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A layer of dielectric elastomer can be voltage actuated to behave as actuators, but 

needs to avoid the electromechanical instability of excessively thin down accompanied 

with electric breakdown. We develop a true method to analyze the electromechanical 

stability of dielectric elastomers by adopting the positive definiteness of the true 

tangential modulus matrix, and demonstrate that the previous method is only valid for 

the special case of zero prestress. Our new method is applicable for arbitrary prestress 

cases including zero prestress, with predictions consistent with available experimental 

measurements. Our theoretical results demonstrate the significant effects of prestress 

on critical voltage and critical actuation stretches.  

 The large deformation of dielectric elastomers induced by voltage enables their extensive 

applications as actuators1-4. However, electromechanical instability is often encountered to 

disable the actuator, which occurs when a threshold voltage is reached, causing excessively thin 

down of thickness5. Theoretically, the electromechanical stability of dielectric elastomers has 

been extensively investigated6-11. However, these theoretical studies are all established on the 

positive definiteness of the nominal Hessian matrix, which is only valid for the particular case of 

zero prestress12-14.  

 The stability of an electromechanical system at certain load point should be evaluated using 

its current state in Eulerian coordinates, not the nominal state in Lagrangian coordinates. To 

judge the occurrence of electromechanical stability, one need to use the true Hessian matrix in 

                                                 
 tjlu@mail.xjtu.edu.cn (T.J. Lu); fengxian.xn@gmail.com (F.X. Xin) 



 2/8 
 

Eulerian coordinates rather than the nominal Hessian matrix in Lagrangian coordinates. Only 

when there exists neither stress nor deformation, the nominal Hessian matrix would be identical 

as the true Hessian matrix. Consequently, the positive definiteness of the nominal Hessian matrix 

as employed in existing studies dictates only the stability of the initial load route.   

 This paper attempts to develop a true method for analyzing the electromechanical stability 

of dielectric elastomers. We present the true electromechanical stability in general case, 

applicable not only to the initial load route point but also to arbitrary load points. We consider 

the electromechanical system as shown in Fig. 1, where the layer made of dielectric elastomer is 

sandwiched between two compliant electrodes and subjected to the combined loading of voltage 

  and biaxial stresses ( 1 , 2 ). The elastomer deforms from its initial (undeformed) state ( 1L , 

2L , 3L ) to the current state ( 1l , 2l , 3l ) with principal stretches ( 1 , 2 , 3 ). The elastomer is 

assumed incompressible, so that 1 2 3 1    .  

  

FIG. 1 (Color online) A layer of dielectric elastomer sandwiched between two compliant 

electrodes is subjected to combined voltage and biaxial stresses. The layer deforms from initial 

dimensions ( 1L , 2L , 3L ) to current dimensions ( 1l , 2l , 3l ) with principal stretches ( 1 , 2 , 3 ).  

 With voltage   exerted on the two electrodes, the electric field in current state is 

1 2 3E L    and the corresponding charge on either electrode is 2 2
1 2 1 2 3Q L L L    . The 

elastomer layer needs to bear the Maxwell stress ( 2 2E , 2 2E , 2 2E ), which is the same 

as stress state ( 2E , 2E , 0) since the elastomer is incompressible. For ideal elastomers, the 

permittivity   is unaffected by deformation. The free energy function of dielectric elastomers 
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can be expressed using the neo-Hookean model, as15  

    2 2 2 2
1 2 1 2 1 2, 3
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where   is the small-strain shear modulus. The true stresses stemming from elastic deformation 

can be expressed as 
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, F  being deformation gradient. These true stresses and 

the Maxwell stresses are balanced by the Cauchy stresses, as: 
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where the principal Cauchy stress i  is work conjugate to principal strain i , which is directly 

related to stretch as lni i  , while the electric charge Q  is work conjugate to voltage  . The 

above constitutive equations describe the behavior of the electromechanical system in true space 

(i.e., Eulerian coordinates).  

 A stable electromechanical system requires minimization of its total energy, i.e., the strong 

ellipticity condition should be satisfied in a finitely deforming elastic body, as: 

 0ijkl i k j lH b b N N  , 
2

ijkl
ji lk

W
H

F F



 
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for all arbitrary 0b N  . Here, ijklH  is the component of the fourth-order elasticity tensor, 

which is the nominal Hessian matrix. Incorporating the prestresses and -Tn F N , one can 

rewrite this condition as12-14  

   0ijkl jl ik i k j lC b b n n   , 
21
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where jl  is the Cauchy stress.  

Condition (7) can also be stated in terms of the positive definiteness of acoustic tensor 

   nik ijkl jl ik j lQ C n n   . Stability of the electromechanical system is then governed by the 
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positive definiteness of true tangential stiffness matrix  ijkl ijkl jl ikc C    . Only for the case of 

zero stress (i.e., 0σ ), the strong ellipticity condition can be degraded to the positive 

definiteness of nominal tangential stiffness matrix (i.e., nominal Hessian matrix), which is called 

the Born stability12,14. As the Born stability based on nominal Hessian matrix is only valid for the 

limiting case of zero stress, we use the true tangential stiffness matrix to analyze the 

electromechanical stability of the electromechanical system for non-zero stress cases.  

