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ON THE FIRST ORDER ASYMPTOTICS OF PARTIAL BERGMAN KERNELS

DAN COMAN AND GEORGE MARINESCU

ABSTRACT. We show that under very general assumptions the partial Bergman kernel

function of sections vanishing along an analytic hypersurface has exponential decay in

a neighborhood of the vanishing locus. Considering an ample line bundle, we obtain a

uniform estimate of the Bergman kernel function associated to a singular metric along the

hypersurface. Finally, we study the asymptotics of the partial Bergman kernel function on

a given compact set and near the vanishing locus.
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1. INTRODUCTION

Partial Bergman kernels were recently studied in different contexts, especially Kähler

geometry [RS13, PS14, RWN14] or random polynomials [Ber07, SZ04].

Let us consider the following general setting.

(A) (X,ω) is a compact Hermitian manifold of dimension n, Σ is a smooth analytic

hypersurface of X, and t > 0 is a fixed real number.
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(B) (L, h) is a singular Hermitian holomorphic line bundle on X with singular metric

h which has locally bounded weights.

We define the space

H0
0 (X,L

p) := H0
(
X,Lp ⊗O

(
− ⌊tp⌋Σ

))

of holomorphic sections of the p-th tensor power Lp vanishing to order at least ⌊tp⌋
along Σ, where ⌊x⌋ denotes the integral part of x ∈ R. Set dp = dimH0(X,Lp) and

d0,p = dimH0
0 (X,L

p). We introduce on H0(X,Lp) the L2 inner product (· , ·)p induced by

the metric hp = h⊗p and the volume form ωn/n! , see (9). This inner product is inherited

by H0
0 (X,L

p). The (full) Bergman kernel function is defined by taking an orthonormal

basis {Spj : 1 ≤ j ≤ dp} of (H0(X,Lp), (· , ·)p) and setting

Pp(x) =

dp∑

j=1

|Spj (x)|2hp , |Spj (x)|2hp := 〈Spj (x), Spj (x)〉hp, x ∈ X.

By considering an orthonormal basis {Spj : 1 ≤ j ≤ d0,p} of (H0
0 (X,L

p), (· , ·)p), we define

the partial Bergman kernel function P0,p by

P0,p(x) =

d0,p∑

j=1

|Spj (x)|2hp , x ∈ X.

Note that this definition is independent of the choice of basis, cf. (10).

The asymptotics of the Bergman kernel function for a positive line bundle (L, h) [Cat99,

Zel98], see also [MM07] for a comprehensive study, is very important in understanding

the Yau-Tian-Donaldson conjecture. On the other hand, partial Bergman kernels are

useful in connection to the slope semi-stability with respect to a submanifold [RT06]. On

a toric variety X (and for a toric Σ) this study was carried out in [PS14]. In this context

it is shown that the partial Bergman kernel has an asymptotic expansion, having rapid

decay of order p−∞ in a neighborhood U(Σ) of Σ, and giving the full Bergman kernel

function to order p−∞ outside the closure of U(Σ). Moreover [PS14] gives a complete

distributional asymptotic expansion on X, whose leading term has an additional Dirac

delta measure plus a dipole measure over ∂U(Σ). These results were generalized in

[RS13] to the case when the data in question are invariant under an S1-action.

In general, if no symmetry is assumed, it was shown in [Ber07, Theorem 4.3] that if

the bundle L⊗O(−Σ) is ample, there exists a neighborhood U(Σ) of Σ, such that P0,p(x)

has exponential decay on U(Σ) and p−nP0,p(x) converges to c1(L, h)
n/ωn in L1 outside

the closure of U(Σ).

Our first result is that under the very general hypotheses (A) and (B) above (in par-

ticular, without any positivity condition), the partial Bergman kernel function decays

exponentially in a neighborhood of the divisor Σ.
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Theorem 1.1. Assume that conditions (A)-(B) are fulfilled. Then there exist a neighborhood

Ut of Σ and a constant a ∈ (0, 1) such that P0,p ≤ ap on Ut for p > 2t−1. In particular

P0,p = O(p−∞) as p→ ∞ on Ut.

For more precise statements see Theorem 3.1 and Corollary 3.3.

An object which is closely related to the partial Bergman kernel is the Bergman kernel

for a singular metric. The full asymptotic expansion on compact subsets of the regular

part of the metric was established in [HM14, Theorem 1.8]. We are here concerned with

asymptotics at arbitrary points with dependence on the distance to the singular set. More

precisely, we will consider the following situation.

