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ON THE FIRST ORDER ASYMPTOTICS OF PARTIAL BERGMAN KERNELS
DAN COMAN AND GEORGE MARINESCU

ABSTRACT. We show that under very general assumptions the partial Bergman kernel
function of sections vanishing along an analytic hypersurface has exponential decay in
a neighborhood of the vanishing locus. Considering an ample line bundle, we obtain a
uniform estimate of the Bergman kernel function associated to a singular metric along the
hypersurface. Finally, we study the asymptotics of the partial Bergman kernel function on
a given compact set and near the vanishing locus.
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1. INTRODUCTION

Partial Bergman kernels were recently studied in different contexts, especially Kéhler
geometry PS14, RWN14] or random polynomials [Ber07, [SZ04].
Let us consider the following general setting.

(A) (X,w) is a compact Hermitian manifold of dimension n, ¥ is a smooth analytic
hypersurface of X, and ¢ > 0 is a fixed real number.
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(B) (L, h) is a singular Hermitian holomorphic line bundle on X with singular metric
h which has locally bounded weights.

We define the space
HY(X,LP) := H°(X,L? @ O( — [tp|%))

of holomorphic sections of the p-th tensor power L? vanishing to order at least [¢p]
along %, where |z| denotes the integral part of z € R. Set d, = dim H°(X, L?) and
do, = dim HJ(X, L?). We introduce on H°(X, L) the L? inner product (-, -), induced by
the metric h, = h*? and the volume form w”/n!, see (9). This inner product is inherited
by HJ(X, L?). The (full) Bergman kernel function is defined by taking an orthonormal
basis {S7: 1 < j < d,} of (H(X, L?),(-,-),) and setting

Z 1SP(@)l5 s 1S5 (@)]; = (S7(x), S§(2))n,, © € X,

By considering an orthonormal basis {S¥ : 1 < j < dy,} of (Hy(X, L?), (-,-),), we define
the partial Bergman kernel function P, , by

do,p

Pop(x Z|Sp |hp x e

Note that this definition is independent of the choice of basis, cf. (1Q).

The asymptotics of the Bergman kernel function for a positive line bundle (L, h) [[Cat99|
Zel98]], see also for a comprehensive study, is very important in understanding
the Yau-Tian-Donaldson conjecture. On the other hand, partial Bergman kernels are
useful in connection to the slope semi-stability with respect to a submanifold [RT06]]. On
a toric variety X (and for a toric X) this study was carried out in [PS14]. In this context
it is shown that the partial Bergman kernel has an asymptotic expansion, having rapid
decay of order p~>° in a neighborhood U(X) of ¥, and giving the full Bergman kernel
function to order p~—*° outside the closure of U(X). Moreover gives a complete
distributional asymptotic expansion on X, whose leading term has an additional Dirac
delta measure plus a dipole measure over JU(X). These results were generalized in
to the case when the data in question are invariant under an S'-action.

In general, if no symmetry is assumed, it was shown in Theorem 4.3] that if
the bundle L ® & (—X) is ample, there exists a neighborhood U(X) of ¥, such that 1 ,(x)
has exponential decay on U(X) and p~"F,,(z) converges to ¢;(L,h)"/w" in L' outside
the closure of U(X).

Our first result is that under the very general hypotheses (A) and (B) above (in par-
ticular, without any positivity condition), the partial Bergman kernel function decays
exponentially in a neighborhood of the divisor X..
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Theorem 1.1. Assume that conditions (A)-(B) are fulfilled. Then there exist a neighborhood
U, of ¥ and a constant a € (0,1) such that By, < a? on U, for p > 2t~'. In particular
Pop=0(p~)asp — ocoonU,.

For more precise statements see Theorem [3.1] and Corollary 3.3

An object which is closely related to the partial Bergman kernel is the Bergman kernel
for a singular metric. The full asymptotic expansion on compact subsets of the regular
part of the metric was established in Theorem 1.8]. We are here concerned with
asymptotics at arbitrary points with dependence on the distance to the singular set. More
precisely, we will consider the following situation.

Let Sy, € H°(X,0O(X)) be a canonical holomorphic section of the line bundle O(%),
vanishing to first order on ¥. We fix a smooth Hermitian metric hy on O(X) such that

(D g::log}SE}hE<O on X.

