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Abstract

In mobile health interventions aimed at behavior change and maintenance, treat-

ments are provided in real time to manage current or impending high risk situations

or promote healthy behaviors in near real time. Currently there is great scientific

interest in developing data analysis approaches to guide the development of mobile in-

terventions. In particular data from mobile health studies might be used to examine

effect moderators—individual characteristics, time-varying context or past treatment

response that moderate the effect of current treatment on a subsequent response. This

paper introduces a formal definition for moderated effects in terms of potential out-

comes, a definition that is particularly suited to mobile interventions, where treatment

occasions are numerous, individuals are not always available for treatment, and poten-

tial moderators might be influenced by past treatment. Methods for estimating moder-

ated effects are developed and compared. The proposed approach is illustrated using

BASICS-Mobile, a smartphone-based intervention designed to curb heavy drinking and

smoking among college students.
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1 Introduction

Mobile health (mHealth) broadly refers to the practice of healthcare using mobile devices,

such as smartphones and wearable sensors both to deliver treatment as well as to sense the

current context of the individual. In mobile interventions for behavior maintenance or change,

treatments are typically designed to help individuals manage high risk situations or promote

healthy behaviors. Examples include medication reminders, motivational messages, physical

activity suggestions, cognitive exercises to help manage stress or other risky situations, and

prompts to facilitate activity in support networks.

There is intense interest in data analysis approaches to guide the development of mobile

interventions (Free et al. 2013; Muessig et al. 2013) and to test the dynamic behavioral

theories on which these interventions are based (Spring et al. 2013; Mohr et al. 2014). Micro-

randomized trials (MRTs; Klasnja et al. 2015; Liao et al. 2015; Dempsey et al. 2015) provide

data expressly for this purpose, with each participant in an MRT sequentially randomized

to treatment numerous times, at possibly 100s to 1000s of occasions. In both MRTs and

observational mHealth studies both treatment and measurement occur intensively over time.

Measurements on individual characteristics, context and response to treatments are collected

passively through sensors or actively by self-report.

One way in which these data may aid the design of a mobile intervention is through the

examination of effect moderation; that is, inference about which factors strengthen or weaken

the response to treatments. Consider, for example, an intervention for smoking cessation.

Mindfulness-based treatments to help individuals manage their urge to smoke are presumably

best delivered at times when there exists an inclination to smoke (e.g. Witkiewitz et al. 2014).

However other factors might influence the effect of these treatments on subsequent smoking

rate. For example it may be that the mindfulness-based approach reduces smoking only

when stress levels or self-regulatory demands are low, and has little to no effect otherwise.

In general knowledge about moderators can be used to deliver treatments only in settings

where they have proven most efficacious or to identify alternative treatment strategies when

the treatment shows little to no benefit. Treatment effects might also evolve over the course

of the intervention, so functions of time could also be examined as possible moderators.

This paper provides two main contributions in the assessment of treatment effects from

longitudinal data in which treatment, response, and potential moderators are time-varying.

The first is a definition for treatment effects that is particularly suited for mHealth, where

treatment occasions are numerous and potential moderators might be influenced by past

treatment. These effects are a generalization of the treatment “blips” in the structural
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nested mean model (SNMM; Robins 1989, 1994, 1997). The second is a weighted least

squares method for estimating these treatment effects, conditional on a few select variables

representing potential moderators of interest.

We begin by defining treatment effects in our setting. The aforementioned weighted least

squares method and two alternatives are derived and assessed numerically using a variety

of simulation scenarios. As an illustration, we apply the proposed approach to data from

a study of BASICS-Mobile, a mobile intervention for heavy drinking and smoking among

college students (Witkiewitz et al. 2014).

2 Proximal and Other Lagged Treatment Effects

2.1 Motivating Example

Our motivating example is drawn from BASICS-Mobile, a smartphone-based intervention

designed to reduce heavy drinking and smoking among college students. Users are prompted

three times per day (morning, afternoon and evening) to complete a self-report assessing a

variety of individual and contextual factors including episodes of drinking or smoking, social

settings, affect, and need to self-regulate thoughts. The afternoon and evening self-reports

are possibly followed by a treatment module of three to four screens of information and at

least one question to confirm that the module was received. Some of the treatment modules

address smoking and heavy drinking using mindfulness messages (Bowen and Marlatt 2009).

Other modules provide general (primarily health-related) information (Dimeff 1999). In an

analysis of data arising from the implementation of BASICS-Mobile, it is natural to estimate

the effect of the mindfulness messages (versus providing general health information) on a

proximal response, such as the smoking rate between the current and following self-report,

and to assess whether or not these effects differ according to the individual’s context.

2.2 Notation and Data

For a given individual, let At denote the treatment at the tth treatment occasion and Yt+1 be

the subsequent proximal response (t = 1, . . . , T ). Throughout we limit attention to the case

where each At is binary and Yt+1 is continuous. Individual and contextual information at

the tth treatment occasion is represented by Xt, which may contain summaries of previous

measurements of context, treatment or response. For example, prior to each treatment occa-

sion the individual might report their current mood. The vector Xt could then contain this
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At−1

t− 1
Afternoon

At

t
Evening Morning

. . .

Xt−1 Yt, Xt Yt+1

Figure 1: A BASICS-Mobile participant’s data for two treatment occasions leading up to
Yt+1, depicted in chronological order. Information is primarily collected via self-reports three
times per day—morning, afternoon and evening. Treatment occasions take place after the
afternoon and evening self-reports.

measurement or, with previous measurements, variation or change in mood. Over the course

of T treatment occasions, the resulting data from an individual ordered in time is (X1, A1, Y2,

. . . , XT , AT , YT+1). The overbar is used to denote a sequence of random variables or realized

values through a specific treatment occasion; for example Āt = (A1, . . . , At). Information

accrued up to treatment occasion t is represented by the history Ht = (X̄t, Ȳt, Āt−1).

In BASICS-Mobile (Fig. 1), At = 1 if a mindfulness message is provided at the tth

treatment occasion and At = 0 otherwise, Yt+1 is the smoking rate between the occasion t

self-report prompt and the following self-report prompt, T = 28 and Xt includes the time of

day, number of reports recently completed, prior smoking rate, current need to self-regulate,

and other summary variables formed from the reports up to and including the tth occasion.

For example, from the self-reports at t−1 and t, we can examine the change in self-regulation

needs and determine whether there was an increased need (incrt = 1) or not (incrt = 0).

To define treatment effects below, we adopt potential outcomes (Rubin 1974; Neyman

1990; Robins 1989) notation. However we will deviate slightly from this framework because,

as will be seen below in (2), our estimands may involve the treatment distribution in the data.

We represent random variables or vectors with uppercase letters; lowercase letters denote

their realized values. In particular it will be useful to include in the set of potential outcomes,

treatments expressed as potential outcomes of past treatment. That is, the potential out-

comes are {Y2(a1), X2(a1), A2(a1)}a1∈{0,1}, . . . , {YT (āT−1), XT (āT−1), AT (āT−1)}āT−1∈{0,1}T−1 ,

{YT+1(āT )}āT∈{0,1}T . In BASICS-Mobile, for example, the smoking rate measured follow-

ing the second treatment occasion has four potential outcomes: Y3(0, 0), Y3(0, 1), Y3(1, 0),

Y3(1, 1). Here Y3(0, 0) is the smoking rate that would arise for a given individual had they

received no mindfulness treatments over the first two treatment occasions: a1 = a2 = 0. This

idea can be similarly applied to the measurements Xt, since they might also be influenced by
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past treatment; Xt+1(āt) are the potential measurements had the sequence of treatments āt

been allocated. For brevity, we denote A2(A1) by A2 and so on with At(Āt−1) denoted by At.

Then Ht(Āt−1) = (X1, A1, Y2(A1), X2(A1), A2, Y3(Ā2), X3(Ā2), A3, . . . , Yt(Āt−1), Xt(Āt−1)).

2.3 Treatment Effects

Many treatments are designed to influence an individual in the short term or proximally in

time (Heron and Smyth 2010). For example, instruction in the mindfulness intervention used

in BASICS-Mobile, called urge surfing, aims to help the individual to “ride out” urges, by

recognizing the urge as it arises and allowing the urge to pass on its own. Questions related

to these effects concern the proximal effect of treatment on the response defined by

E
[

Yt+1(Āt−1, 1)− Yt+1(Āt−1, 0) | S1t(Āt−1)
]

, (1)

where S1t(Āt−1) is a vector of summary variables chosen from Ht(Āt−1). The difference in

(1) represents the effect of At = 1 versus At = 0 on the response at t + 1, given S1t(Āt−1).

In conditioning only on S1t(Āt−1) as opposed to Ht(Āt−1), the effect (1) is marginalized over

variables in Ht(Āt−1) that are not in S1t(Āt−1). Different choices of variables in S1t address

a variety of scientific questions, each of which is useful for understanding the effect of At = 1

versus At = 0 on the response Yt+1. For example, a first analysis may focus on the proximal

effect that is marginal over all variables in Ht(Āt−1) (so that S1t = 1), whereas a second

analysis may focus on assessing this effect conditional on particular variables from Ht(Āt−1).

Note that, for any Au not contained in S1t(Āt−1), the expectation in (1) depends on

distribution of Au. This is a departure from the causal inference literature, where estimands

do not depend on the treatment distribution in the data at hand. Nonetheless, for all choices

of variables in S1t(Āt−1), the proximal treatment effect is causal, since (1) is the conditional

mean of the contrast between the potential proximal response had an individual received

(at = 1) versus not received (at = 0) treatment at occasion t. Considering the dependence

of the proximal effect on the distribution of the treatments, it is best to always present this

distribution along with the estimated treatment effect. For further discussion concerning

including the treatment distribution as part of the estimand, see Section 8.

Many treatments may have delayed effects. For example, mindfulness messages have a

delayed effect when individuals recall and employ mindfulness exercises provided prior to

the most recent treatment occasion. In BASICS-Mobile, treatments suggesting alternative

activities to smoking and drinking may achieve little to no immediate impact in the afternoon,
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but the individual might follow these suggestions later on in the evening. So in general both

proximal and other lagged effects of treatments on the response variable may be of interest.

To define these lagged effects, we denote At+1(Āt−1, a) by Aat=a
t+1 , At+2(Āt−1, a, A

at=a
t+1 ) by Aat=a

t+2

and so on, with At+k−1(Āt−1, a, A
at
t+1, · · · , Aat=a

t+k−2) by Aat=a
t+k−1. We define the lag k effect of

treatment on the response k treatment occasions into the future Yt+k by

E
[

Yt+k(Āt−1, 1, A
at=1
t+1 , . . . , Aat=1

t+k−1)− Yt+k(Āt−1, 0, A
at=0
t+1 , . . . , Aat=0

t+k−1)
∣

∣

∣
Skt(Āt−1)

]

, (2)

where k ranges from 1 up to the number of lags of scientific interest. So the proximal effect

(1) corresponds to the lag k = 1 treatment effect. Note the dependence of both future actions

as well as Yt+1 on the occasion t action as emphasized by the superscripts, at = 1 and at = 0.

