Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

Non-ConceptSoftware Subsysten: Tangible and Intangible

laakov Exman

Software Engineering Department
The Jerusalem College of Engineering — JCE — Azrieli
POB 3566, Jerusalem, 91035, Israel
iaakov@jce.ac.ll

Categories and subject Descriptors

D.2.2 [Software Engineering]: Design Tools andhreques {1998 ACM Classification}

Software and its engineering Software creation and managemenDesigning software {CCS 2012}

Abstract: Concepts modified by Alon- prefix apparently denote a negation, an oppoditth@ concept
without this prefix. But, generally the situatiarather subtlenon-implies only partial negation
and theconceptsuggests preserved identity with some reducedtgualabsent attribute. In this
work tangible and intangible software subsystenmsetiauponNon- concepts are defined and
pluggable ontologies are proposed for their repriag®n. Pluggable ontologies are a kind of
nano-ontologies, which by their minimal size faeile fast composition of new software
subsystems. These ontologies are made pluggableebign Sockets, a novel kind of class.
These are abstract connectors for removed/added, ganctionalities or identities, and for
subdued qualities. Design Sockets are the basis[zdsign Pattern for dynamically modifiable
software systems. Pragmatic implications Nén- concepts include manageable design of
product lines with multiple model®on concepts are also relevant to the controversythene
composition is/isn't identity. The resolution istrgharp. Identity is entangled with composition,
and is preserved to a certain extent, until furte@enoval causes identity break-down.

Keywords: Non-, Concepts, Software, Subsystems, Tangibiangible, Pluggable Nano-Ontologies,
Abstract Design Sockets, DSocket Design Patternn€ctors, Identity, Parts, Functionality.

1 INTRODUCTION

The top-level concept of an ontology is calteihg. All software subsystems are things. This is alaindea to
the Java programing language root-class c@legbct which is a superclass of all other classes ifahguage.

A next level pair of concepts of an ontologytasgible andintangible An informal way of defining @aangible
thing is to say that it is physical, e.g. a car. iAtangible thingis not physical, e.g. an algorithm or a nostalgia
feeling.Non-concepts, soon to be motivated, can also be otypes: tangible and intangible.

1.1 Software Systems are expressed in Natural Langge Concepts

Our basic assumption is that software systemsdir tlighest abstraction design levels are expressésrms
of natural language concepts — and not programr@nguage constructs. The relevant structures isethe
abstraction levels are application ontologies [189] which are specialized for specific applicascand much
smaller than domain ontologies. From applicatiotolmgies one is able to generate [14] the next deavd
abstraction level, viz. UML class diagrams, aneésaown to the code executable in a machine, redttoal.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 1

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

In order to redesign a software system in the taghbstraction levels, efficient mechanisms areleddor
modifying subsystems. Efficiency requires usagsmoéller nano-ontologies [12] with a few ontologgisdes.

EnterNon-concepts.

Intangible non-concepts a concise expression for “non-concepts that teféntangible things” — are used
in colloquial natural language and triggered theaidf non-concept subsystems. Intangible non-cascefer
to notions with some less intense or almost abgeality. For instance, one possible meaningof-trivial
(often written without a hyphen) isthing of some importanc&his usage is different from a logical not: it is
neither saying that the referred thing is not int@ot;, nor that it is decidedly important. Althoudittionary-
wise “non-“ is a prefix indicating negation, we Bhese it in this work as a noun, with the specifieaning of a
kind of concept.

Tangible non-conceptsefer to objects with some part removed/added ames functionality lost. For
instance, aon-clock could be an electronic clock with a battesgnoved, so that it cannot perform its essential
function of showing the current time.

Non-concepts are an easy way to make slight modifinatin a well-known system. Instead of reproducing
a whole (possibly large) application ontology fbe tsystem with small additions/changes/deletions had
there, it suffices to represent the modified systgma single concept (class) standing for the wiusiginal
system and the very few explicit changes that aréopmed. This kind of nano-ontology is very coeci§Ve
build these nano-ontologies withpduggable structure — first introduced in ref. [11] — basagbon abstract
connectors enabling varying changes on the santersyas desired, say to build a product line.

This paper explores the space of possiiter concepts touching related conceptual issues. €aimg
tangible non-concepts, when an object is stripdesbme of its parts or loses functionality it m&ach a point
where it is not anymore recognizable as such a &frmbject: besides its utility, it loses its idigynt But, there
are intriguing situations in which a loss of funcility or parts does not lead to loss of identikyconcept
assigned to an object in such situation isNorf* concept. It is bothNon- as it has lost some of its
characteristics, and still @nceptas it is easily recognizable as such by our se(ds®n, hearing, etc.).
Concerning intangible non-concepts, the issue @ftification or recognition is of less importan@éeir usage
in colloquial language is to qualify — i.e. to atd¢bhe modified quality of — the referred concept.

1.2 Paper Organization

The remaining of this paper is organized as follo8action 1 is concluded with a Related Work sutiise.
Section 2 introduces tangible non-concepts, usimgexample. Section 3 defines pluggable ontologars f
tangible non-concepts. Section 4 examines spacemifconcepts. Section 5 makes a transition between
tangible and intangible non-concepts with some @tasfrom art. Section 6 deals with intangible non-
concepts. Section 7 summarizes non-concepts witlgnamically modifiable Design Pattern. The paper is
concluded by a discussion in Section 8.

