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Abstract

Representation theorems are established for fixed poirdsljoint functors between categories enriched in a small
guantaloid. In a very general setting these results set oparmon framework for representation theorems of concept
lattices in formal concept analysis (FCA) and rough set théBRST), which not only extend the realm of formal
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1. Introduction

This paper aims to establish general representation thresdfia fixed points of adjoint functors between categories
enriched in a small quantaloi@, which set up a common framework for representation thesmhaoncept lattices
in formal concept analysis (FCA)|[4} 6] and rough set the®$T) [17, 18] in the generality of thei@-version.
As Galois connections between posets are precisely adjointors between categories enriched in the two-element
Boolean algebra@, we start the introduction from this classical case.

A Galois connection [45 4 t between posetS, D consists of monotone mags C — D, t: D — C such that
S(X) <y &< x<t(y)forall xe C,ye D. By afixed point ofs 4 t is meant an elemente C with x = ts(x) or,
equivalently, an elemente D with y = st(y), since

Fix(ts) ;== {xe C| x=ts(X)} and Fix(st):={ye D |y = st(y)}

are isomorphic posets with the inherited order frérandD, respectively. The following theorem, as an immediate
consequence of Corollary 3.5, characterizes those po$éth wepresenfix(ts) = Fix(st):

Theorem 1.1. Lets4t: D — C be a Galois connection between posets. A poset X is isomdgohix(ts) if, and
only if, there exist surjective mapsC — X and r: D — X such that

YceCV¥deD: sc)<dinD < I(c) <r(d) in X.

It is well known that ifC, D are complete lattices, then soFi(ts) = Fix(sf). As a special case of Theoréml7.3,
the above representation theorem can be strengthened follthweing one in terms of\/-dense and\-dense maps
providing the completeness 6f D:

Theorem 1.2. Let s+t : D — C be a Galois connection between complete lattices. A caefddice X is
isomorphic toFix(ts) if, and only if, there exist/-dense maps . A — X, k: A — C and /\-dense maps
g: B— X, h: B— D such that

Yace AVbeB: ska) <h(b)inD < f(a) <g(b)in X

S S
_
¢ f b / ¢ ¢ t D \
\ / A B
\ /
X X
Theoreni L Theoreni LR

These two theorems play the role of general representdtemréms and their power will be revealed when being
applied to concept lattices. To see this, recall that giveslationy : A —— B between sets (usually called@mal
context or contextfor short, and written asi( B, ¢) in FCA and RST), there are two Galois connections

erHgt (PP — 2% and ¢ 4¢, 2% — 2B (1.i)

given by
er(U)={yeB|V¥xeU: xpyl, ¢'(V)=1{xeA|VyeV: xpy},
e*(V)={xeAldyeV: xpy}, ¢.(U)={yeB|VxeA: xpy = Xxe U}

forallU C A, V C B; the complete lattices consisting of their fixed points,
Mg = Fix(¢'er) and Kg = Fix(g.¢"),

are respectively (up to isomorphism) tbencept lattice®f the context, B, ¢) in FCA and RSff. Thefundamental
theoremof FCA characterizes those complete lattices which reptade:

1My andKg are also called thiarmal concept latticeind theobject-oriented concept lattiasf the context A, B, ¢), respectively.
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Theorem 1.3. [4,16] A complete lattice X is isomorphic My if, and only if, there exist §/-dense map f A — X
and a/\-dense map gB — X such that

Yae A YbeB: apb < f(a) < g(b)in X.
The following diagrams explain how one derives the abovertna fron{ 1.1 anf 1] 2:

¥
2A 4“_ (zB)Op 2A 4“ (ZB)op

b1
A | / B A I=Lany f /Rarhg B
Mg X

Explicitly, for the “only if” part of Theoreni 113 it sfices to consideK = Mg; one has &/-dense mag-}a :
A — 2" sending eaclx € A to the singleton sgix} € A whose composition with : 24 —s Mg from Theoreni T]1
gives the require§/-dense mag : A — My, and the/\-dense mag : B — Mg is constructed dually. Conversely,
for the “if” part the \/-dense map$ : A — X, {-}]a : A — 2" and \-dense mapg : B — X, {-}g : B — (28)°°
fulfill the requirements of Theorem1.2; indeed, one mayhferishow that théeft Kan extension | 24 — X of f
alongk [16] and theright Kan extension t (28)°° — X of g alongh (see Subsectidn 4.2) satisfy the requirements of
Theoreni L.

As for the representation dfy, since it is well known thakKe = M(=¢) [5, 132], where-¢ : B -+ Ais the
complemenof the relationy : A —-+ B given by

Ybe B,Yae A: b(-p)a = -(agb),
the following theorem easily follows from1.3:

Theorem 1.4. A complete lattice X is isomorphic Ky if, and only if, there exist §/-dense map f B— X and a
/\-dense map g A — X such that

Ybe B, Yae A: b(-p)a < f(b) <g(a)in X

As quantalesare usually chosen as truth tables in fuzzy set theory, 6atminections have been extended to the
guantale-valued setting![1, 7] as well as the theories of BG4 RST[2] 3,18, 14, 19], and all the representation
theorems stated above can be established in this gendmgis&ince Galois connections between quantale-valued
ordered sets are precisely adjoint functors between gigaataiched categories, in fact, we will set up these thmgre
in an even more general framework of adjoint functors betwesgegories enriched in a smgliantaloidQ.

Quantaloids|[23] may be thought of as quantales with mangaij indeed, leSup denote the symmetric
monoidal closed category of complete lattices and supepvexy maps, then a quantale is a monoidsiup while
a quantaloid is a category enriched3up. The theory of quantaloid-enriched categories@scategoriedor short),
as an extension of quantale-enriched categdries [11, 13045 been developed in [9./123) 27| 28]; the survey paper
[3(] is particularly recommended as an overview of this tigdor the readership of fuzzy logicians and fuzzy set
theorists.

We recall the basics of quantaloid-enriched categorieemi®@[2 and present Kan extensions and (co)d€hse
functors as our key tools in Sectibh 4. As the general formtearem§T11 arfld 1.2, Sectidis 3 Bhd 5 are respectively
devoted to the following main results of this paper:

e The necessary and fficient condition of aQ-category representing the fixed points of a pair of adj@nt
functors is obtained (TheoresB.3).

e The necessary andfficient condition of a complet@-category representing the fixed points of a pair of adjoint
Q-functors between completg-categories is formulated through dense and codéxfimctors (Theorem 5l 1).
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The applications of the general representation theorer®€i and RST are discussed in Sectidn 6. Note that
distributors betweer@-categories (0Q-distributorsfor short) generalize relations between sets in the sergeth
Q-distributor may be thought of as a multi-typed and multiveal relation which respects tligcategorical structures
in its domain and codomain. Thu@-distributors may be considered emulti-typed and multi-valued contexipon
which a general theory of FCA and RST can be established2ge&Ection 4] for instance).

Explicitly, each Q-distributory : A —==+ B induces two pairs of adjoin@-functors between the (co)presheaf
Q-categories of\ andB, i.e.,

o1 1¢' :P'B— PA and ¢ 4¢.:PA— PB,

called respectively thisbell adjunctiorandKan adjunctior{2€] induced byp, whose fixed points constitute complete
Q-categorieMp and K, respectively. As our notations already suggest, Isbgliraions and Kan adjunctions
induced byQ-distributors present th@-categorical version of the Galois connectidng (1.i) in F&# RST. So, for
a Q-distributory : A -+ B, My andKy¢ may be respectively viewed as “concept lattices” of the riyied and
multi-valued context4, B, ¢) in FCA and RST.

Although it is straightforward to extend Theorem]1.3 to @wersion (see Theorem 6.5), the validity of Theorem
[L.4 relies heavily on the fact thaf as a Boolean algebra, satisfies the law of double negatioichvguarantees the
existence of the complement. For a quantaloid?, the existence ofp requires@ to be aGirard quantaloid[22]

(an extension o6Girard quantaleq21,/33]). In fact, it is impossible to extend TheorEm] 1.4dity to theQ-version
without assuming being Girard: as Lai-Zhang revealed in the case th#& a commutative integral quamﬁl(csee
[14, Proposition 5.5]), in general a coder@dunctorA — Ky may not even exist! This observation can be extended
to a quantaloid® with some mild assumptions (Proposition 8.10), which rés/ézat even the existence of codense
Q-functorsA — PA would requireQ to be Girard.

Hence, for a general quantala® in order to apply Theorem 8.1 #p, one needs to find a non-trivial coden@e
subcategory oP A which would unavoidably have a larger size thanTo this end, we construct@-subcategory of
PA consisting of all the possiblelative pseudo-complements of representable copresseai. Then, by defining
the O-distributorA” : A —e+ A as the codomain restriction of the graph of the Yoneda eribgdd,); : A —e= PA,
one has theelative pseudo-complement

g =A S
of any Q-distributory : A —e— B with respect taA”, through which the precise condition of a compl&eategory
representingly is obtained (Theorem 6.114). Indeed, we prove

Ko = Mg¢” (2.ii)

in the proof of 6. 14, which represents the “concept latticiany multi-typed and multi-valued context in RST as the
“concept lattice” of the relative pseudo-complement ofghen context in FCA. Furthermore, the identity {1.ii) can
be established on the functorial level as Proposifion|6e26als.

