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Hierarchical-distributed optimized coordination
of intersection traffic
Pavankumar Tallapragada Jorge Cortés

Abstract—This paper considers the problem of coordinating
the vehicular traffic at an intersection and on the branches
leading to it for minimizing a combination of total travel time and
energy consumption. We propose a provably safe hierarchical-
distributed solution to balance computational complexity and
optimality of the system operation. In our design, a central inter-
section manager communicates with vehicles heading towards the
intersection, groups them into clusters (termed bubbles) as they
appear, and determines an optimal schedule of passage through
the intersection for each bubble. The vehicles in each bubble
receive their schedule and implement local distributed control to
ensure system-wide inter-vehicular safety while respecting speed
and acceleration limits, conforming to the assigned schedule, and
seeking to optimize their individual trajectories. Our analysis
rigorously establishes that the different aspects of the hierarchical
design operate in concert and that the safety guarantees provided
by the proposed design are satisfied. We illustrate its execution
in a suite of simulations and compare its performance to
traditional signal-based coordination over a wide range of system
parameters.

Index Terms—Intelligent transportation systems, hierarchical
and distributed control, optimized operation and scheduling,
state-based intersection management, networked vehicles

I. INTRODUCTION

With rapidly growing urbanization and mobility needs of
people across the world, existing transportation systems are
in critical need of transformation. Apart from increased travel
times, current burdened transportation systems have the side
effects of increased pollution, increased energy consumption,
and degradation of people’s health, all of which have an
immeasurable cost on society. The complexity of the chal-
lenge requires a multi-pronged approach, one of which is the
development of new technologies. Emerging technologies such
as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, and computer-controlled vehicles offer the
opportunity to radically redesign our transportation systems,
eliminating road accidents and traffic collisions and positively
impacting safety, traveling ease, travel time, and energy con-
sumption.

A particularly useful application of these technologies is the
coordination of traffic at and near intersections for a smoother
(with reduced stop-and-go) and fuel-efficient traffic flow. An
intersection manager with knowledge of the state of the traffic
could schedule the intersection crossings of the vehicles.
With the assigned schedule, individual vehicles could further
optimize their travel to the intersection in a fuel-efficient way.

A preliminary version of this work appeared as [1] at the 5th IFAC
Workshop on Distributed Estimation and Control in Networked Systems.

Pavankumar Tallapragada and Jorge Cortés are with the Department of
Mechanical and Aerospace Engineering, University of California, San Diego
{ptallapragada,cortes}@ucsd.edu

In contrast to traditional intersection management, networked
vehicle technologies allow us to coordinate the traffic not just
within the intersection, but also by controlling the vehicles’
behavior much before they arrive at the intersection. Such a
paradigm offers the possibility of significantly reduced stop
times and increased fuel efficiency, and is the subject of this
paper.

Literature review: Much of the literature in the area of
coordination-based intersection management focuses on colli-
sion avoidance of vehicles within the intersection. Supervisory
intersection management (intervention only when required to
maintain safety by avoiding collisions) is explored using dis-
crete event abstractions in [2] and reachable set computations
in [3], [4]. The works [5], [6] and references therein describe a
multiagent simulation approach in which, upon a reservation
request from a vehicle, an intersection manager accepts or
rejects the reservation based on a simulation. Each vehicle
attempts to conform to its assigned reservation and, if this
is predicted not to be possible at any time, the reservation
is canceled. [7] also uses a reservation-based system to
schedule intersection crossing times and provides provably
safe maneuvers for vehicle following in a lane as well as
for crossing the intersection. [8], [9] use a method based
on model predictive control to coordinate the intersection
crossing by vehicles and obtain suboptimal solutions to a linear
quadratic optimal control problem. [10] also proposes a model
predictive control approach in which collision-free intersection
crossing by vehicles is achieved through a combination of
hard no-collision constraints as well as a soft constraint in the
form of a term measuring collision risk in the cost function.
In [11], a heuristic policy assigns priorities to the vehicles,
while each vehicle applies a priority-preserving control and
legacy vehicles platoon behind a computer-controlled car. In
this context, we note that the ability to efficiently coordinate
diminishes as the vehicles get closer to the intersection. This
is why here we take an expanded view of intersection man-
agement that looks at the coordinated control of the vehicles
much before they arrive at the intersection. The methods
above are not suited for this setup or would prove to be too
computationally costly in such scenarios. An example of the
expanded view of intersection management is [12], in which
a polling-systems approach is adopted to assign schedules,
and then optimal trajectories for all vehicles are computed
sequentially in order. Such optimal trajectory computations
are costly and depend on other vehicles’ detailed plans, and
hence the system is not robust. Closer to this paper, the
works [13], [14] describe a hierarchical setup, with a central
coordinator verifying and assigning reservations, and with
vehicles planning their trajectories locally to platoon and to
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meet the assigned schedule. The proposed solution is based
on multiagent simulations and a reservation-based scheduling
(with the evolution of the vehicles possibly forcing revisions
to the schedule), both important differences with respect to
our approach. [15] is a recent survey of traffic control with
vehicular networks and provides other related references.