1.3 Related Work

A gentle introduction to formal ontologies — usadhis work to represent Non- concepts — can badan e.g.
Guarino [19]; see also Bacon et al. [3]. Nano-aog@s were introduced in ref. [12] and were appligitin a
location-based recommendation system by Exman agduN13].

Modular ontologies — composed of sub-ontologiesavehbeen proposed and extensively discussed. A few
representative pointers include Rector et al. [38hlicht [30] and Hois et al. [20].

Physical objects — which are relevant to our talegiton-concepts — have been dealt with by Borg@riaa
and Masolo [7]. Their discussions, among otheraspilistinguish between matter and physical obgrad, ask
whether a broken cube, which is nonetheless rezedras a cube, is indeed still a cube.

The negation challenge of a concept within Formahe&ept Analysis (FCA) has been considered, for
instance by Priss [26] who asks the meaning ofgate&l concept such as "not a piano" or a negateduht
such as "not green". A possible meaning for suslgation could be given by the complement witheeso a
super-concept, which is not always available osoeable. In particular with respect to concepidas, it may
be the case that negations of formal concepts @rdonmal concepts themselves. Baader et al. [2] déth
partial contexts and negation of concepts whenguSiGA to complete Description Logic (DL) knowledge
bases. Ferre [16] differentiates between Nega@mposition and Possibility. For example, negat®hoid/not
old", while opposition is "old/young". Negationscachanges are also dealt with by Flouris et all.[17

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 2

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

Other meanings of non-concept have been founderitiérature. For example, Reiterer et al. [29kreb
non-concepts that are the complete opposite oficedoncepts. The nature of this opposite conceptot
specified.

Non- concepts do not imply malfunction, defectivebooken objects, or incomplete and/or inconsistent
ontologies. Design problems leading to incompletd/ar inconsistent ontologies have been dealt witthe
literature, e.g. Baumeister et al. [6] and Hwant][2

Identity has been a widely discussed issue e.qki€rj22], and often relates identity to compositidhere
are two roughly opposing positions with this respéc one position identitys composition of parts. Some
representative examples are e.g. Lewis [23], Mksri@5] and Liao [24]. Lewis states that the optosif
identity is not non-identity, but distinctness hetsense of overlap, things with parts in commee (23] page
33). This is a suitable starting point for this wor

In the other camp a set of variations on the coiitipasis notidentity. See e.g. Baker [4] and Elder [9].
Inquiring deeper one finds that both camps haveermocommon than acknowledged.

General references on mereology — the study o$ pér system — are e.g. Simons [31] and Varzi.[32]

Systems’ functionality or behavior has been lesteuithe focus of conceptual approaches.

2 TANGIBLE NON-CONCEPTS

The first part of this paper refers to tangible fwomcepts that will be used to represent tangipstesns and
their corresponding software subsystems.

2.1 The Non-Clock Example

The author of this paper has a non-clock hanging avall in the kitchen. It is seen in Fig. 1. Itused to
illustrate the idea of non-clock for curious gue#itsannot be used to measure time.

Figure 1: Photo of a Non-Clock — A non-clock as aarete instance of ifdon-concept. It has a visible scale — the numbers
6, 12, and marks for other hours. It is synchrdolizdby a mechanism in its back. It lacks perioglisince its battery was
removed. Its identity is clearly recognized, busihot useful for measuring time.

In order to generate a meaningful non-concept ftangible subsystem one first needs a clear conakpt
characterization of the subsystem essence. Ones ieddhow the essential functionalities without evhit is
not considered anymore an instance of such a tiypebsystem.

For instance, we have characterized in [10] a claska device to measure time with three essential
conceptual properties:

1. Periodicity- it has a periodic behavior, based upon a phiypltenomenon;
2. Adjustability— it has a pre-defined scale of numbers, to whignts are assigned;
3. Synchronization- it may send/receive messages, to synchronizeatliter clocks.

The non-clock in Fig. 1 has a scale as clearly :séennumbers 6 and 12 and marks for other hotireay
be synchronized and is adjustable, since one daterthe non-clock hands to any desired valuedrstale, by

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 3

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

a mechanism in its back. It does not have peritdisince its battery has been removed. Thusanhot be
used to measure time. It lacks both a componentaparits correspondent functionality.

Nonetheless, one easily recognizes its identit)k &sy guest — what is hanging on the wall? — anel on
easily gets a “clock” reply. It takes some timestplain that it is a non-clock.

The object in Fig. 1 is not a -clock, where - i® tlogical not sign. The referred object is not the
complement of a clock in any chosen universe oéctisj The very fact of its recognition implies thas much
closer to be a clock than whatever may be its cemphtary —clock. A non- concept is neither thegjosl)
concept, nor the =concept (logical negation ofdfiginal concept).

2.2 Tangible Non- Concepts Defined

We define a Tangible Non- concept as follows.

Tangible Nor- Concept: Definition

A TangibleNon<concept is assigned to a sub-system, when |t
is empirically verifiable that:
a. Some of the sub-system’s parts and/or functioealiti
are removed/added;
b. The sub-system keeps the identity of the respectiv
concept, i.e. the referred removal/additions do not
affect the identification capabilit

D

In the above definition there are four elementargiafined concepts:

a) Identity— there may be several object identities, butdusingle unified identity in a given context;
b) Part — a discrete structural component of the sub-sysitatnmay be added or removed,;

c¢) Functionality— a discrete behavior of the sub-system, associgitecbne or more of its parts;

d) Non — a noun serving as a special kind of identita abncept.

