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Abstract

Representation theorems are established for fixed points ofadjoint functors between categories enriched in a small
quantaloid. In a very general setting these results set up a common framework for representation theorems of concept
lattices in formal concept analysis (FCA) and rough set theory (RST), which not only extend the realm of formal
contexts to multi-typed and multi-valued ones, but also provide a general approach to construct various kinds of
representation theorems. Besides incorporating several well-known representation theorems in FCA and RST as well
as formulating new ones, it is shown that concept lattices inRST can always be represented as those in FCA through
relative pseudo-complements of the given contexts, especially if the contexts are valued in a non-Girard quantaloid.
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1. Introduction

This paper aims to establish general representation theorems for fixed points of adjoint functors between categories
enriched in a small quantaloidQ, which set up a common framework for representation theorems of concept lattices
in formal concept analysis (FCA) [4, 6] and rough set theory (RST) [17, 18] in the generality of theirQ-version.
As Galois connections between posets are precisely adjointfunctors between categories enriched in the two-element
Boolean algebra2, we start the introduction from this classical case.

A Galois connection [4]s ⊣ t between posetsC, D consists of monotone mapss : C −→ D, t : D −→ C such that
s(x) ≤ y ⇐⇒ x ≤ t(y) for all x ∈ C, y ∈ D. By a fixed point ofs ⊣ t is meant an elementx ∈ C with x = ts(x) or,
equivalently, an elementy ∈ D with y = st(y), since

Fix(ts) := {x ∈ C | x = ts(x)} and Fix(st) := {y ∈ D | y = st(y)}

are isomorphic posets with the inherited order fromC andD, respectively. The following theorem, as an immediate
consequence of Corollary 3.5, characterizes those posets which representFix(ts) � Fix(st):

Theorem 1.1. Let s⊣ t : D −→ C be a Galois connection between posets. A poset X is isomorphic to Fix(ts) if, and
only if, there exist surjective maps l: C −→ X and r : D −→ X such that

∀c ∈ C,∀d ∈ D : s(c) ≤ d in D ⇐⇒ l(c) ≤ r(d) in X.

It is well known that ifC, D are complete lattices, then so isFix(ts) � Fix(st). As a special case of Theorem 7.3,
the above representation theorem can be strengthened to thefollowing one in terms of

∨
-dense and

∧
-dense maps

providing the completeness ofC, D:

Theorem 1.2. Let s ⊣ t : D −→ C be a Galois connection between complete lattices. A complete lattice X is
isomorphic toFix(ts) if, and only if, there exist

∨
-dense maps f: A −→ X, k : A −→ C and

∧
-dense maps

g : B −→ X, h : B −→ D such that

∀a ∈ A,∀b ∈ B : sk(a) ≤ h(b) in D ⇐⇒ f (a) ≤ g(b) in X.
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These two theorems play the role of general representation theorems and their power will be revealed when being
applied to concept lattices. To see this, recall that given arelationϕ : A //◦ B between sets (usually called aformal
context, or contextfor short, and written as (A, B, ϕ) in FCA and RST), there are two Galois connections

ϕ↑ ⊣ ϕ
↓ : (2B)op −→ 2A and ϕ∗ ⊣ ϕ∗ : 2A −→ 2B (1.i)

given by
ϕ↑(U) = {y ∈ B | ∀x ∈ U : xϕy}, ϕ↓(V) = {x ∈ A | ∀y ∈ V : xϕy},
ϕ∗(V) = {x ∈ A | ∃y ∈ V : xϕy}, ϕ∗(U) = {y ∈ B | ∀x ∈ A : xϕy =⇒ x ∈ U}

for all U ⊆ A, V ⊆ B; the complete lattices consisting of their fixed points,

Mϕ := Fix(ϕ↓ϕ↑) and Kϕ := Fix(ϕ∗ϕ
∗),

are respectively (up to isomorphism) theconcept latticesof the context (A, B, ϕ) in FCA and RST1. Thefundamental
theoremof FCA characterizes those complete lattices which represent Mϕ:

1Mϕ andKϕ are also called theformal concept latticeand theobject-oriented concept latticeof the context (A,B, ϕ), respectively.
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Theorem 1.3. [4, 6] A complete lattice X is isomorphic toMϕ if, and only if, there exist a
∨

-dense map f: A −→ X
and a

∧
-dense map g: B −→ X such that

∀a ∈ A, ∀b ∈ B : aϕb ⇐⇒ f (a) ≤ g(b) in X.

The following diagrams explain how one derives the above theorem from 1.1 and 1.2:
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Explicitly, for the “only if” part of Theorem 1.3 it suffices to considerX = Mϕ; one has a
∨

-dense map{-}A :
A −→ 2A sending eachx ∈ A to the singleton set{x} ⊆ A whose composition withl : 2A −→ Mϕ from Theorem 1.1
gives the required

∨
-dense mapf : A −→ Mϕ, and the

∧
-dense mapg : B −→ Mϕ is constructed dually. Conversely,

for the “if” part the
∨

-dense mapsf : A −→ X, {-}A : A −→ 2A and
∧

-dense mapsg : B −→ X, {-}B : B −→ (2B)op

fulfill the requirements of Theorem 1.2; indeed, one may further show that theleft Kan extension l: 2A −→ X of f
alongk [16] and theright Kan extension r: (2B)op −→ X of g alongh (see Subsection 4.2) satisfy the requirements of
Theorem 1.1.

As for the representation ofKϕ, since it is well known thatKϕ = M(¬ϕ) [5, 32], where¬ϕ : B //◦ A is the
complementof the relationϕ : A //◦ B given by

∀b ∈ B,∀a ∈ A : b(¬ϕ)a ⇐⇒ ¬(aϕb),

the following theorem easily follows from 1.3:

Theorem 1.4. A complete lattice X is isomorphic toKϕ if, and only if, there exist a
∨

-dense map f: B −→ X and a∧
-dense map g: A −→ X such that

∀b ∈ B, ∀a ∈ A : b(¬ϕ)a ⇐⇒ f (b) ≤ g(a) in X.

As quantalesare usually chosen as truth tables in fuzzy set theory, Galois connections have been extended to the
quantale-valued setting [1, 7] as well as the theories of FCAand RST [2, 3, 8, 14, 19], and all the representation
theorems stated above can be established in this general setting. Since Galois connections between quantale-valued
ordered sets are precisely adjoint functors between quantale-enriched categories, in fact, we will set up these theorems
in an even more general framework of adjoint functors between categories enriched in a smallquantaloidQ.

Quantaloids [23] may be thought of as quantales with many objects; indeed, letSup denote the symmetric
monoidal closed category of complete lattices and sup-preserving maps, then a quantale is a monoid inSup while
a quantaloid is a category enriched inSup. The theory of quantaloid-enriched categories (orQ-categoriesfor short),
as an extension of quantale-enriched categories [11, 13, 15], has been developed in [9, 23, 27, 28]; the survey paper
[30] is particularly recommended as an overview of this theory for the readership of fuzzy logicians and fuzzy set
theorists.

We recall the basics of quantaloid-enriched categories in Section 2 and present Kan extensions and (co)denseQ-
functors as our key tools in Section 4. As the general form of Theorems 1.1 and 1.2, Sections 3 and 5 are respectively
devoted to the following main results of this paper:

• The necessary and sufficient condition of aQ-category representing the fixed points of a pair of adjointQ-
functors is obtained (Theorems 3.3).

• The necessary and sufficient condition of a completeQ-category representing the fixed points of a pair of adjoint
Q-functors between completeQ-categories is formulated through dense and codenseQ-functors (Theorem 5.1).
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The applications of the general representation theorems inFCA and RST are discussed in Section 6. Note that
distributors betweenQ-categories (orQ-distributors for short) generalize relations between sets in the sense that a
Q-distributor may be thought of as a multi-typed and multi-valued relation which respects theQ-categorical structures
in its domain and codomain. Thus,Q-distributors may be considered asmulti-typed and multi-valued contextsupon
which a general theory of FCA and RST can be established (see [24, Section 4] for instance).

Explicitly, eachQ-distributorϕ : A //◦ B induces two pairs of adjointQ-functors between the (co)presheaf
Q-categories ofA andB, i.e.,

ϕ↑ ⊣ ϕ
↓ : P†B −→ PA and ϕ∗ ⊣ ϕ∗ : PA −→ PB,

called respectively theIsbell adjunctionandKan adjunction[26] induced byϕ, whose fixed points constitute complete
Q-categoriesMϕ andKϕ, respectively. As our notations already suggest, Isbell adjunctions and Kan adjunctions
induced byQ-distributors present theQ-categorical version of the Galois connections (1.i) in FCAand RST. So, for
a Q-distributorϕ : A //◦ B, Mϕ andKϕ may be respectively viewed as “concept lattices” of the multi-typed and
multi-valued context (A,B, ϕ) in FCA and RST.

Although it is straightforward to extend Theorem 1.3 to theQ-version (see Theorem 6.5), the validity of Theorem
1.4 relies heavily on the fact that2, as a Boolean algebra, satisfies the law of double negation, which guarantees the
existence of the complement¬ϕ. For a quantaloidQ, the existence of¬ϕ requiresQ to be aGirard quantaloid[22]
(an extension ofGirard quantales[21, 33]). In fact, it is impossible to extend Theorem 1.4 directly to theQ-version
without assumingQ being Girard: as Lai-Zhang revealed in the case thatQ is a commutative integral quantale2 (see
[14, Proposition 5.5]), in general a codenseQ-functorA −→ Kϕmay not even exist! This observation can be extended
to a quantaloidQ with some mild assumptions (Proposition 6.10), which reveals that even the existence of codense
Q-functorsA −→ PA would requireQ to be Girard.

Hence, for a general quantaloidQ, in order to apply Theorem 5.1 toKϕ, one needs to find a non-trivial codenseQ-
subcategory ofPAwhich would unavoidably have a larger size thanA. To this end, we construct aQ-subcategoryA of
PA consisting of all the possiblerelative pseudo-complements of representable copresheavesonA. Then, by defining
theQ-distributorA⊲ : A //◦ A as the codomain restriction of the graph of the Yoneda embedding (YA)♮ : A //◦ PA,
one has therelative pseudo-complement

ϕ⊲ := A
⊲ ւ ϕ

of anyQ-distributorϕ : A //◦ B with respect toA⊲, through which the precise condition of a completeQ-category
representingKϕ is obtained (Theorem 6.14). Indeed, we prove

Kϕ = Mϕ⊲ (1.ii)

in the proof of 6.14, which represents the “concept lattice”of any multi-typed and multi-valued context in RST as the
“concept lattice” of the relative pseudo-complement of thegiven context in FCA. Furthermore, the identity (1.ii) can
be established on the functorial level as Proposition 6.20 reveals.