Statement of contributions: We propose a provably safe
intersection management system aimed at optimizing a com-
bination of cumulative travel time and fuel usage for all the
vehicles. Our first contribution is the idea of coordinating the
traffic at the intersection and on the branches leading to it in a
unified, holistic way. The basic observation is that planning
and controlling the vehicles from much before they arrive
at the intersection should lead to better overall coordination
and efficiency. Our second set of contributions is a multi-
layered design that combines hierarchical and distributed con-
trol and is applicable to a wide range of traffic conditions.
Our hierarchical-distributed approach offers a good balance
between computational complexity of the solution and optimal
operation. The proposed system is composed of three main as-
pects, each a contribution on its own: (i) clustering to identify
vehicles that platoon before arriving at the intersection. We
refer to such clusters of vehicles as bubbles. We use the term
bubble, rather than platoon, to emphasize the dynamic, time-
varing nature of the cohesiveness of the group of vehicles as
they travel towards the intersection. With this terminology, the
bubble becomes a rigid and cohesive group (i.e., a platoon) by
the time they cross the intersection; (ii) a branch-and-bound
scheduling algorithm that, using aggregate information about
the bubbles, allows a central intersection manager to find the
optimal schedule of bubble passage; and (iii) a distributed
control algorithm for the vehicles at the local level. This
control policy ensures that the vehicles of each bubble platoon
into a cohesive group when they cross the intersection and
that each bubble conforms to the schedule prescribed by the
intersection manager, while guaranteeing system-wide safety
subject to speed limits and acceleration saturation. Addition-
ally, each vehicle seeks to optimally control its trajectory
whenever safety is not immediately threatened. Our third
and final contribution is the technical analysis leading to the
provable safety of our design. In contrast to computationally
intensive multiagent simulation-based methods, we provide
analytical guarantees on correctness, safety, and performance.
Further, the results provide good intuition and fundamental and
reliable principles for future designs. We do acknowledge that
the development of analytical guarantees comes at the cost of
some conservatism in the design. We have performed a suite
of simulations comparing our approach to traditional signal-
based coordination that show a significant improvement in the
cumulative energy consumption for a wide range of traffic
densities and a more socially equitable distribution of cost.
However, the throughput of the intersection is significantly less
in our approach than that of signal-based coordination except
for low densities of traffic. As a final note for the reader’s
sake, we have made every effort in the presentation to make
the components of the paper understandable even if the proofs
of the technical results are skipped in a first reading.

II. PRELIMINARIES

We present here some basic notation and concepts on graph
theory used throughout the paper.

Notation: We let R, R≥0, Z, N, and N0 denote the set of
real, nonnegative real, integer, positive integer, and nonneg-
ative integer numbers, respectively. For a non-empty ordered
list S = {j1, . . . , js}, we let |S| denote the cardinality of S.
Further, S(i) denotes the ith element ji of S . Thus, S(|S|)
denotes the last element of S. For convenience, we also use
the notation j ∈ S (j /∈ S) to denote that j is (is not) an
element of S . For two ordered lists S1 and S2, we let S1 \ S2

denote the ordered list of elements that belong to S1 but not to
S2, while preserving the same order of S1. Given um ≤ uM ,
[u]

uM

um
denotes the number u lower and upper saturated by um

and uM respectively, i.e.,

[u]
uM

um
,


um, if u ≤ um,
u, if u ∈ [um, uM ],

uM , if u ≥ uM .

Graph theory: We review basic notions following the expo-
sition in [16], [17]. A digraph of order n is a pair G = (V,E),
where V is a set with n elements called nodes and E is a set
of ordered pair of nodes called edges. A directed path is an
ordered sequence of nodes such that any ordered pair of nodes
appearing consecutively is an edge. A cycle is a directed path
that starts and ends at the same node and contains no repeated
node except for the initial and the final one. A digraph is
acyclic if it has no cycles. A directed (or rooted) tree is an
acyclic digraph with a node, called root, such that any other
node can be reached by one and only one directed path starting
at the root. If (i, j) is an edge of a tree, i is the parent of j,
and j is the child of i. A node j is called a descendant of a
node i if there is a directed path from i to j. Given a tree,
a subtree rooted at i is the tree that has i as its root and is
composed by all its descendants in the original tree.

III. PROBLEM STATEMENT

Consider an intersection of length ∆ with four incoming
traffic branches labeled by {1, 2, 3, 4}, cf. Figure 1. For

Fig. 1. Traffic near an intersection. Black dots represent individual vehicles,
which are clustered and contained within bubbles, represented by grey boxes.
∆ is the length of the intersection and the numbers {1, 2, 3, 4} are labels for
the incoming branches.
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simplicity, we assume that (i) there is a single lane in each
direction, (ii) all vehicles are identical with length L, (iii)
vehicles do not turn at the intersection, (iv) the intersection
at any time may be used by vehicles from a single branch (v)
there are no sources or sinks for vehicles along the branches
- all new traffic appears at the beginning of the branches and
must cross the intersection. We discuss later in Remark IV.1
the extent to which these assumptions can be relaxed in our
algorithmic solution.

