) let
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denote the Poisson integral pf The harmonically weighted Dirichlet spac@ () [19,[45] is
the set of all analytic functiong onD for which

/ |f’|2<pudA < 00,
)

wheredA = dxdy/m is normalized planar measure @n Notice that when. = m, we have
v, = 1 and Z(u) becomes the classical Dirichlet spacel[19]. One can showiia) C H>
[45, Lemma 3.1] and the norip:- || 4, given by

|m@m:AVWmﬁAWWMA

makesZ (1) into a reproducing kernel Hilbert space of analytic funet@nD. It is known that
both the polynomials as well as the linear span of the Cauehyets form dense subsets®f )
[45, Corollary 3.8].

When¢ € T anddu = ¢, a result from[[50] shows that

D(6¢) = A (b),
wherew, = (3 —v/5)/2 and
_(1- wo) (2
(8.1) b(z) = —— == ol

Furthermore, the norms on these spaces are the same. Ithizs#, are the only harmonically
weighted Dirichlet spaces which are equal to.#f(b) space with equal nornd [11]. 1n[14] it
was shown that if

(8.2) p=> cjd,, ¢;>0,(eT
j=1

is a finite linear combination of point masses®anda is the unique polynomial with(0) > 0
and with simple zeros a}; (and no other zeros) andis the Pythagorean mate far(which
must also be a polynomial), thet’(b) = 2(u) with equivalent norms. In this case we can use
Theoreni 77 to obtain a characterization of the Carlesorsurea forZ(u):

Theorem 8.3.For p asin(@.2)andv € M, (D), the following assertions are equivalent:
(i) v is a Carleson measure far(u);
(i) TI, |z — G;|* dv is a Carleson measure fdi2.
This result appeared in][9] (see al§al[10]). In fact, Theofeinfrom [9] shows that the above
conditions are equivalent to
16X < 18 26y A € D.

In other words, at least whenis a linear combination of point masses, the reproducingeter
thesis characterizes the Carleson measureg{py).
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The discussion of reverse Carleson measure&far) is dramatically simpler since they do not
exist! Indeed, suppose thate M (D™) and| f||, < || f]|. forall f € 2(u). In particular, this
is true for the monomials™, n > 0. But|]2"[|, < 1 and|z"|? = 1+ nu(T), which gives a
contradiction whem tends tox.

We point out some related results fram[[10] which discuspae tyf reverse Carleson measure for
2(1) spaces except that the definitions of “reverse Carlesonumesisand “sets of domination”
(dominating sets) are quite different, and not equivakenburs.
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