
Under consideration for publication in J. Fluid Mech. 1

An Experimental and Numerical
Investigation of Bifurcations in a

Kolmogorov-Like Flow

Jeffrey Tithof, Balachandra Suri, Ravi Pallantla, Roman O.
Grigoriev, Michael F. Schatz

Center for Nonlinear Science and School of Physics, Georgia Institute of Technology, Atlanta,
Georgia 30332-0430, USA

(Received 5 January 2016)

We present a combined experimental and numerical study of the primary and sec-
ondary bifurcations for a Kolmogorov-like flow. The experimental system is a quasi-two-
dimensional incompressible fluid flow consisting of two immiscible layers of fluid for which
electromagnetic forces drive a shear flow that approximates Kolmogorov flow. The two-
dimensional (2D) direct numerical simulations (DNS) integrate a depth-averaged version
of the full three-dimensional Navier-Stokes equations (Suri et al. 2014), which contains
a (non-unity) prefactor on the advection term, previously unaccounted for in all studies.
Specifically, we present three separate 2D DNS: one that is doubly-periodic, one that is
singly-periodic, and one that is non-periodic (i.e. no-slip is imposed at the lateral bound-
aries). All parameters are directly calculated or measured from experimental quantities.
We show that inclusion of the advection term prefactor substantially improves agreement
between experiment and numerics. However, good, quantitative agreement is found only
for the non-periodic simulation, suggesting the crucial role the boundaries play in the
dynamical behaviour of the flow. Additionally, by varying the forcing profile in the non-
periodic simulation, we test the sensitivity and range of validity for the model proposed
by Suri et al. (2014).

1. Introduction

Fluid flows in two spatial dimensions have been the subject of substantial research
efforts in recent decades due to numerous motivating factors. First and foremost, geo-
physical flows such as those of the atmosphere and oceans can be described to a good
approximation using two-dimensional (2D) models (Dritschel & Legras 2008). Flows in
two dimensions are also much more analytically and numerically tractable compared to
fully three-dimensional (3D) flows. Providing further incentive is the prospect of gaining
new insights using 2D flows to improve our understanding of turbulence, which remains
unsolved despite centuries of research.

Perhaps one of the best known 2D fluid flow models is the Kolmogorov flow, which
was introduced by Andrey Kolmogorov in 1959 as a mathematical problem for studying
hydrodynamic stability (Arnold & Meshalkin 1960). It refers to the motion of an incom-
pressible viscous fluid in two-dimensions (x−y) driven by a forcing that points along the
x-direction and varies sinusoidally along the y-direction. The evolution of this 2D fluid
is governed by the incompressible 2D Navier-Stokes equations, which are:

∂tu + u · ∇u = −1

ρ
∇p+ ν∇2u + f ,

∇ · u = 0,

(1.1)
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Here, u = (ux, uy) is the incompressible velocity field quantifying the motion of the
fluid, p is the 2D pressure field, and f = χ sin(κy)x̂ is the sinusoidal driving with ampli-
tude χ and wavenumber κ. The parameters ρ and ν are the density and the kinematic
viscosity of the fluid being driven, respectively. Kolmogorov flow has served as a theo-
retically amenable model for understanding a wide variety of hydrodynamic phenomena
in 2D, such as fluid instabilities (Meshalkin & Sinai 1961; Iudovich 1965; Kliatskin 1972;
Nepomniashchii 1976), coherent structures (Armbruster et al. 1992; Smaoui 2001), and
2D turbulence (Green 1974; Chandler & Kerswell 2013), to name a few.

Flows realized in the real world, however, are never strictly 2D. Experimentalists of-
ten make use of confinement (Bondarenko et al. 1979; Couder et al. 1989), stratification
(Marteau et al. 1995; Rivera & Ecke 2005), rotation (Greenspan 1990), or the application
of a strong external magnetic field (Sommeria 1986) to suppress one of the velocity com-
ponents (z-direction) in a 3D flow, making the flow closer to 2D. The evolution of these
so-called “quasi-two-dimensional” (Q2D) flows has often been described by modifying
the 2D Navier-Stokes equation (1.1) with the addition of a linear friction term:

∂tu + u · ∇u = −1

ρ
∇p+ ν∇2u− αu + f , (1.2)

where α is a constant. The addition of this friction term was first suggested by Bon-
darenko et al. (1979) in the context of a Q2D flow realized in an electromagnetically
driven shallow layer of electrolyte. In such a flow, the bottom of the fluid layer is con-
strained to be at rest because it is in contact with the solid surface of the container
holding the fluid. As one moves away from the bottom surface into the bulk, the fluid ve-
locity gradually increases because of viscous coupling, reaching a finite value. Hence, the
no-slip constraint at the bottom of the fluid layer causes a gradient in the magnitude of
velocity along the layer thickness (z-direction) when the fluid is driven. Bondarenko et al.
(1979) rationalized that the dissipation due to this shear, for sufficiently shallow fluid
layers, is captured by the linear friction term. In the context of Q2D flows in electrolyte
layers this term has come to be known as “Rayleigh friction.” Experimental realizations
of Kolmogorov flow, which are Q2D and use roughly sinusoidal driving, as well as 2D
models that employ equation (1.2) are now commonly referred to as “Kolmogorov-like
flow.”

Since the 1980s, Q2D flows in thin electrolyte layers have been studied extensively in
diverse contexts using equation (1.2). For instance, several studies were conducted aimed
at understanding the different regimes the flow transitions through as the strength of
the forcing is increased (Dolzhanskii et al. 1992; Obukhov 1983). The effect of vary-
ing both the geometry (Gledzer et al. 1981; Batchaev & Dowzhenko 1983; Kolesnikov
1985a,b; Batchaev & Ponomarev 1989) and the number of forcing periods (Batchaev
& Ponomarev 1989; Thess 1992) on these regimes was analytically and experimentally
explored in detail. Additionally, equation (1.2) also formed the basis of several studies
aimed at understanding the statistics of 2D turbulence, often using non-sinusoidal forms
of forcing; see Tabeling (2002) for a thorough review article. More recently, the validity
and limitations of equation (1.2) in describing the evolution of turbulent flows (Jüttner
et al. 1997; Paret et al. 1997; Akkermans et al. 2008), with focus on the emergence of
3D secondary flows in Q2D experiments, was extensively studied. Satijn et al. (2001),
as well as Kelley & Ouellette (2011), have each provided regime diagrams indicating the
range of Reynolds numbers for which a 3D experimental flow can be considered Q2D and
described by equation (1.2).

Across most studies comparing Q2D experiments with theoretical predictions, however,
a reliable and consistent procedure to estimate the coefficients α, ν, and ρ in equation
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(1.2) has not been followed. For instance, some studies have treated α as a fitting param-
eter (Bondarenko et al. 1979; Dolzhanskii et al. 1990) to compare theoretical predictions
with experiments, albeit with an ad hoc assumption that the viscous term (∇2u) was
negligible. The sensitivity of the flow to experimental imperfections and deviations from
quasi-two-dimensionality have not been considered, leading to a possibly erroneous esti-
mate of α. Additionally, flows realized in stratified layers of fluids have viscosities and
densities which vary across the depth of the fluid layers. In such cases, the numerical
values of ν and ρ used in equation (1.2) need to account for this inhomogeneity. Previous
studies have not addressed this issue in a systematic manner either (Jüttner et al. 1997;
Shats et al. 2010; Boffetta & Ecke 2012).