As with (1), Skt(Āt−1) is a vector of variables from the history Ht(Āt−1). The lagged effect is

also similarly averaged over the conditional distribution of variables in the history Ht(Āt−1)

not represented in Skt(Āt−1), which might include past treatment or underlying moderators.

In addition, (2) is averaged over the distribution of treatments after occasion t but before

response Yt+k—namely Aat=a
t+1 , . . . , Aat=a

t+k−1 for either a = 1 or a = 0.

The causal effect in (2) is a generalization of the treatment “blip” in the SNMM. In SN-

MMs, the tth treatment blip or intermediate effect on Yt+k is usually defined with Skt(Āt−1) =

Hkt(Āt−1) and with respect to a prespecified future (after time t) “reference” treatment regime

that defines the distribution for At+1, . . . , At+k−1. For example, if we were studying treat-

ment discontinuation, we might have chosen the reference regime Au = 0 for u > t, with

probability one (cf. Robins 1994, Section 3a). In this case the lag k treatment effect (2)

represents the impact of one last additional treatment on the proximal response k time units

later. The reference treatment regime reflected in (2), however, assigns treatment with prob-

abilities between zero and one and corresponds to the distribution of treatments in the data

we have at hand. For further discussion of the connection between the causal effects defined

here and the SNMM, see Supplement A.1.

We now express the proximal and other lagged effects in terms of the observed data. For

this we herein assume positivity, consistency and sequential ignorability (Robins 1994, 1997):

• Consistency: The observed data (Y2, X2, A2, . . . , YT , XT , AT , YT+1) are equal to the poten-

tial outcomes as follows: Y2 = Y2(A1), X2 = X2(A1), A2 = A2(A1) and for each subsequent

t ≤ T , Yt = Yt(Āt−1), Xt = Xt(Āt−1), At = At(Āt−1) and lastly YT+1 = YT+1(ĀT ).

• Positivity: If the joint density of {Ht = ht, At = at} is greater than zero, then Pr(At =

at | Ht = ht) > 0, almost everywhere.
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• Sequential ignorability: For each t ≤ T , the potential outcomes {Yt+1(āt), Xt+1(āt), At+1(āt),

. . . , YT+1(āT )} are independent of At conditional on Ht.

The consistency assumption connects the potential outcomes with the data. When the

treatment allocated to one individual may influence the response of others, the observed

response Yt+1 is generally consistent not with the potential response Yt+1(Āt) as above, but

possibly with some other group-based conceptualization (e.g. Hong and Raudenbush 2006;

Vanderweele et al. 2013). In particular, for a mobile intervention with a social media com-

ponent, it may be necessary to define the potential outcomes for a given individual as a

function of the treatments that are provided to individuals in their social network.

In an MRT, treatment is sequentially randomized according to known treatment prob-

abilities, say Pr(At = 1 | Ht) = ρt(1 | Ht), t = 1, . . . , T , and thus sequential ignorability

is ensured by design. In an observational study, where treatment status is observed rather

than randomized, sequential ignorability is often assumed. Here the underlying treatment

probabilities ρt(1 | Ht), t = 1, . . . , T , are unknown.

In Supplement A.2 we show that, under these assumptions, the lag k treatment effect

can be expressed in terms of the observed data as

E
[

Yt+k(Āt−1, 1, A
at=1
t+1 , . . . , Aat=1

t+k−1)− Yt+k(Āt−1, 0, A
at=0
t+1 , . . . , Aat=0

t+k−1)
∣

∣Skt(Āt−1)
]

= E[E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht] | Skt]

= E

[

1(At = 1)Yt+k

ρt(1 | Ht)
− 1(At = 0)Yt+k

1− ρt(1 | Ht)

∣

∣

∣
Skt

]

, (3)

for t = 1, . . . , T − k + 1, respectively. Note that if Skt = Ht, then the lag k effect simplifies

to

E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht]. (4)

3 Estimation

In the following we assume a linear model for the treatment effects. Fortunately, models

for the proximal and other lagged treatment effects can in fact be specified separately, since

(2) for differing lags k do not constrain one another (Robins 1994, 1997; see Supplement B).

Suppose that the following holds.
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A1 Each lag k treatment effect of interest takes the form

E[E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht] | Skt] = S
⊺

ktβk, (5)

for some finite-valued vector βk.

The rest of this paper is devoted to inference on βk. Throughout we denote the true value of

βk by β∗
k , n represents the number of individuals in the data and Pn f(Z) =

∑n

i=1 f(Zi)/n

for some function f of the random vector Z. For simplicity we initially limit attention to the

case where treatment is sequentially randomized as with the MRT; in this case sequential

ignorability is satisfied. In particular we assume:

A2 Treatment is sequentially randomized with randomization probability Pr(At = 1 | Ht) =

ρt(1 | Ht), for each t = 1, . . . , T .

Inference concerning βk using data from observational studies in which the treatment is not

sequentially randomized can be handled–if the assumption of sequential ignorability holds–by

estimating the treatment probability; see Supplement C.

Three different estimation methods are considered: “routine” regression, centering treat-

ment status, and weighting by the inverse probability of treatment. In each case we aim

to provide a method for estimating the lag k effect that is robust to misspecification of a

nuisance function, E[Yt+k | At = 0, Ht] (or in the case of centering, E[Yt+k | Ht]). This ro-

bustness property is desirable for two reasons. First, the history Ht may be high dimensional,

making it very difficult to model these nuisance functions correctly. Second, even when Ht

is not very large, it can be difficult or impossible to specify models that can be correct for

both the nuisance function as well as for the delayed treatment effects at lags j > k (see

Supplement B).

In a routine regression, one might think that the effect of the tth treatment is provided

by the regression coefficients for a main treatment effect term At and interaction terms with

At. Here we show that this intuition holds under special conditions. Let S̃kt be a vector

constructed from Ht that contains Skt as a subentry. Consider a routine regression analysis

with the least squares estimating function

UR(αk, βk) =
T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

(

S̃kt

AtSkt

)

. (6)
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Let U̇R be the derivative of UR with respect to the row vector (α⊺

k, β
⊺

k). A more general

version of following result is provided in Supplement C.1.

Proposition 3.1. Assume A1, A2 and at least one of the following:

R1 Pr(At = 1 | Ht) = ρ ∈ (0, 1), for each t = 1, . . . , T .

R2 E[Yt+k | At, Ht] = S̃⊺

ktαk + AtS
⊺

ktβk, for Skt in (5), for each t = 1, . . . , T − k + 1 and for

some finite-valued vectors αk and βk.

Then, under invertibility and moment conditions, the solution to the estimating equation

Pn UR(αk, βk) = 0 yields an estimator (α̂k, β̂k) for which
√
n(β̂k − β∗

k) is asymptotically

normal with mean zero and variance-covariance matrix consistently estimated by the lower

block entry of (Pn U̇R(α̂k, β̂k))
−1

Pn UR(α̂k, β̂k)
⊗2(Pn U̇R(α̂k, β̂k))

−1
⊺

.

If the trial design ensures that R1 holds, then S̃⊺

ktαk can be viewed as a working model

for E[Yt+k | At = 0, Ht]; under R1, this working model need not be correctly specified to

achieve consistent estimation of the treatment effects and conduct inference about these

effects. Assumption R2 implies that the working model must be correct. If the trial design

does not ensure R1, assumption R2 can be used to conduct inference about the treatment

effects. However R2 will likely hold in only very special circumstances. This is because

first, E[Yt+k | At = 0, Ht] is difficult to correctly specify when Ht is large and second the

specified model constrains the form of treatment effects at other lags, E[E[Yt+j | At =

1, Ht] − E[Yt+j | At = 0, Ht] | Sjt], j > k (Supplement B). In addition, R2 implies that

E[Yt+k | At = 1, Ht] − E[Yt+k | At = 0, Ht] = S⊺

ktβ
∗
k ; that is, Skt contains all moderators in

Ht.

The centering approach might be considered if the randomization probabilities are strat-

ified or time-varying or condition R2 is deemed too restrictive. The centering approach is

a straightforward extension of Liao et al.’s (2015) least squares criterion, which gives the

estimating function

UC(αk, βk) =
T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − (At − ρt(1 | Ht))S
⊺

ktβk

)

(

S̃kt

(At − ρt(1 | Ht))Skt

)

, (7)

where S̃kt is a vector based on the history Ht. Let U̇C be the derivative of UC with respect

to the row vector (α⊺

k, β
⊺

k). A proof of a more general version of the following result can be

found in Supplement C.2.
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Proposition 3.2. Assume A1, A2 and at least one of C1 and C2:

C1 Pr(At = 1 | Ht) = ρt(1 | Skt), with Skt as in (5) and for each t = 1, . . . , T .

C2 Skt in (5) contains all underlying lag k treatment effect moderators in Ht; that is,

E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht] = S
⊺

ktβk,

for each t = 1, . . . , T − k + 1.

Then, under invertibility and moment conditions, the solution to the estimating equation

Pn UC(αk, βk) = 0 yields an estimator β̂k for which
√
n(β̂k − β∗

k) is asymptotically normal

with mean zero and variance-covariance consistently estimated by the lower block entry of

(Pn U̇C(α̂k, β̂k)
−1

Pn UC(α̂k, β̂
∗
k)

⊗2
Pn U̇C(α̂k, β̂k)

−1
⊺

.

Under either C1 or C2, S̃⊺

ktαk is a working model for E[Yt+k | Ht]; it need not be correct in

order for β̂k to be consistent for β∗
k (Supplement C.2). In the special case where the treatment

probabilities are fixed, ρt(Ht) = ρ, the centering method is equivalent to a routine regression

analysis, since the term ρS⊺

ktβk in (7) is absorbed into the working model. Centering has been

previously employed by Brumback et al. (2003) and Goetgeluk and Vansteelandt (2008) for

causal inference. For example Goetgeluk and Vansteelandt (2008) center exposure variables

by their overall mean to protect against unmeasured baseline confounders. Brumback et al.

(2003) center time-varying exposures by their conditional mean given the history, as we do;

they consider treatment effects under a treatment discontinuation reference regime and limit

attention to overall effects without interaction terms. In contrast to these papers, our use

of centering is solely to provide robustness to the specification of a model for E[Yt+k | Ht];

centering is not used to adjust for confounding.

Lastly the weighting approach might be considered if the randomization probabilities are

stratified and we wish to consider a set of candidate moderators Skt that do not include all

of the variables used to randomize treatment. Such a scenario arises when interest lies in

the marginal treatment effect of At: Skt = 1.

Let S̃kt be a vector containing summary variables constructed from the history Ht and

that contains Skt as a sub-vector. Consider the weighted least squares estimating function

UW(αk, βk) =
T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

wt(At, Ht)

(

S̃kt

AtSkt

)

, (8)
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where wt(At, Ht) = ρAt (1−ρ)1−At

ρt(At|Ht)
for some fixed ρ ∈ (0, 1). Let U̇W be the derivative of UW

with respect to the row vector (α⊺

k, β
⊺

k). In Supplement C.3 we prove a more general version

of the following result.