The dynamics of vehicle j is a fully actuated second-order
system,

ẋvj (t) = vvj (t), (1a)

v̇vj (t) = uvj (t), (1b)

where xvj , vvj ∈ R are the position (negative of the dis-
tance from the front of the vehicle to the beginning of the
intersection) and velocity of the vehicle, respectively and
uvj (t) ∈ [um, uM ], with um ≤ 0 ≤ uM , is the input
acceleration. We use the superscript v to emphasize that the
state and control variables refer to individual vehicles. We
assume that each branch has a maximum speed limit that the
vehicles must respect. For the sake of easing the notation, we
assume that the speed limit on all branches is the same and
equals vM . Thus, for each vehicle j, vvj (t) must belong to the
interval [0, vM ] for all time t that the vehicle is in the system.

Each vehicle is equipped with vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication capabili-
ties. With V2I communication, the vehicles inform a central
intersection manager (IM) about their positions and velocities
and receive from it commands such as prescribed time of
arrival at the intersection. We assume the IM has the necessary
communication and computing capabilities. We seek a design
solution that aims to minimize a cost function C that models
a combination of cumulative travel time and cumulative fuel
cost of the form

C ,
∑
j

∫ T exit
j

tspawn
j

(WT + |uvj |)dt, (2)

where j is the vehicle index, tspawn
j is the time at which

vehicle j ‘spawns’ into the problem domain and T exit
j is

the time at which the vehicle exits the intersection, i.e.,
xvj (T

exit
j ) = ∆+L. The weight WT sets the relative importance

of travel time versus fuel cost. The vehicles over which the
cost is summed may be chosen in different ways - for example
it may be over all vehicles that cross the intersection in a
time period or it may be over a fixed number of vehicles.
The constraints in the problem arise from the speed limit,
bounds on vehicle acceleration and deceleration, and the safety
requirements - which require scheduling the intersection cross-
ing of the vehicles and maintenance of safe distance between
the vehicles. Solving this problem at the level of individual
vehicles is computationally expensive and not scalable. Thus,
we aim to synthesize a solution that makes this problem
tractable to solve in real time and is applicable to a wide
range of traffic scenarios.

IV. OVERVIEW OF HIERARCHICAL DISTRIBUTED
SOLUTION

This section gives an outline of our hierarchical distributed
solution to the problem stated in Section III. Our algorith-
mic solution combines optimized planning and scheduling of
groups of vehicles with local distributed control to ensure
safety and execute the plans. Its three distinct aspects are:

(i) grouping the vehicles into clusters,
(ii) scheduling the passage of the clusters through the inter-

section,
(iii) local vehicular control to achieve and maintain cluster

cohesion, to avoid collisions, and to ensure the clusters
meet the prescribed schedule.

Each of these aspects is coupled with the other two. Moreover,
an overarching theme is the dynamic nature of the problem
due to the arrival and departure of vehicles. Any complete
or partial solution has to be computed as new vehicles come
in (event based) or at regular time intervals (time based). In
what follows, we provide a general description of the main
ingredients of each aspect. At any given time t, we let ts be
the latest time prior to t at which the IM samples the state of
traffic and solves the corresponding static scheduling problem.

Aspect 1 – generation of bubbles: The primary motivation to
cluster vehicles is to reduce the number of independent entities
that need to be considered in the (computationally expensive)
schedule optimization problem. For instance, the maximum
number of clusters can be fixed according to the available
computational resources so that the scheduling problem re-
mains tractable. At time ts, the vehicles present in the four
branches are grouped into N clusters. We let Nk denote the
number of clusters on branch k. Given the position information
of the vehicles at ts, we use k-means clustering on each branch
individually to identify the clusters. The relative positions of
the vehicles of a cluster may vary significantly over the course
of their travel and the vehicles may not be in the form of a
well-defined platoon at all times. Hence, we refer to a cluster
of vehicles as a bubble (shown as grey boxes in Figure 1).
The defining characteristic of a bubble is that all the vehicles
of a bubble cross the intersection together. The state of the ith

bubble is given by the tuple

ξi = (xi, vi,mi, τ̄
occ
i , Ii) ∈ R4 × {1, 2, 3, 4},

where xi, vi and mi are, respectively, the position of the lead
vehicle in the bubble, the velocity of the lead vehicle in the
bubble, and the number of vehicles in the bubble. We denote
by τ occ

i , the occupancy time of bubble i, which is the time
duration for which the intersection is occupied by bubble i.
The quantity τ̄ occ

i is an upper bound that can be guaranteed a
priori, and is a function of the bubble size mi and various other
system parameters. The quantity Ii denotes which of the four
incoming branches the bubble is on. Within each branch, we
require the order of the bubbles to remain constant during the
bubbles’ travel (i.e., there is no passing allowed). To capture
the order of the bubbles on a branch, we define the functionR,

R(i, q) ,


1, if Ii = Iq, xq(ts) < xi(ts),

@i1 s.t. Ii1 = Ii, xq(ts) < xi1(ts) < xi(ts),

0, otherwise.
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According to this definition, R(i, q) = 1 if and only if bubbles
i and q are on the same branch and bubble q is the immediate
follower of bubble i. We describe in detail the generation of
bubbles and the algorithm to select the bubbles to schedule in
Section V below. We impose a limit on the number of bubbles
that are scheduled at any given time to N̄ , even if the actual
number of bubbles in the system were greater, so as to keep
the computational cost manageable. However, in the algorithm
we describe in the sequel, each bubble is scheduled at least
once and some bubbles may be scheduled more than once. We
let tsi denote the latest time prior to t at which bubble i was
scheduled.

