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HOPF AUTOMORPHISMS AND TWISTED EXTENSIONS

SUSAN MONTGOMERY, MARIA D. VEGA, AND SARAH WITHERSPOON

ABSTRACT. We give some applications of a Hopf algebra constructed from a group acting on
another Hopf algebra A as Hopf automorphisms, namely Molnar’s smash coproduct Hopf
algebra. We find connections between the exponent and Frobenius-Schur indicators of a
smash coproduct and the twisted exponents and twisted Frobenius-Schur indicators of the
original Hopf algebra A. We study the category of modules of the smash coproduct.

1. INTRODUCTION

Molnar [MI] defined smash coproducts of Hopf algebras, putting them on equal footing
with the better-known smash products by viewing both as generalizations of semidirect
products of groups. Recently smash coproducts have made an appearance as examples
of new phenomena in representation theory [BW. [DE]. In this paper we propose several
applications of smash coproducts. In particular, the smash coproduct construction will allow
us to “untwist” some invariants defined via the action of a Hopf algebra automorphism, such
as the twisted exponents and the twisted Frobenius-Schur indicators.

We note that considering Hopf automorphisms is a timely topic, since there has been recent
progress in determining the automorphism groups of some Hopf algebras [AD] K¢, R3SV [Y].
There has also been much recent work on indicators; their importance lies in the fact that
they are invariants of the category of representations of the Hopf algebra, and may be defined
for more abstract categories [NSc]. Moreover the notion of twisted indicators can be extended
to pivotal categories [SV3].

We start by defining the smash coproduct A § k¢, for any Hopf algebra A with an action
of a finite group G by Hopf automorphisms, in the next section. In Section Bl we recall
the notions of exponent and twisted exponent [SV2] of a Hopf algebra, and find connections
between the exponent of A fj k¢ and twisted exponents of A itself. In Section @ we assume the
Hopf algebra A is semisimple. We recall definitions of Frobenius-Schur indicators [KSZ] and
twisted Frobenius-Schur indicators [SV] for simple modules over the Hopf algebra, and give
relationships between the indicators of the smash coproduct A § k% and twisted indicators
of A itself.

In Section Bl we do not assume the Hopf algebra is semisimple. We introduce the twisted
Frobenius-Schur indicators of the regular representation of such a Hopf algebra, simultane-
ously generalizing indicators for not necessarily semisimple Hopf algebras [KMN] and twisted
indicators for semisimple Hopf algebras [SV]. Again we find a connection with the Frobenius-
Schur indicator of a smash coproduct. We compute an example for which the Hopf algebra
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A is of dimension 8 in Section [l Finally in Section [7] we study the structure of categories of
modules of A § k¢, showing that they are equivalent to semidirect product tensor categories
C % G, where € is a category of A-modules.

Throughout, k will be an algebraically closed field of characteristic 0.

2. THE SMASH COPRODUCT

Our Hopf algebra was defined by Molnar [MI, Theorem 2.14], who called it the smash
coproduct, although our definition seems different at first glance. See also [R2], p. 357].

Let A be a Hopf algebra over a field £ and let a finite group G act as Hopf algebra
automorphisms of A. Let k¢ be the algebra of set functions from G to k under pointwise
multiplication; that is, if {p, | # € G} denotes the basis of k% dual to G, then p,p, = 0, yps
for all 7,7 € G. Recall that k¢ is a Hopf algebra with comultiplication given by A(p,) =
ZyeG Py @ Dy-14, counit €(p;) = 61, and antipode S(p,) = p,—1 for all z € G.

Then we may form the smash coproduct Hopf algebra

K=Afk®

with algebra structure the usual tensor product of algebras. Denote by a § p, the element
a®p, in K, for each a € A and z € G. Comultiplication is given by

Alatp)=> (a15p) @ ((y " a2) 1 pyra)

yeG

for all x € G, a € A. The counit and antipode are determined by

e(alps) =010(a)l and S(afhp,) = (27" S(a)) § por.

If A4 is an integral for A, then Ax = A4 fj pp is an integral for K.

Note that Molnar defines the smash coproduct for the right coaction of any commutative
Hopf algebra H. We show that our construction is actually his smash coproduct with H =
k%, by dualizing our G-action to a k%-coaction.

Lemma 2.1. (1) K as above is isomorphic to the smash coproduct as in [MI, Theorem 2.14],
and thus is a Hopf algebra.