Proposition 3.3. Assume A1 and A2, both defined above. Then, under invertibility and

moment conditions, the solution to the estimating equation Pn UW(αk, βk) = 0 yields an esti-

mator (α̂k, β̂k) for which
√
n(β̂k−β∗

k) is asymptotically normal with mean zero and variance-

covariance matrix consistently estimated by the lower block diagonal entry of the matrix

(Pn U̇W(α̂k, β̂k))
−1

Pn UW(α̂k, β̂k)
⊗2(Pn U̇W(α̂k, β̂k))

−1
⊺

.

In this setting S̃⊺

ktαk is a working model for E[Yt+k | At = 0, Ht]; it need not be correct

in order for β̂k to be consistent for β∗
k (Supplement C.3). In the special case where the

randomization probabilities are fixed, we choose ρ = ρt(Ht) so that wt(At, Ht) = 1 and

weighted least squares is equivalent to routine regression. Unlike centering, weighting imposes

no restrictions on how closely Skt represents the history used to randomize treatment (as

in C1) or the underlying moderators (as in C2); the estimated treatment effect is simply

averaged over any underlying moderators omitted from Skt, regardless of their relationship

with variables used in the randomization.

The weight wt(At, Ht) is reminiscent of inverse probability of treatment weighting (IPTW)

in causal inference (Robins 1998). However here weighting is simply used to make the

weighted least squares estimator β̂k robust against the (usual) case in which the working

model S̃⊺

ktαk misspecifies E[Yt+k | At = 0, Ht]. Following Robins et al. (2000), we might

attempt to increase precision in β̂k through weight stabilization, wherein the constant ρ in

the numerator of wt is replaced by some function of the data. Unfortunately if this numerator

depends on time or covariates that are not independent of all Skt, then the resulting β̂k is in

general no longer consistent for β∗
k . See Section 6 for an example.

4 Availability

Up to this point we have implicitly presumed that at every possible occasion t, the participant

is available to engage with the mobile intervention. Consideration of availability is critical in

not only the analysis of MRT data (Liao et al. 2015), but also in the design of the intervention,

since it might be unreasonable, counter-productive or even unethical to always presume

availability. For example in HeartSteps (Klasnja et al. 2015), smartphone notifications are

used to deliver suggestions to disrupt sedentary behavior. Here the participant is considered
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unavailable when driving a vehicle (because the notification may be distracting) or walking

(as treatment at this time is scientifically inappropriate). Detection of availability can be

carried out through sensors (as in the case of HeartSteps) or recent interaction with the

mobile device. BASICS-Mobile took the latter approach by presuming that participants

were available to receive a treatment only after they fully completed a self-report.

Assume that the measurements Xt just prior to the tth treatment occasion contain the

user’s availability status, denoted by It, where It = 1 if the participant is available to engage

with the treatment at occasion t and It = 0 otherwise. If the participant is unavailable, the

treatment At is not delivered. To define the treatment effects under limited availability, we

use potential outcome notation. As compared to Section 2.3, here the potential outcome

notation is slightly more complicated because treatment can only be provided when an

individual is available. The potential outcomes are indexed by decision rules that incorporate

availability. In particular define d(a, i) for a ∈ {0, 1}, i ∈ {0, 1} by d(a, 0) = 0 and d(a, 1) = a.

Then for each a1 ∈ {0, 1}, define D1(a1) = d(a1, I1). Then we denote, for example, the

potential availability indicator at t = 2 by {I2(D1(1)), I2(D1(0))}. The potential outcomes for

availability emphasizes the fact that previous exposure to treatment can influence subsequent

availability. In BASICS-Mobile, for example, repeated provision of treatment might lead to

lower engagement with the intervention, and therefore lower availability for further delivery

of the treatment.

For each ā2 = (a1, a2) with a1, a2 ∈ {0, 1}, define D2(ā2) = d(a2, I2(D1(a1))) and D2(ā2) =

(D1(a1), D2(ā2)). A potential proximal response following occasion t = 2 and corresponding

to ā2 is Y3(D2(ā2)) and a potential availability indicator at occasion t = 3 is I3(D2(ā2)).

Similarly, for each āt = (a1, . . . , at) ∈ {0, 1}t, define Dt(āt) = d(at, It(Dt−1(āt−1))) and

Dt(āt) = (D1(a1), . . . , Dt(āt)). For each āt = (a1, . . . , at) ∈ {0, 1}t, the potential proximal

response is Yt(Dt−1(āt−1)) (following occasion t − 1) and potential availability indicator is

It(Dt−1(āt−1)) at occasion t.

We now incorporate availability into the definition of the proximal treatment effect; first

recall the notation from Section 2.3: denote A2(A1) by A2 and so on with At(Āt−1) denoted

by At. The proximal treatment effect is

E
[

Yt+1

(

Dt(Āt−1, 1)
)

− Yt+1

(

Dt(Āt−1, 0)
)

∣

∣ It

(

Dt−1(Āt−1)
)

= 1, S1t

(

Dt−1(Āt−1)
)]

.

Unlike (1), this effect is defined for only individuals available for treatment at time t, that

is, It

(

Dt−1(Āt−1)
)

= 1. This subpopulation is not static; at a given treatment occasion t

only certain types of individuals might tend to be available and availability for any given

12



individual may change with t. Conditioning on availability is related to the concept of viable

or feasible dynamic treatment regimes (Wang et al. 2012; Robins 2004), in which one assesses

only the causal effect of treatments that can actually be provided.

To incorporate availability into the definition of the lagged effects, first recall the notation

from Section 2.3: denote At+1(Āt−1, a) by Aat=a
t+1 , At+2(Āt−1, a, A

at=a
t+1 ) by Aat=a

t+2 , and so on,

with At+k−1(Āt−1, a, A
at
t+1, · · · , Aat=a

t+k−2) by Aat=a
t+k−1. The lag k effect of treatment on the

response k treatment occasions into the future Yt+k is defined by

E
[

Yt+k

(

Dt(Āt−1, 1, A
at=1
t+1 , . . . , Aat=1

t+k−1)
)

− Yt+k

(

Dt(Āt−1, 0, A
at=0
t+1 , . . . , Aat=0

t+k−1)
)

∣

∣Skt

(

Dt−1(Āt−1)
)]

.

Assuming consistency, positivity and sequential ignorability, the lag k treatment effect

under limited availability can be expressed in terms of the data as

E[E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht] | It = 1, Skt]

= E

[

1(At = 1)Yt+1

ρt(1 | Ht)
− 1(At = 0)Yt+1

1− ρt(1 | Ht)

∣

∣

∣
It = 1, Skt

]

,

where ρt(1 | Ht) is now Pr(At = 1 | It = 1, Ht). Modeling and estimation proceeds following

the same approach as with the always-available setting. In particular for the lag k treatment

effect, we consider the linear model

E[E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht] | It = 1, Skt] = S
⊺

ktβ
∗
k .

In applying the routine, centering or weighting estimation methods, we simply factor the

tth contribution to the corresponding estimating function by It. The resulting estimating

equations are provided in displays (13), (17) and (18) of the Supplement. For each, the

relevant working and treatment probability models are now conditional on It = 1. Proofs

can be found in Supplements C.1, C.2 and C.3.

5 Implementation

All of the proposed estimators can be implemented using standard software for generalized

estimating equations (GEE, Liang and Zeger 1986), provided that we: (i) incorporate avail-

ability It or (in the case of weighted least squares) Itwt as “prior weights” (McCullagh and
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Nelder 1989, Section 2.2) and (ii) employ the independence working correlation structure.

Non-independence working correlation structures such as exchangeable or AR(1) are often

adopted in the analysis of longitudinal data to improve precision (e.g. Schafer 2006). One

might wish to use these structures in our setting for the same reason, but this strategy

will generally introduce bias. Such a result is unsurprising given the bias that arises under

non-independence structures in IPTW (Vansteelandt 2007; Tchetgen Tchetgen et al. 2012)

or in GEEs where a time-varying response is modelled by time-varying covariates (Pepe and

Anderson 1994; Schildcrout and Heagerty 2005). In Section 6 we provide an example of how

bias in the proximal treatment effect can arise through use of AR(1) structure. A working

independence structure with variance models that depend on at most the variables used in

the treatment effect, however, does not result in large sample bias (see Supplement C). For

simplicity, in Sections 6 and 7 below, we do not employ a working variance model.

The standard errors expressed in Propositions 3.1, 3.2 and 3.3 directly correspond to

the sandwich variance-covariance estimator provided by GEE software. From existing work

on GEEs, it is well understood that the sandwich estimator is non-conservative in small

samples. To address this, whenever n ≤ 50, we apply Mancl and DeRouen’s (2001) small

sample correction by inverse-scaling each residual in UR, UC, or UW by one minus its leverage.

When a working variance model is employed or at least one of ρ and ρt(1 | Ht) is estimated,

the sandwich variance-covariance estimator must be adjusted to account for this additional

sampling error (see Supplement C). See Supplement E to obtain code that calculates standard

errors using the R package geepack (Højsgaard et al. 2006; R Core Team 2015).

6 Simulation Study

For each estimation method, we have discussed various properties—conditions used to achieve

consistency or implementations that can lead to bias. Here we illustrate some of these results

with simulated data. For simplicity, we consider data arising from the MRT, where ρt(1|Ht) is

known. The generative model for the response is Yt+1 = θ(St−E[St | At−1, Ht−1])+(At−ρt(1 |
Ht))(β

∗
10+β∗

11St)+ǫt+1, where ρt(1 | Ht) = expit(η1At−1+η2St), St ∈ {−1, 1} with Pr(St = 1 |
At−1, Ht−1) = expit(ξAt−1), and ǫt ∼ N(0, 1) with Corr(ǫu, ǫt) = 0.5|u−t|. The proximal effect

conditional on St is given by E[E[Yt+1 | At = 1, Ht]− E[Yt+1 | At = 0, Ht] | St] = β∗
10 + β∗

11St.

In the simulation scenarios below, we fix β∗
10 = −0.8 and vary (θ, β∗

11, η1, η2, ξ). Note

that if β∗
11 = 0 or ξ = 0, then the marginal proximal treatment effect, E[E[Yt+1 | At =

1, Ht]−E[Yt+1 | At = 0, Ht]] = β∗
10 is equal to −0.8. Throughout each subject is available at
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every treatment occasion: It = 1 (t = 1, . . . , T ).

In the analysis of the simulated data, we fit an intercept-only proximal treatment effect

model; this model does not include covariates in the proximal treatment effect. So the

primary interest is in the marginal proximal treatment effect.

We report average point estimates and coverage probabilities over 1000 Monte Carlo

replicates with n = 50 or 100 and T = 100. Confidence intervals are evaluated using standard

errors corrected for any estimation of weights, treatment probabilities or (for n = 50) small

samples (see Section 5). The tables below omit the average estimated standard errors; these

are provided in Supplement D and closely correspond to the standard deviations of the point

estimates. Alternative values for n and T were examined, but results were similar.