Let SΣ ∈ H0(X,O(Σ)) be a canonical holomorphic section of the line bundle O(Σ),

vanishing to first order on Σ. We fix a smooth Hermitian metric hΣ on O(Σ) such that

(1) ̺ := log
∣∣SΣ

∣∣
hΣ
< 0 on X.

We consider a function ξ : X → R ∪ {−∞}, smooth on X \ Σ, such that ξ = tρ in a

neighborhood U of Σ. Let dist(· , ·) be the distance on X induced by ω. Our main result

is the following:

Theorem 1.2. Let (X,ω), (L, h),Σ be as in (A)-(B), and assume ω is Kähler, h is smooth,

and c1(L, h) ≥ εω for some constant ε > 0. Consider the singular Hermitian metric h̃ =

he−2ξ on L and let P̃p be the Bergman kernel function of H0
(2)(X,L

p, h̃p, ω
n/n!), where h̃p :=

h̃⊗p. There exists a constant C > 1 such that for every x ∈ X \ Σ and every p ∈ N with

p dist(x,Σ)8/3 > C we have

(2)

∣∣∣∣∣
P̃p(x)

pn
ωnx

c1(L, h̃)nx
− 1

∣∣∣∣∣ ≤ Cp−1/8 .

Theorem 1.2 can be interpreted in two ways. First, if x runs in a compact setK ⊂ X\Σ,

we have a concrete bound p0 = C dist(K,Σ)−8/3 such that for p > p0 the estimate (2)

holds. By [HM14, Theorem 1.8] we have P̃p(x) =
∑∞

r=0 br(x)p
n−r + O(p−∞) as p → ∞

locally uniformly on X \Σ. Hence, there exists p0(K) ∈ N and CK such that for p > p0(K)

we have ∣∣∣∣∣
P̃p(x)

pn
ωnx

c1(L, h̃)nx
− 1

∣∣∣∣∣ ≤ CKp
−1 on K.

However, p0(K) is not easy to determine.

We can also recast Theorem 1.2 as a uniform estimate in p for the singular Bergman

kernel on compact sets of X \ Σ whose distance to Σ decreases as p−3/8. Indeed, set

Kp = {x ∈ X : dist(x,Σ) ≥ (C/p)3/8}. Then (2) holds on Kp for every p.
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We consider now the global behavior of the partial Bergman kernel. Given a compact

set K ⊂ X \ Σ we set

t0(K) := sup
{
t > 0 : ∃ η ∈ C

∞(X, [0, 1]), supp η ⊂ X \K, η = 1 near Σ,

and c1(L, h) + t ddc(η̺) is a Kähler current on X
}
.

(3)

A consequence of Theorems 1.1 and 1.2 is the following result about the asymptotics of

the partial Bergman kernel:

Theorem 1.3. Let (X,ω), (L, h),Σ be as in (A)-(B), and assume ω is Kähler, h is smooth,

and c1(L, h) ≥ εω for some constant ε > 0. Let K ⊂ X \ Σ be a compact set and let

t ∈ (0, t0(K)). Then there exist constants C > 1, M > 1 and a neighborhood Ut of Σ, all

depending on t, such that for x ∈ Ut we have

Met̺(x) < 1 and P0,p(x) ≤ (Met̺(x))p for p > 2/t,(4)

P0,p(x) ≥
pn

C
exp(2tp̺(x)) for p dist(x,Σ)8/3 > C,(5)

where the function ̺ is defined in (1). Moreover, we have uniformly on K,

(6) P0,p(x) = Pp(x) +O(p−∞) , p→ ∞,

and in particular,

(7) P0,p(x) = b0(x)p
n + b1(x)p

n−1 +O(pn−2) , p→ ∞,

where

(8) b0 =
c1(L, h)

n

ωn
, b1 =

b0

8π
(rX − 2∆ log b0),

and rX , ∆ , are the scalar curvature, respectively the Laplacian, of the Riemannian metric

associated to c1(L, h).

Hence, (4) and (5) show that on Ut the exponential decay estimate for the partial

Bergman kernel function is sharp. Moreover, on K the partial Bergman kernel function

has the same asymptotics as the full Bergman kernel function up to order O(p−∞). This

was established in [RS13, Theorem 1.1] under the additional assumption that there is

an S1 action in a neighborhood of Σ. Our method is to estimate the partial Bergman

kernel P0,p by above and below with the full Bergman kernel Pp and singular Bergman

kernel P̃p. On the set where the singular metric h̃ equals h, the kernels P̃p and Pp differ

by O(p−∞). This is shown in Theorem 5.1, which gives a general localization result for

singular Bergman kernels. Theorem 5.1 is a straightforward consequence of [HM14].