(2) If A is finite-dimensional, then K* =2 A*#kG, the smash product Hopf algebra as in
[MI, Theorem 2.13].

Proof. (1) Given the left action of G on A, we define p: A - A®k® by a — >, _o(z-a) ®@p,.
Then p is a right comodule map, using the fact that the G-action on A satisfies x - (y - a) =
(xry-a) and 1-a=a for all z,y € G and a € A.

Next we note that A is a right comodule algebra under p since the G-action is multiplica-
tive, that is (z - a)(x - b) = x - (ab). Also A is a right comodule coalgebra, as the G-action
preserves the coalgebra structure of A, thatis, - (), a1 ®a2) =) (z-a); ® (- a)s. Thus
A is a right k%-comodule bialgebra.

Finally the antipode also dualizes to the antipode given by Molnar, and thus Molnar’s
theorem [MI, Theorem 2.14] applies.

(2) This is a special case of Molnar’s result [MI, Theorem 5.4].

U
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3. HOPF POWERS AND EXPONENTS

In any Hopf algebra H, we denote the nth Hopf power of an element z € H by z[" =
> . T1ZaTs ... Ty that is, first apply Ay n — 1 times to x and then multiply. Note that
x — z is a linear map.

For H semisimple, recall that the exponent of H, exp(H), is the smallest positive integer
n, if it exists, such that z"! = ¢(x)1 for all z € H. More generally, this definition makes
sense whenever S? = id. We assume this property of S unless stated otherwise.

Recently [SV2] introduced the twisted exponent, where exp is twisted by an automorphism
of H of finite order. Assume that 7 € Aut(H) and that n is a multiple of the order of 7.
Define the nth 7-twisted Hopf power of x to be

2= N T (e a) (7 ) (7 ).

Definition 3.1. exp,(H) is the smallest positive integer n, if it exists, such that n is a
multiple of the order of 7 and z!™»7 = ¢(2)1 for all x € H.

Since 7 is a Hopf automorphism, e(7 - ) = ¢(x) for any x € H, and thus e(2"™) =
e(z") = e¢(x). If H is not semisimple and S? # id yet S is still bijective, there is a more
general definition of the twisted exponent in [SV2].

We will need the following proposition which is a special case of [SV2, Proposition 3.4].

Proposition 3.2. Suppose that the Hopf automorphism 1 of the semisimple Hopf algebra
H has order r, exp,(H) is finite, and m 1is a positive integer. Then 2™ = e(x)1 for all
x € H if and only if exp,(H) divides m.

Next we give some formulas for our Hopf algebras K = A 1 k¢,

Lemma 3.3. Let w=af p, € A § kY, the smash coproduct as above. Then
(abp)l= % " gp.
z€G, 2=z
In particular for w = Axg = A4 § p1, replace z by z=*. Then
A[Kn] = Z AEZ’Z] 0 p.-1.
ze@G, zn=1
Proof. A calculation shows that
(CL h px)[n} = Z al(z_l ' a2)(z_2 ' a3) to (Z_(n_l) . an) h Dz,
z€G, z"=x

which gives the first equation in the lemma. The second follows from the first. O
We now find a relation among the (twisted) exponents of A, G, and K = A f k.

Theorem 3.4. Assume that S? = id in A. Then the exponent of K is the least common
multiple of exp(G) and exp,(A) for all z € G.

Proof. Let n = exp(K), so that
(a4 pa)l™ = e(a pa)l = e(a)durl = e(a)dur D _p:
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for all a € A and z € G. When a = 1, then (p,)" = §,,1 implies that exp(G) = exp(k%)
divides n. Thus 2" = 1 for all z € G. By the above calculation, (a f p;)" = £(a)1, and so by
Lemma B3, al™* "1 = (a) for all z € G and a € A. Therefore by Proposition 3.2, exp(K) is
a common multiple of exp(G) and exp,(A) for all z € G.

Now let m be any common multiple of exp(G) and exp,(A) for all z € G. By Lemma B3
and Proposition [3.2],

m m,z" 1
(agp)t™ = > ™ gp,

z€G, zMm=x
= 01 Za[m’fl] 0 p-
z€G
= 51,m5(a) sz = E(a h px>1K-
zeG
Again by Proposition B.2], exp(K) divides m. O

We will use the following lemma in calculations.