This first simulation scenario concerns the omission of an important moderator and illus-

trates that, when primary interest is in the marginal proximal treatment effect, weighting is

preferable over both routine regression and centering. In the data generative model, we set

θ = 0.8, η1 = −0.8, η2 = 0.8 and ξ = 0 (recall ξ = 0 implies that the true marginal proximal

treatment effect is 0.8). Different scenarios were devised by setting β∗
11 to one of 0.2, 0.5, 0.8,

giving respectively a small, medium, or large degree of moderation by St. Since η1 and η2

are nonzero, the treatment At is assigned with a probability depending on both St and past

treatment At−1, for each t.

For routine regression, the working data analysis model for E[Yt+1 | Ht, At = 0] is α0 +

α1St, to give a conditional mean data analysis model E[Yt+1 | At, Ht] = α0+α1St+β10At. For

weighted least squares, the same working model is used; the weights are set to wt(At, Ht) =

ρ̂At(1 − ρ̂)1−At/ρt(At | Ht) with ρ̂ = Pn

∑T

t=1At/T . A similar conditional mean model is

adopted for centered least squares, but we replace the term β10At with β10(At − ρt(1 | Ht)).

In each of the three methods β̂10 is the estimator of marginal treatment effect.

With η2 = 0.8, the randomization probability ρt(1 | Ht) depends on the underlying

moderator St, which is omitted from the treatment effect model under all three methods. So

neither R1 nor R2 hold for the data analysis, and we therefore anticipate the β̂10 from routine

regression to be a biased estimator of the marginal treatment effect of −0.8. Moreover both of

C1 and C2 do not hold, so we expect centering to also result in bias. All of the requirements

needed to achieve consistency in weighted least squares are satisfied. Hence the β̂10 from

the weighting method should be unbiased, regardless of the value for β∗
11. These conjectures

are supported by Table 1, where only in the weighting method is the nominal 95% coverage

achieved for each value of β∗
11. Bias in routine regression and centering β̂10’s increases with

β∗
11, as the degree of omitted moderation becomes larger.
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Table 1: Estimator, β̂01 of the marginal proximal effect; omitting an important moderator.

β∗
11 = 0.2 β∗

11 = 0.5 β∗
11 = 0.8

Method Mean CP Mean CP Mean CP

Weighted –0.80 0.95 –0.80 0.95 –0.80 0.95

Centered –0.78 0.82 –0.74 0.32 –0.71 0.04

Routine –0.75 0.34 –0.72 0.04 –0.68 0.00

Mean, average point estimate; CP, proportion of 95% confidence intervals that contained the

truth, with boldface indicating a significant difference from 0.95 at the 5% level. The true

marginal proximal effect is −0.8 (averaged over an underlying moderator with coefficient β∗
11).

Results are based on 1000 replicates with n = T = 100.

The second simulation scenario illustrates that our ability to stabilize the weights is

limited, since weighted least squares is prone to bias if, instead of the constant ρ in wt(At, Ht),

the weight numerator varies with time. In the data generative model, we set θ = 0.8, β∗
11 = 0,

η1 = −0.8, η2 = 0.8 and ξ = 0. Thus as above, the randomization probability for At depends

on both St and past treatment At−1 (t = 1, . . . , T = 100). However no variables moderate

the proximal effect, since β∗
11 = 0.

In the data analysis our working model for E[Yt+1 | At = 0, Ht] uses only an intercept: α0.

The denominator of the weight wt(At, Ht) is the known ρt(At | Ht). We compare two different

numerators: (i) ρ̂ = Pn

∑T

t=1 At/T and (ii) ρ̂(1|St) = expit(φ̂0 + φ̂1St), where (φ̂0, φ̂1) is the

solution to Pn

∑

t exp(φ0 + φ1St){expit(φ0 + φ1St)(1− expit(φ0 + φ1St))}−1(At − expit(φ0 +

φ1St))(1, St)
⊺ = 0. In (i) the numerator is identical for all wt (t = 1, . . . , T = 100). In (ii)

the numerator depends on St. Hence, we anticipate bias in estimates under (ii), but not (i).

This is indeed reflected in Table 2, where the time-varying weight stabilization of (ii) induces

a large degree of bias, with the corresponding confidence interval rarely capturing the true

value of −0.8.

Table 2: Weighted least squares estimation of the proximal effect; stabilized weights

Method Mean CP

Weighted (i) –0.80 0.95

Weighted time–varying stabilizer (ii) –0.11 0.00

Mean, average point estimate; CP, proportion of 95% confidence intervals that contained the

truth, with boldface indicating a significant difference from 0.95 at the 5% level. The true

proximal effect is −0.8. Results are based on 1000 replicates with n = T = 100.
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The last simulation scenario illustrates that employing a non-independence working cor-

relation structure in the estimation can result in bias. In the data generative model, we

set θ = 0.8, β∗
11 = 0, η1 = η2 = 0 and ξ = 0.8. There is no moderation of the proximal

effect, since β∗
11 = 0. Unlike the above scenarios, here the predictor St is influenced by At−1,

since ξ = 0.8. Treatment is randomized with fixed probability ρt(1 | Ht) = 1/2 for each

t = 1, . . . , T = 100.

In data analysis, suppose that St is unobserved and the working model for E[Yt+1 | At =

0, Ht] is set to α0 + α1Yt (the working model is incorrect). For simplicity we carry out

data analysis with only weighted least squares; we use the weight numerator ρ = 1/2 and

known denominator ρt(At | Ht) = 1/2. Two variants for the working correlation structure

are considered: (i) estimation employing an independence working correlation structure

(adhering to condition A3 in Supplement C) and (ii) estimation adopting a working AR(1)

structure assuming a residual correlation of 0.5|u−t| between times u and t. While AR(1)

might better represent the true correlation matrix than an independence structure, we expect

this choice to induce bias because the working model is not correctly specified. Table 3

demonstrates this result, with the non-diagonal structure achieving a coverage probability

less than 60%.

Table 3: Weighted least squares estimation of the proximal effect; correlation structures.

Method Mean CP

Weighted (i) –0.80 0.96

Weighted fixed AR(1) (ii) –0.74 0.59

Mean, average point estimate; CP, proportion of 95% confidence intervals that contained the

truth, with boldface indicating a significant difference from 0.95 at the 5% level. The true

proximal effect is −0.8. Results are based on 1000 replicates with n = T = 100.

7 Application

BASICS-Mobile is a pilot study, with n = 28, T = 28. The response Yt+1 is the smoking rate

from the tth occasion to the next self-report, and participants are presumed available only if

they completed the preceding self-report. So the availability It is the self-report completion

status just prior to t and the treatment decision Dt is 1 only if a mindfulness message is

provided at t. Otherwise, Dt = 0.

BASICS-Mobile was neither a sequentially randomized trial nor an observational study.
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Treatment delivery at occasion t was based on a complex decision rule involving primarily

a self-reported measure that the user had an urge or inclination to smoke at the preceding

self-report (urget), an indicator for the first three treatment occasions (1(t < 4)), and a

combination of other variables. For illustrative purposes we provide an analysis acting as

though the study was observational and assuming sequential ignorability; we estimate the

treatment probabilities ρt(Ht) based on (Yt, urget, 1(t < 4)) using

ρt(Ht; η̂) = expit(0.69 + 0.02Yt + 0.17urget − 0.28 1(t < 4) + 0.70urget 1(t < 4)).

We examine one candidate moderator for the proximal effect: S1t = (1, incrt)
⊺, where incrt

indicates whether or not the user reported an increase in need to self-regulate thoughts

over the two self-reports preceding t. For delayed effects, we consider only the marginal

lag-2 effect: S2t = 1. In the working model a variety of predictors are incorporated in S̃kt

(k = 1, 2), including incrt, current urge to smoke, Yt+1−k, time of day, baseline smoking

severity, baseline drinking level, age and gender.

Here we apply weighted least squares because the proximal effect model contains only one

moderator and the lag-2 model contains no moderators. Using ρt(Ht; η̂) as the denominator

of the weights and ρ̂ = Pn

∑

tAt/T in the numerator, the data analysis leads to several con-

clusions. First the mindfulness message achieved a reduction in the average next-reported

smoking rate, but only when the user was experiencing either a stable or decreased need to

self-regulate (95% CI −5 to −0.2 cigarettes per day; see Table 4). Otherwise no proximal

treatment effect is apparent. Second, evidence to support the presence of an overall lag-2

effect is relatively weak, with a 95% CI of −3 to 0.2 cigarettes per day for the average reduc-

tion achieved by mindfulness treatment at the second-to-last treatment occasion. Estimated

standard errors (SEs) take into account sampling error in estimated treatment probabilities

(see (19) for the formula), and are corrected for small n (see Section 5 for details on the

correction).

Table 4: Proximal and lag-2 treatment effects estimated from BASICS-Mobile data.

Treatment effect Estimate SE 95% CI p-value

Proximal, increase in self-regulation −0.5 0.81 (−2.0, 1.1) 0.565

Proximal, no increase self-regulation −2.5 1.20 (−4.9,−0.2) 0.045

Delayed −1.5 0.84 (−3.1, 0.2) 0.079
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8 Discussion

In this paper we define treatment effects suited for mobile interventions that enable frequent

measurements and frequent delivery of treatments. As we discussed, the effect definition

as provided in (1) and (2) is atypical in the field of causal inference in that the underlying

mechanism for the assigned treatment is part of the definition of the causal effect. This

definition of the causal effects is consistent with the effects defined via most models for

intensively collected longitudinal data (see Schafer 2006, Schwartz and Stone 2007 and, more

recently, Bolger and Laurenceau 2013). Commonly the model for the conditional mean of

a time-varying response given time-varying covariates is a linear model (possibly with the

use of covariates defined by flexible basis functions). If indicators of treatment as well as

interactions between the treatment indicators and time varying covariates are included in the

linear model then the coefficients of these covariates coincide with the moderated proximal

effect defined here. However estimation of these casual effects using most common approaches

(Schafer 2006; Schwartz and Stone 2007; Bolger and Laurenceau 2013), that is, either GEE

approaches or approaches that employ random effects, can cause bias. Indeed the large

sample and simulation results provided here show that GEEs based on a non-independence

working covariance structure is not guaranteed to consistently estimate β∗
k .

Since the estimating functions under a response model with random intercepts or ran-

dom coefficients (e.g. Goldstein 2011) have a similar form as those in GEEs, the covariance

structure induced by models with random effects may yield a biased estimator for β∗
k . This

connection is important given the fact that, in the analysis of intensive longitudinal data,

there is a preference for including random effects and, when GEE models are used, to use

a non-independence working correlation structure (such as exchangeable, Corr(Yu, Yt) = r

(u 6= t), or AR(1), Corr(Yu, Yt) = r|u−t|) to improve precision (Schafer 2006, p. 58). Future

work is needed on whether or how to incorporate random effects in the estimation of proximal

and lagged treatment effects.