However, in Theorem 1.3 we do not necessarily obtain a partition of the manifold X

in two sets, one with exponential decay (4) and one with “full asymptotics” (6), since in

general Ut ∪K 6= X. In [Ber07, RS13, PS14] a partition with two different regimes was

exhibited under further hypotheses.
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2. PRELIMINARIES

2.1. Bergman kernel function. Let (L, h) be a singular Hermitian holomorphic line bun-

dle over a compact Hermitian manifold (X,ω). We denote by H0(X,Lp) the space of

holomorphic sections of Lp := L⊗p.

Let H0
(2)(X,L

p) = H0
(2)(X,L

p, hp, ω
n/n!) be the Bergman space of L2-holomorphic sec-

tions of Lp relative to the metric hp := h⊗p induced by h and the volume form ωn/n! on

X, endowed with the inner product

(9) (S, S ′)p :=

∫

X

〈S, S ′〉hp
ωn

n!
, S, S ′ ∈ H0

(2)(X,L
p).

Set ‖S‖2p = (S, S)p, dp = dimH0
(2)(X,L

p). If h has locally bounded weights (e. g. h is

smooth) we have of course H0
(2)(X,L

p) = H0(X,Lp). We have the following variational

characterization of the partial Bergman kernel

(10) P0,p(x) = max
{
|S(x)|2hp : S ∈ H0

0 (X,L
p), ‖S‖p = 1

}
,

and similar characterizations hold for the full and singular Bergman kernel functions Pp
and P̃p.

Throughout the paper we also use the following terminology. For a sequence of con-

tinuous functions fp on a manifold M we write fp = O(p−∞) if for every compact sub-

set K ⊂ M and any ℓ ∈ N there exists CK,ℓ > 0 such that for all p ∈ N we have

‖fp‖K ≤ CK,ℓ p
−ℓ.

2.2. Geometric set-up. We prepare here the geometric set-up needed for the proofs of

our results, by constructing a special neighborhood W of Σ.

Let (X,ω) be a compact Hermitian manifold of dimension n. Let (U, z), z = (z1, . . . , zn),

be local coordinates centered at a point x ∈ X. For r > 0 and y ∈ U we denote by

∆n(y, r) = {z ∈ U : |zj − yj| ≤ r, j = 1, . . . , n}

the (closed) polydisk of polyradius (r, . . . , r) centered at y. If ω is a Kähler form, the

coordinates (U, z) are called Kähler at y ∈ U if

ωz =
i

2

n∑

j=1

dzj ∧ dzj +O(|z − y|2) on U.

Since Σ is compact, we can find an open cover W = {Wj}1≤j≤N of Σ, where Wj are

Stein simply connected coordinate neighborhoods centered at points yj ∈ Σ, such that

∆n(yj, 2) ⊂Wj , Σ ⊂W :=
N⋃

j=1

∆n(yj, 1),

Σ ∩Wj =
{
z ∈ Wj : z1 = 0

}
, for j = 1 . . . , N,

(11)
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where z = (z1, . . . , zn) are the coordinates on Wj. Moreover, if ω is a Kähler form, we

may also ensure that

(12) ∀ x ∈ ∆n(yj, 1), ∃ z = z(x) coordinates on ∆n(yj, 2) centered at x and Kähler at x.

As [CMM14, §2.5, Lemma 2.7] one can easily prove the following:

Lemma 2.1. Let (X,ω), (L, h),Σ, h̃ be as in Theorem 1.2, and let W = {Wj}1≤j≤N be

an open cover of Σ verifying (11) and (12). There exist constants C1 > 1, C2 > 0 and

r1 > 0 with the following property: if j ∈ {1, . . . , N}, x ∈ ∆n(yj, 1) and z = z(x) are the

coordinates on ∆n(yj, 2) given by (12), then:

(i) ∆n
z (x, r1) ⋐ ∆n(yj, 2) and for r ≤ r1 we have

(13) n! dm ≤ (1 + C1r
2)ωn , ωn ≤ (1 + C1r

2)n! dm on ∆n
z (x, r),

where dm = dm(z) is the Euclidean volume and ∆n
z (x, ·) is the open polydisk relative to the

coordinates z.

(ii) (L, h̃) has a weight ϕx on Wj with

ϕx = t log |f |+ ψx , ψx ∈ C
∞(Wj),

ψx(z) = ReFx(z) + ψ′
x(z) + ψ̃x(z) on ∆n(yj, 2),

(14)

where f is a defining function for Σ ∩Wj , Fx(z) is a holomorphic polynomial of degree ≤ 2

in z, ψ′
x(z) =

∑n
ℓ=1 λℓ|zℓ|2, λℓ = λℓ(x), and

(15) |ψ̃x(z)| ≤ C2|z|3 , z ∈ ∆n
z (x, r1) .