Finally, Theoreni 73 is presented in Secfidn 7 as an elemergpresentation theorem of fixed points of adjoint
Q-functors in terms of order-theoretic notions, i}¢-dense angl\-dense maps. By aid of this theorem one is able to
incorporate Bélohlavek’s representation theorem farcept lattices of quantale-valued contexts in FCA [3, Theor
14(2)] and Popescu'’s representation theorem for those h[RS Proposition 7.3] into our general framework (see
Corollary[7.9 and Remafk7.110). In fact, their results anerded to the quantaloid-enriched version (Theofenis 7.7
and[Z.8) which outline the fierence between the representationMefandKy that has been ignored whehis a
quantale as Corollafy 4.9 shows.

2. Quantaloid-enriched categories

A guantaloid[23] Q is a locally ordered 2-category whose hom-sets are comialitiges such that the composi-
tion o of arrows preserves joins in each variable. The correspgratijoints induced by the compositions

—ou4-,u:9(pr)— 9(q,r),
Vo—4vyN\, —:9(p,r)— 9(p,q)

2An integral quantale is a unital quantale in which the unit is the top elenof the quantale.
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satisfy
VoUW & VSW /U & ULSV\\W

forall Q-arrowsu: p— q,v:q— r,w: p — r, where the operationg, \ are calledeft andright implications
in Q, respectively.

Unless otherwise specified, throughout this pa@etenotes a small quantaloid with a €23 of objects and a set
Q, of arrows. The identityd-arrow ong € Qo will be denoted by 4.

ConsideringQg as a “base” set, @-typed sets a setA equipped with a map| : A — Qg sending eaclt € Ato
itstype|x € Qo. A mapF : A— B betweenO-typed sets isype-preservingf |x| = |[Fx| for all x e A. O-typed sets
and type-preserving maps constitute the slice categetry Q.

A Q-categoryA consists of aQ-typed setAy and hom-arrows\(x,y) € Q(|x,y]) for all x,y € Ag such that
Ly < A(X X) andA(y, 2) o A(x,Y) < A(x,2) for all x,y,z € Ag. A Q-categoryB is a Q-subcategoryf A if Bg € Ag
andB(x,y) = A(x,y) for all x,y € Bo.

EachQ-categoryA admits a natural underlying (pre)order &g given byx < yif [x| = |yl and 1y < A(X,y). A
Q-categoryA is separatedor skeleta) if x =y (i.e.,x < yandy < x) impliesx = yfor all x,y € Ao.

A Q-distributor¢ : A —— B betweenQ-categories is given by a family @-arrows{o(X,y) : [X — [Yl}xeqyeB,
such thaBB(y,y') o ¢(X,y) o A(X,X) < ¢(X,y) forall x,X' € Ag, Y,y € Bo. With the pointwise local order inherited
from Q, O-categories an@-distributors constitute a (large) quantal@dDist in which

Yop:A-C, Wop)(x2=\/u(y.2oexy)

yeBo
£/ 0B C (€000 = /\ &2/ e(xy).
XeAg
UNEA= B, WNHXY) =\ vy.2 \ExD)
zeCo

for Q-distributorsy : A —+ B, ¢ : B —+ C, ¢ : A —= C; the identityQ-distributor onA is given by hom-arrows
A A - A

A O-functor F: A — B betweenQ-categories is a type-preserving map Ay — Bg with A(X, y) < B(Fx, Fy)
for all x,y € Ag. With the pointwise (pre)order a@-functors given by

F<G:A—B & V¥xelAp: FX<GX & V¥xeAp: Ly <B(Fx GX),
Q-categories an@-functors constitute a 2-categogrCat.

Remark 2.1. The dual of a Q-categoryA is a Q%-categorfi, given byAg® = Ag and A%(x,y) = A(y, x) for all
X,y € Ag. EachQ-functorF : A — B becomes a°P-functor F°P : A°® — B°P with the same mapping on
objects but F’)°P < F°P whenevel- < F’ : A — B. EachQ-distributory : A —=+ B corresponds bijectively to a
Q°P-distributore® : B°P —e— AP with ¢°P(y, X) = ¢(x,y) for all x € Ag, y € Bo. Therefore, as already noted in [27],
one has a 2-isomorphism

(-)°P: O-Cat = (Q°P-Cat)® (2.0)

and an isomorphism of quantaloids
(-)°P: O-Dist = (Q°P-Dist)°P. (2.ii)

EachQ-functorF : A — B induces a pair of-distributors given by
FoiA - B, Fyuxy)=B(Fxy) and F':B-e>A, Fiy,x) =B(y,Fx),

called respectively thgraphand cographof F, which form an adjunctioF, + F* in the 2-categonQ-Digt, i.e.,
A < F%oF,andF; o F < B. Itis easy to see

F<G:A—B e G,<F:A-B e F'<G:B-A, (2.iii)

3The terminologies adopted here are not exactly the sameths ieferences [27. 28.129.]30]: O@-categories are exacti@°P-categories in
the sense of Stubbe.



and therefore
(-)y : ©-Cat— (Q-Dist)®, (-)": Q-Cat — (Q-Dist)*® (2.iv)
are both 2-functors, where “co” refers to reversing orddram-sets.
It is straightforward to verify the following propositions

Proposition 2.2. For any Q-distributory : A =+ B andQ-functors F: X — A, G: Y — B,
¢(F-,G-) =G opoFy =G, \, (¢ ./ F?).

Proposition 2.3. [26] Let F: A — B be aQ-functor.

(1) A = F%o Fyif, and only if, F isfully faithful in the sense that(x,y) = B(Fx, Fy) for all x,y € Ao.
(2) If F is essentially surjectivin the sense that there existsx\o with Fx = y for all y € By, then F, o F% = B.

Proposition 2.4. [9] The following identities hold for alR-functors F andQ-distributorse, ¥ whenever the opera-
tions make sense:

(1)¢pth=<p,/Fu,Fho¢p=Fh\,cp.

2) Faop) Nv=¢\ (Fioy),(WoFy) /o=y ./ (¢oFH.
(B) b\ oFy=p N\ (WoFy), Fio( ./ ¢)=(Filoy) ./ ¢
(4) Flo(eN\w) =(eoF) \ v, (0 /@) o Fy=y / (Fioy).

A QO-functorF : A — B is anequivalenceresp. isomorphism of Q-categories if there exists @-functor
G:B — Awith GF = 1, andFG = 15 (resp.GF = 1, andFG = 1), where 1, and % respectively denote the
identity Q-functors onA andB. In this case, we writéd. ~ B (resp. A = B) to denote that\ andB are equivalent
(resp. isomorphicR-categories.

Proposition 2.5. [27] A O-functor is an equivalence (resp. isomorphismXbtategories if, and only if, it is fully
faithful and essentially surjective (resp. fully faithéuid bijective).

A pair of Q-functorsF : A — B, G: B — A forms an adjunctiofr 1 G: B — A in Q-Cat if 1, < GF and
FG < 1. Itis easy to obtain the following equivalent charactdiaas of adjointQ-functors:

Proposition 2.6. [27] LetF: A — B, G: B — A be a pair of@-functors. Then

F4GinQ-Cat & F, =G’ < G, 4F,in 9-Di¢ — G"+F%in Q-Dis.

3. Fixed pointsof adjoint Q-functorsand their representation

For aQ-functorF : A — A, an objectx € Ay is afixed pointof F if Fx = x, and we denote bfix(F) the
Q-subcategory of\ consisting of fixed points of.
A Q-closure operatof2€] on aQ-categoryA is a Q-functorF : A — A with 1, < F andFF = F.

Proposition 3.1. [2€] For eachQ-closure operator F: A — A, the inclusionQ-functor Fix(F) < A is right
adjoint to the codomain restriction FA — Fix(F).

Remark 3.2. In the language of category theorygaclosure operatdf : A — A is aQ-monadon A (note that the
“ Q-natural transformation” betweag-functors is simply given by the local order ®-Cat), and objects irFix(F)
are precisely Eilenberg-Moore algebras of tBisnonad.

Dually, Q-interior operatorscorrespond bijectively t@°P-closure operators under the isomorphigni (2.i) in Re-
mark[2.1; that is@Q-functorsF : A — A with F < 1, andFF = F. The dual of Proposition 3.1 states precisely
that for eachQ-interior operatolF : A — A, the inclusionQ-functorFix(F) —— A is left adjoint to the codomain
restrictionF : A — Fix(F).