Although we consider three possible methods to estimating proximal and other lagged

effects, the choice between them is typically clear. In particular, if the treatment probabilities

are fixed, routine analysis with moderation quantified by coefficients of treatment interaction

terms in a regression model is simple to use and does not result in bias. Otherwise, if

treatment is randomized with probabilities that vary by time and/or the moderators included

in the analysis model, (5), then using the centering method is preferable to the routine

regression in order to prevent bias in estimation. In all other settings, the weighting method

is generally preferable. The weighted method facilitates inference concerning a small number
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of potential treatment effect moderators with the fewest assumptions.

Methods in this manuscript were developed primarily for use with data arising from se-

quentially randomized trials in mobile health, such as with MRTs. We are currently involved

in two MRTs, the first of which is currently in the field. In the first MRT participants are

randomized with 5 times per day to receive or not receive a treatment with randomization

probability equal to 0.6. Since ρt(Ht) = 0.6 for all t, data from this trial can be analyzed

using routine or centering estimation methods (weighting is not necessary regardless of the

estimand). In the second MRT participants will be randomized up to 600 times per day with

randomization probabilities depending on the current stress classification and to ensure that,

on average each day 2 treatments are delivered while an individual is classified as stressed

and 2 treatments are delivered while an individual is classified as not stressed. Here, we

plan to use the weighted least squares method to estimate the marginal proximal and lagged

effects.

There are a number of other directions for future work. Throughout we limited attention

to a continuous response and binary treatment decisions. Lagged effects (k > 1) were defined

similar to proximal effects (k = 1), but in future work one might rather be interested in a

lagged effect that quantifies the accumulation of past treatment. Finally, since small to

moderate treatment effects may be difficult to detect, yet potential response predictors that

can be used in the working models to reduce error variance are numerous, future work could

consider penalized methods for the working model in order to accommodate and select from

the large number of predictors.
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Supplementary Material

A Lagged Treatment Effects

A.1 Connection to Treatment Blips in the Structural Nested Mean

Model

This Supplement connects a generalization of the structural nested mean model (SNMM;

Robins 1989, 1994) to the lag k treatment effect defined in Section 2.3. In particular, con-

sider a causal effect or treatment “blip” as defined by the SNMM framework (Robins 1994,

Section 3a), with a minor departure in choosing the random reference treatment regime.

We show how these effects are additive on the conditional mean of the potential proximal

response. We conclude by connecting this particular SNMM generalization to the lag k

moderated effect (2) considered throughout the paper.

The typical reference treatment regime used to define the treatment “blip” functions

under the SNMM framework, is a prespecified non-random reference regime; here instead

our reference treatment regime is stochastic and will match the conditional distribution of

the treatments given history in the data generating distribution. In particular suppose that

in the data generating distribution Pr(At = 1 | Ȳt = ȳt, X̄t = x̄t, Āt−1 = āt−1] = ρt(1 | ht) for

each t and where ht = (ȳt, x̄t, āt−1). Then the reference treatment regime for the potential

treatment is given, for each t, by Pr(At(āt−1) = 1 | Ht(āt−1) = ht] = ρt(1 | ht) (recall

Ht(āt−1) = (Ȳt(āt−1), X̄t(āt−1), Āt−1(āt−2))).

The treatment blip of fixed at ∈ {0, 1} versus stochastic treatment At(āt−1) on the

proximal response Yt+1 is

µt,t+1(ht, āt) = E[Yt+1(āt)− Yt+1(āt−1, At(āt−1)) | Ht(āt−1) = ht].

The treatment blip of fixed at−1 ∈ {0, 1} versus stochastic treatment At−1(āt−2) on the

proximal response Yt+1 is

µt−1,t+1(ht−1, āt−1)

= E[Yt+1(āt−1, At(āt−1))− Yt+1(āt−2, At−1(āt−2), At(āt−2, At−1(āt−2))) | Ht−1(āt−2) = ht−1].

The treatment blip for general u ≤ t is defined similarly but with an increase in nota-

tion. However notice if we denote A2(A1) by A2 and so on with At(Āt−1) denoted by

A1



At, and we denote Au+1(Āu−1, a) by Aau=a
u+1 , Au+2(Āu−1, a, A

au=a
u+1 ) by Aau=a

u+2 and so on with

At(Āu−1, a, A
au=a
u+1 , . . . , Aau=a

t−1 ) by Aau=a
t then we have the compact form

µu,t+1(Hu(Āu−1), Āu−1, a) = E
[

Yt+1(Āu−1, au, A
au=a
u+1 , . . . , Aau=a

t )− Yt+1(Āt) | H̄u(Āu−1)
]

.

(9)

Assume consistency and sequential ignorability. Then

E
[

Yt+1(Āu−1, a, A
au
u+1, . . . , A

au=a
t )

∣

∣Hu(Āu−1)
]

= E
[

Yt+1(Āu−1, a, A
au=a
u+1 , . . . , Aau=a

t )
∣

∣Hu(Āu−1), Au = au
]

= E
[

Yt+1(Āu−1, Au, A
au=Au

u+1 , . . . , Aau=Au

t )
∣

∣Hu(Āu−1), Au = au
]

= E
[

Yt+1(Āt) | Hu(Āu−1), Au = au
]

where the first equality follows from the consistency and sequential ignorability assumptions

(recall that Hu = Hu(Āu−1)) and the last two equalities follow by the definitions of Aau
j and

Aj . Thus under sequential ignorability, the treatment blip satisfies

E[µu,t+1(Hu(Āu−1), Āu) | Hu(Āu−1)] = 0, (10)

for each u = 1, . . . , t and t = 1, . . . , T . The lag k treatment effect (2) can be expressed as

the expected contrast of the treatment blips (9):

E
[

µt,t+k(Ht(Āt−1), Āt−1, 1)− µt,t+k(Ht(Āt−1), Āt−1, 0) | Skt(Āt−1)
]

= E
[

Yt+k(Āt−1, 1, A
au=1
t+1 , . . . , Aau=1

t+k−1)− Yt+k(Āt−1, 0, A
au=0
t+1 , . . . , Aau=0

t+k−1)
∣

∣Skt(Āt−1)
]

, (11)

given the candidate moderators Skt(At−1).

As in (Robins 1989, 1994) the SNMM treatment blips are related to the conditional mean

of Yt+1(āt) given Ht(āt−1) by way a telescoping sum. For clarity we first provide the sum for

t = 3.

E[Y4(ā3) | H3(ā2) = h3]

= E[Y4(ā3)− Y4(ā2, A3(ā2)) | H3(ā2) = h3]

+ E[Y4(ā2, A3(ā2)) | H3(ā2) = h3]− E[Y4(ā2, A3(ā2)) | H2(ā1) = h2]

+ E[Y4(ā2, A3(ā2))− Y4(a1, A2(a1), A3(a1, A2(a1))) | H2(ā1) = h2]

+ E[Y4(a1, A2(a1), A3(a1, A2(a1))) | H2(ā1) = h2]− E[Y4(a1, A2(a1), A3(a1, A2(a1))) | H1 = h1]
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+ E
[

Y4(a1, A2(a1), A3(a1, A2(a1)))− Y4(Ā3) | H1 = h1

]

+ E
[

Y4(Ā3) | H1 = h1

]

− E
[

Y4(Ā3)
]

+ E
[

Y4(Ā3)
]

.

Denote Au+1(āu−1, Au(āu−1)) by A
āu−1

u+1 , Au+2(āu−1, Au(āu−1), A
āu−1

u+1 ) by A
āu−1

u+2 and so on with

At(āu−1, Au(āu−1), A
au−1

u+1 , . . . , A
āu−1

t−1 ) by A
au−1

t . Using this compact notation the treatment

blips in (9) can be rewritten as

µu,t+1(hu, āu) = E
[

Yt+1(āu, A
āu
u+1, . . . , A

āu
t )− Yt+1(āu−1, A

āu−1

u , . . . , A
āu−1

t ) | H̄u(āu−1) = hu

]

.

The telescoping sum for general t using this compact notation is

E[Yt+1(āt) | Ht(āt−1) = ht]

= E
[

Yt+1(āt)− Yt+1(āt−1, A
āt−1

t ) | Ht(āt−1) = ht

]

+ E[Yt+1(āt−1, A
āt−1

t ) | Ht(āt−1) = ht]− E[Yt+1(āt−1, A
āt−1

t ) | Ht−1(āt−2) = ht−1]

+ E[Yt+1(āt−1, A
āt−1

t )− Yt+1(āt−2, A
āt−2

t−1 , A
āt−2

t ) | Ht−1(āt−2) = ht−1]

+ E[Yt+1(āt−2, A
āt−2

t−1 , A
āt−2

t ) | Ht−1(āt−2) = ht−1]− E[Yt+1(āt−2, A
āt−2

t−1 , A
āt−2

t ) | Ht−2(āt−3) = ht−2]

· · ·
+ E[Yt+1(a1, A

a1
2 , · · · , Aa1

t )− Yt+1(Āt) | H1 = h1]

+ E[Yt+1(Āt) | H1 = h1]− E[Yt+1(Āt)]

+ E[Yt+1(Āt)]

= E[Yt+1(Āt)] +

t
∑

u=1

µu,t+1(hu, āu) +

t
∑

u=1

ǫu,t+1(hu, āu−1), (12)

where

ǫu,t+1(hu, āu−1) = E[Yt+1(āu−1, A
āu−1

u , . . . , A
āu−1

t ) | Hu(āu−1) = hu]

− E[Yt+1(āu−1, A
āu−1

u , . . . , A
āu−1

t ) | Hu−1(āu−2) = hu−1],

are nuisance functions that satisfy the constraint E[ǫu,t+1(Hu(āu−1), āu−1) | Hu−1(āu−2)] = 0,

for each āu−1 ∈ Au−1, u = 1, . . . , t and t = 1, . . . , T .
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A.2 Identification from Data

Here we derive the expression (3) of the lag k treatment effect (2). This is done under the

consistency, positivity and sequential ignorability conditions described in Section 2.3.

To derive expression (3) for the lag k treatment effect (2), we show that

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1)
∣

∣Skt(Āt−1)
]

= E
[

E[Yt+k | At = a,Ht]
∣

∣Skt

]

and

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) | Skt(Āt−1)
]

= E

[

1(At = a)

ρt(a | Ht)
Yt+k

∣

∣

∣
Skt

]

for a ∈ {0, 1}.
First recall that by consistency, Ht = Ht(Āt−1) and Skt = Skt(Āt−1). Second recall

the definition of Aat=a
t+j , where in particular Aat=a

t+1 denotes At+1(Āt−1, a), Aat=a
t+2 denotes

At+2(Āt−1, a, A
at=a
t+1 ) and so on, with At+k−1(Āt−1, a, A

at
t+1, . . . , A

at=a
t+k−2) denoted by Aat=a

t+k−1).