3. EXPONENTIAL DECAY

We prove here Theorem 1.1. Let W = {Wj}1≤j≤N be the cover of Σ and W ⊃ Σ be the

neighborhood of Σ constructed in section 2.2 (see (11)). For a function ϕ ∈ L∞
loc(Wj) set

‖ϕ‖∞,Wj
= sup

{
|ϕ(w)| : w ∈ ∆n(yj, 2)

}
.

Let (L, h) be a singular Hermitian holomorphic line bundle on X, where the metric h has

locally bounded weights. Since L|Wj
is trivial, we fix a holomorphic frame ej of L|Wj

, and

denote by ϕj the corresponding weight of h on Wj , i.e. |ej|h = e−ϕj . Set

(16) ‖h‖∞ = ‖h‖∞,W := max
{
1, ‖ϕj‖∞,Wj

: 1 ≤ j ≤ N
}
,

and let ̺ be the function defined in (1).

Theorem 3.1. In the setting of Theorem 1.1, there exists a constant A ≥ 1 depending only

on ρ and W such that for any S ∈ H0
0 (X,L

p), x ∈ W , and p ≥ 1, we have

|S(x)|2hp ≤ (Aeρ(x))2⌊tp⌋e4p‖h‖∞‖S‖2p .
Therefore, for every x ∈ W and p ≥ 1,

P0,p(x) ≤ (Aeρ(x))2⌊tp⌋e4p‖h‖∞ .
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For the proof we need the following elementary lemma.

Lemma 3.2. If k ≥ 0 and f ∈ O(∆(0, 2)), where ∆(0, 2) ⊂ C is the closed disk centered at

0 and of radius 2, then

∫

∆(0,2)

|f(ζ)|2 dm(ζ) ≤ k + 1

22k

∫

∆(0,2)

|ζ |2k|f(ζ)|2 dm(ζ) .

Proof. Consider the power expansion f(ζ) =
∑∞

j=0 ajζ
j of f in ∆(0, 2). Integrating in

polar coordinates we obtain

∫

∆(0,2)

|f(ζ)|2 dm(ζ) = 2π

∞∑

j=0

|aj |2
∫ 2

0

r2j+1 dr = 2π

∞∑

j=0

22j+2

2j + 2
|aj|2 .

On the other hand, ζkf(ζ) =
∑∞

j=k aj−kζ
j, so

∫

∆(0,2)

|f(ζ)|2 dm(ζ) = 2π
∞∑

j=k

22j+2

2j + 2
|aj−k|2 = 2π

∞∑

j=0

22j+2+2k

2j + 2 + 2k
|aj|2

≥ 22k

k + 1
2π

∞∑

j=0

22j+2

2j + 2
|aj|2 =

22k

k + 1

∫

∆(0,2)

|f(ζ)|2 dm(ζ) .

�

Proof of Theorem 3.1. Let x ∈ W . Fix j ∈ {1, . . . , N} such that x ∈ ∆n(yj, 1) and let

ej be the local frame of L|Wj
and ϕj be the corresponding weight of h as considered in

(16). Let S ∈ H0
0 (X,L

p). On Wj we write S = se⊗pj , with s ∈ O(Wj). Then we have

s(z) = z
⌊tp⌋
1 s̃(z), with s̃ ∈ O(Wj). Using the sub-averaging inequality we get

|S(x)|2hp = |x1|2⌊tp⌋|s̃(x)|2e−2pϕj(x) ≤ |x1|2⌊tp⌋e−2pϕj(x)
1

πn

∫

∆n(x,1)

|s̃(z)|2 dm(z)

≤ |x1|2⌊tp⌋e−2pϕj(x)

∫

∆n(0,2)

|s̃(z)|2 dm(z) .

(17)

Applying Fubini’s theorem for the splitting z = (z1, z
′) and Lemma 3.2 for the variable z1,

we obtain
∫

∆n(0,2)

|s̃(z)|2 dm(z) =

∫

∆n−1(0,2)

∫

∆(0,2)

|s̃(z1, z′)|2 dm(z1)dm(z′)

≤ ⌊tp⌋+ 1

2⌊tp⌋

∫

∆n(0,2)

|z1|2⌊tp⌋|s̃(z)|2 dm(z)

≤ C exp

(
2p max

∆n(0,2)
ϕj

)∫

∆n(0,2)

|s(z)|2e−2pϕj(z) ωn,

(18)
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where C = C(W) ≥ 1 is chosen such that dm(z) ≤ Cωn on each ∆n(yj, 2) in the local

coordinates of Wj , for j = 1, . . . , N . Combining (17) and (18) we get

(19) |S(x)|2hp ≤ C |x1|2⌊tp⌋ exp
(
2p max

∆n(0,2)
ϕj − 2pϕj(x)

)
‖S‖2p

Note that there exists a constant A′ = A′(ρ,W ) > 1 such that

(20) |x1| ≤ A′eρ(x) , x ∈ W .