To address this deficiency, Suri et al. (2014) have investigated the problem of estimating
the coefficients in equation (1.2) to model Q2D flows realized in the single layer as well
as the stratified two-immiscible-layer setups. Analytical expressions for α, ν, and ρ for
both of these setups have been derived. Additionally, the following modified version of
equation (1.2) governing the evolution of the free surface of the fluid layer has been
suggested in order to account for the inherent three-dimensionality of a Q2D flow and
describe its evolution more accurately:

∂tu + βu · ∇u = −1

ρ
∇p+ ν∇2u− αu + f , (1.3)

where β ≤ 1 is a prefactor to the advection term previously unaccounted for. This new
prefactor β accounts for the decrease of the mean inertia of the fluid layer resulting from
the velocity gradient along the layer thickness. It can be easily seen that equations (1.1)
and (1.2) can be treated as special cases of (1.3) by suitable choices of the parameters
α and β. Equations (1.1)-(1.3) have been presented in dimensional form to highlight
the importance of each of the parameters and to facilitate direct comparison between
simulations and experiment. A nondimensional form of equation (1.3) is available in
Appendix A.

It is worth emphasizing that equation (1.3) has been derived from first principles by
depth-averaging the full 3D Navier-Stokes equation. The coefficients α, ν, and β can be
computed by substituting experimental parameters into analytical expressions, requiring
no free parameters. The goal of this article then is twofold: first, to show using a specific
example that equation (1.3), in comparison to equation (1.2), provides a more accurate
description of a Q2D flow, and second, to employ equation (1.3) to obtain quantitative
agreement between experiment and carefully modelled numerical simulations in the study
of a Kolmogorov-like flow. Special attention has been given to modelling the magnetic
field and imposing physically meaningful boundary conditions, since virtually all previous
theoretical studies of Kolmogorov flow have assumed periodic boundary conditions and
strictly sinusoidal forcing.

The prospect of developing a 2D model that describes the evolution of a Q2D flow
is particularly appealing in view of the recent attempts at developing a deterministic
description of turbulence. Over the last couple of decades, there has been substantial
theoretical progress (Nagata 1997; Kerswell 2005; Eckhardt et al. 2007; Gibson et al.
2009) in understanding transitional and weak turbulence as a dynamical process guided
by exact but unstable solutions of the Navier-Stokes equation, often referred to as ex-
act coherent structures (ECS) (Waleffe 1998). These studies predominantly focused on
identifying and understanding the role of ECS in 3D flows simulated on periodic do-
mains with simple geometries, such as pipe flow, plane Couette flow, and plane Poiseuille
flow. However, experimental evidence for the role of ECS is very scarce (Hof et al. 2004;
de Lozar et al. 2012; Dennis & Sogaro 2014), in part due to technological limitations
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in obtaining spatiotemporally resolved 3D velocity fields. Q2D flows, on the other hand,
can be quantified using 2D planar velocity fields whose measurement is a relatively easy
task. Hence, along with the 2D model (1.3) describing their evolution, Q2D flows in
experiments may serve as an ideal platform to develop an ECS based approach to un-
derstanding turbulence. Recently, Chandler & Kerswell (2013) and Lucas & Kerswell
(2014, 2015) have identified several ECS in numerical simulations of a weakly turbulent
2D Kolmogorov flow, governed by equation (1.1). We hope that this paper helps pro-
vide a rigorous foundation for future studies in the same spirit of Chandler & Kerswell
(2013) and Lucas & Kerswell (2014, 2015), albeit with a focus on relating theoretical
observations with experimental ones.

This article is organized as follows. In §2, we introduce the experimental setup. In §3,
we present the linear stability analysis for equations (1.1) – (1.3) to compare the ana-
lytical predictions of the initial instability for the three models with what is observed in
the experiment. In §4, we explain how we model the forcing in the experiment, and we
present three different simulation domains which are used to study the effects of differ-
ent boundary conditions. In §5, we compare the flow fields obtained from experimental
measurements with those from the numerical simulations for different flow regimes as
the driving is increased. Then, in §6, we address the potential sources of discrepancies
between experimental observations and numerical predictions, discussing the limitations
of equation (1.3). We discuss conclusions and potential improvements in §7. Details of
the numerical simulations have been included in Appendix B, and a nondimensional form
of equation (1.3) is provided in Appendix A.

2. Experimental Setup

We generate a Q2D Kolmogorov-like flow in the experiment using a stratified setup
with two immiscible fluid layers, first introduced by Rivera & Ecke (2005). In this con-
figuration, a lighter electrolyte is suspended on top of a dielectric, which serves as a
lubricant between the driven electrolyte layer and the solid surface at the bottom of the
container. The fluid layers are set in motion by driving the electrolyte layer using Lorentz
forces resulting from the interaction of a direct current and a spatially varying magnetic
field generated by permanent magnets.

To create a magnetic field that is approximately periodic in one direction, we use a
magnet array consisting of 14 NdFeB magnets (Grade N42). Each magnet is 15.24 cm
long and 1.27 cm wide, with a thickness of 0.32± 0.01 cm. The magnetization is through
the thickness, with a surface field strength of about 0.2 T. The magnets are positioned
side-by-side along their width to form a 15.24 cm × (14×1.27 cm) × 0.32 cm array such
that the adjacent magnets have fields pointing in opposite directions, normal to the plane
of the array. This magnet array is placed on a flat aluminum plate of dimensions 30.5 cm
× 30.5 cm × 1.0 cm, and rectangular pieces of aluminum with the same thickness as the
magnets (0.32 ± 0.02 cm) are placed beside the magnet array to create a level surface.
Manufacturing imperfections in the individual magnets and the aluminum siding result
in a surface which is not adequately smooth. Hence, a thin glass plate measuring 25.4
cm × 25.4 cm in area with a thickness of 0.079 ± 0.005 cm is placed atop the magnets
and siding to provide a uniform bottom surface. A thin layer of black, adhesive contact
paper (with approximate thickness 0.005 cm) is placed on top of the glass plate to serve
as a dark background for imaging. The surface of the contact paper serves as the bottom
boundary for the fluids. We place the origin of our coordinate system at this height and
the lateral centre, with the x-coordinate aligned with the magnet length, the y-coordinate
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Figure 1: A schematic diagram of the two-immiscible-layer Kolmogorov-like flow ex-
perimental setup viewed (a) from above and (b) from the transverse cross section. The
fluid flow is driven by Lorentz forces arising from the interaction of a direct current den-
sity, which is passed through the electrolyte in the y-direction, with a spatially varying
magnetic field pointed in the ±z-direction, generated by an array of permanent mag-
nets located below the fluid layers (dashed lines in (a); black and white rectangles in
(b)). The resulting forcing is in the ±x-direction. The flow is bounded by two end walls,
two side walls (electrodes), and a no-slip bottom surface, while the top surface is a free
electrolyte-air interface. This container is mounted on an aluminum plate which is levelled
and submerged in a water bath that is regulated such that the electrolyte is maintained
at 23◦C ± 0.2◦C.

pointing in the direction of the magnet periodicity, and the z-coordinate pointing opposite
gravitational acceleration. See figure 1 for a schematic diagram.

Walls are affixed directly onto the contact paper to create the lateral boundaries of
the container that will hold the fluids. Along the y-direction, two rectangular bars of
acrylic are placed at a distance of 17.8 cm apart, centred about the origin. These solid
boundaries for the fluid are henceforth referred to as the “end walls.” Along the x-
direction, two electrodes mounted on rectangular bars of acrylic are placed at a distance
of 22.9 cm, centred about the origin. These boundaries are henceforth referred to as the
“side walls” and are used to drive the current through the electrolyte. The placement of
the end walls and side walls leaves a buffer region of dx = 1.27 cm and dy = 2.54 cm,
respectively, between the edge of the magnet array and these solid boundaries. See figure
1 (a) for a schematic diagram depicting the locations of the walls.