Finally, Theorem 7.3 is presented in Section 7 as an elementary representation theorem of fixed points of adjoint
Q-functors in terms of order-theoretic notions, i.e.,

∨
-dense and

∧
-dense maps. By aid of this theorem one is able to

incorporate Bělohlávek’s representation theorem for concept lattices of quantale-valued contexts in FCA [3, Theorem
14(2)] and Popescu’s representation theorem for those in RST [19, Proposition 7.3] into our general framework (see
Corollary 7.9 and Remark 7.10). In fact, their results are extended to the quantaloid-enriched version (Theorems 7.7
and 7.8) which outline the difference between the representations ofMϕ andKϕ that has been ignored whenQ is a
quantale as Corollary 7.9 shows.

2. Quantaloid-enriched categories

A quantaloid[23] Q is a locally ordered 2-category whose hom-sets are completelattices such that the composi-
tion ◦ of arrows preserves joins in each variable. The corresponding adjoints induced by the compositions

− ◦ u ⊣ − ւ u : Q(p, r) −→ Q(q, r),

v ◦ − ⊣ vց − : Q(p, r) −→ Q(p, q)

2An integral quantale is a unital quantale in which the unit is the top element of the quantale.
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satisfy
v ◦ u ≤ w ⇐⇒ v ≤ wւ u ⇐⇒ u ≤ vց w

for all Q-arrowsu : p −→ q, v : q −→ r, w : p −→ r, where the operationsւ,ց are calledleft andright implications
in Q, respectively.

Unless otherwise specified, throughout this paperQ denotes a small quantaloid with a setQ0 of objects and a set
Q1 of arrows. The identityQ-arrow onq ∈ Q0 will be denoted by 1q.

ConsideringQ0 as a “base” set, aQ-typed setis a setA equipped with a map|-| : A −→ Q0 sending eachx ∈ A to
its type|x| ∈ Q0. A mapF : A −→ B betweenQ-typed sets istype-preservingif |x| = |Fx| for all x ∈ A. Q-typed sets
and type-preserving maps constitute the slice categorySet ↓ Q0.

A Q-categoryA consists of aQ-typed setA0 and hom-arrowsA(x, y) ∈ Q(|x|, |y|) for all x, y ∈ A0 such that
1|x| ≤ A(x, x) andA(y, z) ◦ A(x, y) ≤ A(x, z) for all x, y, z ∈ A0. A Q-categoryB is aQ-subcategoryof A if B0 ⊆ A0

andB(x, y) = A(x, y) for all x, y ∈ B0.
EachQ-categoryA admits a natural underlying (pre)order onA0 given byx ≤ y if |x| = |y| and 1|x| ≤ A(x, y). A

Q-categoryA is separated(or skeletal) if x � y (i.e., x ≤ y andy ≤ x) impliesx = y for all x, y ∈ A0.
A Q-distributorϕ : A //◦ B betweenQ-categories is given by a family ofQ-arrows{ϕ(x, y) : |x| −→ |y|}x∈A0,y∈B0

such thatB(y, y′) ◦ ϕ(x, y) ◦ A(x′, x) ≤ ϕ(x′, y′) for all x, x′ ∈ A0, y, y′ ∈ B0. With the pointwise local order inherited
fromQ, Q-categories andQ-distributors constitute a (large) quantaloidQ-Dist in which

ψ ◦ ϕ : A //◦ C, (ψ ◦ ϕ)(x, z) =
∨

y∈B0

ψ(y, z) ◦ ϕ(x, y),

ξ ւ ϕ : B //◦ C, (ξ ւ ϕ)(y, z) =
∧

x∈A0

ξ(x, z)ւ ϕ(x, y),

ψց ξ : A //◦ B, (ψց ξ)(x, y) =
∧

z∈C0

ψ(y, z)ց ξ(x, z)

for Q-distributorsϕ : A //◦ B, ψ : B //◦ C, ξ : A //◦ C; the identityQ-distributor onA is given by hom-arrows
A : A //◦ A.

A Q-functor F : A −→ B betweenQ-categories is a type-preserving mapF : A0 −→ B0 with A(x, y) ≤ B(Fx, Fy)
for all x, y ∈ A0. With the pointwise (pre)order ofQ-functors given by

F ≤ G : A −→ B ⇐⇒ ∀x ∈ A0 : Fx ≤ Gx ⇐⇒ ∀x ∈ A0 : 1|x| ≤ B(Fx,Gx),

Q-categories andQ-functors constitute a 2-categoryQ-Cat.

Remark 2.1. The dual of a Q-categoryA is aQop-category3, given byAop
0 = A0 andAop(x, y) = A(y, x) for all

x, y ∈ A0. EachQ-functor F : A −→ B becomes aQop-functor Fop : Aop −→ Bop with the same mapping on
objects but (F′)op ≤ Fop wheneverF ≤ F′ : A −→ B. EachQ-distributorϕ : A //◦ B corresponds bijectively to a
Qop-distributorϕop : Bop //◦ A

op with ϕop(y, x) = ϕ(x, y) for all x ∈ A0, y ∈ B0. Therefore, as already noted in [27],
one has a 2-isomorphism

(−)op : Q-Cat � (Qop-Cat)co (2.i)

and an isomorphism of quantaloids
(−)op : Q-Dist � (Qop-Dist)op. (2.ii)

EachQ-functorF : A −→ B induces a pair ofQ-distributors given by

F♮ : A //◦ B, F♮(x, y) = B(Fx, y) and F♮ : B //◦ A, F♮(y, x) = B(y, Fx),

called respectively thegraph andcographof F, which form an adjunctionF♮ ⊣ F♮ in the 2-categoryQ-Dist, i.e.,
A ≤ F♮ ◦ F♮ andF♮ ◦ F♮ ≤ B. It is easy to see

F ≤ G : A −→ B ⇐⇒ G♮ ≤ F♮ : A //◦ B ⇐⇒ F♮ ≤ G♮ : B //◦ A, (2.iii)

3The terminologies adopted here are not exactly the same as inthe references [27, 28, 29, 30]: OurQ-categories are exactlyQop-categories in
the sense of Stubbe.

5



and therefore
(−)♮ : Q-Cat // (Q-Dist)co, (−)♮ : Q-Cat // (Q-Dist)op (2.iv)

are both 2-functors, where “co” refers to reversing order inhom-sets.
It is straightforward to verify the following propositions:

Proposition 2.2. For anyQ-distributorϕ : A //◦ B andQ-functors F: X −→ A, G : Y −→ B,

ϕ(F−,G−) = G♮ ◦ ϕ ◦ F♮ = G♮ ց (ϕւ F♮).

Proposition 2.3. [26] Let F : A −→ B be aQ-functor.

(1) A = F♮ ◦ F♮ if, and only if, F isfully faithful in the sense thatA(x, y) = B(Fx, Fy) for all x, y ∈ A0.
(2) If F is essentially surjectivein the sense that there exists x∈ A0 with Fx� y for all y ∈ B0, then F♮ ◦ F♮ = B.

Proposition 2.4. [9] The following identities hold for allQ-functors F andQ-distributorsϕ, ψ whenever the opera-
tions make sense:

(1) ϕ ◦ F♮ = ϕւ F♮, F♮ ◦ ϕ = F♮ ց ϕ.
(2) (F♮ ◦ ϕ)ց ψ = ϕց (F♮ ◦ ψ), (ψ ◦ F♮)ւ ϕ = ψւ (ϕ ◦ F♮).
(3) (ϕց ψ) ◦ F♮ = ϕց (ψ ◦ F♮), F♮ ◦ (ψւ ϕ) = (F♮ ◦ ψ)ւ ϕ.
(4) F♮ ◦ (ϕց ψ) = (ϕ ◦ F♮)ց ψ, (ψւ ϕ) ◦ F♮ = ψւ (F♮ ◦ ϕ).

A Q-functor F : A −→ B is anequivalence(resp. isomorphism) of Q-categories if there exists aQ-functor
G : B −→ A with GF � 1A andFG � 1B (resp.GF = 1A andFG = 1B), where 1A and 1B respectively denote the
identityQ-functors onA andB. In this case, we writeA ≃ B (resp.A � B) to denote thatA andB are equivalent
(resp. isomorphic)Q-categories.

Proposition 2.5. [27] A Q-functor is an equivalence (resp. isomorphism) ofQ-categories if, and only if, it is fully
faithful and essentially surjective (resp. fully faithfuland bijective).

A pair of Q-functorsF : A −→ B, G : B −→ A forms an adjunctionF ⊣ G : B −→ A in Q-Cat if 1A ≤ GF and
FG ≤ 1B. It is easy to obtain the following equivalent characterizations of adjointQ-functors:

Proposition 2.6. [27] Let F : A −→ B, G : B −→ A be a pair ofQ-functors. Then

F ⊣ G inQ-Cat ⇐⇒ F♮ = G♮ ⇐⇒ G♮ ⊣ F♮ in Q-Dist ⇐⇒ G♮ ⊣ F♮ in Q-Dist.

3. Fixed points of adjoint Q-functors and their representation

For aQ-functor F : A −→ A, an objectx ∈ A0 is a fixed pointof F if Fx � x, and we denote byFix(F) the
Q-subcategory ofA consisting of fixed points ofF.

A Q-closure operator[26] on aQ-categoryA is aQ-functorF : A −→ A with 1A ≤ F andFF � F.

Proposition 3.1. [26] For eachQ-closure operator F: A −→ A, the inclusionQ-functor Fix(F) � � // A is right
adjoint to the codomain restriction F: A −→ Fix(F).

Remark 3.2. In the language of category theory, aQ-closure operatorF : A −→ A is aQ-monadonA (note that the
“Q-natural transformation” betweenQ-functors is simply given by the local order inQ-Cat), and objects inFix(F)
are precisely Eilenberg-Moore algebras of thisQ-monad.

Dually, Q-interior operatorscorrespond bijectively toQop-closure operators under the isomorphism (2.i) in Re-
mark 2.1; that is,Q-functorsF : A −→ A with F ≤ 1A andFF � F. The dual of Proposition 3.1 states precisely
that for eachQ-interior operatorF : A −→ A, the inclusionQ-functorFix(F) �

�
// A is left adjoint to the codomain

restrictionF : A −→ Fix(F).
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Each adjunctionS ⊣ T : D −→ C in Q-Cat gives rise to aQ-closure operatorTS : C −→ C and aQ-interior
operatorS T : D −→ D. It is easy to see that the restrictions ofS andT,

S : Fix(TS) −→ Fix(S T) and T : Fix(S T) −→ Fix(TS),

establish an equivalence ofQ-categories, thus objects in bothFix(TS) andFix(S T) will be referred to as fixed points
of the adjointQ-functorsS ⊣ T. The following theorem describes thoseQ-categories which represent the fixed points
of S ⊣ T:

Theorem 3.3. Let S ⊣ T : D −→ C be an adjunction inQ-Cat. AQ-categoryX is equivalent toFix(TS) if, and only
if, there exist essentially surjectiveQ-functors L: C −→ X and R: D −→ X with S♮ = R♮ ◦ L♮.

C

X

L

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄C D

S //
D

X

R

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧
DC

T
oo ⊥ C

X

L♮

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄C D
S♮=T♮

// D

X

??