We index the vehicles in bubble i as (i, 1), . . . , (i,mi),
where (i, 1) refers to the lead vehicle in bubble i and so
on until (i,mi), the last vehicle in the bubble. We also find
it convenient for the label (i, 0) to represent the last vehicle
(i′,mi′) of the bubble i′ that precedes bubble i on the same
branch or, if such bubble does not exist, we let (i, 0) be an
imaginary vehicle located at∞. We drop the index i whenever
there is no ambiguity with regard to the bubble.

Aspect 2 – scheduling of bubbles: The job of the scheduler
is to prescribe to each bubble an approach time τi - the
time at which the ith bubble is to reach the beginning of
the intersection, i.e., xi(τi) = 0, so that no two different
bubbles collide. In solving this problem, the scheduler has
to respect the order of bubbles on the same branch and take
into account no-collision constraints between bubbles on two
different branches. The preservation of the order of intersection
crossing by the bubbles on the same branch takes the form,

τq ≥ τi + τ̄ occ
i , if R(i, q) = 1, (3a)

for i, q ∈ {1, . . . , N}. Note that these constraints only ensure
that the passage of bubbles on a branch through the intersec-
tion occurs in the same order as they have arrived, but they
do not necessarily exclude collisions for the entire travel time.
The intra-branch collisions are avoided at a local level and we
accept the resulting sub-optimality. On the other hand, the no-
collision constraint between bubbles on two different branches
takes the form,

τi ≥ τq + τ̄ occ
q OR τq ≥ τi + τ̄ occ

i , if Ii 6= Iq, (3b)

for i, q ∈ {1, . . . , N}. The constraints (3b) make the schedul-
ing problem combinatorial in nature because of the need to
determine whether i or q goes first. Since the order on each
branch is to be preserved, the number of sub-problems is the
number of permutations of the multiset {Ik}Nk=1, i.e.,

N !∏4
k=1Nk!

=

(∑4
k=1Nk

)
!∏4

k=1Nk!
,

where recall that Nk is the number of bubbles on branch k
and N is the total number of bubbles. We describe in detail
the algorithm for optimal scheduling of bubbles in Section VI.

Aspect 3 – local vehicular control: The local vehicular
control has various equally relevant goals. The first goal is
to avoid collisions within each bubble and among different
bubbles in the same branch. The second goal is for the local
vehicular control to ensure that the bubble approaches the
intersection at the prescribed time τi and that the occupancy

time of the bubble, τ occ
i , is no more than τ̄ occ

i . The scheduler
requires the quantity τ̄ occ

i and other quantities such as earliest
and latest times of approach at the intersection for the bubble
that are functions of the initial conditions. All these quantities
may be computed by the bubble and passed on to the IM or,
instead, the state of each car may be passed to the IM. We
assume that the control law at the vehicle level ensures that a
vehicle does not change bubbles during the course of its travel
time. Thus, as far as the scheduling aspect is concerned, mi

may be assumed constant in time. We describe in detail the
local vehicular control component in Section VII below.

Remark IV.1. (Relaxation of assumptions). We discuss here
to what extent the assumptions made in Section III can be
relaxed in our proposed design. We make assumptions (ii)
and (iv) only for the sake of simpler notation and ease of
exposition. Our algorithm can handle non-identical vehicles
with differing dimensions and differing acceleration limits,
though those quantities need to be known. Simultaneous use of
the intersection by vehicles on compatible branches/directions
is definitely possible in our framework and indeed makes the
scheduling problem easier. We can relax assumption (v) if
the sources or sinks are not close to the intersection with
minor changes in our algorithm for bubble generation. We can
avoid assumption (iii) and allow turning within our framework.
However, the differing travel speeds when turning and going
straight affects the computation of the intersection occupancy
time, which might make the design conservative. We believe
this conservativeness could be addressed by relaxing assump-
tion (i) and incorporating multiple lanes into the design. •

V. DYNAMIC VEHICLE CLUSTERING

The primary motivation for clustering vehicles into bub-
bles is to reduce the computational burden on the scheduler.
Consequently, we impose the upper bound N̄ on the number
of bubbles that the scheduler needs to consider at any given
instance. Further, as new vehicles arrive, they need to be as-
signed to new bubbles. In order to balance both requirements,
we divide each branch into three zones, as shown in Figure 2:
staging zone (of length Ls), mid zone (of length Lm) and
exit zone (of length Le). For each branch k ∈ {1, 2, 3, 4}, we
let Zsk , Zmk and Zek be the set of positions on the branch k
corresponding to the staging, mid and exit zones, respectively.

Fig. 2. Division of an incoming branch into zones.