We consider a function £ : X — R U {—occ}, smooth on X \ ¥, such that ¢ = tp in a
neighborhood U of ¥. Let dist(-, -) be the distance on X induced by w. Our main result
is the following:

Theorem 1.2. Let (X,w), (L, h),% be as in (A)-(B), and assume w is Kdhler, h is smooth,
and c¢,(L,h) > cw for some constant ¢ > 0. Consider the singular Hermitian metric h =
he=2¢ on L and let P, be the Bergman kernel function of Hyy (X, LP, by, ™ /nl), where hy, :=

hEP. There exists a constant C' > 1 such that for every x € X \ ¥ and every p € N with
pdist(z,2)%? > C we have

— < Cp~ Y8,
pn Cl(L, h)g N

(2)

Theorem[I.2]can be interpreted in two ways. First, if x runs in a compact set K C X\,
we have a concrete bound p, = Cdist(K, )% such that for p > p, the estimate (2)
holds. By Theorem 1.8] we have P,(z) = Yo ob(@)p" "+ O(p~>®) as p — oo
locally uniformly on X \ . Hence, there exists po(K) € N and Cx such that for p > po(K)
we have

i) Yo 1] <Cxp ! on K.
pn C1 (L, h)g

However, py(K) is not easy to determine.

We can also recast Theorem as a uniform estimate in p for the singular Bergman
kernel on compact sets of X \ ¥ whose distance to ¥ decreases as p~*/®. Indeed, set
K, = {z € X : dist(z,%) > (C/p)**}. Then (@) holds on K, for every p.
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We consider now the global behavior of the partial Bergman kernel. Given a compact
set K C X \ ¥ we set

to(K) := sup {t >0:3dn€ € (X,[0,1]), suppn C X \ K, n =1 near %,
(3)
and ¢, (L, h) + tdd‘(ne) is a Kahler current on X}.

A consequence of Theorems [I.T] and is the following result about the asymptotics of
the partial Bergman kernel:

Theorem 1.3. Let (X,w), (L, h),% be as in (A)-(B), and assume w is Kdhler, h is smooth,
and ¢,(L,h) > ew for some constant ¢ > 0. Let K C X \ X be a compact set and let
t € (0,t9(K)). Then there exist constants C' > 1, M > 1 and a neighborhood U, of ¥, all
depending on t, such that for x € U, we have

4 Me'®® < 1and Py ,(z) < (M@ for p > 2/t,

©) Py (z) > %" exp(2tpo(z)) for pdist(z, )3 > C,
where the function o is defined in ({Il). Moreover, we have uniformly on K,
(6) Pop(x) = Bp(x) + O(p™>), p— oo,

and in particular,

™ Poy(x) = bo(2)p" + bi(2)p" ™ + O(p"?) . p— o0,
where

(8) by = Cl(iinh)n by = g—;(rX—ZAlogbo),

and X, A, are the scalar curvature, respectively the Laplacian, of the Riemannian metric
associated to ¢, (L, h).

Hence, (4) and (5) show that on U; the exponential decay estimate for the partial
Bergman kernel function is sharp. Moreover, on K the partial Bergman kernel function
has the same asymptotics as the full Bergman kernel function up to order O(p~°°). This
was established in Theorem 1.1] under the additional assumption that there is
an S! action in a neighborhood of Y. Our method is to estimate the partial Bergman
kernel 13, by above and below with the full Bergman kernel P, and singular Bergman
kernel P,. On the set where the singular metric / equals h, the kernels P, and P, differ
by O(p~°°). This is shown in Theorem [5.1] which gives a general localization result for
singular Bergman kernels. Theorem [5.1]is a straightforward consequence of [HM14].