The aluminum plate upon which the magnets are mounted is supported by three
screws, which are adjusted to level the system. The interior of the container is filled
with 122 ± 4 mL of a dielectric fluid and 122 ± 2 mL of an electrolyte to form two
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immiscible layers that are 0.30 ± 0.01 cm and 0.30 ± 0.005 cm thick, respectively. The
dielectric fluid used is perfluorooctane, which has a viscosity of µd = 1.30 mPa·s and a
density of ρd = 1769 kg/m3 at 23.0◦C. The electrolyte fluid is a solution consisting of
60% 1 M copper sulfate solution and 40% glycerol by weight. The electrolyte’s viscosity
is µc = 5.85 mPa·s and the density is ρc = 1192 kg/m3 at 23.0◦C. A small amount of
viscosity-matched surfactant is added to the electrolyte to lower the surface tension, and
a glass lid is placed on top of the container to limit evaporation.

A direct current, which serves as the control parameter, is then passed through the
electrolyte; the resulting current density ranges from about 10 to 40 A/m2 across the
different runs. The interaction of this current density J (y-direction) with the spatially
alternating magnetic field B (±z-direction) results in an alternating Lorentz force F
(±x-direction) driving shear flow. Since passing a current through a resistive conductor
(the electrolyte) results in Joule heating, a calibrated thermistor is placed in the corner
of the fluid domain and the aluminum plate is immersed in a temperature-controlled
water bath. The water bath is regulated such that the temperature of the electrolyte
is maintained to 23.0 ± 0.2◦C. By limiting the temperature fluctuations, the associated
change in viscosity of the fluids is kept to a minimum.

For flow visualization, we add hollow glass microspheres to the fluid which are illumi-
nated with white light emitting diodes and imaged using a camera which is positioned
above the apparatus. Two separate methods are used to seed the flow with particles, ei-
ther at the free surface and at the dielectric-electrolyte interface. For free surface seeding,
we add dry glass microspheres; these particles are Glass Bubbles (K15) manufactured
by 3M and sieved to obtain particles with mean radius 24.5 ± 2 µm and mean den-
sity 150 kg/m3. For electrolyte-dielectric seeding, glass microspheres coated in titanium
oxide (mean radius 9± 6 µm and mean density 800 kg/m3), are mixed with perfluorooc-
tane then injected into the perfluorooctane layer after both fluids have been poured into
the box. For the latter, although the microspheres are less dense than both fluids, they
remain trapped at the dielectric-electrolyte interface due to interfacial tension. The sec-
ond method is particularly useful when the experiment will be running continuously for
longer than an hour, as we observe that particles seeded at the interface remain evenly
distributed much longer. For a Q2D flow, the velocity at the free surface is related to
that at the interface by a constant scale factor s = 1.08 obtained from analytical com-
putations presented in Suri et al. (2014). This scale factor has been verified to within
1% by comparing velocity measurements from separate experiments with seeding at the
interface or free surface. Throughout the paper, experimental measurements at the in-
terface are presented in the rescaled form for consistency with those measured at the free
surface.

The seeded flow is imaged at 15 Hz with a DMK 31BU03 camera manufactured by The
Imaging Source; this camera has a CCD sensor with a resolution of 1024 × 768 pixels,
which results in an adequate resolution of about 53 pixels per magnet width. The flow
velocities are calculated using the PRANA particle image velocimetry (PIV) package
(Eckstein & Vlachos 2009; Drew et al. 2013). This software employs a multigrid PIV
algorithm that deforms images to better resolve flows with high shear, as Kolmogorov-
like flow has. The velocity field is resolved on a 169 × 126 grid, with about 9 points per
magnet width.

For the experimental measurements listed above, we obtain α = 0.064 s−1, β = 0.83,
and ν = 3.26× 10−6 m2/s for the parameters for equation (1.3). The complexity of the
flow in both the experiment and simulation is characterized by the Reynolds number,
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which we define as:

Re =
UL

ν
(2.1)

where L = 1.27 cm is the width of one magnet and U =
√
〈u2x + u2y〉 is the measured root-

mean-square (rms) velocity, where 〈·〉 denotes spatial averaging over a central subregion
that is the same dimensions as the doubly-periodic simulation (10.16 cm × 10.16 cm)
which is discussed below. Note that from this point on, unless specified, lengths will be
nondimensionalized by the characteristic length scale L = 1.27 cm. We will now shift our
attention to theoretical predictions for the initial instability of Kolmogorov-like flow by
performing the linear stability analysis.

3. Linear Stability Analysis

As mentioned in the introduction, one of the primary goals of this article is to show
that equation (1.3) provides a more accurate description of a Q2D flow compared to
equation (1.2). The proof-by-example we present below is far from being rigorous, but
is sufficient to highlight the error one incurs using equation (1.2) in place of equation
(1.3) when comparing with experiments. Here, we consider a Kolmogorov-like flow on
an unbounded domain with forcing that is strictly sinusoidal. It can easily be seen that
when the driving is low the flow mimics the sinusoidal profile of the forcing for all the
three governing equations (1.1)-(1.3), i.e. u ≈ sin(κy)x̂. As the strength of the forcing
increases, this laminar flow is known to become unstable to longitudinal perturbations,
bifurcating into a flow with time-independent vortices. This vortex pattern has the same
periodicity κ as the laminar flow along the y-direction. Several previous studies have
analysed this transition theoretically (Meshalkin & Sinai 1961; Iudovich 1965; Kliatskin
1972; Nepomniashchii 1976). Experiments across different setups have also confirmed
this transition (Bondarenko et al. 1979; Obukhov 1983; Batchaev & Dowzhenko 1983)
and have characterized it using the critical Reynolds number (Reexpc ) and longitudinal
wavenumber (kexpc ) of the vortex pattern at onset of the secondary state. Linear stabil-
ity analysis of the laminar flow on the unbounded domain shows that for longitudinal
perturbations with wavelength kx = qκ the Reynolds number at which the laminar flow
goes unstable is approximately given by

Re0(q) =
π

β

1

q

√
(1 + q2)

(1− q2)

(
q2 +

α

νκ2

)(
1 + q2 +

α

νκ2

)
. (3.1)

This expression was computed by linearizing equation (1.3) around the laminar state and
calculating the stability with respect to perturbations containing only 3 modes, all with
the same longitudinal wavenumber kx, i.e. (kx,−κ), (kx, 0), and (kx, κ). Since equations
(1.1) and (1.2) are special cases of equation (1.3) one can compute the stability of the
laminar flow for any of the three equations using (3.1). Hence, it is of interest to study
(i) how the critical Reynolds number Rec = min

∀q
{Re0(q)} and the corresponding critical

wavenumber (kc = qcκ) of the transition in flows governed by each of the three equa-
tions compare with those observed in experiments, and (ii) what the Reynolds number
(Re0(qexpc )) predicted by equation (3.1) is for each of the three governing equations, using
the critical wavenumber (kexpc = κqexpc ) observed in the (bounded) experiment. In the
following paragraphs we answer these questions.

For β = 1 and α = 0, which corresponds to the 2D Navier-Stokes equation (1.1),
one can see that the laminar flow is most unstable to long wavelength perturbations
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Figure 2: Neutral stability curves from equation (3.1) showing the Reynolds number Re0
at which the laminar flow goes unstable when subjected to a longitudinal perturbation
of normalized wavenumber q = kx/κ. The parameters are α = 0.000 s−1 and β = 1.00
(black solid line), α = 0.064 s−1 and β = 1.00 (red dashed line), and α = 0.064 s−1 and
β = 0.83 (blue dot-dashed line) which correspond to equations (1.1), (1.2), and (1.3),
respectively. The black circle shows the corresponding measurement from the experiment.
In all cases, ν = 3.26× 10−6 m2/s and κ = 247.36 m−1 are held constant.

(qc = 0), with the critical Reynolds number Rec = π. Figure 2 shows a plot of Re0 as
a function of q for ν = 3.26 × 10−6 m2/s and κ = 247.36 m−1. Indicated on the same
plot is Reexpc = 11.07 at qexpc = 0.504, corresponding to the instability we observe in
the experiment described in §2. For q = qexpc , the value predicted by equation (1.1) is
Re0(q = qexpc ) = 4.56. Hence, as has been reported in earlier studies, equation (1.1) fails
to provide a quantitative description of the Q2D flow in the experiment.