R♮

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

◦ ◦

◦

Proof. Necessity. It suffices to prove the caseX = Fix(TS). Let L : C −→ Fix(TS) andR : D −→ Fix(TS) be the
codomain restriction ofTS : C −→ C andT : D −→ C, respectively, thenL andR are clearly essentially surjective
and satisfy

S♮ = (S TS)♮ (S ⊣ T)

= T♮ ◦ (TS)♮ (S ⊣ T and Proposition 2.6)

= C(TS−,T−) (Proposition 2.2)

= Fix(TS)(L−,R−)

= R♮ ◦ L♮. (Proposition 2.2)

Sufficiency. We show that the restrictionL′ : Fix(TS) −→ X of L is an equivalence ofQ-categories.
First, LT � R andRS� L. Indeed, by Propositions 2.3(2) one has

R♮ = R♮ ◦ L♮ ◦ L♮ = S♮ ◦ L♮ = T♮ ◦ L♮ = (LT)♮ and L♮ = R♮ ◦R♮ ◦ L♮ = R♮ ◦ S♮ = (RS)♮.

Thus the conclusion follows from (2.iii).
Second,L′ is fully faithful since for allc, c′ ∈ Fix(TS),

X(L′c, L′c′) = X(Lc, LTS c′) (c′ � TS c′)

= X(Lc,RS c′) (LT � R)

= S♮(c,S c′) (S♮ = R♮ ◦ L♮ = X(L−,R−))

= T♮(c,S c′) (T♮ = S♮)

= C(c,TS c′)

= Fix(TS)(c, c′). (c′ � TS c′)

Finally, L′ is essentially surjective since for anyc ∈ C0, RS� L andS ⊣ T imply

Lc � RS c� RS TS c� L(TS c) = L′(TS c). (3.i)

Hence the essential surjectivity ofL : C −→ X implies that ofL′, completing the proof.

From (3.i) in the above proof one sees thatL, up to isomorphism, is the composition of an equivalenceL′ :
Fix(TS) −→ X and a left adjointTS : C −→ Fix(TS) (see Proposition 3.1), thusL itself must be a left adjoint in
Q-Cat. Similarly one may deduce thatR is a right adjoint inQ-Cat:
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Corollary 3.4. TheQ-functors L and R in Theorem 3.3 are respectively a left adjoint and a right adjoint inQ-Cat.

The condition given in Theorem 3.3 can be weakened as in the following corollary since theQ-functoriality of L
andR is self-contained:

Corollary 3.5. Let S ⊣ T : D −→ C be an adjunction inQ-Cat. AQ-categoryX is equivalent toFix(TS) if, and only
if, there exist essentially surjective type-preserving maps L : C0 −→ X0 and R: D0 −→ X0 with S♮ = X(L−,R−).

Proof. For all c, c′ ∈ C0, let b ∈ D0 with Rb� Lc′ and one has

C(c, c′) ≤ X(Lc′, Lc′) ◦ C(c, c′)

= X(Lc′,Rb) ◦ C(c, c′) (Rb� Lc′)

= C(c′,Tb) ◦C(c, c′) (T♮ = S♮ = X(L−,R−))

≤ C(c,Tb)

= X(Lc,Rb) (T♮ = S♮ = X(L−,R−))

= X(Lc, Lc′), (Rb� Lc′)

showing thatL is aQ-functor, and theQ-functoriality ofR follows similarly.

It is readily seen that Corollary 3.5 reduces to Theorem 1.1 whenQ = 2. However, in general theQ-categories
C andD may be too “large” to compute whether aQ-categoryX is equivalent toFix(TS), and one would like to find
Q-categories with smaller size thanC andD which are able to generate the requiredQ-functorsL : C −→ X and
R : D −→ X. A natural way is through dense and codenseQ-functors introduced in the next section.

4. Weighted (co)limits, Kan extensions and (co)dense Q-functors

4.1. Weighted (co)limits inQ-categories

For eachq ∈ Q0, Let {q} denote the discreteQ-category with only one objectq such that|q| = q and{q}(q, q) = 1q.
A presheafwith typeq on aQ-categoryA is aQ-distributorµ : A //◦ {q}. Presheaves onA constitute aQ-category
PA with

PA(µ, µ′) = µ′ ւ µ

for all µ, µ′ ∈ PA. Dually, theQ-categoryP†A of copresheaveson A consists ofQ-distributorsλ : {q} //◦ A as
objects with typeq and

P†A(λ, λ′) = λ′ ց λ

for all λ, λ′ ∈ P†A. It is easy to seeP†A � (PAop)op as remarked in 2.1.

Remark 4.1. The underlying order inP†A is precisely thereverselocal order inQ-Dist; that is, µ ≤ λ in the
underlying order ofP†A if and only if λ ≤ µ in Q-Dist. In order to avoid confusion, we make the convention that
the symbol≤ betweenQ-distributors always refer to the local order inQ-Dist. Moreover, while

∨
and

∧
are used as

generic symbols for joins and meets, we write
⊔

and
d

instead for the underlying joins and meets inP†A to eliminate
ambiguity.

Given aQ-categoryA, the Yoneda embeddingYA : A −→ PA sends eachx ∈ A0 to A(−, x) ∈ PA, and the
co-Yoneda embeddingY†

A
: A −→ P†A sends eachx ∈ A0 to A(x,−) ∈ P†A. Both YA andY†

A
are fully faithful

Q-functors as the following Yoneda lemma implies:

Lemma 4.2 (Yoneda). [27] LetA be aQ-category andµ ∈ PA, λ ∈ P†A. Then

µ = PA(YA−, µ) = (YA)♮(−, µ), λ = P†A(λ,Y†
A
−) = (Y†

A
)♮(λ,−).
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Given aQ-functorF : X −→ A, thecolimit of F weighted by a presheafµ ∈ PX is an object colimµ F ∈ A0 of
type |µ| such that

A(colimµF,−) = F♮ ւ µ. (4.i)

In particular, supA µ := colimµ1A, when it exists, is called thesupremumof µ ∈ PA, which satisfies

A(supAµ,−) = Aւ µ. (4.ii)

Dually, thelimit of F : X −→ A weighted by a copresheafλ ∈ P†X is defined as limλ F = colimλop Fop; that is, an
object limλ F ∈ A0 of type |λ| such that

A(−, limλF) = λց F♮. (4.iii)

Theinfimumof λ ∈ P†A, when it exists, is given by infA λ := limλ 1A.

Proposition 4.3. [27] For all Q-functors F: X −→ A andµ ∈ PX, λ ∈ P†X,

colimµF = supAF→µ and limλF = infAF→7 λ,

where theQ-functors F→ : PX −→ PA and F→7 : P†X −→ P†A are given by

F→µ = µ ◦ F♮ and F→7 λ = F♮ ◦ λ.

A Q-categoryA is completeif it satisfies one of the equivalent conditions in the following theorem. In particular,
PA andP†A are both separated completeQ-categories.

Theorem 4.4. [27] For anyQ-categoryA, the following conditions are equivalent:

(i) A admits all weighted colimits.
(ii) A admits all weighted limits.
(iii) Everyµ ∈ PA has a supremum.
(iv) Everyλ ∈ P†A has an infimum.
(v) YA has a left adjointsupA : PA −→ A in Q-Cat.
(vi) Y†

A
has a right adjointinfA : P†A −→ A in Q-Cat.

It is well known that fixed points of aQ-closure operator orQ-interior operator on a completeQ-category consti-
tute a completeQ-category:

Proposition 4.5. [26] Let F : A −→ A be aQ-closure operator (resp.Q-interior operator) on a completeQ-category
A. ThenFix(F) is also a completeQ-category.

4.2. Kan extensions ofQ-functors

GivenQ-functorsK : A −→ B andF : A −→ C, the (pointwise)left Kan extension[27] of F alongK, when it
exists, is given by

LanK F : B −→ C, (LanK F)b = colimK♮(−,b)F. (4.iv)

Remark 4.6. The (non-pointwise) left Kan extension ofF : A −→ C along K : A −→ B, when it exists, is a
Q-functor LanK F : B −→ C with

LanK F ≤ S ⇐⇒ F ≤ S K (4.v)

for all Q-functorsS : B −→ C. It is easy to see that pointwise left Kan extensions defined by (4.iv) always satisfy
(4.v), but not vice versa. All Kan extensions considered in this paper are pointwise.

Dually, the (pointwise)right Kan extensionof F alongK is given by

RanK F = (LanKop Fop)op : B −→ C, (RanK F)b = limK♮(b,−)F. (4.vi)

From Equations (4.i) and (4.iii) one soon has the following characterization of Kan extensions:

9



Proposition 4.7. G : B −→ C is the left (resp. right) Kan extension of F: A −→ C along K : A −→ B if, and only if,

G♮ = F♮ ւ K♮ (resp. G♮ = K♮ ց F♮).

From Proposition 4.7 one may derive several useful formulasregarding to Kan extensions:

Proposition 4.8. (1) For anyQ-functor F : A −→ B, F � Lan1A F � Ran1A F.
(2) For Q-functors F: A −→ C, F′ : A −→ C′, G : B −→ C, G′ : B −→ C′, K : A −→ X, H : B −→ Y,

(RanH G)♮ ◦ (LanK F)♮ = (RanH G′)♮ ◦ (LanK F′)♮

whenever G♮ ◦ F♮ = G′♮ ◦ F′♮ andLanK F, LanK F′, RanH G andRanH G′ exist.

Proof. (1) is trivial. For (2), note that

(RanH G)♮ ◦ (LanK F)♮ = (H♮ ց G♮) ◦ (LanK F)♮ (Proposition 4.7)

= H♮ ց (G♮ ◦ (LanK F)♮) (Proposition 2.4(3))

= H♮ ց (G♮ ◦ (F♮ ւ K♮)) (Proposition 4.7)

= H♮ ց ((G♮ ◦ F♮)ւ K♮), (Proposition 2.4(3))

and similarly one has (RanH G′)♮ ◦ (LanK F′)♮ = H♮ ց ((G′♮ ◦ F′♮) ւ K♮). ThusG♮ ◦ F♮ = G′♮ ◦ F′♮ implies

(RanH G)♮ ◦ (LanK F)♮ = (RanH G′)♮ ◦ (LanK F′)♮.

The identity in Proposition 4.8(2) may be translated through Proposition 2.2 asC(F−,G−) = C′(F′−,G′−) im-
plyingC((LanK F)−, (RanH G)−) = C′((LanK F′)−, (RanH G′)−) as the following diagram illustrates:

A X
K

//A

C

F

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
X

C

LanK F

::✈✈✈✈✈✈✈✈✈✈✈✈✈✈
A

C
′

F′

**❚❚
❚❚❚

❚❚❚❚
❚❚❚

❚❚❚
❚❚❚❚

❚❚❚
❚❚❚

❚❚❚❚ X

C
′

LanK F′

$$❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍ BY

H
oo B

C

G

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚
Y

C

RanH G

dd❍❍❍❍❍❍❍❍❍❍❍❍❍❍
B

C
′

G′

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥Y

C
′

RanH G′

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

If LanK F : B −→ C (resp. RanK F : B −→ C) exists, aQ-functorH : C −→ D is said topreserveLanK F (resp.
RanK F) if LanK HF (resp. RanK HF) exists and is isomorphic toH LanK F (resp.H RanK F). LanK F (resp. RanK F)
is absoluteif it is preserved by anyQ-functor with domainC. The following characterization of adjointQ-functors
appeared in [27] in terms of non-pointwise Kan extensions, and here we strengthen it to the pointwise version:

Proposition 4.9. Let F : A −→ B be aQ-functor. The following statements are equivalent:

(i) F is a left (resp. right) adjoint inQ-Cat.
(ii) LanF 1A (resp.RanF 1A) exists and is absolute.
(iii) LanF 1A (resp.RanF 1A) exists and is preserved by F.