However, in Theorem [I.3]we do not necessarily obtain a partition of the manifold X
in two sets, one with exponential decay (@) and one with “full asymptotics” (6], since in
general U; U K # X. In a partition with two different regimes was
exhibited under further hypotheses.
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2. PRELIMINARIES

2.1. Bergman kernel function. Let (L, h) be a singular Hermitian holomorphic line bun-
dle over a compact Hermitian manifold (X,w). We denote by H°(X, LP) the space of
holomorphic sections of LP := L%P,

Let Hiy (X, LP) = Hpy (X, LP, hy,w" /n!) be the Bergman space of L?-holomorphic sec-
tions of L7 relative to the metric h, := h®? induced by h and the volume form w”/n! on
X, endowed with the inner product

© (5,5"), = /X (5.5

Set ||S||§ = (5,9),, d, = dim H(Oz)(X, LP). If h has locally bounded weights (e.g. h is
smooth) we have of course H (02)(X ,LP) = H°(X, LP). We have the following variational
characterization of the partial Bergman kernel

wTL

S, 8" € Hiy (X, LP).

Pl

(10) Poyla) = max {S(@)I}, : § € HY(X, L), ||S], = 1},

and similar characterizations hold for the full and singular Bergman kernel functions P,
and P,.

Throughout the paper we also use the following terminology. For a sequence of con-
tinuous functions f, on a manifold M we write f, = O(p~>) if for every compact sub-
set K C M and any ¢ € N there exists Cx, > 0 such that for all p € N we have

1 foll < Crep™.

2.2. Geometric set-up. We prepare here the geometric set-up needed for the proofs of
our results, by constructing a special neighborhood W of X.

Let (X, w) be a compact Hermitian manifold of dimension n. Let (U, z), z = (21, .. ., z,),
be local coordinates centered at a point # € X. For r > 0 and y € U we denote by

A"(y,r)={2€U:|zj—y;| <r, j=1,...,n}

the (closed) polydisk of polyradius (r,...,r) centered at y. If w is a Kéahler form, the
coordinates (U, z) are called Kahler at y € U if

i~ _
W, = §Zdzj/\dzj+0(\z—y\2) onU.

j=1

Since ¥ is compact, we can find an open cover W = {W,}1<;<y of ¥, where W; are
Stein simply connected coordinate neighborhoods centered at points y; € 3, such that

N
A™y;,2) C W, SCW = JAy;, 1),
j=1

Eij:{ZEWjizlz(]},fOI'j:l...,N,

(1D
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where z = (z1,...,%,) are the coordinates on I¥;. Moreover, if w is a Kihler form, we
may also ensure that

(12) Yz € A"(y;,1), 32z = z(x) coordinates on A"(y;,2) centered at z and Kahler at z.
As [CMM14, §2.5, Lemma 2.7] one can easily prove the following:

Lemma 2.1. Let (X,w), (L, h), S, h be as in Theorem and let W = {W,}1<;<n be
an open cover of X verifying (I1) and ([I2). There exist constants C, > 1, Cy > 0 and
r1 > 0 with the following property: if j € {1,...,N}, v € A"(y;,1) and z = z(z) are the
coordinates on A" (y;,2) given by (12), then:

(D A%(z,r) € A™(y;,2) and for r < r, we have
(13) nldm < (1+ Cr*)w™, w" < (1+CirH)nldm on A(x,r),

where dm = dm(z) is the Euclidean volume and A" (x,-) is the open polydisk relative to the
coordinates z.
(i) (L, h) has a weight ¢, on W; with

80x=t10g|f|+?/)x> 'lva Ecgoo(wj)a
Ua(2) = Re Fio(2) +9(2) + () on A(y;,2),

where f is a defining function for ¥ N W,, F,(z) is a holomorphic polynomial of degree < 2
in Z, ’QD;(Z) = Z?:l )\g|Zg|2, )\g = )\((ZL’), and

(15) [0a(2)| < Cal2f*, 2 € AL(w,m).

(14)

3. EXPONENTIAL DECAY

We prove here Theorem [I.1l Let W = {W,},<;<n be the cover of ¥ and W D X be the
neighborhood of ¥ constructed in section 2.2 (see (I1])). For a function ¢ € Ly3.(W;) set

loc
[ @lloow; = sup {lp(w)] : w e A"(y;,2)}.

Let (L, h) be a singular Hermitian holomorphic line bundle on X, where the metric & has
locally bounded weights. Since L|y, is trivial, we fix a holomorphic frame ¢; of Ly, and
denote by ¢; the corresponding weight of » on W, i.e. |e;|, = e %7. Set

(16) 1hlloo = IAllcoy := max {1, |l@;llocw, : 1 <j <N},
and let p be the function defined in ().