 The electromechanical system of Fig. 1 depends on three independent variables, so that its 

generalized constitutive relation is     1 2 1 2

T T

MNQ c     , where MN ijklc c  if 

M ij  and N kl  are noted. The true tangential stiffness matrix can thence be obtained as: 
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Making use of the generalized constitutive equations of (2)-(4), we rewrite the true tangential 

modulus matrix (i.e., true Hessian matrix) as: 
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which, at equilibrium state, should possess the property of positive definiteness.  

 In the presence of prescribed prestresses 1  and 2 , the true tangential modulus matrix is 

positive definite and the electromechanical system is stable when the exerted voltage is 

sufficiently small. When the voltage reaches a critical value c , the true tangential modulus 

matrix ceases to be definite positive, yielding  det 0c  . All the parameters associated with the 

critical condition can be obtained by solving the constitutive equations and  det 0c  .  
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 We consider the general case of unequal biaxial prestresses, i.e., 1 2  ; the stretches thus 

induced should also be unequal, 1 2  . Using the constitutive equations, we express the 

normalized voltage as a function of stretches, as:  

  1 1 2 2 2 1
1 2 1 1 2

3L

    
 

   
   , 2 1 2

2 1

  



   (10) 

Because the electromechanical stability is voltage-controlled, the above voltage versus stretch 

relation should be taken into account to consider this stability. For arbitrarily prescribed 

prestresses, Eq. (10) describes the electromechanical performance of the considered system 

(Fig. 1). For example, the case of equal-biaxial prestresses is described by 1 2   while the case 

of uniaxial prestress is described by 1 0   and 2 0  .  

 As previously mentioned, electromechanical stability should be evaluated in the current 

state. At selected levels of equal-biaxial prestresses, we plot in Fig. 2 the voltage-actuated 

responses of dielectric elastomer layer. For each prestress level, the voltage versus stretch curve 

exhibits a peak (marked by cross), which signifies the onset of pull-in instability. The left side of 

the curve corresponds to positive definiteness of the true tangential modulus matrix, whereas its 

right side is related to non-positive definiteness of the matrix. At the critical onset point, we have 

 det 0c  . Increasing the prestress reduces the actuation voltage needed to realize the same 

actuation deformation, which agrees well with experimental observations1. Also, as the prestress 

is increased, the critical actuation stretch increases.  
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FIG. 2 (Color online) Electromechanical responses of dielectric elastomer actuator to selected 

equal-biaxial pre-stresses: (a) voltage versus in-plane stretch; (b) voltage versus in-plane 

actuation stretch; (c) voltage versus out-of-plane actuation stretch. Critical onsets of 

electromechanical instability are marked by crosses.  

 In the absence of prestress, it has been experimentally reported that the maximum thickness 

strain is approximately 40%2. Under such conditions, we maximize Eq. (10) to obtain the critical 

stretch of 1.2610c  , which corresponds to a thickness strain of ~37%. This result is in good 

agreement with experimental data. The critical voltage is  3 0.6874c L    , resulting in a 

critical electric field of 8
3 10c L  V/m for typical values of 610  N/m2 and 114 10   F/m 

for dielectric elastomers. This is on the same order of magnitude of the breakdown field that has 

previously been reported5. Similar results were obtained by Zhao and Suo6, because their Born-

type electromechanical stability theory is valid for the special case of zero prestress14,16,17.  

 Figures 3(a)-(d) present the effects of unequal-biaxial prestresses on critical voltage, critical 

in-plane actuation stretches, and critical out-of-plane actuation stretch, with 2 1 0    

representing uniaxial prestress and 2 1 1   denoting equal-biaxial prestresses. In Fig. 3(a), the 

critical voltage is seen to decrease with increasing prestress, implying a lower voltage is required 

to induce large deformation when a suitable prestress is exerted. With fixed 1 , increasing 2  

tends to increase the critical in-plane actuation stretch 1 1
c p  , decrease the other critical in-plane 

actuation stretch 2 2
c p  , as well as decrease the out-of-plane actuation stretch 3 3

c p  .  
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FIG. 3 (Color online) Effect of unequal-biaxial prestresses on (a) critical voltage, (b) and (c) 

critical in-plane actuation stretches, and (d) critical out-of-plane actuation stretch  

 In summary, we propose a true method for analyzing the electromechanical stability of 

dielectric elastomers by generalizing the stability criteria to non-zero prestress cases. We 

demonstrate that the positive definiteness of the commonly adopted nominal Hessian matrix is 

only valid for the special case of zero prestress. Our theory is applicable for arbitrary prestresses, 

thus it can be favorably degraded to consider the zero prestress case. We reveal that the presence 

of prestress affects significantly the critical voltage and actuation stretches. The neo-Hookean 

model for dielectric elastomer deformation is applied, which can be extended to consider other 

types of material. This work should be helpful for actual design of voltage actuated devices.   
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