Set A = A′C. The estimates (19) and (20) yield

|S(x)|2hp ≤ (C|x1|)2⌊tp⌋e4p‖h‖∞‖S‖2p ≤ (Aeρ(x))2⌊tp⌋e4p‖h‖∞‖S‖2p .
Taking into account (10) we immediately obtain the conclusion. �

Corollary 3.3. In the setting of Theorem 3.1 we let

(21) Ut :=
{
x ∈ W : (Aeρ(x))t e4‖h‖∞ < 1

}
.

Then for any x ∈ Ut and p > 2t−1 we have

(22) P0,p(x) ≤
[
(Aeρ(x))t e4‖h‖∞

]p
.

In particular P0,p = O(p−∞) as p→ ∞ on Ut.

Proof. This follows immediately from Theorem 3.1, since Aeρ(x) < 1 for x ∈ Ut, and

2⌊tp⌋ > 2tp− 2 > tp for p > 2/t. �

4. SINGULAR BERGMAN KERNEL

In this section we prove Theorem 1.2 by using ideas of Berndtsson, who gave in [B03,

Section 2] a simple proof for the first order asymptotics of the Bergman kernel function

in the case of powers of an ample line bundle (see also [CMM14, Theorem 1.3]).

We start by recalling the following version of Demailly’s estimates for the ∂ operator

[Dem82, Théorème 5.1] (see also [CMM14, Theorem 2.5]) which will be needed in our

proofs.

Theorem 4.1. Let (X,ω) be a compact Kähler manifold of dimension n, and let B > 0 be a

constant such that Ricω ≥ −2πBω on X. Let (L, h) be singular Hermitian holomorphic line

bundle on X such that c1(L, h) ≥ εω, and fix p0 such that p0ε ≥ 2B. Then for all p > p0 and

all g ∈ L2
0,1(X,L

p, loc) with ∂g = 0 and
∫
X
|g|2hp ωn < ∞ there exists u ∈ L2

0,0(X,L
p, loc)

such that ∂u = g and
∫
X
|u|2hp ωn ≤ 2

pε

∫
X
|g|2hp ωn.

Proof of Theorem 1.2. Let W = {Wj}1≤j≤N be an open cover of Σ verifying (11) and (12).

If j ∈ {1, . . . , N} and x ∈ ∆n(yj, 1), let z = z(x) be the coordinates on ∆n(yj, 2) given by

(12), and let ej,x be a holomorphic frame of L on Wj such that |ej,x|h̃ = e−ϕx, where ϕx is

given by (14).
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Assume now that x ∈ ∆n(yj, 1) \ Σ and define

rx := sup
{
r ∈ (0, r1] : ∆

n
z (x, r) ⊂ ∆n(yj, 2) \ Σ

}
.

We have

ωx =
i

2

n∑

ℓ=1

dzℓ ∧ dz̄ℓ ,

c1(L, h̃)x = ddcϕx(0) = ddcψx(0) = ddcψ′
x(0) =

i

π

n∑

ℓ=1

λℓ dzℓ ∧ dz̄ℓ .
(23)

Since c1(L, h̃)x > εωx it follows that λℓ ≥ ε, ℓ = 1, . . . , n. Moreover, there exists Hx ∈
O(∆n

z (x, rx)) such that ReHx = ReFx + t log |f |. We define a new frame for L over

∆n
z (x, rx) by ex = eHxej,x. Hence

|ex|h̃ = exp(ReHx) exp(−ϕx) = exp(−ψ′
x − ψ̃x) .