Theorem 3.1. In the setting of Theorem [L.1} there exists a constant A > 1 depending only
on p and W such that for any S € HY(X,LP), x € W, and p > 1, we have

|5(x)\ip < (Aer))y2Lr) e4p||h||oo||S||12).
Therefore, for every x € W and p > 1,
Pyp(x) < (Aer@)2lplgtplitlies
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For the proof we need the following elementary lemma.

Lemma 3.2. If k > 0 and f € O(A(0,2)), where A(0,2) C C is the closed disk centered at
0 and of radius 2, then

2 kt1 2k 2
[ QR am(@ < 55 | 0P am).

Proof. Consider the power expansion f(¢) = >_7%, a;¢7 of fin A(0,2). Integrating in
polar coordinates we obtain

© 2j+2

2
QR =253l [+ dr = 2 s
Lo > > 5l

On the other hand, ¢*f(¢) = =72, a;«(7, s0

22]—1—2 0 92j+2+2k

=9 |2
[, FOR am( w§j glamd =2
22k 22j+2 22k
> 2 1% = / 2d .
_k+172ﬂ2j+g%\ T g OF (O

U

Proof of Theorem 3.1l Let + € W. Fix j € {1,...,N} such that x € A™(y;,1) and let
e; be the local frame of L[y, and ¢; be the corresponding weight of / as considered in
[16). Let S € HY(X,L?). On W; we write S = se;”, with s € O(W;). Then we have

s(z) = z1L Pl5 5(z), with s € O(W;). Using the sub-averaging inequality we get

- (@ L -
[S(@)[7, =l [PUP [5(2) Pe720 ) < [y [PUr e — [3(2)[* dm(2)
(17) ™ An(z,1)

guwwwﬂwﬂﬁ()ﬁuwmma.
(0,2

Applying Fubini’s theorem for the splitting z = (z;, z’) and Lemma for the variable 2z,
we obtain

| E@Rdme = [ )R dn)dn()
A"(0,2) An=1(0,2) JA(0,2)
tp + 1 20t
< ) 24
18) < QWJ”L%mV| () dm(z)

< C exp <2p max goj) / |s(2)[2e=2Pei(®)
An(0,2)

An(0,2)
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where C' = C(W) > 1 is chosen such that dm(z) < Cw" on each A"(y;,2) in the local
coordinates of W}, for j = 1,..., N. Combining and (I8) we get

a9 S, < Clarf" exp (20 s o3~ 2p0s(a) ) IS

Note that there exists a constant A’ = A’(p, W) > 1 such that
(20) |z | < APz eW.
Set A = A'C. The estimates and (20) yield
|S($)\i2l,, < (C\:c1|)2“pJe4p”h”°°||S||I2, < (Aep(r))2tthe4pllhlloo||S||I2)_
Taking into account we immediately obtain the conclusion. O
Corollary 3.3. In the setting of Theorem 3.1l we let
2D U, = {x eW: (Ae”(””))t eAliblles 1} )
Then for any x € U; and p > 2t~ we have
(22) Pyp(z) < [(Aep(m))te‘l”h”m]p.
In particular Fy,, = O(p~>) as p — oo on U,.
Proof. This follows immediately from Theorem [3.1] since Ae”®) < 1 for x € U, and
2|tp| > 2tp —2 > tp for p > 2/t. d
4. SINGULAR BERGMAN KERNEL

In this section we prove Theorem [1.2] by using ideas of Berndtsson, who gave in
Section 2] a simple proof for the first order asymptotics of the Bergman kernel function
in the case of powers of an ample line bundle (see also Theorem 1.3]).

We start by recalling the following version of Demailly’s estimates for the 0 operator
Théoreéme 5.1] (see also Theorem 2.5]) which will be needed in our
proofs.