In this case,LanF 1A : B −→ A (resp.RanF 1A : B −→ A) is the right (resp. left) adjoint of F.

Proof. (i) =⇒ (ii): If F ⊣ G, for the existence of LanF 1A it suffices to proveG � LanF 1A. Indeed, from Propositions
2.4(1) and 2.6 one has

G♮ = Aւ G♮ = (1A)♮ ւ F♮,

and thus Proposition 4.7 guaranteesG � LanF 1A. Now let H : A −→ C be anyQ-functor, by applying again
Propositions 2.4(1) and 2.6 one has

(HG)♮ = H♮ ◦G♮ = H♮ ւ G♮ = H♮ ւ F♮,
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showing thatHG � LanF H.
(ii) =⇒ (iii): Trivial.
(iii) =⇒ (i): Let G = LanF 1A, thenFG � LanF F. By Proposition 4.7 one has

G♮ = Aւ F♮ and F♮ ւ F♮ = (FG)♮ = F♮ ◦G♮ = F♮ ւ G♮,

where the last equality follows from Proposition 2.4(1). Itfollows that

F♮ ≤ G♮ ց A = G♮ ≤ (F♮ ւ F♮)ց F♮ = F♮,

where the first equality follows from Proposition 2.4(1). ThusF♮ = G♮ and by Proposition 2.6 one hasF ⊣ G.

The following characterizations of adjointQ-functors will be useful in the sequel:

Proposition 4.10. [27] Let F : A −→ B be aQ-functor. If F is a left (resp. right) adjoint inQ-Cat, then

(1) F is cocontinuous(resp. continuous) in the sense that Fcolimµ G � colimµ FG (resp. Flimλ G � limλ FG) for
all Q-functors G: X −→ A andµ ∈ PX (resp.λ ∈ P†X).

(2) F is sup-preserving(resp.inf-preserving) in the sense that FsupA � supB F→ (resp. FinfA � infB F→7 ).
(3) F preserves left (resp. right) Kan extensions of anyQ-functor with codomainA.
(4) F is a left (resp. right) adjoint between the underlying ordered sets ofA, B.

Moreover, ifA is complete, then the following statements are equivalent:

(i) F is a left (resp. right) adjoint inQ-Cat.
(ii) F is cocontinuous (resp. continuous).
(iii) F is sup-preserving (resp.inf -preserving).
(iv) F preserves left (resp. right) Kan extensions.

4.3. (Co)denseQ-functors

A Q-functorF : A −→ B is dense[26] if for any y ∈ B0, there existsµ ∈ PA such thaty � colimµ F. Dually, F is
codenseif Fop is a denseQop-functor; that is,y � limλ F for someλ ∈ P†A for anyy ∈ B0.

A Q-subcategoryB of A is dense(resp.codense) if the inclusionQ-functorJ : B � � //A is dense (resp. codense).

Example 4.11. For anyQ-categoryA, the Yoneda embeddingYA : A −→ PA is dense sinceµ = colimµ YA for all
µ ∈ PA. Dually, the co-Yoneda embeddingY†

A
: A −→ P†A is codense.

We have the following equivalent characterizations of dense and codenseQ-functors:

Proposition 4.12. Let F : A −→ B be aQ-functor. The following statements are equivalent:

(i) F is dense (resp. codense).
(ii) F is sup-dense(resp.inf-dense) in the sense that there existsµ ∈ PA (resp.λ ∈ P†A) with y� supB F→µ (resp.

y � infB F→7 λ) for all y ∈ B0.
(iii) supB F→ : PA −→ B (resp.infB F→7 : P†A −→ B) is an essentially surjectiveQ-functor.
(iv) Im(F) = {Fx | x ∈ A0} is a dense (resp. codense)Q-subcategory ofB.
(v) F♮ ւ F♮ = B (resp. F♮ ց F♮ = B).
(vi) 1B � LanF F (resp.1B � RanF F).

Proof. (i) ⇐⇒ (ii): Follows immediately from Proposition 4.3.
(ii) ⇐⇒ (iii): Trivial.
(iii) =⇒ (iv): Let G : A −→ Im(F) be the codomain restriction ofF andJ : Im(F) �

�
//B the inclusionQ-functor,

thenF = JG, and thus the essential surjectivity of supB J→ follows from that of supB J→G→ = supB F→.
(iv) =⇒ (iii): Using the notations above, and one has the essential surjectivity of supB J→ : P(Im(F)) −→ B from

(i) ⇐⇒ (iii). Define aQ-functor
G← : P(Im(F)) −→ PA, λ 7→ λ ◦G♮,
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then the surjectivity ofG impliesG→G← = 1P(Im(F)) sinceG→G←λ = λ◦G♮◦G♮ = λ for all λ ∈ P(Im(F)) by Proposition
2.3(2). Hence, the essential surjectivity of supB F→ follows from that of supB F→G← = supB J→G→G← = supB J→.

(i) =⇒ (v): One may findµ ∈ PA such thaty � colimµ F for anyy ∈ B0. Then

B(y,−) ≤ F♮ ւ F♮(−, y)

≤ (F♮ ւ F♮(−, y)) ◦ B(y, y)

= (F♮ ւ F♮(−, y)) ◦ (F♮(−, y)ւ µ) (Equation (4.i))

≤ F♮ ւ µ

= B(y,−), (Equation (4.i))

and consequentlyB(y,−) = F♮ ւ F♮(−, y) = (F♮ ւ F♮)(y,−).
(v) =⇒ (i): F♮ ւ F♮ = B immediately impliesB(y,−) = F♮ ւ F♮(−, y); that is,y � colimF♮(−,y) F for anyy ∈ B0.
(v)⇐⇒ (vi): Follows immediately from Proposition 4.7.

Corollary 4.13. (1) Every essentially surjectiveQ-functor is both dense and codense.
(2) If Q-functors F: A −→ B and G: B −→ C are both dense (resp. codense) and G is a left (resp. right) adjoint in

Q-Cat, then GF: A −→ C is dense (resp. codense).

Proof. (1) is easy. For (2), note thatG♮ = H♮ if G ⊣ H in Q-Cat, and thus

C = G♮ ւ G♮ (Proposition 4.12(3))

= G♮ ◦ (Bւ G♮) (G♮ = H♮ and Proposition 2.4(3))

= G♮ ◦ ((F♮ ւ F♮)ւ G♮) (Proposition 4.12(3))

= G♮ ◦ (F♮ ւ (GF)♮)

= (GF)♮ ւ (GF)♮, (G♮ = H♮ and Proposition 2.4(3))

showing thatGF is dense.

5. Representation theorem in terms of (co)dense Q-functors

Now we are ready to present the second main result of this paper. If S ⊣ T : D −→ C is an adjunction between
completeQ-categories, Proposition 4.5 guarantees the completenessof Fix(TS) ≃ Fix(S T). In this case, the following
representation theorem can be established through dense and codenseQ-functors:

Theorem 5.1. Let S ⊣ T : D −→ C be an adjunction between completeQ-categories. Then a completeQ-category
X is equivalent toFix(TS) if, and only if, there exist denseQ-functors F : A −→ X, K : A −→ C and codense
Q-functors G: B −→ X, H : B −→ D with H♮ ◦ S♮ ◦ K♮ = G♮ ◦ F♮.

A

C

K
;;✇✇✇✇✇✇✇

B

D

H
cc●●●●●●●

A

X

F
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗ B

X

G
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠

C D

S //
DC

T
oo ⊥

A

C
K♮

;;✇✇✇✇✇✇✇

C D
S♮=T♮

// D

B

H♮

##●
●●

●●
●●

A

X

F♮
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

X

B

G♮

66♠♠♠♠♠♠♠♠♠♠♠♠♠

◦

◦

◦

◦ ◦

Proof. Necessity. One may find essentially surjectiveQ-functorsL : C −→ X andR : D −→ X with S♮ = R♮ ◦ L♮
by Theorem 3.3. Then the denseQ-functorsL : C −→ X, 1C : C −→ C and the codenseQ-functorsR : D −→ X,
1D : D −→ D clearly satisfyR♮ ◦ L♮ = S♮ = 1♮

D
◦ S♮ ◦ (1C)♮.

Sufficiency. The completeness ofX guarantees the existence of the Kan extensions (see the definitions in (4.iv)
and (4.vi))

L := LanK F : C −→ X and R := RanH G : D −→ X.
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A

X
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C D

S //
DC

T
ooC

X

L=LanK F

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴ D

X

R=RanH G

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

⊥

(5.i)

We show thatL andR satisfy the conditions in Theorem 3.3.
First, LK � F andRH � G; that is,L andRare actually extensions ofF andG, respectively. For this, note that

F♮ = (RanG G)♮ ◦ (Lan1A F)♮ (Propositions 4.8(1) and 4.12(vi))

= (RanG H)♮ ◦ (Lan1A S K)♮ (H♮ ◦ S♮ ◦ K♮ = G♮ ◦ F♮ and Proposition 4.8(2))

= (RanG H)♮ ◦ (S K)♮ (Propositions 4.8(1))

= (RanG H)♮ ◦ (S LanK K)♮ ◦ K♮ (Proposition 4.12(vi))

= (RanG H)♮ ◦ (LanK S K)♮ ◦ K♮ (Proposition 4.10(3))

= (RanG G)♮ ◦ (LanK F)♮ ◦ K♮ (H♮ ◦ S♮ ◦ K♮ = G♮ ◦ F♮ and Proposition 4.8(2))

= L♮ ◦ K♮, (Proposition 4.12(vi))

and thus the conclusion follows (see (2.iii)). Similarly one may proveRH � G.
Second,L andRare essentially surjective. To this end, note thatS♮ = T♮ implies

G♮ ◦ F♮ = H♮ ◦ S♮ ◦ K♮ = H♮ ◦ T♮ ◦ K♮ = (T H)♮ ◦ K♮, (5.ii)

and consequently

L♮ = (RanG G)♮ ◦ (LanK F)♮ (Proposition 4.12(vi))

= (RanG T H)♮ ◦ (LanK K)♮ (Equation (5.ii) and Proposition 4.8(2))

= (RanG T H)♮, (Proposition 4.12(vi))

where the existence of RanG T H is guaranteed by the completeness ofC. ThusL ⊣ RanG T H in Q-Cat and, as
a left adjoint,L is cocontinuous (see Proposition 4.10(1)). Therefore, forany x ∈ X0 one may findµ ∈ PA with
x � colimµ F, and consequently colimµK ∈ C0 satisfies

L(colimµK) � colimµLK � colimµF � x,

where the second isomorphism follows fromLK � F. HenceL is essentially surjective. Similarly one may obtain the
essential surjectivity ofRby showing thatR is a right adjoint inQ-Cat (with LanF S Kas its left adjoint) and applying
RH � G.