Tangible non-concepts do not refer to gradual chafddiey mean discrete removal/addition of parts or
functionalities, leading to a distinct entity of rew kind. One can remove/add parts without affgctin
identification. In fact, there exist products exgfily designed to allow such removal/addition. Netlreless in
each object there exist essential parts that oeceoved prevent identification of the original ohjec
Functionalities are quite similar to component gaRemoval/addition of functionality does not neceiy
prevent identification.

The identification issue — with its philosophicannotation — is indeed relevant to the structurad a
functional meaning of software subsystems. The mfe@onceptual integrityhas been emphasized by Brooks
[8] as the most important consideration in systersigh. Thus, it seems that one still recognizesnaaming
system by means of its conceptual integrity, e\fear ®&moval of certain parts.

3 PLUGGABLE NANO-ONTOLOGIES

Pluggable nano-ontologies (see [12]) are very sBial ontologies with inherent preparations foraiyically
modifiable composition, i.e. parts or functionagimay be plugged-in or out. The inherent pluggioigts are
called Design Socketsa special purpose kind of class, to be addedhtolagies in order to represeNon
concepts.

Design Sockets solve the following problem: -Howiftlly represent a subsysten®on concept displaying
the whole original subsystem as a single concdasst and with just a few removable parts whichehbgen
actually removed/restored/added?

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 4

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

3.1 Design Sockets

Design Sockes an abstract generic connector for any of thevalmmncepts: identity, part, functionality. It
allows dealing in a neat way with removal and &ddiof identities, sub-system parts and functidiesdi A
Socket is itself a class. Each Socket has one ae rfugged-in” concepts (classes or propertiebg t
respective pluggable parts or functionalities.

A plugged-in concept (class) has a cardinalityrietgtn whose value is Boolean. A part or functitityais
either plugged-in with cardinality value 1, or qpptigged-in, with value 0. In fact, the pluggableaogy with
plugged-in classes can be viewed as a kind of UMilsscdiagram in which “plugged-in” is the name af a
association between pairs of classes and the aditglirefers to the endpoint near each specifipprty.

3.2 iSockets

An iSocket standing for identity socket, is a sub-class ofket as seen in Fig. 2, specialized iftantity
removal/addition. The cardinality of the pluggedgroperty of an iSocket is omitted, as it is alwdysThe
inheritance arrow from an iSocket to the Class 8bikalso omitted in the nano-ontologies of sutesys.

Socket

1§u bClassOf

iSocket

Figure 2: iSocket — a sub-class of Socket speeidlifar subsystem identitilon is a pluggable concept of iSockets.

Non-is only used as a concept that is pluggable ick8ts. There may be only a singlen-in the iSocket
of an object. This is different from the logicaltreign = which can be added to each propositiaus tppear
several times in the description of a single object

3.3 Pluggable Ontology: Tangible Non-Concept Exampk

We start the tangible examples with the non-clotkub-section 2.1. Its battery was removed, thusa# no
periodicity. Since the adjustability and synchratian were not modified, they are not represenius
explains why the pluggable ontology is so smalle areeds to explicitly represent only the modifiable
properties. The non-clock pluggable ontology isFig.3. All the arrows in this and subsequent plidga
ontologies — with rnombus (lozenge) arrow headsprasentomposition(isPartOf) arrows. Inheritance arrows
(subClassOf) are omitted for clarity.

clock
iSocket Socket
plugged-in plugged-in

w] ©/ \®

battery periodicity

Figure 3: Non-clock pluggable ontology — It has @®ecket with @&Non-value. It is a non-clock as its battery was rendove
consequently it also lost its periodicity functititya Cardinality values of both plugged-in propesdiare 0, as the respective
part and functionality were removed.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 5

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

Let us perform a thought (“gedanken”) experimenipf®se we add a new battery to our non-clock. Véa th
synchronize and adjust the time shown to be theecbcurrent time. So, now it is just a fine funaiing clock.
Next we put an internet video camera in front o tlevived clock. The image of the moving clock is
transmitted through the internet, and seen in amatbmputer — in a different country.

The image of clock through the internet is now aternet-Video non-clock. It has a scale and peciodi
Its identity is easily recognized as an instrumenheasure time and can be used to do so.

But the video clock itself cannot be remotely sywctized through the video screen, unless we putpose
add special software to this end. So, by the denoéride three properties, in sub-section 2.1 abitve,not a
plain clock. Nonetheless it is a useful non-cloa%,long as the actual clock which is the video ieagurce
works well. Its pluggable ontology is seen in Fg.It differs from the previous ontology by a pleglgin
addition — the internet-video — and two pluggedremovals: the synchronization functionality and the
subsystem part responsible for it, called Synch-par

clock

~D

plugged-in

Internet-video

iSocket

Non-

Synch-part synchronization

Figure 4: Internet-Video Non-clock pluggable ontpie- It is a non-clock as we see its video throtighinternet: it lost its
synchronization functionality. The cardinality vatiof the plugged-in synch-part and synchronizatimetionality are 0.
On the other hand, an internet-video property reentadded with cardinality 1. The periodicity pnapeés omitted as it
was restored to the clock and one does not leavedifiable.

Next, we perform a second thought experiment. Wapkbe internet video camera, but again remove the
clock’s battery. The video image now is static.sThew non-clock is not very useful. It certainlyshascale,
but no periodicity and no synchronization ability.