Lemma 3.5. Let H be a Hopf algebra and let T be a Hopf automorphism of H whose order
divides n. Then  S(z!™™) =771 (S(x)»™ ') for all z € H.

Proof. Since S is an anti-algebra and anti-coalgebra map and 7™ = 1 by hypothesis,

S(x["’T]) = S <Z 21 (7 2)(7% - 23) - (7ML a:n)>
= > (" S@a) (7" S(an)) - (77 S(s)) (7 - S(2)) S (1)

T

= D S(@a)) (777 S(wan)) - (70T S () (1Y - S (2))S (21)

xT

_ 1 (Z S(mn)(T_l ) S(xn—1>> o (T—l(n—3) . S<x3>>(7_—1(n—2) . S(xz))(T—l(n—l) . S(SL’1))

xT

= 1. (S(:):)["fl}).
O

Corollary 3.6. Let H be a Hopf algebra for which S* = id and let T be a Hopf automorphism
of H. Then exp,—1(H) = exp,(H).

Proof. Tt is clear from Lemma 5] that 27 = e(2)1 <= S(z)*" '] = £(2)1 since 7 and
S are bijective. Thus the two twisted exponents are the same. 0

Question 3.7. We ask if Corollary is true more generally. That is, if the order of 7 is n
and m is relatively prime to n, then is exp,m(H) = exp,(H)?
4
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4. MODULES AND FROBENIUS-SCHUR INDICATORS

In this section, we assume A is a semisimple Hopf algebra, and thus we may assume
that A4 is a normalized integral, that is, e(A4) = 1. Then the integral Ay = A4 f§ p; of
K = A1 k% is a normalized integral of K.

For any (left) K-module M, we may write

M:@Mm

zelG
where M, = p, - M is a K-submodule of M for each x € G. Note that each M, is also an
A-module, by restricting the action to A.
Let vX denote the mth Frobenius-Schur indicator for K-modules as in [KSZ], and let V;‘Lx
denote the mth twisted Frobenius-Schur indicator for A-modules, twisted by x, as in [SV].
That is, if V' is a K-module with character (or trace function) yy, then

v (V) = xv (ARY).
If W is an A-module with character yy and z is an automorphism of A whose order divides

m, then
A b}
Vi (W) = xaw (A7),
See [SV] for general results on twisted indicators and for computations of v, , when A = H,
the smallest semisimple noncommutative, noncocommutative Hopf algebra.
Our next theorem gives a relationship between the Frobenius-Schur indicators of K and

the twisted Frobenius-Schur indicators of A.

Theorem 4.1. For every K-module M,
(M) = Y v (M),
zeG, zm=1
Proof. Write M = @,ecM, as before. Then v& (M) = Y vE(M,), and we will now
compute vX (M,) for an element z of G, writing A = A4 for ease of notation: By Lemma [3.3]
v (Ma) = o (AR)

= (D, AMTppa)

zeG, zm=1
= 5xm’1XMz (A[m7x71]) = 5:2’”,11/;2@*1 (M:E>
Summing over all elements of GG, we obtain the stated formula. O

As a consequence, for example, if z is an element of G of order n and M is a K-module
for which M = M, (i.e. M, =0 for all y # z), then vX (M) =0 for all m < n.

In our next result, we show that a twisted Frobenius-Schur indicator may always be realized
as a Frobenius-Schur indicator for a smash coproduct. Let 7 be any Hopf automorphism
of A of finite order n, and let G = (1) be the cyclic subgroup of the automorphism group

generated by 7. Set K = A § k¢,
Theorem 4.2. For any A-module N, extend N to be a K-module M by letting M,.—» = N
and M, =0 for all x € G, x # 771. Then for every positive integer multiple m of n,

Vi (N) = v (M).

m,T
5



Thus every value of a twisted indicator for A is the value of an ordinary indicator for a
smash coproduct over A.

Proof. By Theorem (1]

O

Example 4.3. We illustrate the theorem using a non-trivial automorphism of A = Hg, the
Kac-Palyutkin algebra of dimension 8 which is neither commutative nor cocommutative.
The Hopf automorphism group was found in [SV], Section 4.2. Let A be generated by x,y, z
with the usual relations % = y*> = 1, 22 = {(1+ 2z +y —zy), vy = yz, vz = 2y and yz = 2z,
where z,y are group-like and A(z) = (1@ 1+1Qr+y®1 -y z)(2 ® 2).