Finally, S♮ = R♮ ◦ L♮. Indeed,

S♮ = (S LanK K)♮ (Proposition 4.12(vi))

= (LanK S K)♮ (Proposition 4.10(3))

= (RanH H)♮ ◦ (LanK S K)♮ (Proposition 4.12(vi))

= (RanH G)♮ ◦ (LanK F)♮ (H♮ ◦ S♮ ◦ K♮ = G♮ ◦ F♮ and Proposition 4.8(2))

= R♮ ◦ L♮,

completing the proof.

Theorem 5.1 points a way towards a “good” representation ofFix(TS) ≃ Fix(S T) for a specific adjunctionS ⊣
T : D −→ C between completeQ-categories; that is, looking for denseQ-functors intoC (or equivalently, dense
Q-subcategories ofC) and codenseQ-functors intoD (or equivalently, codenseQ-subcategories ofD). The power of
this theorem will be revealed in the next section for the representations of concept lattices.
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6. Fixed points of Isbell adjunctions and Kan adjunctions

In this section we demonstrate how the general representation theorems (3.3 and 5.1) give rise to representation
theorems of concept lattices in FCA and RST in the generalityof theQ-version.

6.1. Isbell adjunctions and Kan adjunctions

EachQ-distributorϕ : A //◦ B induces anIsbell adjunctionϕ↑ ⊣ ϕ↓ : P†B −→ PA in Q-Cat [26] given by

ϕ↑ : PA −→ P†B, µ 7→ ϕւ µ,

ϕ↓ : P†B −→ PA, λ 7→ λց ϕ

and aKan adjunctionϕ∗ ⊣ ϕ∗ : PA −→ PB defined as

ϕ∗ : PB −→ PA, λ 7→ λ ◦ ϕ,

ϕ∗ : PA −→ PB, µ 7→ µւ ϕ.

SinceP†A � (PAop)op, there is also adual Kan adjunctionϕ† ⊣ ϕ† with

ϕ† := ((ϕop)∗)
op : P†B −→ P†A, λ 7→ ϕց λ,

ϕ† := ((ϕop)∗)op : P†A −→ P†B, µ 7→ ϕ ◦ µ

which corresponds to the Kan adjunction (ϕop)∗ ⊣ (ϕop)∗ : PBop −→ PAop in Qop-Cat under the isomorphism (2.i) in
Remark 2.1.

Remark 6.1. As left and right Kan extensions ofQ-functors introduced in Subsection 4.2 are exactlyleft andright
extensionsof 1-cells [12] in the 2-categoryQ-Cat, Kan adjunctions induced byQ-distributors in fact generalizeright
extensionsof 1-cells in the 2-categoryQ-Dist. To see this, note that for anyQ-distributorϕ : A //◦ B andq ∈ Q0,
the underlying adjoint2-functors of the Kan adjunctionϕ∗ ⊣ ϕ∗ may be described as the monotone map “composing
with ϕ”

ϕ∗ : Q-Dist(B, {q}) −→ Q-Dist(A, {q})

admitting a right adjoint
ϕ∗ : Q-Dist(A, {q}) −→ Q-Dist(B, {q}),

which exactly says that for any presheafµ : A //◦ {q},

ϕ∗µ = µւ ϕ : B //◦ {q}

is the right extension ofµ alongϕ. Similarly, dual Kan adjunctions induced byQ-distributors correspond toleft
extensionsof 1-cells inQ-Dist.

Proposition 6.2. [9] (−)∗ : (Q-Dist)op −→ Q-Cat and (−)† : (Q-Dist)co −→ Q-Cat are both 2-functorial, and one
has two pairs of adjoint 2-functors

(−)♮ ⊣ (−)∗ : (Q-Dist)op −→ Q-Cat and (−)♮ ⊣ (−)† : (Q-Dist)co −→ Q-Cat.

The adjunctions (−)∗ ⊣ (−)♮ and (−)♮ ⊣ (−)† give rise to isomorphisms

(Q-Cat)co(A,P†B) � Q-Dist(A,B) � Q-Cat(B,PA)

for all Q-categoriesA, B. We denote by

ϕ̃ : B −→ PA, ϕ̃y = ϕ(−, y), (6.i)

ϕ̂ : A −→ P†B, ϕ̂x = ϕ(x,−) (6.ii)

for the transposes of eachQ-distributorϕ : A //◦ B.
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Proposition 6.3. [25, 26]Letϕ : A //◦ B be aQ-distributor. Then

(1) ϕ = (Y†
B
)♮ ◦ ϕ̂♮ = ϕ̃♮ ◦ (YA)♮,

(2) ϕ̂ = ϕ↑YA = ϕ
†Y†

A
,

(3) ϕ̃ = ϕ↓Y†
B
= ϕ∗YB.

By Proposition 4.5, the fixed points of the Isbell adjunctionϕ↑ ⊣ ϕ↓ and the Kan adjunctionϕ∗ ⊣ ϕ∗ constitute
completeQ-categories

Mϕ := Fix(ϕ↓ϕ↑) = {µ ∈ PA | ϕ↓ϕ↑µ = µ} and Kϕ := Fix(ϕ∗ϕ∗) = {λ ∈ PB | ϕ∗ϕ
∗λ = λ},

where are both separated since so arePA andPB.

Example 6.4. For the identityQ-distributorA : A //◦ A on aQ-categoryA, MA is the MacNeille completion ofA
[26], andKA = PA is the free cocompletion ofA [27].

With the help of Theorems 3.3 and 5.1, we arrive at the following representation theorem ofMϕ as theQ-version
of Theorem 1.3:

Theorem 6.5. [26] For anyQ-distributorϕ : A //◦ B, a separated completeQ-categoryX is isomorphic toMϕ if,
and only if, there exist a denseQ-functor F : A −→ X and a codenseQ-functor G: B −→ X with ϕ = G♮ ◦ F♮.

Proof. Necessity. By Theorem 3.3 there exist surjectiveQ-functorsL : PA −→ X and R : P†B −→ X with
(ϕ↑)♮ = R♮ ◦ L♮. SinceYA : A −→ PA is dense (Example 4.11),L is dense (Corollary 4.13(1)) andL is a left adjoint
in Q-Cat (Corollary 3.4), one deduces the density ofLYA : A −→ X by Corollary 4.13(2). Similarly one can see that
RY†

B
: B −→ X is codense. Finally, one has

ϕ = (Y†
B
)♮ ◦ ϕ̂♮ = (Y†

B
)♮ ◦ (ϕ↑YA)♮ = (Y†

B
)♮ ◦R♮ ◦ L♮ ◦ (YA)♮ = (RY†

B
)♮ ◦ (LYA)♮

by applying the formulas in Proposition 6.3.
Sufficiency. Now we have denseQ-functorsYA : A −→ PA, F : A −→ X and codenseQ-functorsY†

B
: B −→

P†B, G : B −→ X with

G♮ ◦ F♮ = ϕ = (Y†
B
)♮ ◦ ϕ̂♮ = (Y†

B
)♮ ◦ (ϕ↑YA)♮ = (Y†

B
)♮ ◦ (ϕ↑)♮ ◦ (YA)♮

by Proposition 6.3, thus the conditions in Theorem 5.1 are satisfied, completing the proof.

The following diagrams respectively illustrate the “only if” part and the “if” part of Theorem 6.5 (cf. Diagram
(5.i) in the proof of Theorem 5.1):
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ϕ↑
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P†BPA

ϕ↓
ooPA

X

L=LanYA
F

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴ P†B

X

R=Ran
Y†
B

G

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

⊥

(6.iii)

Example 6.6. For the identityQ-distributorA : A //◦ A on aQ-categoryA, MA is the MacNeille completion ofA
(see Example 6.4). In this case, the codomain restrictionYA : A −→ MA of the Yoneda embedding is dense, and the
compositionA↓Y†

A
: A −→ P†A −→ MA is codense. It is not difficult to verifyA = (A↓Y†

A
)♮ ◦ (YA)♮, fulfilling the

conditions in Theorem 6.5.

However, it is not straightforward to derive the counterpart of Theorem 6.5 forKϕ as it is not easy to find a
non-trivial codenseQ-functor intoPA (or equivalently, a non-trivial codenseQ-subcategory ofPA) as required in
Theorem 5.1. This will be the topic of the next subsection.
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6.2. Towards codenseQ-subcategories of presheafQ-categories
In a quantaloidQ, a family ofQ-arrows{dq : q −→ q}q∈Q0 is acyclic family(resp.dualizing family) if

dpւ u = uց dq (resp. (dpւ u)ց dp = u = dqւ (uց dq)) (6.iv)

for all Q-arrowsu : p −→ q. A Girard quantaloid[22] is a quantaloidQ equipped with a cyclic dualizing family of
Q-arrows. In this case, thecomplementof aQ-arrowu : p −→ q can be defined as

¬u = dpւ u = uց dq : q −→ p,

which clearly satisfies¬¬u = u. For eachQ-categoryA,

(¬A)(y, x) = ¬A(x, y)

gives aQ-distributor¬A : A //◦ A, and it is straightforward to check that

{¬A : A //◦ A}A∈ob(Q-Dist)

is a cyclic dualizing family ofQ-Dist; this gives the “only if” part of the following proposition.As for the “if” part,
just note thatQ can be fully faithfully embedded inQ-Dist:

Proposition 6.7. [22] A small quantaloidQ is a Girard quantaloid if, and only if,Q-Dist is a Girard quantaloid.

Hence, withQ being Girard, eachQ-distributorϕ : A //◦ B has acomplement

¬ϕ := ¬Aւ ϕ = ϕց ¬B : B //◦ A.

Proposition 6.8. If Q is a small Girard quantaloid, then for anyQ-categoryA,

¬ : PA −→ P†A

is an isomorphism inQ-Cat.

Proof. Since{¬A}A∈ob(Q-Dist) is a cyclic dualizing family, one has

PA(µ, λ) = λւ µ = ((¬Aւ λ)ց ¬A)ւ µ = (¬Aւ λ)ց (¬Aւ µ) = P†A(¬µ,¬λ)

for all µ, λ ∈ PA. Thus¬ : PA −→ P†A is a fully faithful Q-functor, and consequently an isomorphism inQ-Cat
since it is obviously surjective.

The combination of Example 4.11 and Proposition 6.8 immediately gives a codenseQ-functor

¬Y†
A

:= (A
Y†
A // P†A

¬ // PA) (6.v)

for anyQ-categoryA whenQ is Girard, and the representation ofKϕ follows easily in this case:

Corollary 6.9. LetQ be a small Girard quantaloid. Then for anyQ-distributorϕ : A //◦ B, a separated complete
Q-categoryX is isomorphic toKϕ if, and only if, there exist a denseQ-functor F : B −→ X and a codenseQ-functor
G : A −→ X with ¬ϕ = G♮ ◦ F♮.