4 THE NON-CONCEPTS SPACE

4.1 Non-Concepts by Design
There are products a priori designed toNfitn- concepts, those displaying:
a) lacking parts
b) downgraded components

¢) lacking functionalities

For instance, most portable electronic devicessatd without batteries, which are added in the pase
act. Printers are sometime sold with downgradedrtonntainers (with less toner quantity) (see 5jg.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 6

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

= o

plugged-in
iSocket Socket Downgraded toner

plugged-in

m Standard-toner

Figure 5: Non-printer with downgraded toner pluggaintology — It is a non-printer since the staddaner was removed
— thus it has plugged-in cardinality=0. It is salith downgraded toner — its corresponding pluggedairdinality=1.

4.2 Non-Concepts, Obsolescence and Their Cemeteries

A natural kind of non-concepts is obtained by agimgpbsolescence. Some of these objects e.g. oars a
thrown away in cemeteries, see Fig. 6. They haes ltiee subject of literary works and a theatre .pfapon-
car's ontology for a car rescued from the cemetetye a collector’s item is shown in Fig. 7.

Figure 6: Yellow non-car in Car cemetery photo — thié cars in a cemetery are identifiable as nos-dane cannot tell
through the photo that the yellow one is for surma-car, but its overall condition leads us tmkiso.

Photo: Norbert Aepli, published under the "CreatB@mmons Attribution 3.0" license.
n
| Collectoria H iSocket
Item
plugged-in,
Non- é

| battery H driving |

Socket

plugged-in

Figure 7: Collector's Non-car pluggable ontology t-id a non-car as the driving functionality was owed, say by
removing the battery, both with plugged-in cardiyaD. It serves as a collector’s item, as showrggkd-in in the iSocket.

The recent fast technological evolution may turpegfectly working and useful object into a non-albje
thrown away to less fashionable cemeteries. Thereuacountable instances. The typewriter, the dlide
calculator, the camera with chemical film, and ®RT computer screen, were all displaced by disngpti
technologies. All their components may be in placd with flawless original functionality when disdad.
Note that non-cars actually refer to single inséenavhile the non-typewriters’ obsolescence ref¢rance to
the whole class of such objects.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 7

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

5 TRANSITION FROM TANGIBLE TO INTANGIBLE NON-CONCEPTS:
ART OBJECTS

In this section we deal with art objects which atidl tangible, but apparently have less the charaof an
artefact subsystem. Thus they are a sort of tiangib purely intangible non-concepts.

5.1 Magritte’s Non-Pipe

The well-known art work “Non-Pipe” by the Belgianreealist Rene Magritte is seen in Fig. 8. It haribed
in French “Ceci n’est pas une pipe”, which meanki§Ts not a pipe”.

LCeci nest nos une fufie.

Figure 8: “Non-pipe” by Magritte — this is an imagethe art work by the Belgian surrealist paintarthe work itself the
object is called a non-pipe. One can only appreétatmessage if one recognizes the identity obtiject as a pipe. Thus, it
is an actual non-pipe.

Recognizing the identity of the non-pipe as a pgpessential to understand the witty messageallyres a
non-pipe since its functionality is removed — om@mot smoke with a non-pipe — similarly to our reboek
photo discussed in sub-section 2.1.

The non-pipe ontology is shown in Fig. 9. It rem®tiee pipe dlimensionality and adds 2-dimensionality.

pipe

Artwork iSocket Socket ¢— 2-Dimensions

/ pluEEEd in plugged-in
Non- b

3-Dimensions| | smoking

Figure 9: Artwork Non-pipe pluggable ontology —i$t a non-pipe since the smoking functionality wasnoved, by
removing the 3-dimensions — plugged-in cardinaltywhile adding 2-dimensions. It serves only asrwak — as shown
plugged-in in the iSocket.

In an age in which printers can print 3-dimensiooigjlects, it is not too far-fetched to imagine Mtgrs
non-pipe image as an input to such a printer, wthidgeoutput could be smokable.

Continuing with the idea of Internet-Video — used & clock, in Fig. 4, sub-section 3.3 — one cquédorm
the following thought experiment. A person is snmgkia pipe in a certain location, and this scene lmn
viewed by means of internet-video in a remote locatThis simplistic remote video of the pipe isiéed with
2-Dimensions and non-smokable at a distance. Thifirad system in this video experiment could beveh
to be smoking despite being 2-Dimensional, andttegewith transmission of odours through the ing¢rone
could even feel the smoke smell.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 8

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

5.2 Magritte’s Non-Apple

Magritte also created other non-objects, suchra@aapple with the analogous sentence “This isancpple.”
seen in Fig. 10. It is a non-apple as it lacks maithe behaviours and functionalities of a natayaple, e.g.

edibility.
Ceci n'est pasum /mrmu\

Figure 10: “Non-apple” by Magritte — this is an igeaof the art work by Magritte, similar in spirit the non-pipe in Fig. 8.
In the work itself the object is so-to-speak caledon-apple (in French). Thus, it is an actuatapple.

The non-apple ontology, very similar to the nonepgmtology, is shown in Fig. 11.

2-Dimensions

iSocket

plugged-in

(] &

| 3-Dimensions

plugged-in

edible |

Figure 11: Artwork Non-apple pluggable ontologyt-isl a non-apple since e.g. the edibility functidgavas removed.
Compare with the non-pipe in Fig. 9.

The non-apple is decidedly not an artefact prodimgedumans. It is a non-concept of a subsystem iordy
biological context. In this sense it is closer toiatangible non-concept. One could repeat therteteVideo
experiment with a real apple in a remote locatiimen the apple would be edible, and could be dgteaten
by someone like a “reality” television show.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 9

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

Finally, a non-Apple that could not be conceivedvbygritte is shown in Fig. 12. Magritte died in 79&nd
the Apple Company was founded only in 1976.