The clustering into bubbles algorithm is executed
every Tcs units of time. At each clustering instance ts = sTcs,
s ∈ N0, the vehicles in the staging zone that do not already
belong to a bubble are clustered. Thus, the choice Tcs < Ls

vM
,

where recall that vM is the max speed limit, ensures that
every vehicle belongs to a bubble before it leaves the staging
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zone and enters the mid zone. We impose an upper bound
N̄k on the number of new bubbles that may be created on
branch k at any clustering instance. At a clustering instance
ts = sTcs, let nuak denote the number of vehicles to be
clustered in the staging zone of branch k. Then, the nuak
vehicles are clustered based on their position using the Mk-
means algorithm, with Mk = min{nuak , N̄k}. Thus, the nuak
on branch k are partitioned into Mk number of clusters or
bubbles such that the sum of squares of the distances from
each car to the center of its bubble is minimized, see e.g., [18].
The clustering component in our design is modular and hence
any clustering algorithm that is well suited may be used.

The algorithm also makes sure that no more than N̄ bubbles
are passed to the IM manager for scheduling at any instance.
This is achieved using two observations. First, previously
scheduled bubbles that have already entered the exit zone of
their branch are no longer fed to the IM for scheduling (i.e., its
schedule is not modified any further). Second, if the number
of newly created bubbles and the previously created bubbles
yet to enter the exit zone exceeds N̄ , then the algorithm pops
out the required number of bubbles from the top of the list
of bubbles previously scheduled (corresponding to the ones
closer to their respective exit zones). We present the precise
description of the clustering into bubbles algorithm in
Algorithm 1.

Algorithm 1 : clustering into bubbles at sTcs

Input: Lp, τmin
p

{Ordered list of bubbles scheduled at (s− 1)Tcs and
earliest approach time used in scheduling them}

1: L ← Lp \ {j ∈ L : Ij = k ∧ xj /∈ Zs
k ∪Z

m
k }

{remove bubbles that are not completely within
the staging and the mid zones}

2: for k = 1 to 4 do
3: N̄k {max new bubbles on branch k}
4: Mk ← min{nua

k , N̄k} {# new bubbles on branch k}
5: Cluster new vehicles on branch k using Mk-means algorithm
6: end for

7: M←
4∑

k=1

Mk

8: if M+ |L| > N̄ then
9: Remove first M+ |L| − N̄ bubbles from L {Ensure only N̄

bubbles provided to scheduler by dropping the
earliest bubbles in previous schedule}

10: end if
11: Append new bubbles to L
12: τmin ← max

(
{τmin

p }∪{τi + τ̄ occ
i : i ∈ Lp \ L}

)
{earliest approach time for the bubbles in L}

Output: L, τmin

The algorithm takes in the list of bubbles Lp scheduled
on the last iteration and an earliest approach time τmin

p used
when scheduling it. The output is a list of bubbles L to be
scheduled and the earliest approach time τmin for them. Note
from step 12 of Algorithm 1 that τmin is an upper bound
on the time by which all the bubbles not in the L list are
guaranteed to cross the intersection. Thus, when scheduling
L, the scheduler imposes the constraint that the bubbles in L
approach the intersection no earlier than τmin.

Remark V.1. (Effect of zone lengths on clustering and
scheduling). The lengths of the three zones illustrated in
Figure 2 directly affect the resulting traffic coordination.

Although we do not pursue here a systematic design of these
zone lengths, we can identify some basic observations of their
effect on clustering and scheduling. We envision these zone
lengths to be of the order of several tens of meters. The length
Ls of the staging zone has a direct effect on the time step of
the periodic execution of clustering and scheduling as well as
on the number of vehicles per bubble. The length Lm of the
mid zone has an effect on the likelihood of revising a bubble’s
schedule on the next iteration. Finally, the length Le of the exit
zone has an effect on the feasibility of the scheduling problem,
which we guarantee by assuming that Le is large enough for
a vehicle to come to a complete stop from a maximum speed
of vM in under a distance Le. •

Remark V.2. (Re-clustering). The clustering into

bubbles algorithm is just one method of defining bubbles
and selecting which ones to select. In this algorithm, a vehicle
is assigned to a bubble only once and the vehicle is part
of that bubble through out its travel. However, one could
implement a strategy which re-clusters all vehicles in the
staging and mid zones so that vehicles may be reassigned to
a different bubble, bubbles may be merged or split as needed,
and so on. Such an algorithm would also allow sources and
sinks on the branch such as smaller streets, homes, and retail.
•

VI. SCHEDULING OF BUBBLES

This section describes the scheduling algorithm employed
by the intersection manager (IM) to decide the order of passage
through the intersection of the bubbles in L provided by
the clustering algorithm. The scheduling algorithm is also
executed every Tcs units of time. In this section, we let L be
the set {1, . . . , N}, where N = |L|, without loss of generality.