Each adjunctiors 4 T : D — C in Q-Cat gives rise to aQ-closure operatof S : C — C and aQ-interior
operatoiST: D — I. Itis easy to see that the restrictionsandT,

S:Fix(TS) — Fix(ST) and T :Fix(ST) — Fix(TS),

establish an equivalence gfcategories, thus objects in bd&ix(T S) andFix(S T) will be referred to as fixed points
of the adjoint@-functorsS 4 T. The following theorem describes tho@ecategories which represent the fixed points
of S4T:

Theorem 3.3. Let S4 T : D — C be an adjunction irQ-Cat. A Q-categoryX is equivalent td=ix(T S) if, and only
if, there exist essentially surjecti@functors L: C — X and R: D — Xwith S, = Rio L.

S S,=T?

C L D C D
T
X X

Proof. Necessity. It suffices to prove the cas€ = Fix(TS). LetL : C — Fix(TS) andR : D — Fix(TS) be the
codomain restriction of S : C — C andT : D — C, respectively, theh andR are clearly essentially surjective
and satisfy

S, =(STY, (S4T)
=T'o(TS), (S + T and Proposition 2]6)
=C(TS-,T-) (Propositioi Z.R)
= Fix(TS)(L—, R-)
=RioL, (Propositioi 2.R)

Sufficiency. We show that the restrictiol : Fix(TS) — X of L is an equivalence af-categories.
First,LT = RandRS = L. Indeed, by Propositions 2.3(2) one has

R=Rol,olf=S0Ll'=T o L"=(LT)" and Ly=RoRol,=R,0S,=(RS),

Thus the conclusion follows frori (Zliii).
Second]’ is fully faithful since for allc, ¢’ € Fix(T S),

X(L'c,L'¢’) = X(Lc, LTS ¢) (¢ =TS¢)
= X(Lc,RS¢) (LT =R
=S,(c, S¢) (Sy = Rol, =X(L-,R-))
=T%c, S¢) (Th=Sy)
=C(c, TS¢)
= Fix(TS)(c, c). (¢ =TS¢)

Finally, L” is essentially surjective since for anyg Co, RS= L andS 4 T imply
Lc=z=RSc=RSTSe& L(TSQ=L'(TSq. (3.0)
Hence the essential surjectivity bf.: C — X implies that ofL’, completing the proof. O

From [3]) in the above proof one sees thatup to isomorphism, is the composition of an equivalehte
Fix(TS) — X and a left adjoinfTS : C — Fix(TS) (see Proposition 3.1), thusitself must be a left adjoint in
Q-Cat. Similarly one may deduce th&tis a right adjoint inQ-Cat:
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Corollary 3.4. TheQ-functors L and R in Theorelm 3.3 are respectively a left adjand a right adjoint inQ-Cat.

The condition given in Theorem 3.3 can be weakened as in tlwviag corollary since thed-functoriality of L
andRis self-contained:

Corollary 35. LetS4 T : D — C be an adjunction irQ-Cat. A Q-categoryX is equivalent tdrix(T S) if, and only
if, there exist essentially surjective type-preservingsia: Co — Xo and R: Dy — Xo with §; = X(L-, R-).

Proof. For allc, ¢’ € Cp, letb € Dy with Rb= Lc¢’ and one has

C(c,c’) < X(Lc,Lc') o C(c,C)

= X(Lc',Rb) o C(c, ) (Rb= Lc")
= C(c,Th) o C(c, ¢) (T% = Sy = X(L-,R-))
<C(c,Th)
= X(Lc, Rb) (TF =Sy = X(L—,R-))
= X(Lc, Lc'), (Rb= Lc")
showing thal is a @-functor, and theQ-functoriality of R follows similarly. O

It is readily seen that Corollafy 3.5 reduces to Thedrerh hém@ = 2. However, in general th@-categories
C andD may be too “large” to compute whethekcategoryX is equivalent tdrix(T S), and one would like to find
Q-categories with smaller size thdhandD which are able to generate the requi@dunctorsL : C — X and
R: D — X. A natural way is through dense and codeg@s&inctors introduced in the next section.

4. Weighted (co)limits, Kan extensions and (co)dense Q-functors

4.1. Weighted (co)limits iQ-categories

For eachy € Qo, Let{q} denote the discret@-category with only one objectsuch thatqg| = g and{g}(q, q) = 1.
A presheafwith typeq on aQ-categoryA is a Q-distributory : A —— {q}. Presheaves ah constitute aQ-category
PA with
PA(u,u') =1 /

for all u,u’ € PA. Dually, the Q-categoryP’A of copresheaveen A consists ofQ-distributorsi : {q} e+ A as
objects with typeg and

PTAL ) =2\,
forall 1, 2’ € PTA. Itis easy to se®’A = (PA°P)°P as remarked i 2 1.
Remark 4.1. The underlying order ifPTA is precisely thereverselocal order inQ-Digt; that is,u < A in the
underlying order oPA if and only if 2 < u in Q-Dist. In order to avoid confusion, we make the convention that
the symbok betweenQ-distributors always refer to the local orderdhDist. Moreover, while\/ and A are used as

generic symbols for joins and meets, we wfifand[ ] instead for the underlying joins and meet®in to eliminate
ambiguity.

Given aQ-categoryA, the Yoneda embedding, : A — PA sends eaclk € Ag to A(—,X) € PA, and the
co-Yoneda embedding, : A — P'A sends each € A to A(x,—) € PTA. Both Y, andY] are fully faithful
Q-functors as the following Yoneda lemma implies:

Lemma 4.2 (Yoneda) [27] Let A be aQ-category angi € PA, 1 € PTA. Then

=PANY A= 1) = (Ya)y(— ), A=PTAQY]-) = (YDA, -).



Given aQ-functorF : X — A, thecolimit of F weighted by a presheaf € PX is an object colimF € Ag of
type|u| such that

A(colim,F,-) =F, / . (4.0
In particular, sup u := colim, 14, when it exists, is called tr@upremunof u € PA, which satisfies
A(supyu, -) = A/ p. (4.1i)

Dually, thelimit of F : X — A weighted by a copresheafe P'X is defined as limF = colim,e F°P; that is, an
object limy F € A of type|4| such that
A(=,limF) = A\, F& (4.iii)

Theinfimumof A € PTA, when it exists, is given by inf := lim, 1,.
Proposition 4.3. [27] For all Q-functors F: X — A andu € PX, 1 € P'X,
colim,F =sup,F~u and lim,F =infaF™4,
where theQ-functors F> : PX — PA and F” : P'X —s PTA are given by
FPu=poF% and F"A=F,0A

A O-categoryA is completef it satisfies one of the equivalent conditions in the follogitheorem. In particular,
PA andPTA are both separated compla@ecategories.

Theorem 4.4. [27] For any Q-categoryA, the following conditions are equivalent:

(i) A admits all weighted colimits.
(ii) A admits all weighted limits.
(iii) Everyu € PA has a supremum.
(iv) Everya € PTA has an infimum.
(V) Ya has a left adjoinsup, : PA — A in Q-Cat.
(vi) YR has a right adjoininf, : PTA — A in Q-Cat.

It is well known that fixed points of &-closure operator o@-interior operator on a complete-category consti-
tute a complet@-category:

Proposition 4.5. [2€] Let F: A — A be aQ-closure operator (resp@-interior operator) on a complet@-category
A. ThenFix(F) is also a complet&@-category.

4.2. Kan extensions @-functors

Given Q-functorsk : A — B andF : A — C, the (pointwise)eft Kan extensiof27] of F alongK, when it
exists, is given by
Lank F:B— C, (Lark F)b= colimk,pnF. (4.iv)

Remark 4.6. The (non-pointwise) left Kan extension &f : A — C alongK : A — B, when it exists, is a
O-functor Lark F : B — C with
Lank F <S < F <SK (4.v)

for all Q-functorsS : B — C. Itis easy to see that pointwise left Kan extensions definefhyv) always satisfy
(4.\), but not vice versa. All Kan extensions consideredhia paper are pointwise.