(,.I’r'." ww'est pasune pomme

'R

Figure 12: “Non-Magritte-non-Apple” — this is a népple image of a non-Magritte “Logowork”, paraphireg the non-
apple in Fig. 10. In the work itself the object@sto-speak called a non-apple (in French). Thus,an actual non-Magritte.

Fig. 12 needs some explanation. In colloquial lagguone refers to a Picasso painting, as “a Pitasso
Thus, Fig. 10 can be said to be an image of “a Mafr but not Fig. 12, although one may recognize
underlying Magritte characteristics. In this seRgg 12 is a Non-Magritte, besides still being a+apple. As
an aside, Fig. 12 rather than an artwork, it if@gowork”.

The Non-Magritte-non-apple ontology, similar to firevious non-apple ontology, is shown in Fig. 13.

apple

_ S res)

Logowork iSocket Socket 4 Stylized image

/ plugged-in plugged-in
o] © ®

Fruit image subsystem

Figure 13: Non-Magritte-Non-apple pluggable ontgleglt is a non-apple by the same reason of theAmplie in Fig. 11.
In addition, the fruit image was deleted, thus #itifds not an issue at all. A stylized image @nputer logo) was plugged-
in, partially recovering a possible artefact submys It is a Non-Magritte since one still recogsizbe Magritte style
through the French sentence and the same framig.af®-

5.3 Altman’s Non-Person

Still another artwork example is tm®n- person idea, used by the film director Robert Altnin his Gosford
Park [1] movie from 2001 to describe social claseesn aristocratic mansion in Britain. Each of Hiestocrat
characters has a personal servant.

The personal servants are not called by their propenes, but rather by the names of their respectiv
owners, Mr. such and such. The servants, obviaesiggnized as persons, are deprived of the mastesiary
right of being called by their own private name$eTsimultaneous recognition of their identity aadkl of
identity is a very effective means to stress sati@ta. The respective pluggable ontology is shiowkig. 14.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012] Page 10

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

person

/ =\ pluggE%

Artwork iSocket Socket #— 2-Dimensions
plugged-in
lugged-in
pluggedyin
o] © YOG
No personal

3-Dimensions servant

name

Figure 14: Artwork Non-person pluggable ontologl is a non-person since the 3-dimension propedy vemoved, while
adding 2-dimensions, being a servant and withousqueal name. It serves as an artwork — as showggetl:in in the
iSocket.

6 INTANGIBLE NON-CONCEPTS

We define an Intangible Non- concept as follows:

Intangible Non- Concept: Definition

An IntangibleNon-concept is assignhed to a composed
term, when:
c. The composed term has a prefiXon
prepended to an intangible original term;
d. The composed term both keeps a positive
property common with the intangible original
term and additionally displays a negative

property.

In order to illustrate this definition we give ihe next sub-section a few examples, with their eetpe
pluggable ontologies.

6.1 Pluggable Ontology for Intangible Non-Concepts

Besides theSocketand iSocketclasses defined above in section 3, we introduse hust two minimal
additional classes needed to represent intangilde-ddéncepts. These two classes are “pos” and “neg”,
respectively meaningositive and negativequalities characterizing the intangible Non-corcéjhese classes
should be linked directly to a socket, as seehénetxamples below.

6.2 Pluggable Ontology: Intangible Non-Concept Exaples

We here refer to intangible non-concepts, noundpeciive. In a typical example of natural languagelution
seen in a news magazine (Economist, May 2014, Bj)article referred to a “non-coup”. It lookeddlila
military coup, but the country army insisted thasinot a coup. The army took up positions in¢hpital city,
but kept a light footprint. This is a non-concepthwboth a positive (coup) and a negative attriblight
footprint) relative to the original concept.

anuary 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012 Page 11
y pap

Non-Concept Software Subsystems: Tangible and dyittéen

6.2.1 Example 1: Non-event

laakov Exman

According to dictionary definitions, there are twossible meanings for ldon-event. The first definition is a
“much publicized event, which is disappointing”.efborresponding pluggable ontology is seen in Fig.

event

/\

iSocket

Socket

&S

Non-

pos

neg

plugged-in

1

plugged-in

Much
publicized

disappointing

Figure 15: Non-event pluggable ontology — It isc+event since positive and negative attributeshmen plugged-in —

both with cardinality value=1. The pos attributérimich publicized”. The neg attribute is “disappiiig”.

A second definition is a much publicized event, athiloes not occur. The corresponding pluggablelamyas
almost the same as in Fig. 15, in which the “disaming” attribute is substituted by “not occurring

6.2.2 Example 2: Non-trivial

Nontrivial is an adjective with more than one dictioy definition. A mathematical one: "an expression
which at least one variable is not equal to zefoSecond one states "having some importance'thieesubject
has importance, but not much. The pluggable onjoéiddhe second meaning is seen in Fig. 16.

trivial

/e B

iSocket Socket
Non- pos neg
plugged-in plugged-in
1
Some Not much

Importance importance

Figure 16: Non-trivial pluggable ontology — It ismtrivial since “some importance” (positive) amibt much importance”
(negative) attributes have been plugged-in, both eardinality value=1.

