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HEIGHT RESTRICTED LATTICE PATHS, ELENAS, AND BIJECTIONS

HELMUT PRODINGER

ABSTRACT. A bijection is constructed between two sets of height restricted lattice paths by

means of translating them in two tree classe, namely plane trees and Elena trees. An old

bijection between them can be used now for that actual problem.

1. INTRODUCTION

We consider lattice path, consisting of up-steps and down-steps of one unit each, starting

at the origin. In other words, (0, s0), (1, s1), . . . , (n, sn), with s0 = 0, and |si − si+1| = 1.

Furthermore, we assume that 0 ≤ si ≤ 3. Let An,i be the family of these path of length n,

ending at level i, for i = 0, 1, 2, 3.

It is straightforward to prove that |A2n,0| = F2n−1, |A2n,2| = F2n, |A2n+1,1| = F2n+1, and

|A2n+1,3|= F2n, with Fibonacci numbers Fk.

We also consider similar lattice paths, this time with −2 ≤ si ≤ 1 and starting again

at the origin. Let Let Bn,i be the family of these path of length n, ending at level i, for

i = −2,−1, 0, 1. It is again straightforward to prove that |B2n,0| = F2n+1, |B2n,−2| = F2n,

|B2n+1,1|= F2n+1, and |B2n+1,−1| = F2n+2.

Thus we have that
�
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�

3
⋃

i=0

An,i

�

�

�= |Bn,0|+ |Bn,−1|.

Cigler [1] asked for a bijection to explain this fact. An answer was given by Prellberg [2].

In this note, I want to link these problems to a tree structure named Elena (trees), that I

introduced some fifteen years ago [3]. The bijection presented in this early paper can also

be used here to explain the equality.

If we want that the paths are in correspondence with trees, we require an even number of

steps.

2. PATHS IN A2n,0 AND HEIGHT RESTRICTED PLANE TREES

The translation of such a path of length 2n into a plane tree of height≤ 3 (counting edges)

is direct and sometimes called glove bijection. The following example will be sufficient.
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FIGURE 1. A path of length 20, and the corresponding height restricted plane

tree with 11 nodes

3. PATHS IN B2n,0 AND ELENA TREES

Elenas were introduced in [3]; they consist of some nodes labelled a, and a sequence of

paths of various lengths (possibly empty) emanating from all of them, except for the last

one. An example describes this readily:
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FIGURE 2. An Elena described by ap3ap1p1p4aap2a

Typically, an Elena can be described by api1
pi2

. . .ap j1
p j2

. . .a . . . a. For the set (language)

of Elenas, we might write a symbolic expression
�

ap∗
�∗

a.

It is perhaps surprising that the paths in B2n,0 are suitable to describe Elenas: For each

sequence of steps (2i, 0)→ (2i + 1, 1)→ (2i + 2, 0), we write a symbol a. In Figure 3 such

pairs of steps are depicted in boldface.

Thus, a path can be decomposed as w0aw1a . . .aws, where each w is a walk from level 0

to level 0 that “lives” on levels 0,−1,−2. Now we add a symbol a both, to the left and to the

right.

What is still left is how such a w can be interpreted as a sequence of paths: Each return to

the level 0 marks the end of a path, and the translation of the sojourns is as follows:

corresponds to p1, corresponds to p2, corresponds to p3, corre-

sponds to p4, and so forth.

Note that in this way a path of length 2n is (bijectively) mapped to an Elena of size (=

number of nodes) n+ 2; the Elena consisting only of one node will not be considered.

4. ELENAS AND HEIGHT RESTRICTED PLANE TREES

We will establish a bijection betweenB2n,0 andA2n,0∪A2n,2; note, however that the latter

set may be replaced byA2n+2,0, by distinguishing the two cases of the last two steps.
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FIGURE 3. A path of length 28, described by p3ap1p1p4aap2
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FIGURE 4. The Elena with 16 nodes corresponding to (a)p3ap1p1p4aap2(a)

So we would be done once we would know how to map (bijectively) an Elena of size n+2

to a height restricted plane tree of the same size.

This was documented already in [3], but will be repeated here to make this note self

contained. The set of operations will be described a sequence of pictures, which require no

additional explanation.

We start with our running example of an Elena of size 16 and gradually transform it:
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FIGURE 5. Transforming an Elena into a height restricted plane tree
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5. PATHS WITH AN ODD NUMBER OF STEPS

Let us consider B2n−1,−1, enumerated by F2n. If we augment one up-step at the end, we

have Elenas, but with the special property that the last group of paths is non-empty.

One the other hand, if we consider A2n−1,1 ∪A2n−1,3, which is equivalent to A2n,2, then

we augment it with 2 down-steps. The resulting height restricted tree has the property that

the rightmost leaf is on a level ≥ 2.

A short reflection convinces us that the bijection described earlier also works bijectively

on the two respective subclasses.
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