Dually, the (pointwise}ight Kan extensiomf F alongK is given by
Rark F = (Larnko F®P)®: B — C, (Rark F)b = limy:¢, F. (4.vi)

From Equationd(4.i) and(4liii) one soon has the followihgmcterization of Kan extensions:
9



Proposition 4.7. G : B — C is the left (resp. right) Kan extension of: A — C along K: A — B if, and only if,
Gy=Fy, ./ Ky, (resp. G = K¥ \, FY).
From Proposition 4]7 one may derive several useful formégarding to Kan extensions:

Proposition 4.8. (1) For any Q-functor F: A — B, F = Lamy, F = Ran, F.
(2) For Q-functorsF: A —-C,FF:A—C',G:B—C,G:B—C,K:A—XH:B—Y,

(Rary G)* o (Lank F), = (Rany G') o (Lank F'),
whenever Go Fy = G" o F/ andLank F, Lank F’, Rany G andRan, G’ exist.
Proof. (1) is trivial. For (2), note that

(Rary G)? o (Lank F), = (H7\, G* o (Lark F), (Propositioni . 4.7)

= H' N\, (G% o (Lark F)y) (Propositiod Z}4(3))

=HY N\, (G o (Fy ./ Ky)) (Proposition 4.7)

= HI N\ (GFo Fy)  Ky), (Propositioi ZK(3))
and similarly one has (RarG')" o (Lanc F'), = H* N\, ((G" o F{) ./ K;). ThusG* o Fy = G" o F/ implies
(Rany G)? o (Lark F), = (Rany G')" o (Lark F’),. O

The identity in Proposition 418(2) may be translated thfoRgopositiod 22 a€(F-,G-) = C'(F'—,G’'-) im-
plying C((Lark F)—, (Rany G)-) = C’((Lank F’)—, (Rany G’)-) as the following diagram illustrates:

C

Lark F Ramy G

Cl
If Lank F : B — C (resp. Rar F : B — C) exists, aQ-functorH : C — D is said topreservelLark F (resp.
Rarx F) if Lank HF (resp. Rap HF) exists and is isomorphic td Lang F (resp.H Rark F). Lark F (resp. Rap F)
is absoluteif it is preserved by an®-functor with domainC. The following characterization of adjoir@-functors
appeared in[27] in terms of non-pointwise Kan extensiond,leere we strengthen it to the pointwise version:
Proposition 4.9. Let F: A — B be aQ-functor. The following statements are equivalent:
(i) Fisaleft (resp. right) adjointinQ-Cat.

(ii) Lang 1, (resp.Rar: 1,) exists and is absolute.

(i) Lang 1, (resp.Ran: 1,) exists and is preserved by F.

In this caselan: 1, : B — A (resp.Ran: 1, : B — A) is the right (resp. left) adjoint of F.

Proof. (i) = (ii): If F 4 G, for the existence of Lanl, it suffices to provés = Lang 1,. Indeed, from Propositions
[2.4(1) and 2J6 one has

G =A/G =),/ Fs

and thus Proposition 4.7 guarantégs= Lans 1,. Now letH : A — C be anyQ-functor, by applying again
Proposition§ 2]4(1) arid 2.6 one has

(HG)h = HhoGh = Hu ,/ Gtl = Hh ,/ Fh’
10



showing thaHG = Lang H.

(i) = (iii): Trivial.

(i) = (i): Let G = Lang 14, thenFG = Lang F. By Propositio 4]7 one has

G,=A/F, and F,/ F,=(FG),=F,0G,=F, /G,
where the last equality follows from Proposition]2.4(1 Yoltows that
F,.<G,\NA=G<(F,,/ F) \F,=F,

where the first equality follows from PropositibnR.4(1).UslfF, = G* and by Proposition 216 one h&s- G. O

The following characterizations of adjoi@-functors will be useful in the sequel:

Proposition 4.10. [27] Let F: A — B be aQ-functor. If F is a left (resp. right) adjoint i@-Cat, then

(1) F is cocontinuougresp. continuou in the sense that Eolim, G = colim, FG (resp. Flim; G = lim, FG) for
all 9-functors G: X — A andu € PX (resp.q € PTX).

(2) F is sup-preservingresp.inf-preserving in the sense that Bup, = sup, F~ (resp. Finf, = infg F™).

(3) F preserves left (resp. right) Kan extensions of &@unctor with codomair\.

(4) Fis aleft (resp. right) adjoint between the underlying artksets of\, B.

Moreover, ifA is complete, then the following statements are equivalent:

(i) Fisaleft (resp. right) adjoint inQ-Cat.
(i) F is cocontinuous (resp. continuous).
(i) F is suppreserving (respinf-preserving).
(iv) F preserves left (resp. right) Kan extensions.

4.3. (Co)dens®-functors
A QO-functorF : A — B is densg26€] if for any y € By, there existg € PA such thay = colim, F. Dually, F is

codenséf F° is a dense&Q°P-functor; that isy = lim; F for somed € PTA for anyy € By.
A QO-subcategor of A is densgresp.codensgif the inclusionQ-functorJ : B—— A is dense (resp. codense).

Example 4.11. For anyQ-categoryA, the Yoneda embedding, : A — PA is dense sincg = colim, Y for all
u € PA. Dually, the co-Yoneda embeddir@\ : A — PTA is codense.

We have the following equivalent characterizations of éearsd codens@-functors:

Proposition 4.12. Let F: A — B be aQ-functor. The following statements are equivalent:

(i) Fisdense (resp. codense).
(i) F issup-densgresp.inf-densg in the sense that there exigtss PA (resp.1 € PTA) with y = sup, F~u (resp.
y = infg F* ) for all y € Bo.
(iii) supg F~ : PA — B (resp.infg F~ : PTA — B) is an essentially surjectiv@-functor.
(iv) Im(F) = {Fx| x € Ao} is a dense (resp. codens@)subcategory oB.
(v) Fy ./ Fy =B (resp. B\, Fi =B).
(vi) 1p = Lans F (resp.1p = Rarg F).

Proof. (i) < (ii): Follows immediately from Propositidn4.3.
(i) = (iii): Trivial.
(iii) = (iv): Let G : A — Im(F) be the codomain restriction & andJ : Im(F) —— B the inclusionQ-functor,
thenF = JG, and thus the essential surjectivity of gup” follows from that of sup J7G~ = sup; F.
(iv) = (iii): Using the notations above, and one has the essemtipcivity of sug, J~ : P(Im(F)) — B from
(i) < (iii). Define aQ-functor
G™:P(Im(F)) — PA, A1m— 120G,
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then the surjectivity o6 impliesG~G~ = 1pm(r)) SiNCEG~G~ A = 10G;0G* = Aforall A € P(Im(F)) by Proposition
[23(2). Hence, the essential surjectivity of giipp” follows from that of sug F~G* = sup; J”G~ G = sup; J.
(i) = (v): One may fingu € PA such thay = colim, F for anyy € By. Then

IB(y7 _) < Fh I/ Fh(_’ y)
< (Fy v/ Fy(=y) o B(y,Y)

= (Fy v Fy(=.¥) o (Fo(=.Y) v 1) (Equation [4Ji))
<k Ju
= B(y. -), (Equation[[li))

and consequentli(y, -) = F; ./ Fy(=.y) = (Fy .~ Fy)(y. -).
(v) = (i): Fy ./ Fy = Bimmediately impliesB(y, -) = Fy ./ Fy(-,Y); thatis,y = colimg,_) F for anyy € Bo.
(v) & (vi): Follows immediately from Propositidn4.7. O

Corollary 4.13. (1) Every essentially surjectiv@-functor is both dense and codense.
(2) If O-functors F: A — B and G: B — C are both dense (resp. codense) and G is a left (resp. rightjistdn
Q-Cat, then GF: A — C is dense (resp. codense).

Proof. (1) is easy. For (2), note th&, = H%if G 4 H in Q-Cat, and thus

C=G, /Gy (Proposition.4.12(3))
=Gyo (B Gy (G, = H% and Proposition 214(3))
=Gyo((Fy v/ Fy) /Gy (Propositiof Z.12(3))
=Gy o (Fy v (GF)y)
= (GF)y v (GF);. (G, = H% and Propositiof 214(3))
showing thatGF is dense. O

5. Representation theorem in terms of (co)dense Q-functors

Now we are ready to present the second main result of thisrpdp® 4 T : D — C is an adjunction between
completeQ-categories, Propositian 4.5 guarantees the completehEsgT S) ~ Fix(S T). In this case, the following
representation theorem can be established through dedsmdanse&-functors:

Theorem 5.1. LetS4 T : D — C be an adjunction between compl&decategories. Then a compleg:-category
X is equivalent taFix(T S) if, and only if, there exist dens@-functors F: A — X, K : A — C and codense
O-functors G: B — X, H: B — Dwith Hi0 S, 0 Ky = Gfo Fy.

S S, =Tt
C._1 D C—2—D
y ' N ;/ \i
B A

X X
Proof. Necessity. One may find essentially surjecti@-functorsL : C — X andR: D — Xwith S, = Rio L,
by Theoreni.313. Then the dengefunctorsL : C — X, 1¢ : C — C and the codens@-functorsR : D — X,
1p : D — D clearly satisfyRi o L, = S, = 1% 0 S, 0 (Lc),.