A. Cost function and constraints

In our approach, the IM schedules bubbles as a whole using
an abstraction of the vehicle dynamics and the cost function.
First, regarding the vehicle dynamics, we note that the inter-
vehicle approach times at the intersection and the resulting
occupancy time of a bubble is a degree of freedom. However,
we have made the alternative choice of not considering it
as such in the scheduling algorithm, and instead only use
an upper bound on the occupancy time τ̄ occ

i (that the local
vehicular control component can guarantee) appearing in the
constraints (3). Second, regarding the cost function, we ab-
stract the fuel cost for the vehicles in a bubble i into a single
function Fi that depends only on the average velocity of the
bubble i (lead vehicle in the bubble) for t ∈ [ts, ts + τi],
where ts = sTcs is the time at which the scheduling algorithm
is executed. Thus, the scheduling algorithm minimizes the
following simplified cost function C , CL where CP for a
given list of bubbles P is

CP ,
∑
i∈P

mi(WT τi + Fi(v̄i))

=
∑
i∈P

mi

(
WT

di
v̄i

+ Fi(v̄i)
)
,
∑
i∈P

φi(v̄i), (4)
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where v̄i is the average velocity of the lead vehicle in bubble
i for t ∈ [ts, ts + τi], i.e., v̄i = di

τi
, where di , −xi(ts). The

optimization variables are v̄i for each bubble i ∈ L.
Note that in the cost function C, the functions Fi could, in

general, depend on initial conditions modeled as parameters
- such as the distance di to reach the intersection. The cost
function (4) models a combination of cumulative travel time
and total fuel usage. Motivated by the fact that fuel efficiency
is typically an increasing function of vehicle speed for speeds
under the limits enforced on most roads with intersections, we
make the assumption that, for each i ∈ L, Fi : [0, vM ] 7→ R>0

is monotonically decreasing.
Regarding the constraints, conditions on the travel times can

be re-expressed as conditions on average velocities as

τi ≥ τq + τ̄ occ
q ⇐⇒ di

v̄i
≥ dq
v̄q

+ τ̄ occ
q

⇐⇒ v̄q ≥ cqiv̄i + bqiv̄q v̄i, cqi =
dq
di
, bqi =

τ̄ occ
q

di
. (5)

Thus, we re-express the no-collision constraints (3) as

v̄i ≥ ciq v̄q + biq v̄iv̄q, if R(i, q) = 1, (6a)
v̄q ≥ cqiv̄i + bqiv̄q v̄i OR v̄i ≥ ciq v̄q + biq v̄iv̄q, if Ii 6= Iq.

(6b)

In addition, we also need to ensure that the scheduling at
instance sTcs of the bubbles in L does not conflict with
the ones that have been previously scheduled. Formally, this
corresponds to having the time τi to reach the intersection for
bubble i be no less than τmin (cf. step 12 of Algorithm 1).
Equivalently, we require

v̄i ≤
di
τmin . (6c)

Note that the scheduling problem is combinatorial in nature
due to the no-collision constraints (6b). Thus, even though
the cost function C is simple and the optimization variables
are the average velocities v̄i, we believe this formulation pro-
vides a good balance between usefulness and computational
tractability. Further, the local vehicular control we present in
Section VII seeks an optimal control profile to achieve the
prescribed average velocity for the bubble, which justifies the
restriction to v̄i as the optimization variables in the scheduling
aspect. Thus our proposed solution, although sub-optimal, is
still principled.

We next describe our solution to the scheduling problem
consisting of minimizing C = CL in (4) under the con-
straints (6) and v̄i ∈ [v̄mi , v̄

M
i ]. The lower v̄mi ≥ 0 and

upper v̄Mi ≤ vM limits on the average velocity depend on the
initial conditions of the vehicles and desired speed limits. The
quantities v̄mi and v̄Mi are inversely related to the latest time of
approach and the earliest time of approach at the intersection
for bubble i, respectively. The computation of these quantities
is described in Section VII-A. Similarly, the upper bound τ̄ occ

i

on the occupancy times may be computed as in Section VII-C.
In the first part of our solution to the scheduling problem, we
determine the optimal schedule and optimal cost given a fixed
order of bubble passage through the intersection. In the second
part, we use a branch-and-bound algorithm to find the optimal
order and schedule.

B. Optimal bubble average velocity for fixed order of passage

Here we address the problem of determining, given a desired
order of bubble passage through the intersection, the optimal
average velocities of the bubbles and the associated optimal
cost. For this purpose, define an order of the approach times
of the bubbles as a permutation, P , of the integers from 1 to
|P | ≤ N . We use P (i) to denote the ith element in the order,
with the bubble P (1) passing through the intersection first and
so on. We use σP (i) to denote the position of bubble i in the
order P . Clearly, for a permutation to respect the intra-branch
orders, σP (i) < σP (q) if R(i, q) = 1. Given P respecting the
intra-branch orders, the bubble velocity optimization

algorithm, formally described in Algorithm 2, finds a so-
lution to the optimization of CP under the constraints (6),
v̄i ∈ [v̄mi , v̄

M
i ], and with order P .

Algorithm 2 : bubble velocity optimization

Input: Order P
1: C ← 0
2: for h = 1 to |P | do
3: i← P (h) {bubble i is in position h in P}
4: if h = 1 then
5: v̄Pi ← v̄Mi
6: else
7: q ← P (h− 1) {bubble q is in position h− 1 in

P}
8: v̄Pi ← min{v̄Mi ,

v̄P
q

cqi+bqiv̄P
q
}

9: end if {v̄Pi is the optimizer for bubble i}
10: C ← C + φi(v̄

P
i ) {update cost}

11: end for

The following result shows that, for an order that respects
the intra-branch order, the algorithm finds the average veloci-
ties that optimize the cost function CP .