We fix now j ∈ {1, . . . , N} and x ∈ ∆n(yj, 1) \ Σ and we will estimate P̃p(x). Let

rp ∈ (0, rx/2) be an arbitrary number which will be specified later. We start by estimating

the norm of a section S ∈ H0
(2)(X,L

p, h̃p, ω
n/n!) at x. Writing S = se⊗px , where s ∈

O(∆n
z (x, rx)), we obtain by the sub-averaging inequality for psh functions on ∆n

z (x, rp) =

∆n(0, rp),

|S(x)|2
h̃p

= |s(0)|2 ≤
∫
∆n(0,rp)

|s|2e−2pψ′

dm
∫
∆n(0,rp)

e−2pψ′ dm
·

We have further by (13), (15),
∫

∆n(0,rp)

|s|2e−2pψ′

dm ≤ (1 + C1r
2
p) exp

(
2p sup

∆n(0,rp)

ψ̃
) ∫

∆n(0,rp)

|s|2e−2p(ψ′

x+ψ̃x)
ωn

n!

≤ (1 + C1r
2
p) exp

(
2C2p r

3
p

)
‖S‖2p .

Set

E(r) :=

∫

|ξ|≤r

e−2|ξ|2 dm(ξ) =
π

2

(
1− e−2r2

)
.

Since λℓ ≥ ε we obtain

E(rp
√
pε )n

pnλ1 . . . λn
≤
∫

∆n(0,rp)

e−2pψ′

dm ≤
∫

Cn

e−2pψ′

dm =
(π/2)n

pnλ1 . . . λn
·

Combining these estimates it follows that

(24) |S(x)|2
h̃p

≤
(1 + C1r

2
p) exp

(
2C2p r

3
p

)

E(rp
√
pε)n

pnλ1 . . . λn ‖S‖2p .

The singular Bergman kernel also satisfies a variational formula,

P̃p(x) = max
{
|S(x)|2

h̃p
: S ∈ H0

(2)(X,L
p, h̃p, ω

n/n!), ‖S‖p = 1
}
.
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Hence (24) implies the following upper estimate for the singular Bergman kernel,

(25)
P̃p(x)

pnλ1 . . . λn
≤

(1 + C1r
2
p) exp

(
2C2p r

3
p

)

E(rp
√
pε)n

, ∀ rp ∈ (0, rx/2).

For the lower estimate of P̃p, let 0 ≤ χ ≤ 1 be a smooth cut-off function on Cn with

support in ∆n(0, 2) such that χ ≡ 1 on ∆n(0, 1), and set χp(z) = χ(z/rp). Then F = χpe
⊗p
x

is a section of Lp and |F (x)|h̃p = |e⊗px (x)|h̃p = 1. We have

‖F‖2p ≤
∫

∆n(0,2rp)

e−2p(ψ′

x+ψ̃x)
ωn

n!

≤ (1 + 4C1r
2
p) exp

(
16C2p r

3
p

) ∫

∆n(0,2rp)

e−2pψ′

x dm

≤
(
π

2

)n (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)

pnλ1 . . . λn
·

(26)

Set α = ∂F . Since ‖∂χp‖2 = ‖∂χ‖2/r2p, where ‖∂χ‖ denotes the maximum of |∂χ|, we

obtain as above

‖α‖2p =
∫

∆n(0,2rp)

|∂χp|2e−2p(ψ′

x+ψ̃x)
ωn

n!
≤ ‖∂χ‖2

r2p

(
π

2

)n (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)

pnλ1 . . . λn
·

There exists p0 ∈ N such that for p > p0 we can solve the ∂–equation by Theorem 4.1. We

get a smooth section G of Lp with ∂G = α = ∂F and

(27) ‖G‖2p ≤
2

pε
‖α‖2p ≤

2‖∂χ‖2
pεr2p

(
π

2

)n (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)

pnλ1 . . . λn
·

Note that G is holomorphic on ∆n(0, rp) since ∂G = ∂F = 0 there. So the estimate (24)

applies to G on ∆n(0, rp) and gives

|G(x)|2
h̃p

≤
(1 + C1r

2
p) exp

(
2C2p r

3
p

)

E(rp
√
pε)n

pnλ1 . . . λn‖G‖2p

≤ 2‖∂χ‖2
pεr2pE(rp

√
pε)n

(
π

2

)n
(1 + 4C1r

2
p)

2 exp
(
18C2p r

3
p

)
.

Let S = F −G ∈ H0
(2)(X,L

p, h̃p, ω
n/n!). Then

|S(x)|2
h̃p

≥ (|F (x)|h̃p − |G(x)|h̃p)
2 = (1− |G(x)|h̃p)

2

≥
[
1−

(
π

2

)n/2 √2 ‖∂χ‖(1 + 4C1r
2
p)

rp
√
pεE(rp

√
pε)n/2

exp
(
9C2p r

3
p

)
]2

=: K1(rp) .