Let 7 = 74 be the automorphism of A of order 2 that interchanges x and y and sends z
to %(—z + xz + yz + xyz), and let y be the character of the unique two-dimensional simple
module N of A. Then from [SV], v5! (N) = —1.

Letting G = (1) and K = A fj k%, N becomes a K-module M by setting M, = N and
M; = 0. Then v (M) = —1.

5. FROBENIUS-SCHUR INDICATORS FOR NON-SEMISIMPLE HOPF ALGEBRAS

Let A be a finite-dimensional Hopf algebra that is not necessarily semisimple and for
which S? is not necessarily the identity map. When A is not semisimple, there does not exist
a normalized integral, and so we cannot use the definition of indicator from the previous
section. Instead we extend the work in [KMN] and define twisted Frobenius-Schur indicators
for A itself and obtain connections to Frobenius-Schur indicators of smash coproducts. Fix
7, a Hopf automorphism of A whose order divides the positive integer m. We define a variant
of the mth twisted Hopf power map of A to be P,,_1,: A — A, given by

P,_i.(a) = Z(T’”_l ca)) (T ag) - (T A2) (T - Ay)
for all a € A. We will use this map to define twisted Frobenius-Schur indicators, and then
we will show how it relates to the twisted Hopf power maps defined in Section Bl by giving
equivalent definitions of twisted Frobenius-Schur indicators in Theorem [B.Iland Corollary 5.2
The mth twisted Frobenius-Schur indicator of A is

Um+(A) :=Tr(S o Pp_1),

the trace of the map S o P,,_1, from A to A, where S is the antipode of A.

We choose this definition as it specializes to the definition of the Frobenius-Schur indicator
of the regular representation A for an arbitrary finite-dimensional Hopf algebra in [KMN]
when 7 is the identity, and also to the definition of twisted Frobenius-Schur indicators in the
semisimple case given in [SV], Theorem 5.1]. The indicator of the regular representation has
also been considered in [Sh].

The following theorem generalizes part of [KMN|, Theorem 2.2].

Theorem 5.1. Let A be a left integral of A and X a right integral of A* for which \(A) = 1.
Then
Vi, (A) = A(S(A)™ 7).
6



Proof. By [Rl Theorem 1],

Tr(So Puoir) = > A(S(A2)S 0 Prir(Ar))

S Am)(T . S(Am—l)) - (Tm—l . S(Al)))
= YOASANTSA)) - (TS () = AS(A)),

O

A similar proof to that of [KMN, Corollary 2.6] yields the following result that will be
useful for computations.

Corollary 5.2. Let A, be a right integral of A and )\, be a right integral of A* for which
A (A) = 1. Then

Ut (A) = X (AT,

T

Similarly let A; be a left integral of A and A be a left integral of A* for which A\(N\;) = 1.
Then

Vnr(A) = N (771 AT,

Proof. The first statement follows immediately from Theorem [5.1] and the fact that if A; is
a left integral, then A, := S(A;) is a right integral, and the value of A, on each is the same.

For the second statement, if A, is a right integral, let \; := A\, o S, a left integral of A*.
Then again by Theorem [5.I] and also Lemma 3.5]

N AT = S AT)
= A (ST )
= M(S@A)T) = A (Al

O

Now let G be a group of Hopf algebra automorphisms of A, as in Section The next

result is a connection between twisted indicators of A and indicators of the smash coproduct
K=A¢fkC®.

Theorem 5.3. v, (K) = Z Vim,g(A).

9€G, gm=1



Proof. Note that A = A i py and Ag» = A® (D, 2) (since e.g. e(z-a) = (a)). By [KMN,
Theorem 2.2] and our Lemmas [3.3 and 3.5,

vm(K) = A= (Sk(Al))

— (A@(Z@) <SK( > A[m’g}@@pgl))

ZEG g€G7 g'm:l
- (re(sa) (502 mirrrwranen)
2€G 9€@G, gm=
= > M- S(Aulg-Ag) (g Aw)))
geG, gm=1
= Y A
gEG, gm:1
_ Z Umg1(A) = Vim,g(A).
geG, gm=1 geG, gm=

O

In the next section, we compute an example, a non-semisimple Hopf algebra of dimension 8
and its Hopf automorphism group.