Lemma VI.1. (bubble velocity optimization algo-
rithm optimizes the schedule given an overall order that
respects the intra-branch orders). For each i ∈ {1, . . . , N},
assume the fuel cost function Fi is monotonically decreasing.
Let P , with |P | ≤ N , be an order respecting the intra-branch
orders and denote by v̄P = (v̄P1 , . . . , v̄

P
N ) and C the output of

Algorithm 2. Then, v̄P and C are, respectively, the minimizer
and the minimum cost of the optimization problem with the cost
function as CP (4) under the constraints (6), v̄i ∈ [v̄mi , v̄

M
i ].

Proof: Given the order P , the constraints (6) reduce to

v̄q
cqi + bqiv̄q

≥ v̄i

where q = P (h−1), i = P (h) and h ∈ {2, . . . , N}. The left-
hand side of the inequality is an increasing function of v̄j .
Further since Fi is a monotonically decreasing function for
each i, v̄Pi takes the maximum possible value. The algorithm
computes the components of v̄P iteratively and the result
follows.

C. Optimal ordering via branch-and-bound

We propose a branch-and-bound algorithm to solve the
optimal scheduling problem. We start by providing an informal
description.
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Informal description: A branch-and-bound algorithm
consists of a systematic enumeration of the set of
candidate solutions as a rooted tree, with the full
set at the root. The algorithm explores branches
of the tree, which represent subsets of the set of
candidate solutions. Before enumerating the candi-
date solutions of a branch, the branch is checked
against upper bounds on the optimal solution, and is
discarded if it is determined that it cannot produce
a better solution than the best one found so far.

We formally specify each of the components in this descrip-
tion next, starting with the rooted tree. We let P denote any
ordered list of up to length N , with non-repeating numbers
drawn from {1, . . . , N}, and preserving the individual branch
orders. With this notation, the empty list P = ∅ denotes the
root of the tree, representing all feasible orders. Similarly,
P = (i1, . . . , ih) denotes the subtree of all the feasible orders
in which bubble i1 crosses the intersection first, i2 second,
and so on, until bubble ih is the hth to cross, with the order
of the remaining bubbles undetermined.

Our next step is to provide a way to determine a lower
bound on the achievable optimal value of any given branch.
This follows from the observation that (i) the execution of
the bubble velocity optimization algorithm finds the
optimal value of the average velocity a bubble given the order
of all the bubbles preceding it, but (ii) one can compute an
upper bound for the optimal value even if only part of the
order of bubbles preceding it is known. The description in
Algorithm 3 of this procedure, termed bounding optimal

bubble velocity algorithm, relies on four ordered lists,
termed queues, one for each branch. The queue for branch

Algorithm 3 : bounding optimal bubble velocity

1: l← P(|P|) {l is last bubble in P}
2: Compute v̄Pl using bubble velocity optimization with

input P
3: for k = 1 to 4 do
4: Qk ← Qk \ P {pop-out P from Qk}
5: if Qk 6= ∅ then
6: i← Qk(1) {i is first of remaining bubbles in

Qk}
7: HP

i ← min{v̄Mi ,
v̄Pl

cli+bliv̄
P
l

}
8: for s = 2 to |Qk| do
9: i← Qk(s)

10: q ← Qk(s− 1)

11: HP
i ← min{v̄Mi ,

HPq
cqi+bqiHPq

}
12: end for
13: end if
14: end for

k, Qk = (ik,1, . . . , ik,Nk
), is initialized to the list of all

the bubbles on branch k in their order of arrival (thus
R(ik,q, ik,q+1) = 1 for all q ∈ {1, . . . , Nk − 1}). We denote
by HPi the upper bound on the average velocity v̄i of bubble
i obtained by Algorithm 3 given that a non-empty P precedes
it. This allows us to lower bound the optimal cost for any
order in the subtree P in terms of v̄Pi and HPi as follows,

CP ,
∑
i∈P

φi(v̄
P
i ) +

∑
i∈L\P

φi(H
P
i ). (7)

This lower bound is precisely what is required to implement a
branch-and-bound algorithm to find the optimal schedule for
the bubbles.

Specifically, the branch-and-bound algorithm starts by pick-
ing an arbitrary candidate order and computing the cost for it,
using the bubble velocity optimization algorithm, and
storing the two as the current best solution and cost. Then,
starting at the root node of the tree of all feasible orders,
the algorithm searches (e.g., using depth-first or breadth-first
search) for an optimal solution. If at any time a leaf node,
which corresponds to a fully determined order, is reached
and its cost is better than the current best, then the current
best solution and cost are updated. For any other node P
in the tree, (7) provides a lower bound CP on the cost of
all the orders represented by the node P . If CP is greater
than the current best known cost, then the subtree P is
discarded. This process continues until the algorithm finds the
optimal solution. We refer to this process as the schedule

optimization algorithm.