Moreover, by (26) and (27)

‖S‖2p ≤ (‖F‖p + ‖G‖p)2 ≤
(
π

2

)n
K2(rp)

pnλ1 . . . λn
,
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where

K2(rp) = (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)
(
1 +

√
2 ‖∂χ‖
rp
√
pε

)2

·

Therefore

(28) P̃p(x) ≥
|S(x)|2

h̃p

‖S‖2p
≥
(
2

π

)n
pnλ1 . . . λn

K1(rp)

K2(rp)
·

Using now (23), (25) and (28) we deduce that for every x ∈
⋃N
j=1∆

n(yj, 1)\Σ , rp < rx/2

and p > p0,

(29)
K1(rp)

K2(rp)
≤ P̃p(x)

ωnx

pnc1(L, h̃)nx
≤ K3(rp) ,

where

K3(rp) =

(
π/2

E(rp
√
pε)

)n

(1 + C1r
2
p) exp

(
2C2p r

3
p

)
.

We take now rp = p−3/8, so p r3p = p−1/8 → 0 and p r2p = p1/4 → ∞ as p → ∞. Note that

there exists a constant C3 > 0 such that

K1(p
−3/8) ≥ 1− C3p

−1/8 , K2(p
−3/8) ≤ 1 + C3p

−1/8 , K3(p
−3/8) ≤ 1 + C3p

−1/8 .

It follows by (29) that there exists a constant C4 > 0 such that

(30) 1− C4 p
−1/8 ≤ P̃p(x)

ωnx

pnc1(L, h̃)nx
≤ 1 + C4 p

−1/8 ,

holds for every x ∈
⋃N
j=1∆

n(yj, 1) \ Σ , p−3/8 < rx/2 and p > p0. Now rx > c dist(x,Σ),

for some constant c > 0, so there exists a constant C5 > 0 such that (30) holds for

p > C5 dist(x,Σ)
−8/3. This concludes the proof of (2) for x ∈ ⋃N

j=1∆
n(yj, 1) \ Σ.

By [HM14, Theorem 1.8] there exist C6 > 0 and p′0 ∈ N such that
∣∣∣∣∣P̃p(x)

ωnx

pnc1(L, h̃)nx
− 1

∣∣∣∣∣ ≤
C6

p
,

for x ∈ X \⋃N
j=1∆

n(yj, 1) and p > p′0. The proof of Theorem 1.2 is complete. �

5. ESTIMATES FOR THE PARTIAL BERGMAN KERNEL

In this section we prove Theorem 1.3. Let t < t0(K). By the definition (3) of t0(K),

there exist η ∈ C ∞(X, [0, 1]) and δ > 0 such that supp η ⊂ X \ K, η = 1 near Σ and

c1(L, h) + tddc(η̺) ≥ δω in the sense of currents on X. Define

h̃t = h exp(−2tη̺) , h̃t,p = h̃⊗pt .
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Note that h̃t = h in a neighborhood of K and h̃t ≥ h on X. Since Σ is smooth,

it follows by (1) that H0
0 (X,L

p) = H0
(2)(X,L

p, h̃t,p, ω
n/n!). We denote the norm on

H0
(2)(X,L

p, h̃t,p, ω
n/n!) by

‖S‖2t,p =
∫

X

|S|2
h̃t,p

ωn

n!
=

∫

X

|S|2hp exp(−2tpη̺)
ωn

n!
·

Let P̃t,p be the Bergman kernel function of H0
(2)(X,L

p, h̃t,p, ω
n/n!). Recall that ‖S‖p is the

norm given by the scalar product (9) on H0
0 (X,L

p). Since ̺ < 0 we have ‖S‖2t,p ≥ ‖S‖2p
for any S ∈ H0

0 (X,L
p). Let S ∈ H0

0 (X,L
p) with ‖S‖2t,p ≤ 1. Then ‖S‖2p ≤ 1, too, hence

|S|2
h̃t,p

= |S|2hp exp(−2tpη̺) ≤ P0,p exp(−2tpη̺) ,

and thus

P̃t,p ≤ P0,p exp(−2tpη̺) .

Denote now by Pp the Bergman kernel function of H0(X,Lp) endowed with the scalar

product (9). Since H0
0 (X,L

p) is isometrically embedded in H0(X,Lp) we have P0,p ≤ Pp.