Proof. With Theorem 6.5 at hand, it suffices to proveKϕ = M(¬ϕ). Indeed, since{¬A}A∈ob(Q-Dist) is a dualizing
family,

ϕ∗ϕ
∗λ = ((¬Aւ (ϕ∗λ))ց ¬A)ւ ϕ

= (¬Aւ (λ ◦ ϕ))ց (¬Aւ ϕ)

= ((¬Aւ ϕ)ւ λ)ց (¬Aւ ϕ)

= (¬ϕւ λ)ց ¬ϕ

= (¬ϕ)↓(¬ϕ)↑λ

for all λ ∈ PB. Henceϕ∗ϕ∗ = (¬ϕ)↓(¬ϕ)↑ : PB −→ PB, and the conclusion follows.
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Although the above proof is indirect, it is not difficult to get the following diagrams (cf. the diagrams (6.iii)below
Theorem 6.5) which explain the role of the codenseQ-functor (6.v):
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ooPB

X
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X
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¬Y†

A

G

��✎✎
✎✎
✎✎
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✎✎
✎

⊥

(6.vi)

However, Corollary 6.9 does not make sense for a general quantaloidQ. In fact, the following proposition blocks
the way of finding a codenseQ-functorA −→ PA for anyQ-categoryA without assumingQ being Girard:

Proposition 6.10. LetQ be a small quantaloid in which1q = ⊤q : q −→ q for all q ∈ Q0 and {⊥q}q∈Q0 is a cyclic
family, where⊤q and⊥q denote the top and bottom arrows inQ(q, q), respectively. Then the following statements are
equivalent:

(i) {⊥q}q∈Q0 is a dualizing family, henceQ is a Girard quantaloid.
(ii) There exists a codenseQ-functor F : A −→ PA for anyQ-categoryA.

Proof. (i) =⇒ (ii): ¬Y†
A

: A −→ PA is the required codenseQ-functor (see (6.v)).
(ii) =⇒ (i): For eachq ∈ Q0, objects inP{q} are exactlyQ-arrows with domainq. Suppose there exists a codense

Q-functorF : {q} −→ P{q} targeting atw : q −→ q, thenF♮ ∈ PP{q} satisfiesF♮(u) = w ւ u for all u ∈ P{q}, and
consequently

P{q}(v, u) = F♮(u)ց F♮(v) (Proposition 4.12(v))

= (wւ u)ց (wւ v)

= ((wւ u)ց w)ւ v

= P{q}(v, (wւ u)ց w)

for all v ∈ P{q}, which impliesu = (wւ u)ց w. In particular, since 1q = ⊤q, lettingu = ⊥q and one has

w = 1qց w ≤ (wւ ⊥q)ց w = ⊥q,

which exactly meansw = ⊥q. Henceu = (⊥q ւ u) ց ⊥q, and the arbitrariness ofu indicates that{⊥q}q∈Q0 is a
dualizing family, completing the proof.

A family of quantaloids that satisfy the hypotheses in Proposition 6.10 is given below:

Example 6.11. For any frame (L,∧,→, 0, 1), one may construct a quantaloidDL [10, 20, 31] with the following data:

• objects inDL are the elements ofL;

• DL(p, q) = {u ∈ L : u ≤ p∧ q} with inherited order fromL;

• the composition ofDL-arrowsu ∈ DL(p, q), v ∈ DL(q, r) is given byv ◦ u = v∧ u;

• the implications ofDL-arrows are given by

wւ u = q∧ r ∧ (u→ w) and vց w = p∧ q∧ (v→ w)

for all u ∈ DL(p, q), v ∈ DL(q, r), w ∈ DL(p, r);

• the identityDL-arrow inDL(q, q) is q itself.
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It is straightforward to check that{0 : q −→ q}q∈L is a cyclic family inDL, but it is a dualizing family inDL if and
only if L is a Boolean algebra.

So, it is unavoidable that for a non-Girard quantaloidQ, a codenseQ-subcategory of the presheafQ-categoryPA
would have a larger size thanA. If we look again at the codenseQ-functor¬Y†

A
: A −→ PA in (6.v) whenQ is

Girard, we will see that it actually generates a codenseQ-subcategory ofPA with objects

{µ ∈ PA | µ = ¬Y†
A
a = d|a| ւ A(a,−) for somea ∈ A0}; (6.vii)

that is, presheaves onA which arecomplements of representable copresheaveson A. For a general quantaloidQ,
although the complements ofQ-distributors may not exist, (6.vii) suggests us to construct aQ-subcategoryA of PA
consisting of all the possiblerelative pseudo-complements of representable copresheavesonA:

A0 = {µ ∈ PA | µ = uւ A(a,−) for somea ∈ A0 andQ-arrowu : |a| −→ codu}. (6.viii)

A is certainly a non-trivialQ-subcategory ofPA. We will see thatA is a codenseQ-subcategory ofPA (Corollary
6.15) and, moreover, a

∧
-denseQ-subcategory ofPA as an immediate consequence of Proposition 7.5 discussed in

Section 7.

6.3. Representation of fixed points of Kan adjunctions
Given aQ-categoryA, the codomain restriction of the graph of the Yoneda embedding (YA)♮ : A //◦ PA onA

gives aQ-distributorA⊲ : A //◦ A with

A
⊲(−, µ) = (YA)♮(−, µ) = µ (6.ix)

for all µ ∈ A0, where the second equality follows from the Yoneda lemma. The following identity holds for all
Q-distributorsϕ : A //◦ B:

Proposition 6.12. ϕ = (A⊲ ւ ϕ)ց A⊲.

Proof. Sinceϕ = (A⊲ ւ ϕ) ց A⊲ if and only if ϕ(−, b) = (A⊲ ւ ϕ(−, b)) ց A⊲ for all b ∈ B0, it suffices to prove
µ = (A⊲ ւ µ)ց A⊲ for anyµ ∈ PA. On one hand,

µ(a)ւ A(a,−) ∈ A0

for all a ∈ A0 implies

µ = µւ A

=
∧

a∈A0

µ(a)ւ A(a,−)

=
∧

a∈A0

((µ(a)ւ µ(a))ց µ(a))ւ A(a,−)

=
∧

a∈A0

(µ(a)ւ µ(a))ց (µ(a)ւ A(a,−))

=
∧

a∈A0

(µ(a)ւ (µ ◦ A(a,−)))ց (µ(a)ւ A(a,−))

=
∧

a∈A0

((µ(a)ւ A(a,−))ւ µ) ց (µ(a)ւ A(a,−))

≥
∧

µ′∈A0

(µ′ ւ µ)ց µ′

=
∧

µ′∈A0

(A⊲(−, µ′)ւ µ)ց A
⊲(−, µ′) (Equation (6.ix))

= (A⊲ ւ µ)ց A
⊲.

On the other hand,µ ≤ (A⊲ ւ µ)ց A⊲ is trivial. The conclusion thus follows.
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This proposition indicates that the family{A⊲ : A //◦ A}A∈ob(Q-Cat) in Q-Dist satisfies part of the properties of a
dualizing family in a quantaloid (see (6.iv)). Therefore, it makes sense to define therelative pseudo-complementof
anyQ-distributorϕ : A //◦ B with respect toA⊲ as

ϕ⊲ := A
⊲ ւ ϕ : B //◦ A. (6.x)

It is easy to obtain the following expressions forϕ⊲:

Lemma 6.13. For anyµ = uւ A(a,−) ∈ A0,

(1) ϕ⊲(−, µ) = µւ ϕ = ϕ∗µ,
(2) ϕ⊲(−, uւ A(a,−)) = uւ ϕ(a,−).

With the above preparations, now we are ready to establish the following representation theorem ofKϕ, which
extends Corollary 6.9 from a Girard quantaloid to a general quantaloid:

Theorem 6.14. For anyQ-distributorϕ : A //◦ B, a separated completeQ-categoryX is isomorphic toKϕ if, and
only if, there exist a denseQ-functor F : B −→ X and a codenseQ-functor G: A −→ X with ϕ⊲ = G♮ ◦ F♮.

Proof. Similar to the proof of Corollary 6.9, it suffices to proveϕ∗ϕ∗ = (ϕ⊲)↓(ϕ⊲)↑ : PB −→ PB, which implies
Kϕ = Mϕ⊲ and the conclusion would follow from Theorem 6.5. Indeed,

ϕ∗ϕ
∗λ = ((A⊲ ւ (ϕ∗λ))ց A

⊲)ւ ϕ (Proposition 6.12)

= (A⊲ ւ (λ ◦ ϕ))ց (A⊲ ւ ϕ)

= ((A⊲ ւ ϕ)ւ λ)ց (A⊲ ւ ϕ)

= (ϕ⊲ ւ λ)ց ϕ⊲ (Equation (6.x))

= (ϕ⊲)↓(ϕ⊲)↑λ

for all λ ∈ PB, as desired.

SinceKA = PA, Theorem 6.14 in particular implies the codensity ofA in PA:

Corollary 6.15. A is a codenseQ-subcategory ofPA.

The following diagrams illustrate Theorem 6.14 in terms of the conditions in Theorems 3.3 and 5.1. We remind
the readers to compare with the diagrams (6.vi) under Corollary 6.9 whenQ is Girard:
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✴✴
✴✴
✴✴
✴✴
✴ PA

Kϕ

R=ϕ∗

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

⊥

B

PB
YB

77♦♦♦♦♦♦♦♦♦♦
A

PA

4 T

J
gg❖❖❖❖❖❖❖❖❖❖

B

X

F
**❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚ A

X

G
tt❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

X

L=LanYB
F

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴ PA

X

R=RanJ G

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

⊥

(6.xi)

Remark 6.16. The identityKϕ = Mϕ⊲ obtained in the proof of Theorem 6.14 shows that the “conceptlattice” of
any multi-typed and multi-valued context in RST can be represented as the “concept lattice” of the relative pseudo-
complement of the given context in FCA. In fact, there are other trivial ways to represent anyKϕ as a “concept lattice”
in FCA.

First, for any separated completeQ-categoryA one may easily check

M(A : A //◦ A) = ImYA = {YAa | a ∈ A0} � A.

In particular,Kϕ is a separated completeQ-category and thusKϕ � M(Kϕ).
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Second, similar to Proposition 6.12 one may see thatϕ = ((YA)♮ ւ ϕ)ց (YA)♮ for anyQ-distributorϕ : A //◦ B,
and consequently one has

Kϕ = M((YA)♮ ւ ϕ)

by performing the same calculations in Theorem 6.14, where (YA)♮ ւ ϕ is in fact the relative pseudo-complement of
ϕ with respect to (YA)♮.

Therefore, the point of the constructionA in Theorem 6.14 is to find asmallest possiblecodenseQ-subcategory
of PA. AlthoughA may not be precisely the smallest one (e.g., whenQ is a Girard quantaloid), it is the best solution
we find for anarbitrary quantaloidQ.