Sufficiency. The completeness 6f guarantees the existence of the Kan extensions (see théidefirin (4.1V)

and [4.\))

A B

L=Lak F:C—X and R:=RalyG:D — X.
12



S
C__ 1 'D
/ T (\
A LLanKF\ /Ram G B (5.0)
\ /
X

We show that. andR satisfy the conditions in Theordm 8.3.
First,LK = F andRH = G; that is,L. andR are actually extensions &f andG, respectively. For this, note that

Fy = (Rarns G)* o (Lamy, F), (Proposition§418(1) ad 41 2(vi))
= (Rars H)? o (Lam, SK), (H% 0 S, o K, = G* o F, and Proposition418(2))
= (Rars H)* o (SK), (Proposition§418(1))
= (Rarg H)" o (SLank K); o K, (Proposition Z.I2(vi))
= (Rars H) o (Lank SK); o K, (Propositio 2.10(3))
= (Rars G)* o (Lark F); o K, (H%0 S, 0 K, = G* o F, and Propositioi418(2))
= Ly o K, (Propositiof T2 (vi))

and thus the conclusion follows (sée (2.iii)). Similarlyeomay proveRH = G.
Second[- andRare essentially surjective. To this end, note ®at T% implies

GioF,=H'0S,0K, = Hio Tho K, = (TH)? 0 K, (5.ii)
and consequently
L, = (Rars G)* o (Lark F), (Proposition 4.12(vi))
= (Rars TH)? o (Lank K), (Equation[(5.1i) and Propositidn 4.8(2))
= (Rars TH)", (Propositiof Z.12(vi))

where the existence of Ra@if H is guaranteed by the completenesstof ThusL 4 Rars TH in Q-Cat and, as
a left adjoint,L is cocontinuous (see Proposition 4.10(1)). Thereforeaforx € Xo one may findu € PA with
x = colim, F, and consequently coligi € C, satisfies

L(colim,K) = colim,LK = colim,F = x,

where the second isomorphism follows frard = F. Hencel is essentially surjective. Similarly one may obtain the
essential surjectivity dR by showing thaR is a right adjoint inQ-Cat (with Lane S Kas its left adjoint) and applying
RH = G.

Finally, S, = Rf o Ly,. Indeed,

S; = (SLark K), (Proposition 4.T2(vi))
= (Lark SK); (Propositioi 4.710(3))
= (Rany H)" o (Lark SK), (Propositior . 4.12(vi))
= (Rany G)* o (Lark F), (H*0 S, o K, = G" o F, and Proposition 418(2))
=Rioly,
completing the proof. O

Theoreni 5.1l points a way towards a “good” representatidfixdT S) ~ Fix(S T) for a specific adjunctiol® -
T : D — C between complet@-categories; that is, looking for densgfunctors intoC (or equivalently, dense
Q-subcategories df) and codens@-functors intaD (or equivalently, codens@-subcategories db). The power of
this theorem will be revealed in the next section for the espntations of concept lattices.
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6. Fixed points of 1sbell adjunctionsand Kan adjunctions

In this section we demonstrate how the general representtiteoremd (313 arid %.1) give rise to representation
theorems of concept lattices in FCA and RST in the generalitiie Q-version.

6.1. Isbell adjunctions and Kan adjunctions
EachQ-distributory : A —e+ B induces ansbell adjunctionp; + ¢! : P'B — PA in Q-Cat [2€] given by

@1 PA—P'B, um o,/ u
O PTB—PA, A AN ¢
and aKan adjunctiony* 4 ¢, : PA — PB defined as

" :PB— PA, A dog,
¢ :PA—PB, pu—u,/o.

SinceP™A = (PA°P)P, there is also @ual Kan adjunctionp; + ¢' with

@i = ((¢).)%:PTB — PTA, 19\ 4,

¢ = ((*))P:PTA—P'B, u-pou
which corresponds to the Kan adjunctias®{)* 4 (¢°P). : PB°® — PA°P in Q°P-Cat under the isomorphisri(2.i) in
Remark2.1.

Remark 6.1. As left and right Kan extensions @-functors introduced in Subsectibn 4.2 are exalgtfiyandright
extension®f 1-cells [12] in the 2-categorg-Cat, Kan adjunctions induced b@-distributors in fact generaliziéght
extension®f 1-cells in the 2-categor@-Dist. To see this, note that for ang-distributory : A —= B andq € Qp,

the underlying adjoin2-functors of the Kan adjunctiop* 4 ¢. may be described as the monotone map “composing
with ¢”

admitting a right adjoint
¢, : Q-Dist(A, {q}) — Q-Dist(B, {q}),

which exactly says that for any preshgafA —— {q},
o =p ¢ B> {q}

is the right extension oft alonge. Similarly, dual Kan adjunctions induced g-distributors correspond tteft
extension®f 1-cells inQ-Dist.

Proposition 6.2. [9] (-)* : (Q-Digt)°®®? — QO-Cat and (=) : (Q-Dist)®® — QO-Cat are both 2-functorial, and one
has two pairs of adjoint 2-functors

(-)*+4 (=) : (Q-Digt)®® — O-Cat and (-), 4 (-)": (Q-Dist)® — Q-Cat.
The adjunctions<)* 4 (-)? and ¢), 4 (—)" give rise to isomorphisms
(Q-Cat)*°(A, P'B) = O-Dist(A, B) = Q-Cat(B, PA)
for all Q-categories\, B. We denote by

& B — PA’ ay = ‘;0(_7 y)7 (GI)
P:A—PB, &x=¢(x-) (6.ii)
for the transposes of ea@distributory : A ——+ B.
14



Proposition 6.3. [25,126]Lety : A -+ B be aQ-distributor. Then
(1) ¢ = (Y5)ro @ =@ o (Ya),
(2) = @Y =¢'Y],
(3) ¢=¢'Y5 = ¢"Ve.

By Propositiori4b, the fixed points of the Isbell adjunctign- ¢' and the Kan adjunctiop® - ¢, constitute
completeQ-categories

Mg := Fix(¢'@r) = {u € PA | @'oyu = p})  and Ko := Fix(p.¢") = {1 € PB | ¢.0"1 = A},

where are both separated since sorReandPB.

Example 6.4. For the identityQ-distributorA : A —+ A on aQ-categoryA, MA is the MacNeille completion of
[26], andKA = PA is the free cocompletion of [27].

With the help of Theorenis 3.3 ahd b.1, we arrive at the foltmuiepresentation theorem My as theQ-version
of Theoreni 1.B:

Theorem 6.5. [2€] For any Q-distributor¢ : A ——+ B, a separated complet@-categoryX is isomorphic toMy if,
and only if, there exist a deng&-functor F: A — X and a codens@-functor G: B — X withp = G o Fy.

Proof. Necessity. By Theoren3.B there exist surjecti@-functorsL : PA — X andR : P'B — X with
(¢1); = Rio L. SinceY, : A — PA is dense (ExampleZ1L1),is dense (Corollary4:13(1)) andis a left adjoint

in Q-Cat (Corollary[3.4), one deduces the densitytofy : A — X by Corollary[4.18(2). Similarly one can see that
RY} : B — X is codense. Finally, one has

0= (Y) ogy = (YR o (prYa); = (YE) o Rio Ly o (Ya), = (RYE) o (LYa)

by applying the formulas in Proposition 6.3.
Sufficiency. Now we have dens@-functorsY, : A — PA,F : A — X and codens@-functorsY% B —
P'B, G : B — X with

G o Fy =9 = (Yp) o8, = (Y5) o (prYa)s = (YE) o (o1)s o (Ya)y
by Propositiofi 613, thus the conditions in Theofeni 5.1 atiefsd, completing the proof. O

The following diagrams respectively illustrate the “onfy part and the “if” part of Theoreri 615 (cf. Diagram
(5.0 in the proof of Theorem 5.1):

("2
PA_ 1T —> PTIB PAT 1 'P'B

(6.iii)

L= w& / L=Lany, F R:RanY%
R) ‘% \ G
X

Example 6.6. For the identityQ-distributorA : A —+ A on aQ-categoryA, MA is the MacNeille completion of
(see Example&l4). In this case, the codomain restridfion A — MA of the Yoneda embedding is dense, and the
compositionAlYX : A — PTA — MA is codense. It is not ficult to verify A = (Ale&)u o (Ya)y, fulfilling the
conditions in Theorefm &.5.

However, it is not straightforward to derive the countetprTheoren( 6.5 folky as it is not easy to find a
non-trivial codense&2-functor intoPA (or equivalently, a non-trivial codensg-subcategory oPA) as required in
TheoreniG.lL. This will be the topic of the next subsection.
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6.2. Towards codengg-subcategories of preshegf-categories
In a quantaloid?, a family of Q-arrows{dg : @ — Qlqeq, is acyclic family(resp.dualizing family if

do S u=uN\,dq (resp.flp./ u)\dp=u=dq. (U\ dg)) (6.iv)

for all @-arrowsu : p — @. A Girard quantaloid[22] is a quantaloid? equipped with a cyclic dualizing family of
Q-arrows. In this case, theomplemenof a Q-arrowu : p — g can be defined as

“u=dp S u=uNdy:qg—p,
which clearly satisfiesi—u = u. For eachQ-categoryA,
(=A) (Y. X) = ~A(X.Y)
gives aQ-distributor-A : A —+ A, and it is straightforward to check that
{(~A A —> A}scono-Disy)

is a cyclic dualizing family ofQ-Dist; this gives the “only if” part of the following propositiorAs for the “if” part,
just note thaQ can be fully faithfully embedded i@-Dist:

Proposition 6.7. [22] A small quantaloid? is a Girard quantaloid if, and only ifQ-Dist is a Girard quantaloid.
Hence, with@ being Girard, eacl®-distributory : A —=+ B has acomplement
g ==A/p=p\,B:B > A,
Proposition 6.8. If Q is a small Girard quantaloid, then for an@-categoryA,
-:PA — PTA
is an isomorphism irQ-Cat.
Proof. Since{—A}acob-pig) IS a cyclic dualizing family, one has
PAUAD) =1/ p=(CA L D)N-A) /1= (AL )N (FA L 1) = PTA(p, ~)

for all u, A € PA. Thus- : PA — PTA is a fully faithful Q-functor, and consequently an isomorphisnmdrCat
since it is obviously surjective. O

The combination of Example 411 and Proposifiod 6.8 immtetligives a codens@-functor

Yi
Y] = (A—5PTA—"5PA) (6.v)
for any Q-categoryA when@ is Girard, and the representationkop follows easily in this case:

Corollary 6.9. Let Q be a small Girard quantaloid. Then for arg-distributor¢ : A —— B, a separated complete
Q-categoryX is isomorphic tKg if, and only if, there exist a dengg-functor F: B — X and a codens@-functor
G:A — Xwith-¢ =G o F,.