6. A NON-SEMISIMPLE EXAMPLE
Let A be the Hopf algebra defined as

A=kg 2,y | gr=—xg, gy = —yg, vy = —yz, g° =1, 2° =y* = 0)
with coalgebra structure given by:

Alg)=g®g, e(g) =1, S(g) =g,
Alz)=2®g+1®z, ¢(x) =0, S(z) = gz,
Aly) =y@g+1®y, e(y) =0, S(y) = gy.

The element A = zy + xyg is both a right and left integral for A, and A = (zy)* is both a
right and left integral for A* such that A\(A) = 1.

Lemma 6.1. Let V be the k-span of x and y. Then Aut(A) = Gly(V).

Proof. This is close to the examples considered in [AD], as A is pointed and generated by
its group-like and skew-primitive elements. However we provide an elementary proof for
completeness.

The coradical of A is given by Ag = k(g). Any automorphism 7 of A stabilizes Ay and so
fixes g. The next term of the coradical filtration is

Aleo@V@gv,

since V' is the set of (g, 1)-primitives and gV is the set of (1, g)-primitives. Consequently V'
and gV are each stable under the action of 7. But the 7-action on V' determines the T-action
on gV, and also on A = A; @ W, where W is the span of xy and gzy.

Conversely it is easy to check that any invertible linear action on V' preserves all of the

relations of A, and thus gives an automorphism. O
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For an automorphism 7 of order 2 or 3, we are able to compute some values of the
indicators, using Corollary We identify 7 with a matrix

()= 3) ()

— ,

y c d)\y

where a, b, c,d € k, such that Det(r) = ad — be # 0.

Proposition 6.2. Case (1). If 7 = 1 and m is even, then vy, .(A) = %2(1 + Det(7)).

Consequently,
2 _
v (A) = m?, %fDet(T)—l
’ 0, if Det(r) = —1.

Case (2). If 7 =1, then vs.(A) = (Tr(r) + Det(7))” + (Tr(7) + 1) (1 — Det(7)) . Conse-

quently,
9, iftr=1id
voa(A) = {0 U7
0, if T #1d.

Proof. We verify the formulas by using the first part of Corollary 5.2

Case (1): Recall that A = xy + zyg and A\ = (zy)* are right integrals. We must find
A(A™) . First we will show that A((zy)™) = %2(1 + Det(7)), and then we will argue that
M(2yg)m™) = A((2y)™). In order to find (xy)™7 first note that

Am_l(x) = T® 9®m71 +1®rz® g®m72 NS 1971 Rz ®g®m*i TR 1o %z,
Am_l(y) = Y 9®m71 +1Ry® 9®m72 44 1®! QYR g®"H’ I 8™ Dy,
each sum consisting of m terms. Set
n=20¢® =1 0r0¢® ..., tn=19""®u,

the index indicating the position of x in the tensor product, and similarly define y1, v, . . ., Y-
Letting i denote the multiplication map, by definition we have

(ay)™ = p((1@ 7)) <Z x,-yj) -

ij=1
Since 7-g = g and A = (xy)*, in computing A((zy)"), the only terms in the above
expansion of (zy)™™ yielding a nonzero value of A are those with an even number of factors
of g. These are precisely the terms x;y; for which ¢, j have the same parity, of which there
are m; terms. If i, j are both odd (of which there are mTQ pairs), then in (zy)™7, the (i, §)
term is simply xy by the following observations: (1) 7 is applied only to factors of g or 1,
which are fixed by 7, (2) if i < j, there are an even number of factors of g between x and
y after applying u, and (3) if @ > j, there are an odd number of factors of g between x and
y after applying p (since z; is to the left of y;), so moving factors of ¢ to the right, past =z,
results in a factor of (—1), and then applying the relation yz = —zy results in another factor
of (—1), so that the end result is a term zy. If 7,5 are both even (of which there are mTQ
pairs), then in (zy)™7) the (i, ) term is 7 - vy = Det(7)xy, by similar reasoning. Therefore
m2 2 2

A(ay) ™y = A (Txy + mz Det(T)xy) - mz (1 + Det(r)).



Finally, in order to compute A((zyg)™™), note that we need only include an extra factor
of ¢g®™ on the right:

(2yg)™ 7 = (1 7)®") (Z ffyy> (g%

ij=1

Since m is even, the number of new factors of g to be included, in comparison to our previous

calculation, is even, and so a similar analysis applies. One checks that the extra factors of g
do not affect the result, and so

2

A m,y — ) my " 14D

((2yg)™™) = A(zy)™") = —- (1 + Det(r)).