This brings into focus the prediction from equation (1.2), which corresponds to β = 1
and α = 0.064 s−1, the latter value resulting from the analytical computations reported
by Satijn et al. (2001) and Suri et al. (2014). All previous studies have used this equation
to compare the onset of the primary instability in experiment and theory, albeit using
free parameters. From the neutral stability curve plotted in figure 2 it can be seen that
the flow governed by this equation is most unstable to a perturbation with wavenum-
ber qc = 0.465, with a critical Reynolds number Rec = 7.60. This finite wavenumber
instability is in qualitative agreement with what one observes in experiments and is a
significant improvement over that predicted using equation (1.1). However, for q = qexpc ,
the instability predicted using equation (1.2) occurs at Re0(q = qexpc ) = 7.69, which is
still a significant underestimation of what one observes in the experiment.

In comparison, the neutral stability curve corresponding to equation (1.3) is scaled by
a factor 1/β, as can be seen in equation (3.1). For β = 0.83 the Reynolds number corre-
sponding to the primary instability increases to Re0(q = qexpc ) = 9.26, an improvement of
14% over that predicted using equation (1.2). This increase in the stability of the laminar
flow is due to the gradient in the magnitude of velocity along the layer depth, which re-
sults in a suppression of the effective nonlinearity of the flow; in contrast, equation (1.2)
does not account for this suppression of the nonlinearity. This linear stability analysis
serves as a demonstration of the importance of estimating the value of β correctly to
achieve an accurate description of the Q2D flow. Hence, we use equation (1.3) for all
numerical analysis presented in this article.
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4. Numerical Modelling

It is crucial to note that in the linear stability analysis presented above, we have
assumed that the forcing is strictly sinusoidal and that the flow has an infinite lateral
extent. This, however, is never the case with experiments, where one has to account for
both the complicated magnetic field profile due to a finite-sized magnet array, as well as
the role of boundaries to accurately predict transitions across various flow regimes. In
this section we present a numerical model for approximating the magnetic field due to
the array of permanent magnets in the experiment (discussed in §2). We then present
three types of boundary conditions which form the basis of three separate DNS which
are very briefly introduced at the end of this section. Details of the numerical methods
employed in each of these DNS have been included in Appendix B.

4.1. Modelling the Magnetic Field

In the discussion so far, we have evaded addressing the very important question of how
one can compute the 2D forcing function f such that equation (1.3) would then accu-
rately describe the evolution of a Q2D flow realized in experiments. For a Kolmogorov
flow, the forcing f is sinusoidal, by definition. However, for Kolmogorov-like flows real-
ized in electromagnetically driven shallow layers of electrolyte, f needs to be computed
by depth-averaging the 3D Lorentz force F arising from the interaction of the magnetic
field B with a current density J (Suri et al. 2014). The current density is easily cal-
culated from geometrical considerations, but the magnetic field generated by the array
of permanent magnets is quite complicated. For J = J ŷ, as mentioned earlier in §2,
the Lorentz force density at any location (x, y, z) within the electrolyte layer is given
by F = J × B = JBzx̂ − JBxẑ. Here, Bx and Bz are the x- and z-components of the
magnetic field, respectively, which vary along all three coordinates x, y, and z. Experi-
mental measurements show that the typical value of Bx is less than 3% of the value of
Bz at any given location within the electrolyte. Hence, the Lorenz force density for all
practical purposes can be approximated as F ≈ JBzx̂. Figure 3 (a) shows experimental
measurements of Bz along the line x = 0 (black symbols), passing above the centre of
the array at two different heights. Clearly, the magnetic field profile deviates significantly
from that of a pure sinusoid, and furthermore, one cannot ignore the fringe fields near
the ends of the array.

To obtain a magnetic field profile that closely resembles the one in the experiment, one
could measure the z-component of the magnetic field (Bz) across the entire flow domain
at various heights above the magnet array. Using the measured field, one could then
compute the depth-averaged forcing profile as described by Suri et al. (2014). However,
since measuring Bz on a 3D grid is an extremely tedious process, we circumvent the
labour by numerically modelling the magnet array as described below.

The magnets in the array are arranged such that adjacent ones have magnetization
pointing in opposite directions, along ±ẑ. To obtain a magnetic field that closely resem-
bles the one due to this array, we model each magnet as a 3D cubic lattice of identical
dipoles, each with a moment mẑ. Changing the sign of m across adjacent magnets ac-
counts for the alternating direction of magnetization. The magnetic field at any location
(x, y, z) above the array is then approximated using the linear superposition of the field
contribution from all of the dipoles modelling the array. Hence, we refer to this model
as the “dipole summation.” Since the strength of the dipole m cannot be measured
experimentally, a single scaling parameter is calculated from a least-squares fit with
the experimental measurements, taken at two heights. The rescaled dipole summation
magnetic field is shown in figure 3 (a) (red lines), along with the experimental measure-
ments of Bz (black symbols), corresponding to the line x = 0 at heights z = 0.265 and
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Figure 3: (a) Experimental measurements of the z-component of the magnetic field, Bz,
as a function of y at the longitudinal centre of the domain (x = 0), and (b) experimental
measurements of Bz along the magnet centrelines at y = ±{0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5}.
Measurements are taken at a height just above the dielectric-electrolyte interface at
z = 0.236 and just below the electrolyte free surface at z = 0.472. A least-squares fit
has been performed using the data in (a) to determine the scaling factor for the dipole
summation; the scaled dipole summation magnetic field is shown in red. The experimental
uncertainties are the size of the symbols or smaller.

z = 0.438. We stress that the rescaling factor for the dipole summation only serves as a
convenience for comparing the magnetic field profiles and does not affect the Reynolds
number at which the bifurcations occur, as the Reynolds number is based on the response
velocity field. Figure 3 (b) shows the magnetic field comparison at z = 0.438 along the
magnet centrelines. Note that the electrolyte layer in the experiment is bounded by the
planes z = 0.236 and z = 0.472. Hence, we compute the magnetic field using the dipole
summation at various heights, in steps of 0.0197, in the region 0.236 < z < 0.472 and
depth-average them. This resulting depth-averaged magnetic field can then be used to
compute the forcing profile f which drives the flow in the 2D model.
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4.2. Boundary Conditions

The experimental Kolmogorov-like flow has solid walls along the lateral boundaries, re-
sulting in a no-slip boundary condition. However, for reasons of analytical and compu-
tational feasibility, Kolmogorov flow simulations have been studied almost exclusively
in periodic 2D domains. In such domains, one can choose the longitudinal dimensions
commensurate with the critical wavenumber qexpc . The neutral stability curves in figure 2
would then dictate the Reynolds number at which the laminar flow goes unstable. How-
ever, this comparison ignores the role boundaries play in the stability of the laminar flow
in the experiments. To address this key issue, we compare the experiment to numerical
simulations realized on three types of domains, which are listed below.
• Doubly-Periodic Domain: This domain is chosen to coincide with the central 8 × 8

window of the experimental domain, with its boundaries coinciding with x = ±4 and
y = ±4. The simulated flow is constrained to be periodic in both the longitudinal and
transverse directions, i.e. u(x = −4, y) = u(x = 4, y) and u(x, y = −4) = u(x, y = 4). It
should be noted that the size of this domain along x is approximately twice the critical
longitudinal wavelength qexpc of the secondary flow observed in the experiment. Along
the transverse direction it spans a width equaling that of 8 magnets.
• Singly-Periodic Domain: This domain coincides with the region −7 ≤ x ≤ 7 and

−4 ≤ y ≤ 4. The longitudinal dimensions are the same as that of the experiment while
the transverse ones span a width equaling that of 8 magnets, like in the doubly-periodic
domain. No-slip boundary conditions are imposed at the end walls, i.e. u(x = ±7, y) =
0, while periodic boundary conditions are imposed along the transverse direction, i.e.
u(x, y = 4) = u(x, y = −4). The motivation behind studying this domain is to test if
both the critical Reynolds number and the longitudinal wavenumber of the secondary
flow one observes in the experiment result solely from longitudinal confinement. We note
that the effect of transverse confinement has been studied by Thess (1992), and therefore
is not investigated here separately.
• Non-Periodic Domain: This domain is identical to the experimental one in its lateral

dimensions, i.e. −7 ≤ x ≤ 7 and −9 ≤ y ≤ 9, with no-slip boundary conditions imposed
at both the end walls and side walls, i.e. u(x = ±7, y) = 0 and u(x, y = ±9) = 0.