—
January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012]

Page 12

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

6.2.3 Example 3: Non-cooperation

The conceptNorrcooperation has an interesting dictionary defomiti "passive refusal to cooperate”. The
corresponding pluggable ontology is seen in Fig. 17

cooperation
/ =\
iSocket Socket
/' -\
Non- pos neg
plugged-in plugged-in

1

. Refusalto

passive cooperate

Figure 17: Non-cooperation pluggable ontology is hlon-cooperation since both “passive” (positiamyl “refusal to
cooperate” (negative) attributes have been plugggebeth with value=1.

6.2.4 Example 4: Non-standard

We use the termtandardas a noun to mean a “procedure or a productjshaidely recognized or employed”.
There is an adjective with a corresponding meariioigjnstance, in the sentence “a standard texttfoola
discipline”.

Now, what is the meaning of the next sentence?

-“This is a non-standard procedure to attack tlodolem”.

One is not saying that this is not a recognizeadg@dare. One just means that it is not “widely” iguiaed.
But such a sentence has a stronger meaning: thare implicit dispute between a side refuting ibasuitable
procedure and another side probably proposing & g@®od candidate for a standard. Before the disput
resolved, it has a non-standard status.

Within linguistics this dispute — of whetheon-standard or some of its previous equivalents degjaate or
unfairly judgmental — led to an alternative concespib-standard”, which did not resolve the dispute.

The corresponding pluggable ontology is seen in g

standard

/\

iSocket Socket
0s ne

plugged-in plugged-in

Non- p

g

- Not widely
recognized recognized

Figure 18: Non-standard pluggable ontology — Has-standard since it is both “recognized” (positibut “not widely
recognized” (negative), with both these attribytkesyged-in with value=1.

anuary 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012 Page 13
y pap

Non-Concept Software Subsystems: Tangible and dyittéen

7 DSOCKET: ADYNAMICALLY MODIFIABLE DESIGN PATTERN

laakov Exman

Summarizing, this work proposed a true Design Ratter dynamically modifiable software systems ket
highest abstraction design level. We call it theoBi&t Design Pattern. DSocket is an abbreviatiorDfesign
Socket. The purpose of this Design Pattern is &blenrepresentation by a concise pluggable ontoldgy
whole subsystem and its current modifications. Disocket Pattern allows easy recognition of the fielulie

subsystem and the nature of the modifications miadeschematically shown in Fig. 19.

subsystem

e

Added
Identity

iSocket

Socket

Non-

Dluege7 Qed»in

Removed
Part or
Functionality]

Added
Part or
Functionality

Figure 19: The DSocket Design Pattern — It refera known subsystem that can be modified by renfaddition of parts
or functionalities in/out the Socket and additidndentities in/out the iSockeMort is a particular case of identity.

The DSocket Design Pattern has the following cherestics:
¢ Whole modifiable subsystem represented by a siiotdes— whose class name is thabsystermame;
e Abstract connectors— it has two abstract connector classes, Sockdt iSncket; it is strongly
recommended to keep the names of these connegtall®w recognition of the DSocket Design Pattern

in a larger system;

e All the arrows stand for composition in contrast with the so-called GoF design pattdriyn Gamma et
al. [18] in which the dominant relations betweeassks are inheritance, here the dominant relagion i
composition; composition is the recommended retatip the GoF book itself (page 20 in ref. [18]);

e Unrestricted number of plugged-in entities ene may add/remove any number of parts, functites
or identities, although generally this number sall integer.

8 DISCUSSION

8.1 Tangible and Intangible Non-Concepts Treated Haplly

A central result of this paper is thidbn-concepts for tangible and intangible things — gatesms — are treated
equally by the same techniques. Intangible non-eptscappear naturally in the colloquial languags the

speak.

The extension of the ideas to tangiblen-concepts apparently is not so obvious, but itlésgible if one

takes into account two basic arguments:

1. Software Systems are expressed in Natural Languaga&ready in the Introduction of this paper
we claimed that software systems in their highdssttraction levels are expressed in terms of

natural language concepts, similarly to the intaleghon-concepts.

2. Software Systems are Ubiquitousnowadays software is widespread, and is a majmponent of
embedded systems. Just to give a single examgte/ase is a major component of cars travelling
in our streets. The day may come that cars (fig. Sub-section 4.2) will be an essentially software
intangible subsystem covered by some metal carcass.

January 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012]

Page 14

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

8.2 Advantages of Non-Concepts and their Pluggab@ntologies
We list three essential advantages of using Noreis and their ontology representation:

1) StandardDSocket Modifiability Design Patters- we propose the systematic use of a standardrdesig
pattern for modifiable sub-systems; this has ba@mtionally repeated in the examples of this paper

2) Reduced Number of Standard Connectors the number of connector classes appearing in the
standard pattern should be a minimal set; we haed just five such classesNen- socket, isocket,
pos, neg- although their exact number is an open queggBer below the Future Work sub-section
8.5);

3) Preservation of Natural Language Meanings One should be familiar with Natural Language
meanings and be able to express them in softwatersg’ design. Our treatment of the meaning of
Non-concepts in this paper is a contribution to thiggose.

8.3 Engineering Embedded and Software Systems
The pragmatic implications @fon-concepts refer to design of systems of a few kinds

a) product lines— with avariety of modelssay a car or a printer that is marketed in varioountries,
may have different component parts in the finadoet, or different sources of parts manufacturing;
b) removable parts- for the sake of transportation, or avoiding wpants before delivery;

In such cases, to enable system flexibility, onél¢ase abstract sockets to explicitly manipulatgpwith
differing status, viz. to suitably label the regpex parts along design, manufacturing and delivegges,
avoiding mistakes caused by lack of differentiation

8.4 Between Identity and Composition

There have been disputing philosophical positiooscerning whether identity is composition of paots
essentially different. Non- concepts imply that @aenot achieve a sharp resolution of this dispute.