Example 6.17. For the identityQ-distributorA : A //◦ A on aQ-categoryA, KA = PA (see Example 6.4). So, we
have the dense Yoneda embeddingYA : A −→ PA and the codense inclusionQ-functorJ : A � � // PA that satisfy

A
⊲(−, µ) = µ = PA(YA−, µ) = J♮(−, µ) ◦ (YA)♮

for all µ ∈ PA, where the first two equalities hold by Equation (6.ix) and the Yoneda lemma, respectively.
More generally, for any fully faithfulQ-functorF : A −→ B one hasKF♮ = PA since

(F♮)∗(F
♮)∗µ = (F♮)

∗(F♮)∗µ = (F♮ ◦ F♮)
∗µ = A

∗µ = µ

for all µ ∈ PA, where the first and the third equalities respectively follow from Propositions 2.4(1) and 2.3(1). In this

case, the dense Yoneda embeddingYA : A −→ PA and the codenseQ-functorH := (B � � J // PB
(F♮ )∗ // PA) satisfy

(F♮)⊲(−, λ) = (F♮)∗λ = PA(YA−,Hλ) = H♮(−, λ) ◦ (YA)♮

for all λ ∈ B0, where the first two equalities hold by Lemma 6.13(1) and the Yoneda lemma, respectively.

Example 6.18. Let A be acompletely distributive(or equivalently,totally continuous) Q-category [29]; that is, a
completeQ-category in which supA : PA −→ A has a left adjointTA : A −→ PA in Q-Cat. Let θA : A //◦ A be the
Q-distributor with transpose‹θA = TA (see (6.i)). Since supA : PA −→ A is essentially surjective and thus codense
(see Corollary 4.13(1)), from Corollaries 6.15 and 4.13(2)one immediately knows that the restriction

G := (A � � // PA
sup

A // A)

of supA onA is codense. As 1A : A −→ A is obviously dense, and

θ⊲A(−, µ) = µւ θA (Lemma 6.13(1))

= PA(TA−, µ) (‹θA = TA)

= A(−,Gµ) (TA ⊣ supA)

= G♮(−, µ) ◦ (1A)♮

for all µ ∈ A0, one soon deducesKθA ≃ A from Theorem 6.14.

6.4. The functoriality of relative pseudo-complements

At the end of this section, we show that the identity

Kϕ = Mϕ⊲

obtained in the proof of Theorem 6.14 can be established on the functorial level; that is, the process of generating the
“concept lattice” in RST from aQ-distributorϕ can be decomposed into two functorial steps:

(1) calculating the relative pseudo-complementϕ⊲;
(2) generating the “concept lattice” ofϕ⊲ in FCA.
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First we establish the functoriality of the relative pseudo-complement

ϕ⊲ = A
⊲ ւ ϕ

of aQ-distributorϕ with respect toA⊲. In fact,Q-distributors can be organized as objects into a categoryQ-Chu with
Chu transforms(calledinfomorphismsin [26])

(F,G) : (ϕ : A //◦ B) −→ (ψ : A′ //◦ B
′)

as morphisms; that is,Q-functorsF : A −→ A′ andG : B′ −→ B such that the square

B B′

G♮

//

A

B

ϕ

��

A A′
F♮

// A′

B′

ψ

��

◦

◦

◦ ◦

is commutative, or equivalently,ψ(F−,−) = ϕ(−,G−).
For anyQ-functorF : A −→ A′ anduւ A(a,−) ∈ A0, note that

(F♮)∗(uւ A(a,−)) = (uւ A(a,−))ւ F♮ = uւ (F♮ ◦ A(a,−)) = uւ A
′(Fa,−) (6.xii)

is an object inA′. Thus (F♮)∗ : PA −→ PA′ can be restricted as aQ-functor (F♮)∗ : A −→ A′.

Proposition 6.19. (G, (F♮)∗) : (ψ⊲ : B′ //◦ A′) −→ (ϕ⊲ : B //◦ A) is a Chu transform provided so is(F,G) : (ϕ :
A //◦ B) −→ (ψ : A′ //◦ B′).

Proof. If (F,G) : ϕ −→ ψ is a Chu transform, note that for allµ = uւ A(a,−) ∈ A0,

ϕ⊲(G−, µ) = uւ ϕ(a,G−) (Lemma 6.13(2))

= uւ ψ(Fa,−) ((F,G) is a Chu transform)

= ψ⊲(−, uւ A
′(Fa,−)) (Lemma 6.13(2))

= ψ⊲(−, (F♮)∗µ). (Equation (6.xii))

Thus (G, (F♮)∗) : ψ⊲ −→ ϕ⊲ is a Chu transform.

Proposition 6.19 induces a contravariant functor

(−)⊲ : (Q-Chu)op −→ Q-Chu

that sends eachQ-distributor to its relative pseudo-complement with respect to A⊲ and sends each Chu transform
(F,G) : ϕ −→ ψ to (G, (F♮)∗) : ψ⊲ −→ ϕ⊲.

It is known in [26] that the assignmentsϕ 7→ Mϕ andϕ 7→ Kϕ are respectively functorial and contravariant
functorial fromQ-Chu to the categoryQ-Sup of separated completeQ-categories and left adjointQ-functors (or
equivalently, sup-preservingQ-functors; see Proposition 4.10(iii)). Explicitly, for any Chu transform (F,G) : (ϕ :
A //◦ B) −→ (ψ : A′ //◦ B′),

M(F,G) = ψ↓ψ↑(F♮)∗ : Mϕ −→ Mψ and K(F,G) = ϕ∗ϕ∗(G♮)∗ : Kψ −→ Kϕ

define functors
M : Q-Chu −→ Q-Sup and K : (Q-Chu)op −→ Q-Sup.

Hence, the identityKϕ = Mϕ⊲ can be expressed as the following commutative diagram:
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Proposition 6.20. The diagram

(Q-Chu)op Q-Chu
(−)⊲

//(Q-Chu)op

Q-Sup

K

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
Q-Chu

Q-Sup

M

��

is commutative.

Proof. It suffices to proveM(G, (F♮)∗) = K(F,G) : Kψ = Mψ⊲ −→ Kϕ = Mϕ⊲ for any Chu transform (F,G) : ϕ −→ ψ.
This is easy since

K(F,G) = ϕ∗ϕ∗(G♮)∗ = (ϕ⊲)↓(ϕ⊲)↑(G♮)∗ = M(G, (F♮)∗),

where the second equality holds because when restricting the codomain to the image, bothϕ∗ϕ∗ and (ϕ⊲)↓(ϕ⊲)↑ are left
adjoint to the same inclusionQ-functorKϕ = Mϕ⊲ �

�
// PB (see Proposition 3.1), thus they must be equal.

7. Elementary representations in terms of join-(meet-)dense maps

ForQ = 2, 2-categories are (pre)ordered sets and2-functors are monotone maps. In this case, dense and codense
2-functors are precisely

∨
-dense(i.e., join-dense) and

∧
-dense(i.e., meet-dense) monotone maps, respectively. For

a generalQ-functorF : A −→ B, we say thatF is
∨

-denseif its underlying type-preserving mapF : A0 −→ B0,
as a monotone map between the underlying ordered sets ofA andB, is

∨
-dense; that is, for anyy ∈ B0 there exists

{xi}i∈I ⊆ A0 with y �
∨
i∈I

Fxi , where eachxi (i ∈ I ) necessarily has the same type asy. The
∧

-density ofQ-functors is

defined dually.

Proposition 7.1.
∨

-dense (resp.
∧

-dense)Q-functors into completeQ-categories are necessarily dense (resp. co-
dense).

Proof. Let F : A −→ B be a
∨

-denseQ-functor withB complete. For anyy ∈ B0, let {xi}i∈I ⊆ A0 with y �
∨
i∈I

Fxi , then
∨
i∈I

A(−, xi), the join of{A(−, xi)}i∈I in the underlying order ofPA, is also inPA. SinceB is complete,Y†
B

: P†B −→ B

is a left adjoint inQ-Cat (see Theorem 4.4(vi)), and thus preserves underlying joinsby Proposition 4.10(4), i.e.,

B

Ä∨
i∈I

Fxi ,−
ä
= Y†

B

∨

i∈I

Fxi =
⊔

i∈I

Y†
B
Fxi =

∧

i∈I

B(Fxi ,−),

where
⊔

denotes the underlying join inP†B (see Remark 4.1). Hence

B(y,−) = B

Ä∨
i∈I

Fxi ,−
ä
=
∧

i∈I

B(Fxi ,−) =
∧

i∈I

F♮ ւ A(−, xi) = F♮ ւ
∨

i∈I

A(−, xi),

and consequentlyy � colim∨
i∈I

A(−,xi) F, showing thatF is dense.

Remark 7.2. Dense (resp. codense)Q-functors are not necessarily
∨

-dense (resp.
∧

-dense). For example, the
Yoneda embeddingYA : A −→ PA is dense for anyQ-categoryA (see Example 4.11), but it is not

∨
-dense. In fact,

this is clear when one considers the singletonQ-category{q}, in which case the image ofY{q} : {q} −→ P{q} contains
only one object and thus it can never be

∨
-dense inP{q} as long asQ is larger than2. Similarly, the co-Yoneda

embeddingY†
A

: A −→ P†A is codense but in general not
∧

-dense.

EachQ-typed setA may be viewed as adiscreteQ-category with

A(x, y) =

®
1|x|, if x = y,

⊥|x|,|y|, else,
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where⊥|x|,|y| is the bottom arrow inQ(|x|, |y|). It is easy to see that type-preserving maps from a discreteQ-category to
any otherQ-category are necessarilyQ-functors. Therefore, Proposition 7.1 induces the following elementary version
of Theorem 5.1 which only employs order-theoretic notions (i.e.,

∨
-density and

∧
-density of maps) to characterize

theQ-categorical equivalence:

Theorem 7.3. Let S ⊣ T : D −→ C be an adjunction between completeQ-categories. Then a completeQ-category
X is equivalent toFix(TS) if, and only if, there exist

∨
-dense type-preserving maps F: A −→ X0, K : A −→ C0 and∧

-dense type-preserving maps G: B −→ X0, H : B −→ D0, where A, B areQ-typed sets, such thatD(S K−,H−) =
X(F−,G−).

Proof. The necessity is trivial by takingA = C0, B = D0 and applying Theorem 3.3 as in the proof of Theorem
5.1. For the sufficiency, the type-preserving mapsF,K,G,H are allQ-functors and, by Proposition 2.2,X(F−,G−) =
D(S K−,H−) means preciselyG♮ ◦ F♮ = H♮ ◦ S♮ ◦ K♮:

A

C

K
;;✇✇✇✇✇✇✇

B

D

H
cc●●●●●●●

A

X

F
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗ B

X

G
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠

C D

S //
DC

T
oo ⊥

A

C
K♮

;;✇✇✇✇✇✇✇

C D
S♮=T♮

// D

B

H♮

##●
●●

●●
●●

A

X

F♮
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

X

B

G♮

66♠♠♠♠♠♠♠♠♠♠♠♠♠

◦

◦

◦

◦ ◦

Therefore, the conclusion follows soon from Proposition 7.1 and Theorem 5.1.