So for each j = 1, . . . , T − t + 1, sequential ignorability implies that Aat=a
t+j , a ∈ {0, 1} is

independent of At given Ht. We have

E[Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) | Skt(Āt−1)]

= E
[

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) | Ht(Āt−1)
]
∣

∣Skt(Āt−1)
]

= E
[

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) | Ht

]
∣

∣Skt

]

= E
[

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) | Ht, At = a
]
∣

∣Skt

]

= E
[

E
[

Yt+k(Āt−1, At, A
at=At

t+1 , . . . , Aat=At

t+k−1) | Ht, At = a
]
∣

∣Skt

]

= E
[

E
[

Yt+k(Āt−1, At, At+1, . . . , At+k−1) | Ht, At = a
]
∣

∣Skt

]

= E
[

E[Yt+k | Ht, At = a]
∣

∣Skt

]

,

where the second equality holds by consistency, the third by sequential ignorability and the

fifth follows from the definition of Aat=a
t+j implying that Aat=At

t+j = At+j .

Next note that, by sequential ignorability, E[Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) | Ht] E[1(At =

a) | Ht] is equal to E[Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1) 1(At = a) | Ht]. We have

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1)
∣

∣Skt(Āt−1)
]

= E
[

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1)
∣

∣Ht

]

∣

∣

∣
Skt

]

= E

[

E
[

Yt+k(Āt−1, a, A
at=a
t+1 , . . . , Aat=a

t+k−1)
∣

∣Ht

]E[1(At = a) | Ht]

ρt(a | Ht)

∣

∣

∣
Skt

]
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= E

[

E

[

Yt+k(Āt−1, a, A
at=At

t+1 , . . . , Aat=At

t+k−1)
1(At = a)

ρt(a | Ht)

∣

∣

∣
Ht

]

∣

∣

∣
Skt

]

= E

[

E

[

Yt+k

1(At = a)

ρt(a | Ht)

∣

∣

∣
Ht

]

∣

∣

∣
Skt

]

= E

[

Yt+k

1(At = a)

ρt(a | Ht)

∣

∣

∣
Skt

]

B Model Specification

This supplement outlines why the treatment effect at a given lag can be modelled without

consideration of treatment effect models at other lags. We also provide a simple example

of how models for remaining components of the conditional mean response models (e.g.,

E[Yt+k | Ht, At = 0] or E[Yt+k | Ht] at different lags k) constrain one another and are

constrained by and constrain the treatment effect models. These considerations lead us to

avoid assumptions concerning the correctness of conditional mean response models as in R2.

From (11), we know that the lag k effect depends on only one of the SNMM treatment

blips (9). From (12) these blips are in turn additive on the conditional mean of the potential

response. Provided that this conditional mean is not a priori restricted to certain values in

(−∞,∞), the treatment blips do not constrain one another (Robins et al. 2000, Theorem 8.6).

This implies the same result for the lag k effect; that is, the treatment effects at different

lags can be specified separately, with each lag-specific model imposing no constraints on the

models chosen for the treatment effects at the remaining lags.

As an example, here we provide an illustration of how a model chosen for the lag 1

conditional mean response E[Yt+1 | At, Ht] constrains the form of the treatment effects at

lag 2. Consider the simple example in which the treatments are binary, randomized with

probability .5. Suppose we model the conditional mean of the response, E[Yt+1 | At, Ht] by

α10 + α11Zt + α12At, where Zt is an binary variable influenced by At−1. Further suppose

that we model the lag 2 treatment effect, E[Yt+1 | At−1 = 1, Ht−1]− E[Yt+1 | At−1 = 0, Ht−1]

by a linear model H⊺

t−1β2. Unfortunately in general these two models are inconsistent; they

cannot both be correct. To see this, suppose that unbeknownst to us, Pr[Zt = 1 | Ht−1] =

1/(1 + exp(Yt−1 + At−1)). Now if the first model is correct then the true lag-2 treatment

effect should satisfy

E[Yt+1 | At−1 = 1, Ht−1]− E[Yt+1 | At−1 = 0, Ht−1]

= E[E[Yt+1 | At, Ht] | At−1 = 1, Ht−1]− E[E[Yt+1 | At, Ht] | At−1 = 0, Ht−1]
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= α11{Pr[Zt = 1 | At−1 = 1, Ht−1]− Pr(Zt = 1 | At−1 = 0, Ht−1)}+ α12.5

= α11

{

1

1 + eYt−1+1
− 1

1 + eYt−1

}

+ α12.5.

In general since the conditional probability of Zt = 1 is constrained to [0, 1], this expression

will be non-linear in Ht−1. So these lag 2 treatment effect and the lag 1 conditional mean

response models cannot both be true.

This example shows that both parsimony in the treatment effect models and correctness

in the models for the conditional mean response is difficult to achieve in the presence of

binary (or more generally non-continuous) response predictors. Two special scenarios in

which models with main effect of the form S̃⊺

ktαk might be coherent across different k arise

when all variables in S̃kt are either (1) multivariate normal or (2) centered by their conditional

mean so that S̃kt − E[S̃kt | Ht−1] = 0. Both of these settings require strong restrictions or

assumptions about the distribution of covariates. So in general we should prefer estimation

methods where S̃⊺

ktαk need only be a working model for E[Yt+k | Ht] (or E[Yt+k | At = 0, Ht],

in the case of the regression method from Section 3).

C Large Sample Properties

In this supplement we derive the large sample properties stated in Section 3. Throughout we

allow for the setting in which individuals are not always available as discussed in Section 4.

In all three methods, we allow for the use of a working diagonal variance structure for Cov(Y2,

. . . , YT−k+1) in the estimating function given by (vk2(S̃k1; γ), . . . , vk,T−k+1(S̃k,T−k+1; γ)). In

all three methods we assume A1, as defined in (5) of Section 3. Recall that throughout we

assume sequential ignorability. Other assumptions that may be used include the following

conditions for the k’s corresponding to the lags of interest.

A3 Working Diagonal Variance Structure: The functions (vk2(S̃k1; γ), . . . , vk,T−k+1(S̃k,T−k+1; γ))

are functions of a vector parameter γ. Let VkT (S̃kT ; γ) be a diagonal matrix with the vkj’s

on the diagonal. Suppose γ̂ solves an estimating equation: Pn UV(γ) = 0. Assume that,

for a finite value of γ, say γ∗, there exists finite constants, bv > 0 and Bv such that each

bv < vkT (S̃kT ; γ
∗) < Bv a.s. and

√
n(γ̂ − γ∗) = E[U̇V(γ

∗)]−1
√
n(Pn−P )UV(γ

∗) + oP (1)

for a positive definite, finite, matrix, E[U̇V(γ
∗)]. Assume

√
n(Pn −P )UV(γ

∗) converges

in distribution to a mean zero, Normal random vector with variance-covariance matrix

given by E[UV(γ
∗)⊗2] which has finite entries. Assume that Pn U̇V(γ̂) is a consistent
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estimator of E[U̇V(γ
∗)].

A4 Restricted Working Variance: vkt(S̃kt; γ) is a function of S̃kt only through Skt.

A5 Treatment Probability Model: Let ρt(1 | Ht; η) be a correctly specified model for

Pr(At = 1 | It = 1Ht). Let η∗ be the true value of η; that is, Pr(At = 1 | It =

1, Ht) = ρt(1 | Ht; η
∗). Assume that the estimator of η, say η̂, satisfies Pn UD(η̂) = 0

and
√
n(η̂ − η∗) = E[U̇D(η

∗)]−1
Pn UD(η

∗) + oP (1). Thus
√
n(η̂ − η∗) converges in distri-

bution to a mean zero, Normal random vector with variance-covariance matrix given by

E[U̇D(η
∗)]−1 E[UD(η

∗)⊗2](E[U̇D(η
∗)]−1)⊺ which has finite entries. Assume that Pn U̇D(η̂)

is a consistent estimator of E[U̇D(η
∗)]. Assume there exists finite constants, bD > 0 and

BD < 1 such that each bD < ρt(1 | Ht; η
∗) < BD a.s.

A6 Weight Stabilization Probability Model: Suppose the scalar, ρ̂, solves an estimating

equation: Pn UN(ρ) = 0. Assume that, for a finite value of ρ, say ρ∗ and
√
n(ρ̂ − ρ∗) =

E[U̇N(ρ
∗)]−1

√
n(Pn−P )UN(ρ

∗) + oP (1) where the matrix, E[U̇N(ρ
∗)] is positive definite.

Assume
√
n(Pn −P )UN(ρ

∗) converges in distribution to a mean zero, Normal random

vector with variance-covariance matrix given by E[UN(ρ
∗)⊗2] which has finite entries.

Assume that Pn U̇N(ρ̂) is a consistent estimator of E[U̇N(ρ
∗)]. Assume 0 < ρ∗ < 1.

The rationale for excluding off-diagonal entries from the working variance-covariance matrix

as in condition A3 is illustrated numerically in Section 6. Pepe and Anderson (1994) illustrate

the bias that occurs when off-diagonal entries are included in the setting of generalized

estimation equations with longitudinal data; see also Schildcrout and Heagerty (2005) for

further discussion.

C.1 Proof of Proposition 3.1

Here we discuss the proof of Proposition 3.1 assuming A1, A3, A4 and R1; the proof assum-

ing R2 instead of R1 is routine. Under A3 and limited availability, the routine regression

estimating function based on (6) is

UR(αk, βk; γ̂) =
T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

vkt(S̃kt; γ̂)
−1It

(

S̃kt

AtSkt

)

, (13)
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for which the solution to Pn UR(αk, βk; γ̂) = 0 gives the estimator

(

α̂k

β̂k

)

=







Pn

∑

t

vkt(S̃kt; γ̂)
−1It

(

S̃kt

AtSkt

)⊗2






−1

Pn

∑

t

vkt(S̃kt; γ̂)
−1ItYt+k

(

S̃kt

AtSkt

)

.

Assume the following for k lags of interest.

R3 All entries in {Yt+k, S̃kt}t=T−k+1
t=1 have finite fourth moments.

R4 The matrices E[
∑

t vkt(S̃kt; γ
∗)−1ItS

⊗2
kt ] and

E
[

U̇R(αk, βk; γ
∗)
]

= E





∑

t

vkt(S̃kt; γ
∗)−1It

(

S̃kt

AtSkt

)⊗2




are both invertible.

Define
(

α′
k

β ′
k

)

=
{

E
[

U̇R(αk, βk; γ
∗)
]}−1

E

[

∑

t

vkt(S̃kt; γ
∗)−1ItYt+k

(

S̃kt

AtSkt

)]

.

Then standard statistical arguments can be used to show that
√
n(α̂k−α′

k, β̂k−β ′
k) converges

in distribution to a normal, mean zero, random vector with variance-covariance matrix given

by
{

E
[

U̇R(α
′
k, β

′
k; γ

∗)
]}−1

ΣR(α
′
k, β

′
k; γ

∗)
{

E
[

U̇R(α
′
k, β

′
k; γ

∗)
]}−1

,

where

ΣR(αk, βk; γ) = E

[

(

UR(αk, βk; γ) + ΣR,V(αk, βk; γ) E[U̇V(γ)]
−1UV(γ)

)⊗2
]

and

ΣR,V(αk, βk; γ) = E

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

It

(

S̃kt

AtSkt

)

v̇kt(S̃kt; γ)
⊺

vkt(S̃kt; γ)2

]

and v̇kt(S̃kt; γ) = dvkt(S̃kt; γ)/dγ. Note that if R2 were true then ΣR,V would be a matrix of

zeros greatly simplifying these displays. A consistent estimator of the variance-covariance

matrix is given by

{

Pn U̇R(α̂k, β̂k; γ̂)
}−1

Σ̂R(α̂k, β̂k; γ̂)
{

Pn U̇R(α̂k, β̂k; γ̂)
}−1

,
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where

Σ̂R(αk, βk; γ) = Pn

[

(

UR(αk, βk; γ) + Σ̂R,V(αk, βk; γ){Pn U̇V(γ̂)}−1UV(γ̂)
)⊗2
]

and

Σ̂R,V(αk, βk; γ) = Pn

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

It

(

S̃kt

AtSkt

)

v̇kt(S̃kt; γ)
⊺

vkt(S̃kt; γ)2

]

.