Proof. With Theoren{ 6.5 at hand, it flices to provekKe = M(—¢). Indeed, sincd-A}acono-pist) iS @ dualizing
family,
P A= (A /(¢ D)\ -A) ¢

=(=A /(o)) N (A L/ ¢)

=(CFA V9 DN (A LS 9)

=(-¢/ )\ p

= (=)' (—g)1 2
for all 1 € PB. Hencep.¢* = (—¢)‘(~¢); : PB — PB, and the conclusion follows. O
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Although the above proofis indirect, it is notficult to get the following diagrams (cf. the diagrams (b higlow
Theoreni 6.6) which explain the role of the code@séunctor [6.V):

m———ﬁp

X / YT\
\ / Lam R= Ran A (6-Vi)
R‘ G=R~Y

However, Corollarf 619 does not make sense for a generatajoihQ. In fact, the following proposition blocks
the way of finding a codeng@-functorA — PA for any Q-categoryA without assuming being Girard:

Proposition 6.10. Let Q be a small quantaloid in whicty = T4 : g — ¢ for all g € Qg and{Lg}qeg, is a cyclic
family, whereT 4 and_L4 denote the top and bottom arrows@q, g), respectively. Then the following statements are
equivalent:

(i) {Lglgeq, is a dualizing family, henc@ is a Girard quantaloid.
(i) There exists a codeng2functor F: A — PA for any O-categoryA.

Proof. (i) = (ii): =Y} : A — PA is the required codens@-functor (seel{(Glv)).

(i) = (i): For eachq € Qg, objects inP{q} are exactlyQ-arrows with domairg. Suppose there exists a codense
Q-functorF : {q) — P{q} targeting atw : q — ¢, thenF% € PP{q} satisfiesFi(u) = w ./ u for all u € P{q}, and
consequently

ai(v, u) = FA(u) \, Ff(v) (Propositioi Z.12(v))
=W,/ u) N (W V)
=W/ U)W v
= P{a}(v, (W ./ u) \y w)

for all v e P{g}, which impliesu = (w .,/ u) \, w. In particular, since d= T, lettingu = Ly and one has
W=1g\ W< (W, Lg) \W= g,

which exactly means/ = 14. Henceu = (Lq ./ U) \, Lq, and the arbitrariness af indicates tha{_Lg}qeo, is @
dualizing family, completing the proof. O

A family of quantaloids that satisfy the hypotheses in Psifan[6.10 is given below:
Example6.11. For any framel(, A, —, 0, 1), one may construct a quantaldid. [10,/20, 311] with the following data:

e objects inDL are the elements df;

DL(p,q) ={ue L :u< pAaqg} with inherited order froni;

the composition oDL-arrowsu € DL(p, ), v € DL(q, r) is given byvou = v A U;

the implications ofDL-arrows are given by
W,/ U=gArA(u—-w and vN\NW=pAQgA((V—o W)

forallu e DL(p,q),ve DL(q.r), we DL(p,r);

the identityDL-arrow inDL(q, q) is q itself.
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It is straightforward to check th&0 : g — q}qeL is a cyclic family inDL, but it is a dualizing family irDL if and
only if L is a Boolean algebra.

So, it is unavoidable that for a non-Girard quantal@ida codens@-subcategory of the preshe@fcategoryP A
would have a larger size thah If we look again at the coden@-functorﬁY;‘;x A — PAin (&M) whenQ is
Girard, we will see that it actually generates a codapsmibcategory o A with objects

{uePA|u=-Ya=dy . Aa -)for someae Ag); (6.vii)

that is, presheaves ah which arecomplements of representable copresheaves. For a general quantaloi@,
although the complements @gf-distributors may not existi_(6.Vii) suggests us to corgta-subcategory of PA
consisting of all the possiblelative pseudo-complements of representable copresisea\A:

Ag={uePA|u=u, Aa -) for somea e Ag andQ-arrowu : |a) — codu}. (6.viii)

A is certainly a non-triviaQ-subcategory oPA. We will see thatd is a codens@-subcategory oPA (Corollary
[6.15) and, moreover, A-denseQ-subcategory oPA as an immediate consequence of Propositioh 7.5 discussed in
SectiorlY.

6.3. Representation of fixed points of Kan adjunctions
Given aQ-categoryA, the codomain restriction of the graph of the Yoneda embregii,), : A —» PA onA
gives aQ-distributorA” : A —+ A with
A (= 1) = (Ya)y(— 1) = 1 (6.ix)
for all u € Ao, where the second equality follows from the Yoneda lemmae fitlowing identity holds for all
Q-distributorsy : A -+ B:
Proposition 6.12. ¢ = (A" / ¢) \L A”.
Proof. Sincey = (A” / ¢) \, A” if and only if p(—,b) = (A” /" ¢(—, b)) \y A" for all b € By, it suffices to prove
u= (A" u)\, A" foranyu € PA. On one hand,
u(@ / Ala,-) € Ao
forall ae Ag implies
p=ps A
= N\ H@ / A@-)

achg

= A\ (@) u(@) \ u@) / Aa.-)

acho

= A\ W@  u@) \ @@ / A@,-)

acho

= \ (@) v (o A, -) \ (@)  Ala.-))

achg

= A\ (@@ v A@-) v ©)\ @@ A, -))

acho

> N\ W /)N
weko
= N\ W w) )\ A () (Equation[(6.ik))
weko
=(A" /) A
On the other hang; < (A~ /" ) \, A" is trivial. The conclusion thus follows. O
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This proposition indicates that the family” : A —— K}Aeob(g_cat) in Q-Dist satisfies part of the properties of a
dualizing family in a quantaloid (seE_(8.iv)). Thereforemiakes sense to define thedative pseudo-complemeat
any Q-distributory : A —e= B with respect ta\” as

¢ =A /9B - A (6.x)
Itis easy to obtain the following expressions §or
Lemma6.13. Foranyu =u A(a,-) € Ao,

1) ¢ (=) =p ¢=gu,
(2) (= u/ A, -)) =u/ ¢(a -).

With the above preparations, now we are ready to establishollowing representation theorem ki, which
extends Corollarl 619 from a Girard quantaloid to a genewahgaloid:

Theorem 6.14. For any Q-distributory : A -+ B, a separated complet@-categoryX is isomorphic toKy if, and
only if, there exist a dens@-functor F: B — X and a codens@-functor G: A — X with ¢" = G* o F,.

Proof. Similar to the proof of Corollary 619, it sfices to provep.o* = (¢°)'(¢"); : PB — PB, which implies
K¢ = M¢” and the conclusion would follow from Theorém16.5. Indeed,

e’ A= (A" /(")) NA) /g (Propositio 6.12)
=(A"/ (1og)) (A" ¢)
=(A" @/ DN A S y)
=@ DN (Equation[(6.k))
= (@) ena
for all A € PB, as desired. O

SinceKA = PA, Theoreni 6.14 in particular implies the codensityhoih PA:
Corollary 6.15. A is a codens&-subcategory oPA.

The following diagrams illustrate Theordm 6.14 in termshaf tonditions in Theorenis3.3 andl5.1. We remind
the readers to compare with the diagrams{6.vi) under Cosd8.9 whenQ is Girard:

"
PB T PA

"
_—
PB 1 PA
y v '\) / o \
B Ltp’x /ﬂ"* A B L=Lany, F R=Ran G A (6.xi)
Ke X
Remark 6.16. The identityKe = M¢” obtained in the proof of Theorein 6114 shows that the “contzpte” of
any multi-typed and multi-valued context in RST can be repngéed as the “concept lattice” of the relative pseudo-
complement of the given context in FCA. In fact, there arespthivial ways to represent ari§y as a “concept lattice”

in FCA.
First, for any separated complafecategoryA one may easily check

M(A: A -+ A)=ImY, ={Ysa|ae Ag} = A.