4.3. Direct Numerical Simulations

To compare the experimental observations with those predicted by equation (1.3) with
the three types of boundary conditions described above, we have performed direct numer-
ical simulations. The flow over the doubly-periodic domain is simulated using a pseudo-
spectral method in the vorticity-stream function formulation, as described in Mitchell
(2013). This simulation is henceforth referred to as the “doubly-periodic simulation,”
abbreviated DPS. For the singly-periodic and the non-periodic domains, numerical sim-
ulations have been performed using a finite-difference scheme, described in Armfield &
Street (1999). These simulations are hereafter referred to as the “singly-periodic simula-
tion” (SPS) and the “non-periodic simulation” (NPS). The 2D forcing profiles f for the
DPS and SPS are constructed from the depth-averaged magnetic field presented in §4.1
by retaining the dominant periodic components along the direction of periodicity of the
domain. Numerical details of all the simulations have been included in Appendix B.

5. Comparison of Experiment and Numerics

In this section we present the results of our comparison between the experiment and
the numerical simulations on the three domains described above. First, we discuss the
features of the laminar flow, with a special emphasis on the effect of boundaries. Then we
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discuss the primary instability, which gives way to a secondary state characterized by the
formation of time-independent vortices; features of this secondary state are presented.
Finally, we discuss the transition of this steady vortex pattern into a time-periodic flow.

5.1. Laminar Flow

For low driving the flow mimics the forcing closely, resulting in spatially alternating
bands of fluid flow along the ±x-directions, as can be see in figure 4. In this figure, black
vectors correspond to the velocity field u and the colour contour indicates the vorticity
ω. For the experiment (figure 4 (d)), the y-component of the velocity measured near the
centre of the domain is close to zero. However, there are regions of strong recirculation
near the end walls, characterized by a nonzero y-component of velocity. Additionally, a
careful observation of the flow shows a slight tilt in the alignment of the flow bands. This
tilt is due to the global circulation, in the counterclockwise direction, which results from
the fluid flowing along opposite directions over the end magnets at y = ±6.5. Figure 4
(a) and (b) show the laminar flows from the DPS and SPS. It can be seen that neither
of these display the tilt of the flow bands observed in the experiment since the periodic
flows are devoid of any global circulation. The SPS, however, captures the turn around
flow near the end walls, at least qualitatively. In contrast, one can see from figure 4
(c) that flow field corresponding to the NPS looks practically indistinguishable from the
experimental flow field.

For a quantitative description of the laminar flow profile, we have plotted the normal-
ized longitudinal velocity for the experiment uexpx /U along the line x = 0 in figure 5 (a).
The location of this cross section is indicated by the vertical dashed line in figure 4 (d).
The normalized difference in ux between the experiment and the numerical simulations
along this line is shown in figure 5 (b). As can be seen, the DPS and SPS, which are only
defined for −4.0 < y < 4.0, show systematic deviation from the experiment amounting to
as high as 15% since they do not capture the tilt in the shear bands which results from
global circulation. In comparison, the NPS agrees to within about 5% over the same
region, with no clear systematic deviation. The disagreement between the experiment
and NPS in this region, we believe, is a result of the dipole summation not accounting
for the variation in the strength of each individual magnet. Closer to the boundaries, at
y ≈ 7 and y ≈ −6, the largest difference between the NPS and the experiment is around
12%. The origin for this error is quite subtle and we shall defer its analysis to §6.1.

The normalized longitudinal velocity for the experiment uexpx /U at y = −0.5 (along
a central magnet centreline) is shown in figure 5 (c). Upon careful observation, one
can notice a slight asymmetry in the longitudinal velocity profile, which highlights the
effect of the global circulation. In contrast, the DPS is perfectly uniform and thus does
not capture this slight asymmetry, as can be seen from the plot of its difference with
the experimental profile in figure 5 (d) (brackets indicate the longitudinal extent of the
DPS). The SPS, which is defined all the way to the end walls, also does not capture this
asymmetry, as the flow in the SPS is also devoid of global circulation. However, it does
capture the decay of the longitudinal velocity profile in the region |x| & 5, towards the
end walls. The NPS is closest in agreement, as it displays the asymmetry observed in the
experiment and captures the decay of the velocity near the end walls.

In summary, the presence of lateral boundaries in the experiment has a clear and
systematic effect on the laminar flow profile, which is not captured by either the DPS or
the SPS. However, the NPS succeeds in capturing these effects to a very good degree of
accuracy.
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Figure 4: The laminar flow fields at Re = 8.1 for the (a) DPS, (b) SPS, (c) NPS, and
(d) experiment. The dashed lines in (d) indicate the locations of velocity profiles that
are compared to the simulations in figure 5. The vorticity colourbar plotted for (a) also
applies to (b-d). The velocity vectors are downsampled in each direction by a factor of 8
for the simulations and 4 for the experiment.

5.2. Primary Instability

As we increase the strength of the forcing, the laminar flow in the experiment becomes
unstable at Reexpc = 11.07 and a new pattern of steady vortices appears. Since this flow
is characterized by modulation of the flow bands along the longitudinal direction, we
shall henceforth refer to it as the “modulated state.” Figure 6 (a-d) show the flow fields
of the modulated state observed in the DPS, SPS, NPS, and experiment, respectively,
at Re = 14.1. The counterclockwise global circulation in the experiment strongly affects
the alignment of the vortices (see figure 6 (d)) which can be seen from comparing the
modulated states for the DPS and SPS with the relevant regions of the experimental
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Figure 5: Velocity profiles and normalized differences at Re = 8.1: (a) the normalized
velocity, uexpx /U , as a function of y at the longitudinal centre (x = 0), (b) the normalized
difference between the longitudinal velocities of the simulations and the experimental
velocity profile, (usimx −uexpx )/U , as a function of y at the longitudinal centre (x = 0), (c)
the normalized velocity, uexpx /U , as a function of x at the centreline of a middle magnet
(y = −0.5), and (d) the normalized difference between the longitudinal velocities of the
simulations and the experimental velocity profile, (usimx − uexpx )/U , as a function of x
at the centreline of a middle magnet (y = −0.5). In (b) and (d), the DPS and SPS are
plotted together, as they differ by less than 1%; in (d), the boundaries of the DPS are
indicated by blue brackets. Note that the DPS and SPS are defined on a smaller domain,
whereas the NPS and experiment extend all the way to the side walls at y = ±9 and end
walls at x = ±7. Experimental uncertainties are the size of the symbols or smaller.
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Figure 6: Flow fields at Re = 14.1, midway through the modulated state regime, for the
(a) DPS, (b) SPS, (c) NPS, and (d) experiment. The vorticity colourbar plotted for (a)
also applies to (b-d). The velocity vectors are downsampled in each direction by a factor
of 8 for the simulations and 4 for the experiment.

flow. However, one again, the flow fields from the NPS capture the features observed in
the experimental flow remarkably well.