Consequently, vy, - (A) = A(A Al ) (14 Det(7)).

To see the conclusion of Case (1), ote that since 72 = 1, the determinant of 7 is either 1
or —1.

Case (2): A similar analysis applies. Note that A\((zy)B) = p(1®@ 7 ® 72)(25”].:1 TY;)
and that 72(x) = (a® + bc)x + b(a + d)y, 72(y) = c(a + d)x + (d*> + bc)y. In evaluating
M(zy)™)), we again need only consider (4, ;) terms for which 4, j have the same parity. By
contrast, in evaluating A((zyg)®7), we need only consider (i, ;) terms for which 7, j have
different parity. Thus we find

AMay)®) = Moy +2(7 - y) +yg(7* - 2)g + (7 - 2y) + (7 - 2y))
= 1+ (d*+bc) + (a® + be) + (a® + be)(d® + be) — be(a + d)* + (ad — be),
AM(zyg)®™) = A(zg®(r-y)g" +yg(r - 2)g" + 9(7 - )g*(7* - v)g + 9(7 - v)g(7* - )g°)
= d+a+a(d®+bc) —bela +d) — be(a+ d) + d(a® + be).
Adding these together, we have
AABT) = 14 a+d+d®+ad+d + d*d+ ad® + a*d* — abe — 2abed — bed + be + b2
= (Tr(7) + Det(7))? + (1 + Tr(7))(1 — Det(7)).

To see the conclusion in Case (2), one can check the possible Jordan forms of the matrix for
T. D

7. TENSOR PRODUCTS AND CATEGORY OF MODULES

The following theorem generalizes [BW], Theorem 2.1] from the case that A is a group
algebra, to the case that A is a Hopf algebra. Let K = A f k¢ as before, and recall that for
M a K-module and x € G, M, denotes p, - M, a K-submodule of M, and M = ®,cqM,. If
y € G, define VM, to be M, as a vector space, with A-module structure given by a -, m =
(yt-a) -mforallae A, me M.

Theorem 7.1. Let M, N be K-modules. Then
(i) (M®N), = @ M,® YN,, and

y,2€G
Yyz=x

(ii) (M*)s = (My-)".
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Proof. The proof is a straightforward generalization of that of [BW), Theorem 2.1]. We
include details for completeness. We will prove the statement for modules of the form
M =M, N=N,. Let ¢ : M, ® N, = M, ®"YN,, where the target module is a K-module on
which p,, acts as the identity and p,, acts as 0 for w # yz, be defined by ¢(m®@n) =me@n
for all m € My, n € N,. We check that ¢ is a K-module homomorphism: Let z € G, a € A.
Apply A to a § p, to obtain

¢((a' h px)(m & n)) = Z 5x7yz¢(a1m ® (y_l : a’2)n)'
On the other hand,

(a b px)¢(m ® n) = Z 5:(:,yzaflm X (y_l . a2)n'

As ¢ is a bijection by its definition, it is an isomorphism of K-modules.

We will prove that since M = M, its dual satisfies M* = (M*),-1, and that the cor-
responding underlying A-module structure on the vector space (M*),-1 is isomorphic to
Z’71(My)*. To see this, first let © € G, f € M*, and m € M. Then

(18 pa)(F))(m) = f((1 G po-r)m) = Gamry f(m).
It follows that (M,)* = M* = (M*),-1, as claimed. The A-module structure on (M*),-1

may be determined by considering the action on M™ of all elements of K of the form a § p,—
where a € A. Let f € M* and m € M. Then

((a § py-2)(f))(m) = f(S(a i py-1)m) = f((y - S(a))m).
Considering the restriction of M* = (M*),-1 to an A-module in this way, we see that the
action of a on the vector space (M,)* is that of a on the A-module ¥ (M,)*:

(@-y-r f)(m) = ((y-a)f)(m) = f(S(y - a)m) = f((y - S(a))m).
Therefore the A-module structure on the vector space (AM*),-1 is that of the A-module
(M) 0

Remark 7.2. As a consequence of the theorem, the category of K-modules is equivalent
to the semidirect product tensor category C x G where € is the category of A-modules. By
definition, € x G is the category @,e¢C, with objects ©yeq(M,, g) where each M, is an object
of €, and tensor product (M, g) ® (N,h) = (M ®IN, gh). See [T], where the notation C[G]
is used instead for this semidirect product category. For other occurrences of € x GG in the
literature, see, for example, [GNaNil [Ni].