The formulation of Non- concepts and sockets i thbrk and all the examples given lead us to the
following position whether identitys/isn't composition. Identity and composition are entadglEo a certain
extent, composition changes by parts’ removal/@&ito not affect identity. Beyond further remoealdition
of parts, identity breaks down. This is not markgda fixed quantitative limit; it depends on thetggpes and
order of removal/addition. For instance, it is Widaccepted from the conceptual point of view thatar turns
into a non-car when the car engine is taken othetar.

Art objects can be transformed into non-objectother means, such as de-contextualizing. A welkkmo
example is the concrete fountain put by Marcel Ruch [33] in @ museum. It created a scandal sirge it
identity was immediately recognizable. The fountaas intact, but lost its intended functionality.

Art objects, such as Magritte's non-objects, triggteresting discussions, allowing refinement of
conceptualization issues. The question whethendimepipe is a real object or just an image of geatbis not
a real issue once one considers thought experintigatsising Internet-Video which convert real olifeto
images.

Terminology issues regarding the most suitable denmation of non-objects: say quasi-objects or phiti
objects, do not seem of basic importance. Oncéltfes are accepted a suitable term will be found.

8.5 Future Work

The presentation of the work in this paper is Iprggformal. The most important future issue is arenformal
treatment ofNon-concepts. Our current preference is to base IFamal Concept Analysis (FCA), perhaps
augmented by Description Logics (DL).

A practical testing of Non-concepts and their pligje ontologies may be facilitated by designing and
implementing a plugin e.g. for the Protégé tool|[27

Finally some open questions regarding Non- concepts

anuary 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012 Page 15
y pap

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

Do we need additional abstract connector classebamcteriz&non-concepts? While it is satisfactory that
with a minimal set of generic classedlen, Sockets and iSockets, pos and neg — one haiesflguible basis
to build pluggable ontologies, one still needs anprehensive investigation to provide a more defiait
answer. In particular, intangibfen-concepts deserve further investigation in thipees

Are pluggable ontologies completely equivalent todular ontologies? Sockets in the context of this
paper, could be a natural mechanism to attachamyohodules.

8.6 Main Contribution

The main contribution of this work is the DSocketdiyn Pattern, the outcome of the analysislafi-concept
and its pluggable ontological representation. Noneept is not a matter of degree. It is an entity pew kind.
A non-concept is neither a concept, nor a =concept.

Acknowledgments

We are grateful for useful suggestions given byngnwus referees of our original paper (ref. [11psented
in the KEOD’2012 Conference.

REFERENCES

1. Altman, R., 2001. “Gosford Park” movie. Describaditp://en.wikipedia.org/wiki/Gosford Park

2. Baader, F., Ganter, B., Sertkaya, B. and Sattler2@D7. "Completing Description Logic Knowledge
Bases using Formal Concept Analysis”, in Proc. l&J7 20™ Int. Joint Conf. on Artificial
Intelligence, pp. 230-235, Morgan Kaufmann, Sameéisco, CA, USA.

3. Bacon, J., Campbell, K. and Reinhardt, L., 19@htology, Causality and MindCambridge
University Press, Cambridge, UK.

4. Baker, L. R., 1997. “Why Constitution is Not Ideagti The Journal of Philosophy, Vol. 94, (12), pp.
599-621 http://www.jstor.org/stable/256459B0I: 10.2307/2564596

5. Banyan, 2014. “Martial law in country — Introducitite non-coup”, The Economist, 2May 2014.
Web site:http://www.economist.com/blogs/banyan/2014/05/raéttw-in-country

6. Baumeister, J. and Seipel, D., 2005. “Smelly OwBesign Anomalies in Ontologies”, in Proc.™.8
Int. Florida Artificial Intelligence Research Sagie€Conf., AAAI Press, pp. 215-220.

7. Borgo, S., Guarino, N. and Masolo, C., 1996. "$teat Ontologies: The Case of Physical Objects", in
Proc. ECAI-96 Workshop on Ontological Engineeripg, 5-15.

8. Brooks, F.P., 2010rhe Design of Design: Essays from a computer gsteAtldison-Wesley, Boston.

9. Elder, C., 2008. “Against Universal Mereologicalmgosition”, Dialectica, Vol. 62, (4), pp. 433-454.
DOI:10.1111/j.1746-8361.2008.01164.x

10. Exman, 1., 2010. “Software is Runnable and Complesddleas — 1. Persistent Systems”, in Proc.
SKY’2010 International Workshop on Software Knowded Herzlia, Israel, pp. 29-35.

11. Exman, I., 2012. “A Non-Concept is Not a = Concept’ Proc. KEOD’2012 Conf. on Knowledge
Engineering and Ontology Development, pp. 401-8Bxtcelona, Spain,
DOI: 10.5220/0004149704010404

12. Exman, I., 2014. “Opinion Ontologies — Short andu$h, in Proc. KEOD’2014 Conf. on Knowledge
Engineering and Ontology Development, pp. 454-458ne, Italy.
DOI: 10.5220/0005166104540458

13. Exman, I. and Nagar, E., 2014. “Location-Based FRestommendation Social Network”, in Proc.
SKY’2014 5" Int. Workshop on Software Knowledge, pp. 55-62nRoltaly.
DOI: 10.5220/0005167600550062

14. Exman, |., Litovka, A, and Yagel, R., 2015. “KODENEA Code Generation and Testing Tool Using

Runnable Knowledge”, in Fred, A., Dietz, J.L.G.uLK. and Filipe, J. (eds.) Knowledge Discovery,
Knowledge Engineering and Knowledge Management,sRevSelected Papers of thE Bit. Joint

anuary 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012 Page 16
y pap

Non-Concept Software Subsystems: Tangible and dyittéen laakov Exman

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.