As mentioned in §3, the transition to the modulated state is characterized by the
appearance of transverse velocity, uy 6= 0, in almost the entirety of the flow domain.
As the driving is increased, the magnitude of this transverse velocity also increases. A
bifurcation diagram characterizing the transition from the laminar to the modulated state
is shown in figure 7 (a). The order parameter is the nondimensionalized mean square y-
component of velocity, 〈u2y〉/U2, plotted as a function of Re. These measurements are
made over the central region −4.0 < x < 4.0 and −4.0 < y < 4.0 for all simulations and
experiment. In comparison to the experiment, the primary bifurcation in the DPS and
SPS occur at much lower Reynolds numbers of ReDPS

c = 9.39 and ReSPS
c = 9.64. This
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Figure 7: (a) A bifurcation diagram showing the initial instability for the experiment
and simulations. This bifurcation occurs as the flow transitions from the laminar to the
modulated state, which is characterized by the formation of time-independent vortices
in a regular lattice. (b) The spatial average of the nondimensional wavelength in the x-
direction, λ̄x/L, as a function of Re for the modulated regime. At each Re, measurements
are made for −4.0 ≤ y ≤ 4.0 then averaged; the uncertainty bars indicate one standard
deviation in the spatial measurements.

result shows that imposing realistic longitudinal boundaries alone cannot capture the
transition of the laminar state. In contrast, the transition in the NPS occurs at ReNPS

c =
10.73, a mere 3% underestimation of that observed in the experiment. This demonstrates
that the inclusion of the correct boundary conditions, in addition to realistic modelling of
the magnetic field, allows one to predict the primary instabilility to very good accuracy
using equation (1.3). It is important to note that the NPS using equation (1.2) instead of
equation (1.3) predicts the transition to occur at Rec = 8.91, which fails to predict the
transition even after incorporating realistic boundaries and an accurate forcing profile.

Another measure that facilitates a quantitative comparison between the experiment
and the simulations is the average longitudinal wavelength λ̄x associated with the vortex
pattern in the modulated state regime. It is important to note that this wavelength is
a spatially averaged quantity computed by measuring the separation between adjacent
vortex centres and adjacent saddles in the centre region of the domain −4.0 < y < 4.0. At
onset, just above the initial instability, the vortices in the experiment form a lattice with
a fairly uniform separation between them, i.e. λ̄expx,c /L = 3.97. This critical wavelength

λ̄expx,c /L and the normalized wavenumber qexpc introduced in the linear stability analysis

in §3 are related by λ̄expx,c /L = 2/qexpc . As the forcing is increased the mean separation

between the vortices increases, as can be seen from the plot of λ̄x/L versus Re shown in
figure 7 (b). Additionally, at higher forcing, the vortex lattice becomes spatially irregular,
especially in the region |y| & 3, as can be seen in figure 6 (d). This spatial variation is
quantified in the plot in figure 7 (b) wherein the uncertainty bars indicate one standard
deviation in the spatial variation of the separation between adjacent vortices and adjacent
saddles. The large uncertainty bar on the lowest experimental measurement is due to a
larger uncertainty in identifying the vortex centres and saddles when the flow is very
weakly modulated. For comparison, figure 7 (b) also shows the wavelength measured
from the DPS and SPS. Neither of these are representative of what one observes in the
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experiment, showing practically no variation in wavelength across the domain as well as
across Reynolds numbers. In contrast, the NPS captures both the spatial variation of
the wavelength and the distortion of the lattice with increasing forcing quite accurately.
However, for a given Reynolds number, the NPS overestimates the wavelength compared
to what is observed in the experiment. The origin of this discrepancy is discussed in
detail in §6.1.

5.3. Secondary Instability

As we increase the forcing further, the modulated flow in the experiment undergoes a
transition at Re = 17.3 giving way to an oscillatory state with a period of 122 seconds
at onset. With a quasistatic increase in the driving the amplitude of these oscillations
grows, while the period remains approximately constant. The bifurcation diagram quan-
tifying this transition is plotted in figure 8 (a), which shows the nondimensionalized
peak intensity I/U2 of the temporal power spectrum spatially averaged over the region
−4.0 < x < 4.0 and −4.0 < y < 4.0 as a function of Re. The associated power spectra
are shown in figure 8 (b). The NPS shows a very similar transition, with onset occurring
at Re = 17.0 with a period of 125 seconds. The range of Re over which these periodic
oscillations are observed is very narrow in both the experiment and the NPS. Note that
the discrepancy between the simulation and experiment in the Reynolds number char-
acterizing this bifurcation is a mere 2%. A side-by-side comparison video showing the
periodic orbits for the NPS and experiment is available in the supplementary materials
online. The flow regimes explored by the DPS and the SPS are vastly different from what
we observe in the experiment and NPS; hence quantitative comparison of the secondary
instability is not provided here.

As we increase the driving further, the flow in both the experiment and the NPS
increases in complexity, with the appearance multistability, i.e. the coexistence of stable
and chaotic flows for the same Reynolds number depending on the initial conditions.
Constructing a bifurcation diagram characterizing all such regimes is beyond the scope
of this current study and is being probed separately.

6. Modelling Limitations

All the results presented so far have indicated that the NPS captures the features of the
experimental flow quite accurately, predicting the primary and secondary instabilities to
within about 3%. However, one needs to be aware that the 2D equation (1.3) is a reduced
model describing an inherently 3D experiment. For instance, the forcing function f(x, y)
computed by depth-averaging the 3D magnetic field Bz(x, y, z) is devoid of information
regarding how the magnetic field varies along z. The actual Q2D flow in the experiment,
instead, is in response to such a 3D forcing. Furthermore, the dipole summation modelling
the magnet array does not account for any possible inhomogeneities in each magnet or
variation in strength across different magnets. Experimental measurements of Bz at a
fixed height along the cross section x = 0 (figure 3 (a)) show that the dipole summation
magnetic field deviates from the experiment by at most 5% in certain places. Hence, it
is crucial to explore the role of these deficiencies of the numerical model. We restrict our
quantitative analysis to studying the effect on the primary bifurcation.

6.1. Non-Idealized Forcing Profiles

As described earlier in §4.1, the dipole summation model assumes that the strength of
the dipoles across magnets, as well as within each magnet, is uniform. In an effort to
quantify the effects of inhomogeneous magnetization in experiments, we separate the
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Figure 8: (a) A bifurcation diagram showing the nondimensionalized power spectrum
intensity, I/U2, as a function of Re. The temporal power spectrum is averaged over the
region −4.0 < x < 4.0 and −4.0 < y < 4.0 before calculating the intensity I. This super-
critical Hopf bifurcation, which occurs at Re = 17.3 in the experiment and Re = 17.0 in
the NPS, corresponds to the flow transitioning from the modulated state to a periodic
orbit. (b) The nondimensional temporal power spectrum, P/U , as a function of the fre-
quency, f , for the experiment (top) and NPS (bottom) as the current is quasistatically
increased through the periodic orbit regime.

study of variations in dipole strength across different magnets from those within a given
magnet. For purposes of notational convenience, B will refer to the z-component of the
3D dipole summation and BDA will refer to the z-component of the 2D dipole summation
which has been calculated by depth-averaging over the region 0.236 < z < 0.472 (the

location of the electrolyte layer); B̃DA will refer to forms of the dipole summation which
have been perturbed then depth-averaged. This notation is used throughout §6.1 and
§6.2.

The first type of imperfection we explore is the variation in the strength of magne-
tization across different magnets, with each magnet still being uniformly magnetized.
Three different forms of perturbations are studied: (i) perturbations both increasing and
decreasing the dipole strength for the central 6 magnets of the magnet array, (ii) pertur-
bations which increase the dipole strength of each of the end magnets, and (3) perturba-
tions which decrease the dipole strength of each of the end magnets. The depth-averaged
magnetic field B̃DA is then recalculated for this perturbed configuration. The normalized
depth-averaged magnetic field residuals along the cross section x = 0 (compared to the
unperturbed dipole summation BDA) are presented in figure 9 (a). Using the perturbed
depth-averaged magnetic field profile we have recomputed the laminar and modulated
states and the resulting bifurcation diagram is shown in figure 9 (b).