In particular Ky is a separated compleg-category and thuky = M(K).
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Second, similar to Proposition 6112 one may seeghai((Ya); .~ ¢) \ (Ya), for any Q-distributory : A —= B,
and consequently one has
Ko =M((Ya)s v ¢)

by performing the same calculations in Theofem6.14, whegg, (. ¢ is in fact the relative pseudo-complement of
¢ with respect toY ).

Therefore, the point of the constructiénin Theoreni6.14 is to find amallest possibleodenseQ-subcategory
of PA. AlthoughA may not be precisely the smallest one (e.g., wlds a Girard quantaloid), it is the best solution
we find for anarbitrary quantaloidQ.

Example 6.17. For the identityQ-distributorA : A —+ A on aQ-categoryA, KA = PA (see Example 6l4). So, we
have the dense Yoneda embeddifig: A — PA and the codense inclusi@-functorJ : A —— PA that satisfy

A"(_“u) =u= PA(YA—,,U) = Ju(_uu) o (YA)h

for all u € PA, where the first two equalities hold by Equatifn {6.ix) anel Yoneda lemma, respectively.
More generally, for any fully faithfu-functorF : A — B one haskF" = PA since

(F).(F) " = (Fy) (F) ' = (Fho Fy) i = A'u = p
for all u € PA, where the first and the third equalities respectively folfoom Propositions 2]4(1) aid 2.3(1). In this
case, the dense Yoneda embedding A — PA and the codens@-functorH := (E% PB & PA) satisfy
(F5 (= 2) = (F").a = PA(Y4— HA) = Hi(=, 2) o (Ya),
for all A € By, where the first two equalities hold by Lemia 6.13(1) and theeda lemma, respectively.

Example 6.18. Let A be acompletely distributivéor equivalentlytotally continuouy Q-category([29]; that is, a
completeQ-category in which sup: PA — A has a left adjoinT : A — PA in Q-Cat. Let6, : A -+ A be the
Q-distributor with transposé& = T, (see[(@li)). Since syp: PA — A is essentially surjective and thus codense
(see Corollar{zZ.13(1)), from Corollaries 6115 and #.13(@¢ immediately knows that the restriction

G:= (ACPA—,p)

of sup, onA is codense. As: A — A is obviously dense, and

o) =p  Oa (Lemmd6.1B(1))
= PA(Ta—, ) (0 = Ta)
= A(-, Gp) (Ta 4sup,)

= G'(=. 1) o (La)y
for all 4 € Ag, one soon deducé®), ~ A from Theoreni 6.14.

6.4. The functoriality of relative pseudo-complements
At the end of this section, we show that the identity
Ko = M¢"
obtained in the proof of Theordm €]14 can be establishedefutictorial level; that is, the process of generating the
“concept lattice” in RST from &-distributory can be decomposed into two functorial steps:

(1) calculating the relative pseudo-complemgnt
(2) generating the “concept lattice” of in FCA.
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First we establish the functoriality of the relative psewdonplement
¢ =Ny

of a Q-distributory with respect ta\”. In fact, Q-distributors can be organized as objects into a cate@eGhu with
Chu transformgcalledinfomorphismsn [2€])

(FG):(p: A —-B)— (y: A" = B)

as morphisms; that ig)-functorsF : A — A’ andG : B’ — B such that the square

is commutative, or equivalently(F—, ) = ¢(-,G-).
For anyQ-functorF : A — A’ andu ,/ A(a, —) € A, hote that

F(u/ AR -)=(us/A@-)/ Fy=u/ (FioA(a-)=u, A'(Fa-) (6.xii)
is an objectind’. Thus E). : PA — PA’ can be restricted as@-functor (F,). : A — A,

Proposition 6.19. (G, (Fy).) : (" : B’ -+ A’) — (¢" : B —+ A) is a Chu transform provided so {§,G) : (¢ :
A—-B)— (y: A =+ B).

Proof. If (F,G) : ¢ —s y is a Chu transform, note that for all= u ,/ A(a, -) € Ay,

¢ (G-.p) =u ./ ¢(a,G-) (Lemmd6.1B(2))
=u ./ y(Fa -) ((F, G) is a Chu transform)
=y (-, u/ A'(Fa,-)) (Lemmd6.1B(2))
=¥ (= (Fy)ap). (Equation[(6.xii))
Thus G, (Fy).) : & — ¢ is a Chu transform. (]

Propositiori 6.19 induces a contravariant functor
(=) : (@-Chu)®® — Q-Chu

that sends eacl-distributor to its relative pseudo-complement with regpge A” and sends each Chu transform
(F,G):¢ —ytoG,(Fy.) ¢y — ¢

It is known in [26] that the assignmengs — Mg andy — Keg are respectively functorial and contravariant
functorial from Q-Chu to the categoryQ-Sup of separated complet@-categories and left adjoir@-functors (or
equivalently, sup-preserving-functors; see Propositidn 4110(iii)). Explicitly, for mi€hu transform g, G) : (¢ :
A —-B)— (y: A -+ B),

M(F,G) = ¢*y1(FF)* : Mp — My and K(F,G) = ¢.¢"(G%)" : Ky — Ko

define functors
M: Q-Chu — Q-Sup and K:(Q-Chu)®® — O-Sup.

Hence, the identitikp = M¢” can be expressed as the following commutative diagram:

21



Proposition 6.20. The diagram

o o-Chu

(@-Chu)°P

Q-Sup
is commutative.

Proof. It suffices to proveM(G, (F;).) = K(F, G) : Ky = My® — Ky = My" for any Chu transformi, G) : ¢ — .
This is easy since
K(F,G) = ¢.¢"(G")" = (@) N(G")" = M(G, (Fy).),

where the second equality holds because when restrictingotiomain to the image, boghe™ and ) (¢"); are left
adjoint to the same inclusio@-functorKy = Mgy~ —— PBB (see Proposition 3.1), thus they mustbe equal. O

7. Elementary representationsin terms of join-(meet-)dense maps

For Q = 2, 2-categories are (pre)ordered sets arfdnctors are monotone maps. In this case, dense and codense
2-functors are precisely/-dense(i.e., join-densg and A -densg(i.e., meet-dengemonotone maps, respectively. For
a genera-functorF : A — B, we say thaf is \/-denséif its underlying type-preserving map : Ao — By,
as a monotone map between the underlying ordered sétsaofiB, is \/-dense; that is, for any € Bg there exists
{xilier € Agwithy = \/Fx, where eacl (i € |) necessarily has the same typeyaghe /\-density ofO-functors is

i€l

defined dually.
Proposition 7.1. \/-dense (resp/-dense)Q-functors into complet®-categories are necessarily dense (resp. co-
dense).

Proof. LetF : A — B be a\/-denseQ-functor withB complete. For any € By, let{x}ics € Agwithy = \/ Fx;, then
i€l

V A(-, %), the join of{A(—, X;)}ie in the underlying order oPA, is also inPA. SinceB is complete,Y]T35 'P'B— B

i€l

is a left adjoint inQ-Cat (see Theorefn4.4(vi)), and thus preserves underlying fojrropositio 4.70(4), i.e.,
B(\/Fx.-) =YL\ Fx =| |YiFx = A\B(Fx.-).
iel iel iel iel
where| | denotes the underlying join iR'B (see Remark4l1). Hence
By, -) =B(\/Fx.=) = AB(Fx.-) = A\ Fo v’ A= %) =Fy ./ \/ A=),
iel iel iel iel
and consequently = colimv A(-x) F» showing thaf is dense. O

Remark 7.2. Dense (resp. codensé)-functors are not necessarily-dense (resp./\-dense). For example, the
Yoneda embedding, : A — PA is dense for any-categoryA (see Example4.11), but it is ngt-dense. In fact,
this is clear when one considers the single@weategory{q}, in which case the image ofq, : {q} — P{q} contains
only one object and thus it can never Yyedense inP{qg} as long asQ is larger thar2. Similarly, the co-Yoneda
embeddingr’, : A — P'A is codense but in general nAtdense.

EachQ-typed setA may be viewed as discreteQ-category with

1\X|7 if x= Y,
Lixy. else

A(xY) = {
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wherely y; is the bottom arrow irQ(|x|, [yl). Itis easy to see that type-preserving maps from a dis@etategory to
any otherQ-category are necessari@j-functors. Therefore, Propositibn¥.1 induces the folloywlementary version
of Theoreni 51 which only employs order-theoretic notidres,(\/-density and/ -density of maps) to characterize
the Q-categorical equivalence:

Theorem 7.3. Let S4 T : D — C be an adjunction between compl&decategories. Then a compleg-category
X is equivalent taFix(T S) if, and only if, there exis{/-dense type-preserving maps. A — Xo, K : A— Cg and
/\-dense type-preserving maps.:® — Xo, H : B — Do, where A, B areQ-typed sets, such th@i(S K-,H-) =

X(F-,G-).