28.

29.

30.

31.

32.

33.

Conference, IC3K'2013, Vilamoura, Portugal, Septemt2013, pp. 260-275, Vol. 454 of
Communications in Computer and Information ScielSmjnger, Berlin.

DOI =10.1007/978-3-662-46549-3 .17

Exman, I. and Iskusnov, D., 2015. “Apogee: Applcat Ontology Generation with Size
Optimization”, in Fred, A., Dietz, J.L.G., Aveird)., Liu, K. and Filipe, J. (eds.) Knowledge
Discovery, Knowledge Engineering and Knowledge Mpmmaent, Revised Selected Papers of the 6
Int. Joint Conference, IC3K'2014, Rome, Italy, Gmo 2014, pp. 477-492, Vol. 553 of
Communications in Computer and Information Scieisg@jnger, Berlin.

DOI =10.1007/978-3-319-25840-9 29

Ferre, S., 2006. "Negation, Opposition, and Paddsitin Logical Concept Analysis”, in Missaoui, R.
and Schmidt J. (eds.) Formal Concept AnalysisIGFCA Proc. Int. Conf. Dresden, Germany. LNCS
Vol. 3874,Springer-Verlag, Berlin, Germany. DQ0.1007/11671404 9

Flouris, G., Huang, Z., Pan, J.Z., Plexousakismal Wache H., 2006. "Inconsistencies, Negations and
Changes in Ontologies", Proc. AAAI'06 2Nat. Conf. on Artificial Intelligence, Vol. 2, pil295-
1300, AAAI Press.

Gamma, E., Helm, R., Johnson, R. and Vlissidesl9B5. Design Patterns — Elements of Reusable
Object-Oriented Softwaréddison-Wesley, Boston, MA, USA.

Guarino, N., 1998. “Formal Ontology and InformatiSgstems”, in Proc. of FOIS'98, Amsterdam,
IOS Press, pp. 3-15.

Hois, J., Bhatt, M. and Kutz, O., 2009. "Modulart@agies for Architectural Design", in Ferrario. R.
and Oltramari, A. (eds.) Formal Ontologies Meet usity, Vol. 198, of Frontiers in Atrtificial
Intelligence and Applications, I0S Press. Dfttp://dx.doi.org/10.3233/978-1-60750-047-6-66
Hwang, C.H., 1999. "Incompletely and Impreciselye&ing: Using Dynamic Ontologies for
Representing and Retrieving Information”, Proc. K&RE® 6" Int. Workshop Knowledge
Representation meets Databases, pp. 14-20.

Kripke, S., 1977. ldentity and Necessitypp. 66-101, in Schwartz, S.P. (etlaming, Necessity and
Natural Kinds Cornell University Press, Ithaca, NY, USA.

Lewis, D., 1993. “Many, But Almost One”, in ref. f8on, 1993), pp.23-37.

Liao, Shen-yi, 2005. “Things are Their Parts”, Legwol. Il, Issue 2, pp. 44-61 (Spring 2005).
Merricks, T., 1999. “Composition as Identity, Melegical Essentialism, and Counterpart Theory”,
Australasian Journal of Philosophy, 77, pp. 192-:195

Priss, U., 2006, "Formal Concept Analysis in Infatian Science", in Cronin, B, (ed.) Annual Review
of information Science and Technology, Vol. 40, pp1-543. DOI10.1002/aris.1440400120.
Protégé- A free, open-source ontology editor and frameweorkiduilding intelligent systems.
http://protege.stanford.edu/

Rector, A., Horridge, M., lannone, L. and Drummomdl, 2008. “Use Cases for Building OWL
Ontologies as Modules: Localizing, Ontology and gPanming Interfaces & Extensions”, in Proc.
SWESE'08 #' Int. Workshop on Semantic Web Enabled Softwareitegging.

Reiterer, E., Dreher H. and Gutl, C., 2010. "Auttim&oncept Retrieval with Rubrico", in Schumann,
M., Kolbe, L.M., Breitner, M.H. and Frerichs, A.de Multikonferenz Wirtschaftsinformatik - MKWI
2010. Goettingen, Germany: Universitaetsverlag Bagsn.

Schlicht, A. and Stuckenshmidt, H., 2008, “Towaldstributed Reasoning for the Web”, in Proc. WI-
IAT'08 IEEE/WIC/ACM Int. Conf. on Web Intelligencand Intelligent Agent Technology, Vol. 01,
pp. 536-539. DOI10.1109/WIIAT.2008.396

Simons, P., 198Rarts: a Study in Ontologylarendon Press, Oxford, UK.

Varzi, A., 1996. "Parts, Wholes and Part-Whole Retes: The Prospects of Mereotopology"”, Data
and Knowledge Engineering, Vol. 20, pp. 259. DQI:1016/S0169-023X(96)00017-1

Wikipedia, 2015. Marcel Duchamp fountain, 1917.
https://en.wikipedia.org/wiki/Fountain_%28Ducham®62

anuary 2016 / [Extended from KEOD Conf. paper in ref. [11] / October 2012 Page 17
y pap