REFERENCES

[AD] N. Andruskiewitsch and F. Dumas, On the automorphisms of Uqu (g9), In: Quantum groups, IRMA Lec-
tures on Mathematical and Theoretical Physics, vol. 12, pp. 107-133. European Mathematical Society,
Zurich (2008).

[BW] D. Benson and S. Witherspoon, Examples of support varieties for Hopf algebras with non-commutative
tensor products, Archiv der Mathematik 102 (2014), no. 6, 513-520.

[DE] S. Danz and K. Erdmann, Crossed products as twisted category algebras, Algebr. Represent. Theor.
DOI 10.1007/510468-014-9493-8.

[EG] P. Etingof and S. Gelaki, On the exponent of finite-dimensional Hopf algebras. Math. Res. Lett.,
6(2):131-140, 1999.

[GNaNi] S. Gelaki, D. Naidu, and D. Nikshych, Centers of graded fusion categories, Algebra Number Theory
3 (2009), no. 8, 959-990.

11



[KMN] Y. Kashina, S. Montgomery, and S. Ng, On the trace of the antipode and higher indicators, Israel
J. Math. 188 (2012), 57-89.

[KSZ] Y. Kashina, Y. Sommerhuser, and Y. Zhu, On Higher Frobenius-Schur Indicators, Mem. Amer. Math.
Soc. 181 (2006), no. 855, viii+65 pp.

[Ke] M. Keilberg, Automorphisms of the doubles of purely non-abelian finite groups, Algebras and Repre-
sentation Theory, to appear; arXiv:1311.0575.

[LM] V. Linchenko and S. Montgomery, A Frobenius-Schur theorem for Hopf algebras, Algebr. Represent.
Theory 3 (2000), 347-355.

[M1] R. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51.

[M] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Lectures Vol. 82, Amer. Math. Soc.,
Providence, 1997.

[NSc] S.-H. Ng and P. Schauenburg, Higher Frobenius-Schur indicators for pivotal ategories, Hopf Algebras
and Generalizations, AMS Contemp. Math. 441, AMS, Providence, RI, 2007, 63-90.

[Ni] D. Nikshych, Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories,
Selecta Math. 14 (2008), no. 1, 145-161.

[R] D. E. Radford, The group of automorphisms of a semisimple Hopf algebra over a field of characteristic
0 is finite, Amer. J. Math. 112 (1990), 331-357.

[R2] D. E. Radford, Hopf Algebras, World Scientific Publishing, 2012.

[R3] D. E. Radford, On automorphisms of biproducts, larXiv:1503.00381.

[SV] D. Sage and M. Vega, Twisted Frobenius-Schur indicators for Hopf algebras, J. Algebra 354 (2012),
136-147.

[SV2] D. Sage and M. Vega, Twisted exponents and twisted Frobenius-Schur indicators for Hopf algebras,
Communications in Algebra, to appear; larXiv:1402.5201.

[SV3] D. Sage and M. Vega, Twisted Frobenius-Schur indicators for pivotal categories, in preparation.

[Sh] K. Shimizu, Some computations of Frobenius-Schur indicators of the regular representations of Hopf
algebras, Algebr. Represent. Theory 15 (2012), 325-357.

[T] D. Tambara, Invariants and semi-direct products for finite group actions on tensor categories, J. Math.
Soc. Japan 53 (2001), no. 2, 429-456.

[Y] M. Yakimov, Rigidity of quantum tori and the Andruskiewitsch-Dumas conjecture, Selecta Math (N.S.)
20 (2014), no. 2, 421-464.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, L0OS ANGELES, CA
E-mail address: smontgom@usc.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC
E-mail address: mdvega@ncsu.edu

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX
E-mail address: sjw@math.tamu.edu

12


http://arxiv.org/abs/1311.0575
http://arxiv.org/abs/1503.00381
http://arxiv.org/abs/1402.5201

	1. Introduction
	2. The smash coproduct
	3. Hopf powers and exponents
	4. Modules and Frobenius-Schur indicators
	5.  Frobenius-Schur indicators for non-semisimple Hopf algebras
	6. A non-semisimple example
	7. Tensor products and category of modules
	References