The remaining issue is to show that β ′
k = β∗

k . Since E[UR(α
′
k, β

′
k; γ

∗)] = 0,

T−k+1
∑

t=1

E

[

(

Yt+k − S̃
⊺

ktα
′
k − AtS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1It

(

S̃kt

AtSkt

)]

= 0. (14)

Using the fact that Skt is a sub-vector of S̃kt we have

0 =

T−k+1
∑

t=1

E
[(

Yt+k − S̃
⊺

ktα
′
k − AtS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1ItSkt

]

=
T−k+1
∑

t=1

E
[(

E[Yt+k | At, It = 1, Ht]− S̃
⊺

ktα
′
k −AtS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1ItSkt

]

=
∑

t

E
[(

E[Yt+k | At = 1, It = 1, Ht]− S̃
⊺

ktα
′
k − S

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1ItρSkt

]

+
∑

t

E
[(

E[Yt+k | At = 0, It = 1, Ht]− S̃
⊺

ktα
′
k

)

vkt(S̃kt; γ
∗)−1(1− ρ)ItSkt

]

=
∑

t

E
[

(E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht]− S
⊺

ktβ
′
k)vkt(S̃kt; γ

∗)−1ρItSkt

]

+
∑

t

E
[(

E[Yt+k | At = 0, It = 1, Ht]− S̃
⊺

ktα
′
k

)

vkt(S̃kt; γ
∗)−1ItSkt

]

. (15)

Also from (14) we have

0 =

T−k+1
∑

t=1

E
[(

Yt+k − S̃
⊺

ktα
′
k −AtS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1ItAtSkt

]

=
∑

t

E
[(

E[Yt+k | At = 1, It = 1, Ht]− S̃
⊺

ktα
′
k − S

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1ρItSkt

]

.
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Insert these results into (15) to obtain

0 =
∑

t

E
[(

E[Yt+k | At = 0, It = 1, Ht]− S̃
⊺

ktα
′
k

)

vkt(S̃kt; γ
∗)−1(1− ρ)ItSkt

]

.

Now insert the above into (15) (recall ρ ∈ (0, 1)); we have

0 =
∑

t

E
[

(E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht]− S
⊺

ktβ
′
k)vkt(S̃kt; γ

∗)−1ItSkt

]

.

(16)

If E[Yt+k | At = 1, Ht, It = 1]− E[Yt+k | At = 0, Ht, It = 1] = S⊺

ktβ
∗
k then (16) implies equal

to

0 =
∑

t

E
[

(S
⊺

ktβ
∗
k − S

⊺

ktβ
′
k)vkt(S̃kt; γ

∗)−1ItSkt

]

= E

[

∑

t

vkt(S̃kt; γ
∗)−1ItS

⊗2
kt

]

(β∗
k − β ′

k)

and thus β ′
k = β∗

k . Otherwise A4 implies that vkt(S̃kt; γ
∗) is only a function of Skt thus from

(16) we have

0 =
∑

t

E
[

(

E
[

E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht]
∣

∣ It = 1, Skt

]

− S
⊺

ktβ
′
k

)

vkt(Skt; γ
∗)−1ItSkt

]

=
∑

t

E
[

(S
⊺

ktβ
∗
k − S

⊺

ktβ
′
k)vkt(Skt; γ

∗)−1ItSkt

]

= E

[

∑

t

vkt(Skt; γ
∗)−1ItS

⊗2
kt

]

(β∗
k − β ′

k)

and thus β ′
k = β∗

k .

C.2 Proof of Proposition 3.2

Here we discuss the proof of Proposition 3.2 assuming A1, A2, using a working diagonal

variance matrix satisfying A3, permitting limited availability and with the use of a treatment

probability model assuming A5; if C2 does not hold then we will assume C1 and A4 (see the
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end of this subsection). The centered least squares estimating function based on (7) is

UC(αk, βk; γ̂, η̂)

=
T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − (At − ρt(1 | Ht; η̂))S
⊺

ktβk

)

vkt(S̃kt; γ̂)
−1It

(

S̃kt

(At − ρt(1 | Ht; η̂))Skt

)

(17)

for which the solution to Pn UC(αk, βk; γ̂, η̂) = 0 gives the estimator

(

α̂k

β̂k

)

=
{

Pn U̇C(γ̂, η̂)
}−1

Pn

∑

t

vkt(S̃kt; γ̂)
−1ItYt+k

(

S̃kt

(At − ρt(1 | Ht; η̂))Skt

)

where

Pn U̇C(γ̂, η̂) = Pn

∑

t

vkt(S̃kt; γ̂)
−1It

(

S̃kt

(At − ρt(1 | Ht; η̂))Skt

)⊗2

.

Assume the following for the k lags of interest.

C3 All entries in {Yt+k, S̃kt}t=T−k+1
t=1 have finite fourth moments.

C4 The matrices E[U̇C(γ
∗, η∗)] and E[

∑

t vkt(S̃kt; γ
∗)−1It(1− ρt(1 | Ht; η

∗))ρt(1 | Ht; η
∗)S⊗2

kt ]

are invertible.

Define

(

α′
k

β ′
k

)

=
{

E
[

U̇C(γ
∗, η∗)

]}−1

E

[

∑

t

vkt(S̃kt; γ
∗)−1ItYt+k

(

S̃kt

(At − ρt(1 | Ht; η
∗))Skt

)]

.

Then standard statistical arguments can be used to show that
√
n(α̂k−α′

k, β̂k−β ′
k) converges

in distribution to a normal, mean zero, random vector with variance-covariance matrix given

by
{

E
[

U̇C(γ
∗, η∗)

]}−1

ΣC(α
′
k, β

′
k; γ

∗, η∗)
{

E
[

U̇C(γ
∗, η∗)

]}−1

,

where ΣC(αk, βk; γ, η) is

E

[

(

UC(αk, βk; γ, η) + ΣC,D(αk, βk; γ, η){E[U̇D(η)]}−1UD(η) + ΣC,V(αk, βk; γ, η){E[U̇V(γ)]}−1UV(γ)
)⊗2
]

,

with
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ΣC,V(αk, βk; γ, η)

= E

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktα
′
k − (At − ρt(1 | Ht; η))S

⊺

ktβ
′
k

)

It

(

S̃kt

(At − ρt(1 | Ht; η))Skt

)

v̇kt(S̃kt; γ
∗)⊺

vkt(S̃kt; γ∗)2

]

,

v̇kt(S̃kt; γ) = dvkt(S̃kt; γ)/dγ,

ΣC,D(αk, βk; γ, η) = E

[

S
⊺

ktβkvkt(S̃kt; γ)
−1It

(

S̃kt

(At − ρt(1 | Ht; η))Skt

)

ρ̇t(1 | Ht; η)
⊺

]

− E

[

(

Yt+k − S̃
⊺

ktαk − (At − ρt(1 | Ht; η))S
⊺

ktβk

)

vkt(S̃kt; γ)
−1It

(

0

Skt

)

ρ̇t(1 | Ht; η)
⊺

]

,

and ρ̇t(1 | Ht; η) = dρt(1 | η)/dη.
A consistent estimator of this variance-covariance matrix is given by

{

Pn U̇C(γ̂, η̂)
}−1

Σ̂C(α̂k, β̂k; γ̂, η̂)
{

Pn U̇C(γ̂, η̂)
}−1

,

where

Σ̂C(α̂k, β̂k; γ̂, η̂) = Pn

[(

UC(α̂k, β̂k; γ̂, η̂) + Σ̂C,D(α̂k, β̂k; γ̂, η̂){Pn U̇D(η̂)}−1UD(η̂)

+ Σ̂C,V(α̂k, β̂k; γ̂, η̂){Pn U̇V(γ̂)}−1UV(γ̂)

)⊗2]

,

with

Σ̂C,D(α̂k, β̂k; γ̂, η̂) = Pn

[

S
⊺

ktβ̂kvkt(S̃kt; γ̂)
−1It

(

S̃kt

(At − ρt(1 | Ht; η̂))Skt

)

ρ̇t(1 | Ht; η̂)
⊺

]

− Pn

[

(

Yt+k − S̃
⊺

ktα̂k − (At − ρt(1 | Ht; η̂))S
⊺

ktβ̂k

)

vkt(S̃kt; γ̂)
−1It

(

0

Skt

)

ρ̇t(1 | Ht; η̂)
⊺

]

and

Σ̂C,V(α̂k, β̂k; γ̂, η̂)

= Pn

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktα̂
′
k − (At − ρt(1 | Ht; η̂))S

⊺

ktβ̂
′
k

)

It

(

S̃kt

(At − ρt(1 | Ht; η̂))Skt

)

v̇kt(S̃kt; γ̂
∗)⊺

vkt(S̃kt; γ̂∗)2

]

.
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It remains to show that β ′
k = β∗

k . Re-expressing E[UC(α
′
k, β

′
k; γ

∗, η∗)] gives

E

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktα
′
k − (At − ρt(1 | Ht; η

∗))S
⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1It(At − ρt(1 | Ht; η

∗))Skt

]

= E

[

T−k+1
∑

t=1

(

E[Yt+k | At, It = 1, Ht]− S̃
⊺

ktα
′
k − (At − ρt(1 | Ht; η

∗))S
⊺

ktβ
′
k

)It(At − ρt(1 | Ht; η
∗))

vkt(S̃kt; γ∗)
Skt

]

= E

[

T−k+1
∑

t=1

(

E[Yt+k | At = 1, It = 1, Ht]− S̃
⊺

ktα
′
k − ρt(0 | Ht; η

∗)S
⊺

ktβ
′
k

)Itρt(0 | Ht; η
∗)

vkt(S̃kt; γ∗)
SktAt

]

− E

[

T−k+1
∑

t=1

(

E[Yt+k | At = 0, It = 1, Ht]− S̃
⊺

ktα
′
k + ρt(1 | Ht; η

∗)S
⊺

ktβ
′
k

)Itρt(1 | Ht; η
∗)

vkt(S̃kt; γ∗)
Skt(1−At)

]

= E

[

T−k+1
∑

t=1

(

E[Yt+k | At = 1, It = 1, Ht]− S̃
⊺

ktα
′
k − ρt(0 | Ht; η

∗)S
⊺

ktβ
′
k

)Itρt(0 | Ht; η
∗)ρt(1 | Ht; η

∗)

vkt(S̃kt; γ∗)
Skt

]

− E

[

T−k+1
∑

t=1

(

E[Yt+k | At = 0, It = 1, Ht]− S̃
⊺

ktα
′
k + ρt(1 | Ht; η

∗)S
⊺

ktβ
′
k

)Itρt(1 | Ht; η
∗)ρt(0 | Ht; η

∗)

vkt(S̃kt; γ∗)
Skt

]

.