Theorem 4.1. Let (X,w) be a compact Kdhler manifold of dimension n, and let B > 0 be a
constant such that Ric,, > —2wBw on X. Let (L, h) be singular Hermitian holomorphic line
bundle on X such that ¢;(L, h) > ew, and fix py such that poc > 2B. Then for all p > py and
all g € L§ (X, L?,loc) with dg = 0 and [y [g]; w" < oo there exists u € L o(X, L?,loc)
such that Ou = g and [ [uff, w" < 2 [, |g]; w"

Proof of Theorem Let W = {W,}1<;<n be an open cover of X verifying (11) and (12).
Ifje{l,...,N}and z € A"(y;, 1), let = = z(x) be the coordinates on A"(y;,2) given by
(12D, and let e; , be a holomorphic frame of L on W; such that |e; ,|; = e~%*, where ¢, is
given by (14).
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Assume now that z € A"(y;,1) \ ¥ and define

Ty = Sup {r € (0,rq] : AL(z,7) C A™(y;,2) \ Z} .

We have
Z. n
Wy = §;d2’g/\d24,
(23) - .
c1(Ly 1)y = dd°p,(0) = ddei,(0) = dd°!. (0) = % 3" Aedz A dz.
/=1
Since Cl(L,}NL)m > cw, it follows that \, > ¢, ¢ = 1,...,n. Moreover, there exists H, €

O(A?(x,r,)) such that Re H, = ReF, + tlog|f|. We define a new frame for L over
A™(z,r,) by e, = efl*e; .. Hence

leali; = exp(Re H,) exp(—p,) = exp(—f, — i) .

We fix now j € {1,...,N} and z € A"(y;,1) \ ¥ and we will estimate P,(z). Let
rp, € (0,7,/2) be an arbitrary number which will be specified later. We start by estimating
the norm of a section S € H(OQ)(X, LP h,,w"/n!) at z. Writing S = se®, where s €
O(A%(z,r,)), we obtain by the sub-averaging inequality for psh functions on A% (x,r,) =
A™0,7y),

fAn(o,rp) ‘8‘26—2171@ dm

_2 /
Jan,) €7 dm

S(@)[; = 1s(0)]" <

2
oy

We have further by (I3), (I3),

/ |s|%e " dm < (1+ Cirl)exp(2p sup 1)) / |5[Ze2P(Wat)
A™(0,rp) A(0,rp) A(0,rp)

< (L4 Cirp)exp(2Cprd) ||S][2 -

wn
n!

Set
E(r):= /|§|<T e~ 26 dm(¢) = g <1 — 6_2T2> :

Since )\, > ¢ we obtain

E(ryype)" _ / o g o / o g (T2
pn)\l e )\n - 7(0,rp) - n p")\l e )\n

Combining these estimates it follows that

(1+ Cir?)exp (26’2]) 7‘3)
2 p p
(24) |S(:L’) ﬁp < E(Tp\/]TE)"

The singular Bergman kernel also satisfies a variational formula,

Py(w) = max {|S(@)[2 : S € Hy (X, L Ty /ml), IS, = 1.

PA A |12
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Hence (24) implies the following upper estimate for the singular Bergman kernel,
P,(z) - (14 Cyr2) exp(2Cyp 1)

PP A, T E(ry\/pe)" ’

For the lower estimate of ]Bp, let 0 < y < 1 be a smooth cut-off function on C™ with

support in A™(0,2) such that x = 1 on A™(0, 1), and set x,(z) = x(z/7,). Then F' = x,,e%?
is a section of L” and |F'(z)[; = |e§p(:c)|ﬁp = 1. We have

IF|2 < / 20+ )
A™(0,2rp)

(25) Vr, € (0,r,/2).

n!
(26) < (1+ 4C'1r12,) exp(16C2p 7"2) / eV dm
A™(0,2rp)
(T " (1+4Cr2) exp(16Cop )
Set a = OF. Since [|0x,||* = [|0x||*/r2, where ||0x|| denotes the maximum of [Dx|, we

obtain as above

|2 = / |5Xp|26_2p(w;+$x> woo 10X I” (z) (14 4C1r2) exp(16Cop i) .
p A" (0,2rp) n! rI% 9 DA

There exists p, € N such that for p > p, we can solve the J—-equation by Theorem [4.1l We
get a smooth section G of L? with G = a = OF and

2 QHEXH? ~\" (1 —|—4C’1r2)exp(1602p7’3)
27) IGI2 < = a2 < =25 (5 . =
PE per? 2 PrAL . A,

Note that G is holomorphic on A™(0,r,) since 0G = OF = 0 there. So the estimate (24)
applies to G on A"(0,r,) and gives

(14 Cyr2) exp(2Cyp 1)

G, < gt T
p
2[[0x||? \"
peﬂg(r \H/pe)" (5) (14, " exp(18Capry).
p p

Let S=F—-Ge H(Oz)(X, LP h,,w"/n!). Then
S@E > (F@;, —|6@);,) = (1 - 6@)]; )?