Clearly, the first bifurcation is much more affected by perturbations to each of the end
magnets than perturbations to magnets near the centre of the domain. Additionally, recall
that both the bifurcation order parameter 〈u2y〉/U2 and the Reynolds number Re = UL/ν
are calculated over the central region of the domain: −4.0 < x < 4.0 and −4.0 < y < 4.0.
This makes the results especially surprising – that perturbing the strength of the end
magnets affects the flow at the centre more strongly than perturbing the central magnets
does. This result suggests the important role that global circulation plays in determining
the dynamics of the system.
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Figure 9: (a) A plot showing the difference between the perturbed dipole summation

magnetic fields, B̃DA, and the unperturbed dipole summation magnetic field, BDA, nor-
malized by the spatial rms depth-averaged magnetic field

√
〈BDA〉. Magnetic fields per-

turbed in three different ways are plotted: asymmetric perturbations near the middle
(red dashed line), positive perturbations at the ends (green dot-dashed line), and neg-
ative perturbations at the ends (blue dotted line). Note that the sign of the magnetic
field for each individual magnet is indicated at the top of the plot. (b) A bifurcation dia-
gram showing the initial instability for the NPS, with various perturbations added to the
dipole summation. The first bifurcation is much more sensitive to perturbations to the
magnetic field of the end magnets than the middle magnets, even though the bifurcation
parameter is only measured in the middle region.

The second set of perturbations we explore are those which correspond to variations
in the dipole strength along the length of each individual magnet. However, rather than
varying the strength of the dipoles along their length within each magnet, we create
a “hybrid” profile that combines the magnetic field from the idealized depth-averaged
dipole summation BDA with experimental measurements shown in figure 3 (b). This 2D
hybrid field is generated from combining (i) the transverse profile at x = 0 of the idealized
depth-averaged dipole summation BDA, and (ii) the longitudinal measurements taken
along the centreline of each magnet (black markers in figure 3 (b)), normalized to unity
using the average value over a small central region near x = 0. The normalization ensures
that the 2D hybrid profile has the same transverse cross section at x = 0 as the idealized
dipole summation while replicating the fluctuations in the magnetic field corresponding to
those measured experimentally along the longitudinal direction. The resulting bifurcation
diagram is not included, as the bifurcation curve is virtually indistinguishable from the
unperturbed case. This analysis effectively demonstrates the insensitivity of the first
bifurcation to longitudinal perturbations.

The robustness of the flow to noise in the magnetic field explains why, despite using
an idealized dipole summation, the laminar to modulated transition in the NPS differs
by only 3% compared to that in the experiment. Hence, it is natural to ask if one could
achieve “perfect agreement” between the 2D model and the Q2D experiment by replacing
the dipole summation with a depth-averaged profile computed entirely using experimental
measurements of the magnetic field over a 3D grid located within the electrolyte. The
answer to this question is complicated as can be seen from the following discussion.
The dipole summation and the experimental magnetic fields over the end magnets, for
instance, differ by less than 5%. However, the velocity fields differ by as much as 12%
in the same location. More importantly, this difference is systematic, i.e. over both the
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end magnets the simulation predicts a higher velocity magnitude compared to what is
measured in the experiment (figure 5 (b)). We also observe that the experimental average
wavelength is systematically less than that of the NPS for the modulated regime (figure 7
(b)). Our analysis indicates that these discrepancies are too large to be attributed solely
to deviations from the uniform dipole summation, suggesting an alternative source of
error. This we trace to the inherent three-dimensionality of the experiment.

6.2. Inherent Three-Dimensionality of the Experiment

As has been discussed in §4.1, the Lorentz force density due to the specific arrangement
of magnets employed in the experiment is, to a very good approximation, given by F =
JBz(x, y, z)x̂, where J is the magnitude of current density through the electrolyte and
Bz is the z-component of the magnetic field at any given location (x, y, z) within the
electrolyte. In deriving equation (1.3) it was assumed (Suri et al. 2014) that Bz can be
decomposed as the product of a 2D profile B0

z (x, y), which depends exclusively on the
extended coordinates (x, y), and a decay function D(z), which captures the decay of
the magnetic field above the magnet array, i.e. Bz(x, y, z) = D(z)B0

z (x, y). This implies
that, when normalized, the planar magnetic field profiles at various heights z within the
electrolyte are identical. This assumption is necessary for a similar decomposition of the
plane-parallel Q2D velocity field V(x, y, z) as a product of a vertical profile P (z) and
a strictly 2D velocity field u(x, y), i.e. V(x, y, z) = P (z)u(x, y). Such a decomposition
facilitates depth-averaging of the 3D Navier-Stokes equations resulting in the strictly
2D model given by equation (1.3). The decomposability of the magnetic field, however,
cannot be exactly satisfied when one has a magnet array with finite dimensions. For
instance, in figure 3 (a), if one imagines rescaling the transverse magnetic profile at
z = 0.265 to match that at z = 0.438, the profiles would not match over the end magnets.
This is apparent by comparing, for example, the peaks at y = −6.5 and y = −4.5
at each height. The planar profiles of the magnetic field obtained from the idealized
dipole summation at z = 0.236 (dielectric-electrolyte interface) and z = 0.472 (free
surface), normalized by the respective rms values of the magnetic fields in the central
8 × 8 region, differ by about 12%. This measure, obtained from the idealized dipole
summation, provides a lower bound on how much the experimental fields can differ.
Hence, the velocity field in the experiment is a response to an inherently 3D forcing.
As a consequence, the NPS with the depth-averaged forcing which is based on the 2D
equation (1.3) fails to capture the experimental flow to some degree.

To study this possible source of discrepancy, we have recomputed the first bifurca-
tion using planar magnetic field profiles exclusively from each height z = 0.236 and
z = 0.472, which correspond to the dielectric-electrolyte interface and the free surface.
We find that the resulting plots of the first bifurcation, as well as that of the wavelength
of the modulated states (not included in this article), lie on either side of the experimen-
tal measurements. This result suggests that the primary reason behind the systematic
difference between the NPS and the experiment is a result of deviations from quasi-two-
dimensionality. This nondecomposability is the largest over the end magnets and explains
why the NPS shows a systematic deviation from the experimental velocity field.

7. Conclusion

In this article, we have investigated the primary and secondary bifurcations of a
Kolmogorov-like flow. This Q2D flow, obtained in the laboratory by electromagneti-
cally driving a stratified layer of electrolyte above an immiscible layer of dielectric, is
an appealing system to study because the experimental flow can be described to a very
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good approximation by a strictly 2D model. Many previous works have used a semi-
empirical form of the 2D Navier-Stokes equation with Rayleigh friction, which ignored
the effects of the inherent three-dimensionality of the flow. Additionally, virtually all
previous studies have employed doubly-periodic boundary conditions, which are non-
physical, and assumed a perfectly sinusoidal forcing profile, which is difficult to realize
in the laboratory.

We have demonstrated that close, quantitative agreement between experiment and
numerics is only found when one utilizes equation (1.3) with no-slip boundary conditions
imposed at all lateral boundaries. To model the forcing, we numerically computed a 3D
approximation to the body forcing, which was then depth-averaged to generate a 2D
forcing profile. This simulation results in an exceptional 3% discrepancy in Rec for the
primary instability and a 2% discrepancy for the secondary instability, with a very similar
oscillation period at onset. A detailed sensitivity analysis shows that the systematic
deviations between the simulation and experiment are a result of the inherent three-
dimensionality of the flow, which indicate a possible limitation of the 2D model.