Consequently we have shown:

P̃t,p exp(2tpη̺) ≤ P0,p ≤ Pp on X,

P̃t,p ≤ P0,p ≤ Pp near K.
(31)

Let now W be the neighborhood of Σ defined in (11) and let Ut be defined as in (21),

so that the exponential estimate (22) holds on Ut for p > 2t−1. By shrinking Ut we can

assume that η = 1 on Ut. Setting M := e4‖h‖∞At we obtain(4). By Theorem 1.2 we have

P̃t,p(x) ≥ (1− Cp−1/8)pn
c1(L, h̃t)

n
x

ωnx

for every p ∈ N with p dist(x,Σ)8/3 > C. Note that c1(L, h̃t) ≥ δω in the sense of currents

on X. Since c1(L, h̃t) is smooth on X \Σ we have
c1(L, h̃t)

n

ωn
≥ δn on X \Σ. By increasing

C if necessary, it follows that

P̃t,p(x) ≥
pn

C
for p > C dist(x,Σ)−8/3.

Hence

P0,p(x) ≥
pn

C
exp(2tp̺(x)) for x ∈ Ut and p > C dist(x,Σ)−8/3.

This proves (5).

In order to prove (6) we need the following localization theorem for the Bergman

kernel.

Theorem 5.1. Let (X,ω) be a compact Hermitian manifold and L → X be a holomorphic

line bundle. Consider two singular Hermitian metrics h1 and h2 on L, which are smooth

outside a proper analytic set Σ ⊂ X and such that c1(L, h1), c1(L, h2) are Kähler currents.



ON THE FIRST ORDER ASYMPTOTICS OF PARTIAL BERGMAN KERNELS 13

Let P
(j)
p be the Bergman projection on H0(X,Lp, hpj , ω

n/n!), j = 1, 2. We assume that there

exists an open set U ⋐ X \ Σ such that h1 = h2 on U . Then the Bergman kernels satisfy

P
(1)
p (z, w)− P

(2)
p (z, w) = O(p−∞) on U in any C

ℓ-topology, ℓ ∈ N, as p→ ∞.

Proof. The proof follows essentially from the analysis in [HM14] (see also [HM16]). Let

h0 be any singular Hermitian metric on L, smooth on X \Σ and satisfying c1(L, h0) ≥ εω

in the sense of currents on X, for some ε > 0. Let P
(0)
p be the Bergman projection on

H0(X,Lp, hp0, ω
n/n!).

Consider an open set D ⊂ U such that L|D is trivial. Let s : D → L be a holomorphic

frame and let ϕ ∈ C ∞(D) be the weight of h0 corresponding to s, that is, |s|h0 = e−ϕ.

Let us denote by E ′(D) the space of distributions with compact support on D and by

L2(D) the space of square-integrable functions with respect to the volume form ωn/n!.

The localized Bergman projection with respect to s is the operator P
(0)
p,s : L2(D)∩E

′(D) →
L2(D), defined by P

(0)
p (uepϕs⊗p) = P

(0)
p,s (u)epϕs⊗p. It is easy to see that

(32) P (0)
p (z, w) = P (0)

p,s (z, w)e
p(ϕ(z)−ϕ(w))s⊗p(z)⊗ (s⊗p)∗(w) ∈ Lpz ⊗ (Lpw)

∗ , z, w ∈ D.

By [HM14, Theorem 9.2] the kernel of P
(0)
p,s satisfies

(33) P (0)
p,s (z, w) = Sp(z, w) +O(p−∞) on D,

where Sp is the localized approximate Szegő kernel defined in [HM14, (3.43)]. Note that

by [HM14, Theorem 3.12] we have

(34) Sp(z, w) = eipΨ(z,w)b(z, w, p) +O(p−∞) on D,

where Ψ : D × D → C is a phase function depending on the eigenvalues of c1(L, h0)

with respect to ω and described precisely in [HM14, Theorem 3.8]. Moreover, b(·, ·, p) :
D × D → C is a semi-classical symbol of order n = dimX, depending only on the

restriction of h and ω to D.

We apply now these results for h0 = h1 and h0 = h2. Since h1|D = h2|D we deduce that

the weight ϕ, the phase Ψ and the symbol b(·, ·, p) above are the same for h1 and h2. We

infer from (33) and (34) that P
(1)
p,s (z, w)− P

(2)
p,s (z, w) = O(p−∞) on D. Finally, (32) yields

P
(1)
p (z, w)− P

(2)
p (z, w) = O(p−∞) on D. The proof of Theorem 5.1 is complete. �

We apply now Theorem 5.1 to the metrics h̃t and h, which are equal on a neigborhood

V of K and infer that

(35) P̃t,p − Pp = O(p−∞) locally uniformly on V .

Combined with (31), (35) yields (6). Finally, (7) and (8) follow from the expansion

of the Bergman kernel Pp (see [MM07, Theorems 4.1.1–3]) or of the singular Bergman

kernel (see [HM14, Theorem 1.8]).
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