. <g)"/2 VBN +4Cir2)
7“17\/375E(TIJ\/ZTE)H/2

2
hep

>

exp(9Copr) | =: Ki(ry).

2
Moreover, by and 7))

" Kyl
2 2 (M) _B2lUp)
151 < 11+ 161 < (3) a2rel,
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where
_ 2
V20X
Ky(ry) = (1 +4C1r7) exp(16Cap 1)) (1 + W .
Therefore
o S@IE ey Ki(r,)
(28) P,(z) > pZ(—) DAL A,
W02 e 2 \7) P M )

Using now (23), (25) and (28] we deduce that for every = € U;V:l A™(y;, D\X, 1y < 1ry/2
and p > po,

Ki(r,) = w?
(29) Pl < P (2) —2—— < Ks(1,),
Ks(rp) o )p”cl(L, h)n a(r)
where
/2 2 3
K3(ry) = (W) (14 Cﬂ"p) eXP(202]9 Tp) :
We take now r;, = p~3/%, so pri = p/* — 0 and pr2 = p'/* — oo as p — oo. Note that

there exists a constant C's > 0 such that
K1(p_3/8) >1—Cayp /8, K2(p_3/8) <14 Cyp /8, K3(p_3/8) <1+ Cap7'/8.

It follows by that there exists a constant C; > 0 such that

(30) 1—Cyp V3 < Bya) ——2 < 14Cyp /8,
pncl (L7 h’)g
holds for every x € U;.V:l Ar(y;, )\ 2, p~3/® < r,/2 and p > py. Now r, > cdist(z, ),
for some constant ¢ > 0, so there exists a constant C5 > 0 such that holds for
p > Cs dist(z, ¥3) /3. This concludes the proof of @) for = € |J_, A"(y;, 1)\ &.
By [HM14, Theorem 1.8] there exist Cs > 0 and p;, € N such that

Pyz) —= 1| < G
pncl(Lu h)g p
forxz e X\ U;V: L A™(y;, 1) and p > pj;. The proof of Theorem [I.2]is complete. O

5. ESTIMATES FOR THE PARTIAL BERGMAN KERNEL

In this section we prove Theorem [1.3l Let ¢ < ¢y(K). By the definition (3] of ¢,(K),
there exist n € ¢>(X,[0,1]) and 6 > 0 such that suppn € X \ K, n = 1 near ¥ and
c1(L, h) + tdd®(ne) > dw in the sense of currents on X. Define

ﬁt = hexp(—2tno), Et,p = E?”.
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Note that 7Lt = h in a neighborhood of K anCL 7Lt > h on X. Since X is smooth,
it follows by (1) that Hy(X, L) = H) (X, LP, hyp,w"/n!). We denote the norm on

HY (X, LP, hyp, w" /nl) by

wn
i1, = [ 158, 55 = [ 1SR, esp(-2tmo)
X P X

Let P,, be the Bergman kernel function of H ?2) (X, LP,%W, w™/n!). Recall that ||S||, is the
norm given by the scalar product (@) on H§(X, L?). Since ¢ < 0 we have ||S||7, > |5
for any S € Hj(X, LP). Let S € Hj(X, L?) with ||S||7, < 1. Then ||S||2 < 1, too, hence

wn
n!