On the experimental front, several improvements could be made in future studies. For
instance, we have observed that for larger heights above the magnet array, the magnetic
field profile is closer to decomposable; hence, a thicker glass plate between the magnets
and fluids may improve the agreement. The tradeoff, however, is that the magnetic field
(Bz) becomes substantially weaker, requiring larger currents (J) to attain the same
strength of forcing. This results in larger Joule heating, which may be problematic for
carefully maintaining the Reynolds number, as heating affects the viscosity. Since the
non-decomposability of the forcing profile is largest over the end magnets, it may be
beneficial to bring the side walls in closer or extend the magnet array so that the end
magnets are no longer driving the flow. Use of magnets with much stricter tolerances in
the uniformity of the magnetization may also lead to improvements.

Many open questions remain regarding experimental realizations of Kolmogorov flow.
The effect of varying the parameters or the number of forcing periods with realistic no-
slip boundary conditions imposed has not been addressed. The effect of how sensitive
the flow is to the exact location of the boundaries has not been rigorously studied either.
Quantitative comparisons of the transition to turbulence in the experiment and numerics
are lacking as well. Of course, an ECS-based description of turbulence is only in its infancy
at the current time, and the existence of such unstable solutions in a Q2D flow is yet to
be demonstrated in the literature. We believe we have laid a solid foundation for future
studies of Kolmogorov-like flow at higher Reynolds numbers, into the weakly turbulent
regime.

We thank Daniel Borrero for his useful suggestions and insights, both experimentally
and theoretically. J.T. is grateful to Samuel Raben for his assistance in using the PRANA
PIV software package. This work is supported in part by the National Science Foundation
under Grant Nos. CMMI-1234436 and DMS-1125302.

Appendix A. Nondimensional Form of Governing Equations

Equation (1.3) has been presented in the dimensional form in this article in part to
facilitate a direct comparison between the experimental measurements and the numerical
simulations. However, nondimensional versions (with β = 1) have formed the basis of
several previous analytical and computational studies. Hence, it is useful to detail the
nondimensionalization of equation (1.3) to facilitate comparison with previous studies.

Most previous studies of Kolmogorov flow have employed a strictly sinusoidal forcing
of form f = χ sin(κy)x̂. Since the magnetic field Bz(x, y, z), and hence its depth-average
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BDA, are close to being sinusoidal at the centre of the magnet array, a natural choice
is to define an amplitude-profile form of the depth-averaged magnetic field such that
BDA = B0B̂DA. Here B̂DA ≈ sin(κy) at the centre of the array with B̂DA(0, w/2) = 1
and B0 = BDA(0, w/2), where w is the width of a magnet in the experiment. The depth-

averaged forcing is then given by f = JB0f̂ , where f̂ = B̂DAx̂.
Choosing the width w of a magnet as the characteristic length scale Ls of the flow

and a velocity scale Us =
√
JB0w/ρ based on the strength of the forcing, we can rewrite

equations (1.3) in terms of nondimensional variables u and p as

∂u

∂t
+ βu · ∇u = −∇p+

1

Re

(
∇2u− γu

)
+ f̂ ,

∇ · u = 0,
(A 1)

where we used Ts = Ls/Us to nondimensionalize time. The Reynolds number Re =
UsLs/ν can then be expressed in terms of the strength of the forcing asRe =

√
JB0w3/ρν2.

The other nondimensional parameter γ = αw2/ν captures the relative strength of vis-
cous and frictional terms in equation (1.3). For γ = 0 and β = 1, we recover the familiar
nondimensional form of the 2D Navier-Stokes equation.

Appendix B. Numerical Methods

In this Appendix, we present the details of discretization methods and numerical in-
tegration schemes employed in the NPS, SPS, and DPS.

B.1. Non-Periodic Simulation (NPS) and Singly-Periodic Simulation (SPS)

Since the NPS, as well as the SPS, require prescribing Dirichlet no-slip boundary con-
ditions on the velocity field u, numerical simulations are performed using the primitive
variable (ux, vx, and p) formulation by employing a semi-implicit fractional-step method
detailed in Armfield & Street (1999). To begin with, equation (1.3) is discretized in time
to obtain the following difference equation:

un+1 − un

∆t
+

3

2
Nun −

1

2
Nun−1 = −∇pn+1 +

1

2
L(un+1 + un) + f . (B 1)

In the above equation un and pn+1 are the velocity and kinematic pressure fields with
the subscript n indicating a discrete time instant tn = n∆t, where ∆t is the time step
for the update. For purposes of brevity we have used the notation Nun = un · ∇un and
Lun = ∇2un − αun to represent the nonlinear and linear terms, respectively. As can
be seen, the above equation results from a semi-implicit approximation for the temporal
evolution of equation (1.3), where the linear terms in the update are treated implicitly
using the Crank-Nicholson scheme while the nonlinear term is handled explicitly using
the Adams-Bashforth scheme. It is important to note that the velocity field un+1 at every
updated instant satisfies the incompressibility condition

∇ · un+1 = 0, (B 2)

which is enforced through the three-fractional-step P2 (pressure correction) projection
method discussed in Armfield & Street (1999).

Spatial discretization of the velocity and pressure fields is carried out using the standard
marker and cell (MAC) staggered grid (Harlow & Welch 1965). The spatial derivatives in
equation (B 1) are approximated using finite differences, the 2D Laplacian operator (∇2)
uses a five-point stencil formula, and the nonlinear term uses a modified MAC formula
(Griebel et al. 1998).
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For both the NPS and the SPS, we have chosen 20 cells per magnet width L to
discretize the velocity and pressure fields. Since the dimensions of the NPS are identical
to the lateral dimensions of the experiment, i.e. 14×18, a total of 280×360 cells were used
to sample the flow domain. The SPS, however, corresponds to a domain of dimensions
14× 8, which maps to a region including the central eight magnets along the y-direction
in the experiment. Hence, a total of 280×160 cells were used to sample the SPS domain.
For both the SPS and NPS, a time step of ∆t = 1/40 s was used for all the numerical
simulations.

B.2. Doubly-Periodic Simulation (DPS)

For simulations on the doubly-periodic domain, it is convenient to use the vorticity-stream
function formulation instead of the velocity-pressure formulation. Hence, taking the curl
of equation (1.3), we obtain the following equation for the evolution of the z-component
of vorticity ω = (∇× u) · ẑ:

∂tω + βu · ∇ω = ν∇2ω − αω +W, (B 3)

where W = (∇ × f) · ẑ. The velocity field u is computed from the 2D stream function
Ψ(x, y) using the relations ux = ∂Ψ/∂y and uy = −∂Ψ/∂x; Ψ can be computed solving
−∇2ψ = ω.

Numerical simulations of equation (B 3) on the periodic domain are performed using
a pseudo-spectral method (Ascher et al. 1995; Mitchell 2013). The vorticity field ω is
discretized in the Fourier space using 128 modes along each of the x- and y-directions.
Since the lateral dimensions of the periodic domain are 8×8 units, the spatial resolution
associated with the Fourier grid corresponds to 16 grid points per magnet width L.
Taking the Fourier transform of equation (B 3), we obtain:

∂tΩ = −βF [u · ∇ω] + ν∇2Ω− αΩ + F [W ], (B 4)

where F [·] represents the Fourier transform and Ω = F [ω].
Equation (B 4) is stepped forward in time (t→ t+ ∆t) using a 3-substep semi-implicit

Strang-Marchuk algorithm (Ascher et al. 1995) where the first and last substeps update
the vorticity field using the nonlinear term by means of a second-order explicit Runge-
Kutta scheme (using ∆t/2) while the intermediate substep updates the vorticity field
using an implicit second-order Crank-Nicholson scheme (using ∆t). ∆t was chosen as
1/32 s.
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