Proof. The necessity is trivial by taking = Co, B = Dy and applying Theorefn 3.3 as in the proof of Theorem
[E.J. For the sfiiciency, the type-preserving mapsK, G, H are allQ-functors and, by Propositidn 2.X(F—, G-) =
D(S K-, H-) means precisel@® o F, = Hf 0 S o K;:

/<—\ / \

Therefore, the conclusion follows soon from Propositidchhahd Theorerh 511. O

Sh Tt

As applications of Theorefn 1.3, we will derive elementagresentation theorems dfy andKe in the rest of
this section. To this end, for ang-categoryA we denote by xg4om Q1 the O-typed set

Ao Xgom Q1 = {(a,u) | @€ Ag, u: |a — coduis aQ-arrow
with types|(a, u)| = codu for all (a, u) € Ag Xgom Q1. Dually, we write

Ao Xcog Q1 = {(a,U) | a€ Ag, u: domu — |al is aQ-arrow}
for the Q-typed set with typeKa, u)| = domu for all (a, u) € Ag Xcog Q1.

Remark 7.4. Note that neither\g Xgom Q1 NOr Ag Xcoq Q1 iS @ product in the slice categoBet | Qp. In fact,
(Q1,dom) and Q;, cod) are bothQ-typed sets with type maps sending edfarrow to its domain and codomain,
respectively. The produdty x (Q1,dom) inSet | Qp has exactly the same underlying setdasxqom Q1, but the
type of @, u) € Ag x (Q1,dom) is|(a, u)| = |a] = domu. Similarly, the underlying set of the produkg x (Q1, cod) in
Set | Qg is the same akg X¢oq Q1, but the type of 4, u) € Ap x (941, cod) is|(a, u)| = |a] = codu.

ConsideringAp xgom Q1 andAg Xcoq Q1 as discreted-categories, one has the followirg@rfunctors (which are
just type-preserving maps):

Ua 2 Ao Xdom @1 — PA, Up(au)=uoYsa=uoA(-,a),
Ni : Ao Xdom Q1 — PA, Np(au)=u, Yia=u, A -),
Uj : Ao Xeod Q1 — PTA, Uj(au)=Yjaou=A(@-)ou,
NI : AgXeod Q1 — PTA, Ni(a,u) =Ysa\, u=A(-a) \,u.

Proposition 7.5. For any Q-categoryA, Uy, N} are \/-dense, and I\, U] are \-dense.
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Proof. The\/-density ofU, and the/\ -density ofN, are easy since

p=poh=\/ pu@oA(-a)=\/ Usanu@)

achy achy
p=ps A=\ u@ . A@-)= \ Nu(au@)
achy acho

for all u € PA. For the/\-density ofU] and the\/-density ofN], just note that

A=hod=\/ A@-)oa@)=[]Uj(a1@).

achy acho
1=AN A= N\ A8\ @) = | | Ni@ @)
achy acho
forall 2 € PTA, where[ ] and| | are calculated in the underlying orderRfA (see Remark4l1). O

Itis easy to observen(N,) = A (see[(G.vill)), and thus, as we mentioned at the end of Stibs@.2, the crucial
constructiorA in the representation theoremiog (i.e., Theoreri 6.14) is in fact A-denseQ-subcategory oPA.

Proposition 7.6. Lety : A -+ B be aQ-distributor. Then

(1) (e1)y(Ua(a, u), Ufé(b, V)) = v\ (¢(a,b) ,~ u)forall (a u) € Ag Xgom 91, (b, V) € By Xcod Q1,
(2) (@ )(Ur(b,v),Na(a,u)) = (u ¢(a,b)) ./ viforall (a u) € Ag Xgom Q1, (b, V) € Bo Xdom Q1.
Proof. Straightforward calculation. O

Theorem 7.7. For any Q-distributor ¢ : A ——+ B, a separated complet@-categoryX is isomorphic taMy if, and
only if, there exist &/-dense type-preserving map FAp Xqom Q1 — Xo and a A-dense type-preserving map
G : B Xcog @1 — Xp such that

VN (¢(a,b) , u) = X(F(a, u), G(b, V)

for all (a,u) € Ag Xgom Q1. (b, V) € Bo Xcoq Q1.

Proof. Necessity. By Theoreni3.B there exist surjecti@-functorsL : PA — X andR : P'B — X with
(¢1)s = X(L-,R-). Itis easy to see that Corolldry 4]113 also holds\jodense angh\-dense type-preserving maps;
in fact, one just needs to consid@r= 2 and note that left (resp. right) adjoi@-functors are also left (resp. right)
adjoints in the underlying order (see Proposifion #.10(Z))erefore, following the same reasoning in the proof of
Theoren 6.6 one deduces tfedensity ofLU : Ag Xdom Q1 — Xo and the/\-density ofRUIE 1 Bo Xcod Q1 — Xo.

—a
Ao Xdom Q1 L=gto Bo Xcod Q1

m%

Finally, Propositiofi.7]6(1) implies
VN (p(a.b)  u) = (¢1):(Ua(a u), Ui(b, V) = X(LU4(a, u), RUL(b, V)

for all (a, u) € Ag Xdom 91, (b, V) € By Xcod Q1-
Sufficiency. From Propositioh_7]5 we havv -dense type-preserving mapk, : Ag Xgom Q1 — PA, F :
Ag Xgom Q1 — Xo and /\-dense type-preserving map% Bo Xcod Q1 — P™B, G : By Xcoq Q1 — Xo With
X(F(a,u),G(b,V) = v\ (¢(a b) ./ U) = P'B(¢;Ua(a, u), U(b, V)
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Ao Xdom Q1 L=Lany, F R= Ra’b; G Bo Xcod Q1
F G
X
for all (a, u) € Ag Xdom Q1, (b, V) € Bg Xcoq Q1 by Propositiol 7J6(1). Thus the conditions in Theofem 7e3satisfied,
completing the proof. O

Theorem 7.8. For any Q-distributor¢ : A —— B, a separated complet@-categoryX is isomorphic toKy if, and
only if, there exist &\/-dense type-preserving map FBo Xd¢om Q1 — Xo and a /\-dense type-preserving map
G : Ag Xdom Q1 — Xp such that

(U ¢(a,b)) / v=X(F(b,v),G(a u))
for all (a,u) € Ag Xgom Q1, (b, V) € Bg Xgom Q1.

Proof. Similar to Theorenl 7]7 under the help of Proposifiod 7.6(#) the details are left to the readers. Here we
just sketch the diagrams both for the “only if” part and th fiart as a comparison to the above theorem and the
diagrams[(6.Xi) illustrating Theorem 6]14:

%
BO Xdom Ql L=¢.¢*
R

Ag Xdom Q1

R=¢.
{m
Ke

Bo Xdom Q1 L=Lany, F R=Ran, G Ao Xdom Q1

X
O

In the case tha® has only one object, i.e. umital quantale bothAg Xgom Q1 andAgxc0q Q1 become the cartesian
product of the sef\y and the set of elements @. As the following immediate corollary of Theorems]7.7 7.
states, our results generalize Bélohlavek’s repretienttheorem for concept lattices of quantale-valued cdstie
FCA (seell3, Theorem 14(2)]) and Popescu’s representdtemrém for those in RST (see [19, Proposition 7.3]):

Corollary 7.9. Let Q be a unital quantalep : A —— B a Q-distributor andX a separated complei@-category.
(1) X is isomorphic toMg if, and only if, there exist a/-dense map F. Ag x O — X, and a A-dense map
G : By x Q@ — Xg such that
VN (p(a,b)  u) = X(F(a, u), G(b, V)
forallae Ag,be Bg,uve Q.
(2) X is isomorphic toKe if, and only if, there exist a/-dense map F. Bo x @ — Xo and a A-dense map
G: Agx Q@ — Xp such that
(u/ ¢(ab) , v=X(F(b,v),G(a u))

foralla € Ag, be By, u,ve Q.
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Remark 7.10. Bélohlavek’s [3, Theorem 14(2)] is precisely Corollan8(@) whenQ is a commutative integral
quantale, while Popesculs |19, Proposition 7.3] is a weakesion of our CorollarfL 719(2) even @ is commutative
and integral. Explicitly, Popescu’s result should be state:

A complete latticeX is isomorphic to the underlying complete latticekas if, and only if, there exist a
\/-dense mafF : Bg x Q@ — X and a/\-dense mafs : Ag x Q@ — X such that

p(ab)<vNu < F(b,v) <G(au)
forallae Ag,beBg, u,ve Q.
In fact, the “only if” part of the above claim is an immediattnsequence of Corollafy 7.9(2), and the “if” part follows
by applying Theorem 713 in the cask= 2 to the underlying adjoin2-functors ofy* 4 ¢..
8. Concluding remarks

The following diagram indicates the connections betweemtbst important representation theorems established
in this paper, and we believe that the general representdt@mrems(3]3 arid 5.1) have the potential to be applied to
more areas which deserve further investigation:

Representation df¢ (Theoreni 6.14)

Representation dfly (Theoreni 6.b)

General representation theordmd 3.8 & 5.1

T~

Elementary representation iy (Theoreni Z.I7) Elementary representation k§ (Theoreni_7Z.B)
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