[S[2 = ISIi, exp(=2tpne) < Po,exp(—2tpro),

and thus
Pip < Poyexp(—2tpno) .
Denote now by P, the Bergman kernel function of H°(X, L?) endowed with the scalar
product @). Since HJ(X, L?) is isometrically embedded in H°(X, L?) we have P, < P,.
Consequently we have shown:
31) ﬁt,p exp(2tpnoe) < By, < P, on X,
ﬁt,p < P, < P, near K.
Let now W be the neighborhood of ¥ defined in (I11I) and let U; be defined as in (21)),
so that the exponential estimate holds on U; for p > 2t~!. By shrinking U; we can
assume that = 1 on U,. Setting M := e*l"l= A* we obtain(4). By Theorem [I[.2 we have
~ L, h)"
Poy(x) > (1 — Cp~V/8)pn (L, )y
wy
for every p € N with pdist(z, £)¥* > C. Note that ¢;(L, h;) > dw in the sense of currents

C1 (L7 ht)n
wn

on X. Since ¢;(L, i) is smooth on X \ ¥ we have > ¢" on X \ X. By increasing

C' if necessary, it follows that

P, (z) > for p > C dist(z, %)%/,

p"
C
Hence

Pop(x) > % exp(2tpo(z)) forz € U, and p > C dist(z, %) /3.
This proves (5).
In order to prove (6) we need the following localization theorem for the Bergman
kernel.

Theorem 5.1. Let (X, w) be a compact Hermitian manifold and L. — X be a holomorphic
line bundle. Consider two singular Hermitian metrics hy; and hy on L, which are smooth
outside a proper analytic set > C X and such that c¢i(L, hy), ¢1(L, hy) are Kdhler currents.
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Let P,Ej ) be the Bergman projection on H°(X, L?, h?,w" /n!), j = 1,2. We assume that there
exists an open set U € X \ X such that hy = hy on U. Then the Bergman kernels satisfy
Pél)(z,w) — Pf’(z,w) = O(p~) on U in any €*-topology, { € N, as p — oo.

Proof. The proof follows essentially from the analysis in (see also [HM16]). Let
ho be any singular Hermitian metric on L, smooth on X \ ¥ and satisfying ¢; (L, hg) > cw
in the sense of currents on X, for some ¢ > 0. Let P,SO) be the Bergman projection on
HO(X, LP hb w™/n!).

Consider an open set D C U such that L|p is trivial. Let s : D — L be a holomorphic
frame and let ¢ € ¥>°(D) be the weight of h, corresponding to s, that is, |s|,, = e~ %.
Let us denote by &'(D) the space of distributions with compact support on D and by
L?(D) the space of square-integrable functions with respect to the volume form w”/n!.
The localized Bergman projection with respect to s is the operator PIE,OS) : LA(D)N&'(D) —
L%(D), defined by B” (uer?s®?) = P (u)eP?s®P. It is easy to see that

(32)  PO(zw) = POz w)er #0002 @ () (w) € L2 @ (I8)", 2w € D,
By [HM14] Theorem 9.2] the kernel of PIS,OS) satisfies
(33 Pp(f)s)(z, w) = Sy(z,w)+ O(p~) on D,

where S, is the localized approximate Szeg6 kernel defined in [HM14, (3.43)]. Note that
by [HM14, Theorem 3.12] we have

(34) S, (z,w) = ePYEp(2 w, p) + O(p~>) on D,

where U : D x D — C is a phase function depending on the eigenvalues of ¢;(L, hg)
with respect to w and described precisely in Theorem 3.8]. Moreover, b(-, -, p) :
D x D — C is a semi-classical symbol of order n = dim X, depending only on the
restriction of » and w to D.

We apply now these results for iy = h; and hg = hs. Since hi|p = hy|p we deduce that
the weight ¢, the phase ¥ and the symbol b(-, -, p) above are the same for h; and hy. We
infer from and (34) that PSY (2, w) — P{?(z,w) = O(p~>) on D. Finally, yields
P,Sl)(z, w) — P,Sz)(z, w) = O(p~>) on D. The proof of Theorem [5.1]is complete. O

We apply now Theorem [5.] to the metrics h and h, which are equal on a neigborhood
V of K and infer that

(35) P,,— P, =0O(p ) locally uniformly on V.

Combined with (3I), (33) yields (). Finally, (7) and (8) follow from the expansion
of the Bergman kernel P, (see [MMO7, Theorems4.1.1-3]) or of the singular Bergman
kernel (see [HM14, Theorem 1.8]).
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