As applications of Theorem 7.3, we will derive elementary representation theorems ofMϕ andKϕ in the rest of
this section. To this end, for anyQ-categoryA we denote byA0 ×domQ1 theQ-typed set

A0 ×domQ1 = {(a, u) | a ∈ A0, u : |a| −→ codu is aQ-arrow}

with types|(a, u)| = codu for all (a, u) ∈ A0 ×domQ1. Dually, we write

A0 ×codQ1 = {(a, u) | a ∈ A0, u : domu −→ |a| is aQ-arrow}

for theQ-typed set with types|(a, u)| = domu for all (a, u) ∈ A0 ×codQ1.

Remark 7.4. Note that neitherA0 ×dom Q1 nor A0 ×cod Q1 is a product in the slice categorySet ↓ Q0. In fact,
(Q1, dom) and (Q1, cod) are bothQ-typed sets with type maps sending eachQ-arrow to its domain and codomain,
respectively. The productA0 × (Q1, dom) in Set ↓ Q0 has exactly the same underlying set asA0 ×dom Q1, but the
type of (a, u) ∈ A0 × (Q1, dom) is|(a, u)| = |a| = domu. Similarly, the underlying set of the productA0 × (Q1, cod) in
Set ↓ Q0 is the same asA0 ×codQ1, but the type of (a, u) ∈ A0 × (Q1, cod) is|(a, u)| = |a| = codu.

ConsideringA0 ×dom Q1 andA0 ×cod Q1 as discreteQ-categories, one has the followingQ-functors (which are
just type-preserving maps):

UA : A0 ×domQ1 −→ PA, UA(a, u) = u ◦ YAa = u ◦ A(−, a),

NA : A0 ×domQ1 −→ PA, NA(a, u) = uւ Y†
A
a = uւ A(a,−),

U†
A

: A0 ×codQ1 −→ P†A, U†
A
(a, u) = Y†

A
a ◦ u = A(a,−) ◦ u,

N†
A

: A0 ×codQ1 −→ P†A, N†
A

(a, u) = YAaց u = A(−, a)ց u.

Proposition 7.5. For anyQ-categoryA, UA, N†
A

are
∨

-dense, and NA, U†
A

are
∧

-dense.
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Proof. The
∨

-density ofUA and the
∧

-density ofNA are easy since

µ = µ ◦ A =
∨

a∈A0

µ(a) ◦ A(−, a) =
∨

a∈A0

UA(a, µ(a)),

µ = µւ A =
∧

a∈A0

µ(a)ւ A(a,−) =
∧

a∈A0

NA(a, µ(a))

for all µ ∈ PA. For the
∧

-density ofU†
A

and the
∨

-density ofN†
A
, just note that

λ = A ◦ λ =
∨

a∈A0

A(a,−) ◦ λ(a) =
l

a∈A0

U†
A

(a, λ(a)),

λ = Aց λ =
∧

a∈A0

A(−, a)ց λ(a) =
⊔

a∈A0

N†
A

(a, λ(a))

for all λ ∈ P†A, where
d

and
⊔

are calculated in the underlying order ofP†A (see Remark 4.1).

It is easy to observeIm(NA) = A (see (6.viii)), and thus, as we mentioned at the end of Subsection 6.2, the crucial
constructionA in the representation theorem ofKϕ (i.e., Theorem 6.14) is in fact a

∧
-denseQ-subcategory ofPA.

Proposition 7.6. Letϕ : A //◦ B be aQ-distributor. Then

(1) (ϕ↑)♮(UA(a, u),U†
B
(b, v)) = vց (ϕ(a, b)ւ u) for all (a, u) ∈ A0 ×domQ1, (b, v) ∈ B0 ×codQ1,

(2) (ϕ∗)♮(UB(b, v),NA(a, u)) = (uւ ϕ(a, b))ւ v for all (a, u) ∈ A0 ×domQ1, (b, v) ∈ B0 ×domQ1.

Proof. Straightforward calculation.

Theorem 7.7. For anyQ-distributorϕ : A //◦ B, a separated completeQ-categoryX is isomorphic toMϕ if, and
only if, there exist a

∨
-dense type-preserving map F: A0 ×dom Q1 −→ X0 and a

∧
-dense type-preserving map

G : B0 ×codQ1 −→ X0 such that
vց (ϕ(a, b)ւ u) = X(F(a, u),G(b, v))

for all (a, u) ∈ A0 ×domQ1, (b, v) ∈ B0 ×codQ1.

Proof. Necessity. By Theorem 3.3 there exist surjectiveQ-functorsL : PA −→ X and R : P†B −→ X with
(ϕ↑)♮ = X(L−,R−). It is easy to see that Corollary 4.13 also holds for

∨
-dense and

∧
-dense type-preserving maps;

in fact, one just needs to considerQ = 2 and note that left (resp. right) adjointQ-functors are also left (resp. right)
adjoints in the underlying order (see Proposition 4.10(4)). Therefore, following the same reasoning in the proof of
Theorem 6.5 one deduces the

∨
-density ofLUA : A0×domQ1 −→ X0 and the

∧
-density ofRU†

B
: B0×codQ1 −→ X0.

A0 ×domQ1

PA
UA

44❥❥❥❥❥❥❥❥❥❥❥❥❥
B0 ×codQ1

P†B
U†

B

jj❚❚❚❚❚❚❚❚❚❚❚❚
A0 ×domQ1

Mϕ
F=LUA ++❲❲❲

❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲ B0 ×codQ1

Mϕ
G=RU†

Bss❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣

PA P†B
ϕ↑

//
P†BPA

ϕ↓
ooPA

Mϕ

L=ϕ↓ϕ↑

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴ P†B

Mϕ

R=ϕ↓

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

⊥

Finally, Proposition 7.6(1) implies

vց (ϕ(a, b)ւ u) = (ϕ↑)♮(UA(a, u),U†
B
(b, v)) = X(LUA(a, u),RU†

B
(b, v))

for all (a, u) ∈ A0 ×domQ1, (b, v) ∈ B0 ×codQ1.
Sufficiency. From Proposition 7.5 we have

∨
-dense type-preserving mapsUA : A0 ×dom Q1 −→ PA, F :

A0 ×domQ1 −→ X0 and
∧

-dense type-preserving mapsU†
B

: B0 ×codQ1 −→ P†B, G : B0 ×codQ1 −→ X0 with

X(F(a, u),G(b, v)) = vց (ϕ(a, b)ւ u) = P†B(ϕ↑UA(a, u),U†
B
(b, v))
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A0 ×domQ1

PA
UA

44❥❥❥❥❥❥❥❥❥❥❥❥❥
B0 ×codQ1

P†B
U†

B

jj❚❚❚❚❚❚❚❚❚❚❚❚
A0 ×domQ1

X
F ++❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

B0 ×codQ1

X
Gss❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣

PA P†B
ϕ↑

//
P†BPA

ϕ↓
ooPA

X

L=LanUA
F

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴ P†B

X

R=Ran
U†
B

G

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

⊥

for all (a, u) ∈ A0×domQ1, (b, v) ∈ B0×codQ1 by Proposition 7.6(1). Thus the conditions in Theorem 7.3 are satisfied,
completing the proof.

Theorem 7.8. For anyQ-distributorϕ : A //◦ B, a separated completeQ-categoryX is isomorphic toKϕ if, and
only if, there exist a

∨
-dense type-preserving map F: B0 ×dom Q1 −→ X0 and a

∧
-dense type-preserving map

G : A0 ×domQ1 −→ X0 such that
(uւ ϕ(a, b))ւ v = X(F(b, v),G(a, u))

for all (a, u) ∈ A0 ×domQ1, (b, v) ∈ B0 ×domQ1.

Proof. Similar to Theorem 7.7 under the help of Proposition 7.6(2) and the details are left to the readers. Here we
just sketch the diagrams both for the “only if” part and the “if” part as a comparison to the above theorem and the
diagrams (6.xi) illustrating Theorem 6.14:

B0 ×domQ1

PB
UB

44❥❥❥❥❥❥❥❥❥❥❥❥❥
A0 ×domQ1

PA
NA

jj❚❚❚❚❚❚❚❚❚❚❚❚❚
B0 ×domQ1

Kϕ
F=LUB ++❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

A0 ×domQ1

Kϕ
G=RNAss❣❣❣❣

❣❣❣❣
❣❣❣❣❣

❣❣❣❣
❣

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

Kϕ

L=ϕ∗ϕ∗

��
✴✴
✴✴
✴✴
✴✴
✴✴
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In the case thatQ has only one object, i.e., aunital quantale, bothA0×domQ1 andA0×codQ1 become the cartesian
product of the setA0 and the set of elements ofQ. As the following immediate corollary of Theorems 7.7 and 7.8
states, our results generalize Bělohlávek’s representation theorem for concept lattices of quantale-valued contexts in
FCA (see [3, Theorem 14(2)]) and Popescu’s representation theorem for those in RST (see [19, Proposition 7.3]):

Corollary 7.9. LetQ be a unital quantale,ϕ : A //◦ B aQ-distributor andX a separated completeQ-category.

(1) X is isomorphic toMϕ if, and only if, there exist a
∨

-dense map F: A0 × Q −→ X0 and a
∧

-dense map
G : B0 ×Q −→ X0 such that

vց (ϕ(a, b)ւ u) = X(F(a, u),G(b, v))

for all a ∈ A0, b ∈ B0, u, v ∈ Q.
(2) X is isomorphic toKϕ if, and only if, there exist a

∨
-dense map F: B0 × Q −→ X0 and a

∧
-dense map

G : A0 ×Q −→ X0 such that
(uւ ϕ(a, b))ւ v = X(F(b, v),G(a, u))

for all a ∈ A0, b ∈ B0, u, v ∈ Q.
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Remark 7.10. Bělohlávek’s [3, Theorem 14(2)] is precisely Corollary 7.9(1) whenQ is a commutative integral
quantale, while Popescu’s [19, Proposition 7.3] is a weakerversion of our Corollary 7.9(2) even ifQ is commutative
and integral. Explicitly, Popescu’s result should be stated as:

A complete latticeX is isomorphic to the underlying complete lattice ofKϕ if, and only if, there exist a∨
-dense mapF : B0 ×Q −→ X and a

∧
-dense mapG : A0 ×Q −→ X such that

ϕ(a, b) ≤ vց u ⇐⇒ F(b, v) ≤ G(a, u)

for all a ∈ A0, b ∈ B0, u, v ∈ Q.

In fact, the “only if” part of the above claim is an immediate consequence of Corollary 7.9(2), and the “if” part follows
by applying Theorem 7.3 in the caseQ = 2 to the underlying adjoint2-functors ofϕ∗ ⊣ ϕ∗.

8. Concluding remarks

The following diagram indicates the connections between the most important representation theorems established
in this paper, and we believe that the general representation theorems (3.3 and 5.1) have the potential to be applied to
more areas which deserve further investigation:

General representation theorems 3.3 & 5.1

Representation ofMϕ (Theorem 6.5)

Representation ofKϕ (Theorem 6.14)

Elementary representation ofMϕ (Theorem 7.7) Elementary representation ofKϕ (Theorem 7.8)

? ?
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