Thus

0 = E[UC(α
′
k, β

′
k; γ

∗, η∗)]

= E

[

T−k+1
∑

t=1

(E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht]− S
⊺

ktβ
′
k)

× Itρt(1 | Ht; η
∗)(1− ρt(1 | Ht; η

∗))

vkt(S̃kt; γ∗)
Skt

]

.

Assume C2; that is, E[Yt+k | At = 1, Ht, It = 1]− E[Yt+k | At = 0, Ht, It = 1] = S⊺

ktβ
∗
k for

each t. Then from the above display

0 = E

[

T−k+1
∑

t=1

(S
⊺

ktβ
∗
k − S

⊺

ktβ
′
k)
Itρt(1 | Ht; η

∗)(1− ρt(1 | Ht; η
∗))

vkt(S̃kt; γ∗)
Skt

]

,

=
∑

t

E
[

(S
⊺

ktβ
∗
k − S

⊺

ktβ
′
k)vkt(S̃kt; γ

∗)−1It(1− ρt(1 | Ht; η
∗))ρt(1 | Ht; η

∗)Skt

]

= E

[

∑

t

vkt(S̃kt; γ
∗)−1It(1− ρt(1 | Ht; η

∗))ρt(1 | Ht; η
∗)S⊗2

kt

]

(β∗
k − β ′

k)

and thus β ′
k = β∗

k . Otherwise we use A4, that is, vkt(S̃kt; γ
∗) is only a function of Skt and we
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use C1, that is, ρt(1 | Ht; η
∗) is a only a function of Skt, thus the argument from the previous

paragraph implies

0 =
∑

t

E
[

(S
⊺

ktβ
∗
k − S

⊺

ktβ
′
k)vkt(Skt; γ

∗)−1It(1− ρt(1 | Skt; η
∗))ρt(1 | Skt; η

∗)Skt

]

= E

[

∑

t

vkt(Skt; γ
∗)−1It(1− ρt(1 | Skt; η

∗))ρt(1 | Skt; η
∗)S⊗2

kt

]

(β∗
k − β ′

k)

and thus β ′
k = β∗

k .

C.3 Proof of Proposition 3.3

Here we discuss the proof of Proposition 3.3 assuming A1, A2, using a working diagonal

variance matrix satisfying A3, permitting limited availability and with the use of models

assuming A5 and A6. If the analog of C2 does not hold (e.g. E[Yt+k | At = 1, Ht, It =

1]− E[Yt+k | At = 0, Ht, It = 1] 6= S⊺

ktβ
∗
k for some t) then we assume A4.

The estimating equation based on (8) is

UW(αk, βk; γ̂, η̂, ρ̂) =
T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

vkt(S̃kt; γ̂)
−1Itwt(At, Ht; η̂, ρ̂)

(

S̃kt

AtSkt

)

(18)

where wt(At, Ht; η, ρ) = ρAt(1−ρ)1−At/ρt(At | Ht; η). The solution to Pn UW(αk, βk; γ̂, η̂, ρ̂) =

0 gives the estimator

(

α̂k

β̂k

)

=
{

Pn U̇W(γ̂, η̂, ρ̂)
}−1

Pn

∑

t

vkt(S̃kt; γ̂)
−1Itwt(At, Ht; η̂, ρ̂)Yt+k

(

S̃kt

AtSkt

)

where

Pn U̇W(γ̂, η̂, ρ̂) = Pn

∑

t

vkt(S̃kt; γ̂)
−1Itwt(At, Ht; η̂, ρ̂)

(

S̃kt

AtSkt

)⊗2

.

Assume the following for the k lags of interest.

W1 All entries in {Yt+k, S̃kt}t=T−k+1
t=1 have finite fourth moments.

W2 The matrices E U̇W(γ∗, η∗, ρ∗) and E
[

∑

t vkt(S̃kt; γ
∗)−1ItS

⊗2
kt

]

are invertible.
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Define

(

α′
k

β ′
k

)

=
{

E
[

U̇W(γ∗, η∗, ρ∗)
]}−1

E

[

∑

t

vkt(S̃kt; γ
∗)−1Itwt(At, Ht; η

∗, ρ∗)Yt+k

(

S̃kt

AtSkt

)]

.

Then standard statistical arguments can be used to show that
√
n(α̂k−α′

k, β̂k−β ′
k) converges

in distribution to a normal, mean zero, random vector with variance-covariance matrix given

by
{

E
[

U̇W(γ∗, η∗, ρ∗)
]}−1

ΣW(α′
k, β

′
k; γ

∗, η∗, ρ∗)
{

E
[

U̇W(γ∗, η∗, ρ∗)
]}−1

,

where

ΣW(αk, βk; γ, η, ρ) = E

[(

UW(αk, βk; γ, η, ρ) + ΣW,V(αk, βk; γ, η, ρ){E[U̇V(γ)]}−1UV(γ)

+ ΣW,D(αk, βk; γ, η, ρ){E[U̇D(η)]}−1UD(η)

+ ΣW,N(αk, βk; γ, η, ρ){E[U̇N(ρ)]}−1UN(ρ)

)⊗2]

,

with

ΣW,V(αk, βk; γ, η, ρ)

= E

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

Itvkt(S̃kt; γ)
−1wt(At, Ht; η, ρ)

(

S̃kt

AtSkt

)

v̇kt(S̃kt; γ)
⊺

vkt(S̃kt; γ)

]

,

v̇kt(S̃kt; γ) = dvkt(S̃kt; γ)/dγ,

ΣW,D(αk, βk; γ, η, ρ)

= E

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

Itvkt(S̃kt; γ)
−1wt(At, Ht; η, ρ)

(

S̃kt

AtSkt

)

ρ̇t(At | Ht; η)
⊺

ρt(At | Ht; η)

]

,

ρ̇t(1 | Ht; η) = dρt(1 | Ht; η)/dη and

ΣW,N(αk, βk; γ, η, ρ) = E

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk −AtS
⊺

ktβk

)

Itvkt(S̃kt; γ)
−1

(

S̃kt

AtSkt

)

2At − 1

ρt(At | Ht; η)

]

.

Note that if R2 were true then ΣR,V, ΣW,N and ΣW,D would be matrices of zeros greatly

simplifying the variance-covariance matrix.
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A consistent estimator of the variance-covariance matrix is given by

{

Pn U̇W(γ̂, η̂, ρ̂)
}−1

Σ̂W(α̂k, β̂k; γ̂, η̂, ρ̂)
{

Pn U̇W(γ̂, η̂, ρ̂)
}−1

, (19)

where

Σ̂W(αk, βk; γ, η, ρ) = Pn

[(

UW(αk, βk; γ, η, ρ) + Σ̂W,V(αk, βk; γ, η, ρ){Pn U̇V(γ)}−1UV(γ)

+ Σ̂W,D(αk, βk; γ, η, ρ){Pn U̇D(η)}−1UD(η)

+ Σ̂W,N(αk, βk; γ, η, ρ){Pn U̇N(ρ)}−1UN(ρ)

)⊗2]

,

with

Σ̂W,V(αk, βk; γ, η, ρ)

= Pn

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

Itvkt(S̃kt; γ)
−1wt(At, Ht; η, ρ)

(

S̃kt

AtSkt

)

v̇kt(S̃kt; γ)
⊺

vkt(S̃kt; γ)

]

,

Σ̂W,D(αk, βk; γ, η, ρ)

= Pn

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk −AtS
⊺

ktβk

)

Itvkt(S̃kt; γ)
−1wt(At, Ht; η, ρ)

(

S̃kt

AtSkt

)

ρ̇t(At | Ht; η)
⊺

ρt(At | Ht; η)

]

and

Σ̂W,N(αk, βk; γ, η, ρ) = Pn

[

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktαk − AtS
⊺

ktβk

)

Itvkt(S̃kt; γ)
−1

(

S̃kt

AtSkt

)

2At − 1

ρt(At | Ht; η)

]

.

It remains to show that β ′
k = β∗

k . Since E[UW(α′
k, β

′
k; γ

∗, η∗, ρ∗)] = 0,

0 =

T−k+1
∑

t=1

(

Yt+k − S̃
⊺

ktα
′
k − AtS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1Itwt(At, Ht; η

∗, ρ∗)

(

S̃kt

AtSkt

)

=
T−k+1
∑

t=1

(

E[Yt+k | At, Ht, It = 1]− S̃
⊺

ktα
′
k − AtS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1Itwt(At, Ht; η

∗, ρ∗)

(

S̃kt

AtSkt

)

=

T−k+1
∑

t=1

∑

a∈{0,1}

(

E[Yt+k | At = a,Ht, It = 1]− S̃
⊺

ktα
′
k − aS

⊺

ktβ
′
k

)

vkt(S̃kt; γ
∗)−1Itρ

∗a(1− ρ∗)1−a

(

S̃kt

aSkt

)

A16



where the last equality averages out over At. Now follow the exact same steps as in Supple-

ment C.1, starting with (14) but with ρ = ρ∗, to obtain the result.

D Additional simulation results

Section 6 provides simulation results that considers performance of the estimators in terms

of bias. Here we give the Monte Carlo standard deviation of the point estimates and the

average standard error estimates for the three settings of Section 6 in Tables 5, 6 and 7,

respectively.

Table 5: Estimation of the marginal proximal effect −0.8, averaging over an underlying

moderator with coefficient β11. Results are based on 1000 replicates with n = T = 100.

β∗
11 = 0.2 β∗

11 = 0.5 β∗
11 = 0.8

Method SD ASE SD ASE SD ASE

Weighted 0.023 0.023 0.023 0.023 0.024 0.025

Centered 0.023 0.022 0.023 0.023 0.024 0.024

Routine 0.020 0.020 0.021 0.021 0.022 0.022

SD, standard deviation of the point estimate; ASE, average standard error estimate.

Table 6: Weighted least squares estimation of the proximal effect −0.8 under different stabi-

lization schemes. Results are based on 1000 replicates with n = T = 100.

Method SD ASE

Weighted (i) 0.032 0.031

Weighted time–varying stabilizer (ii) 0.042 0.041

Table 7: Weighted least squares estimation of the proximal effect −0.8 under independence

(as proposed in Section 5) and fixed AR(1) working correlation structures. Results are based

on 1000 replicates with n = 50 and T = 100.

Method SD ASE

Weighted (i) 0.033 0.034

Weighted fixed AR(1) (ii) 0.031 0.031
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E Code to Generate Numerical Results

The code used to generate numerical results in this paper can be obtained from

https://github.com/dalmiral/mHealthModeration

This includes the additional calculations necessary to correct standard errors for estimated

weights, treatment probabilities, or small samples.
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