VII. LOCAL VEHICULAR CONTROL

The local vehicular control component of our hierarchical-
distributed coordination approach involves two main tasks:
(i) compute, for each bubble i, the lower v̄mi and upper v̄Mi
average velocity bounds, and the upper bound on the intersec-
tion occupancy time τ̄ occ

i that are provided to the scheduler;
and (ii) control the vehicles ensuring no collisions and that
all the vehicles of bubble i cross the intersection within
the time interval [τi, τi + τ̄ occ

i ] prescribed by the scheduler.
The successful execution of each of these tasks requires an
understanding of the vehicle dynamics and the desired safety
constraints and the effect of each on the other. The following
notion of safe-following distance is particularly useful in our
forthcoming developments.

Definition VII.1. (Safe-following distance). The maximum
braking maneuver (MBM) of a vehicle is a control action
that sets its acceleration to um until the vehicle comes to
a stop, at which point its acceleration is set to 0 thereafter.
Let j − 1 and j be the indices of two vehicles on the same
branch, with vehicle j immediately following j − 1. We say
a quantity D(vvj−1(t), vvj (t)) is a safe-following distance at
time t for the pair of vehicles j−1 and j if xvj−1(t)−xvj (t) ≥
D(vvj−1(t), vvj (t)) and, if each of the two vehicles were to
perform the MBM, then the two vehicles would be safely
separated, xvj−1−L ≥ xvj (recall that L is the vehicle length)
until they come to a complete stop. •

According to this definition, a safe-following distance is
not uniquely defined, which in fact provides a certain leeway
in designing the local vehicle control. The following result
identifies a specific safe-following distance.

Lemma VII.2. (Safe-following distance as a function of
vehicle velocities). Let j − 1 and j be a pair of vehicles, with
j following j− 1. Then, the continuous function D defined by

D(vvj−1(t), vvj (t)) =

L+ max
{

0,
1

−2um

(
(vvj (t))2 − (vvj−1(t))2

)}
, (8)
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provides a safe-following distance at time t for the pair of
vehicles j − 1 and j.

Proof: If a vehicle j with dynamics (1) were to decelerate
at the maximum rate possible (acceleration equal to uvm < 0)
from current time t until it comes to a complete stop at tstop

j =
−vvj (t)/um, then

xvj (t
stop
j ) = xvj (t) +

(vvj (t))2

−2um
.

If vvj (t) ≥ vvj−1(t) ≥ 0, then the safe-following distance is
found by setting

xvj−1(tstop
j−1)− xvj (t

stop
j ) ≥ L.

If on the other hand vvj−1(t) ≥ vvj (t) ≥ 0, then the vehicles are
in fact closest at time t and the condition xvj−1(t)−xvj (t) ≥ L
is sufficient to ensure subsequent safety. Hence (8) provides a
safe following distance.

Remark VII.3. (Monotonicity properties of D). If the first
argument of the function D is fixed, then it is monotonically
non-decreasing. On the other hand, if the second argument is
fixed then the function is monotonically non-increasing. •

A. Bounds on average bubble velocity

Recall that v̄i is the average velocity of the lead vehicle of
bubble i from ts and until the lead vehicle is supposed to reach
the beginning of the intersection at τi. Thus, it would seem that
computing lower and upper bounds on the achievable average
velocity of the lead vehicle in the bubble is sufficient to
determine v̄Mi and v̄mi . However, ignoring the initial conditions
of the other vehicles in the bubble in the computation of v̄Mi
and v̄mi poses the risk of lengthening the guaranteed upper
bound τ̄ occ

i on the occupancy time. The reasoning for this is
better explained in terms of earliest times of approach at the
intersection of the vehicles.

In bubble i, we let τei,j be the earliest time vehicle (i, j)
can reach the intersection ignoring the other vehicles on the
branch. Letting tsi = siTcs be the time at which bubble i was
last scheduled, the quantity τei,j − tsi is then the time it takes
xvi,j to reach 0 from xvi,j(tsi) for the trajectory with maximum
acceleration until vvi,j = vM and zero acceleration thereafter.
Thus, we see that if τei,j for some j > 1 is significantly greater
than τei,1 then the vehicle (i, 1) has to slow down to approach
the intersection at a time later than τei,1 so that the guaranteed
upper bound τ̄ occ

i on the occupancy time is small enough.
Thus, we propose the following alternative solution. As-

suming a nominal speed νnom for vehicles when entering the
intersection, we set Dnom , D(νnom, vM ), which has the
connotation of a safe inter-vehicle distance given a vehicle is
traveling at the maximum allowed speed vM and the vehicle
preceding it traveling at a speed greater than or equal to νnom.
Then, we also define T nom , Dnom/νnom as the nominal
inter-vehicle approach time. With this nominal inter-vehicle
approach times of vehicles in a bubble we see that the earliest
time of approach for vehicle (i, j) forces the earliest time
of approach of bubble i, i.e. vehicle (i, 1), is no less than

τei,j− (j−1)T nom. Hence, we define earliest time of approach
for the bubble i, τei as

τei , max{τei,j − (j − 1)T nom : j ∈ {1, . . . ,mi}}, (9)

and let v̄Mi = −xi(ts)
τe
i

. Analogous computations with max-
imum deceleration yield the latest time of approach τ li of
bubble i, possibly with τ li =∞, and the corresponding lower
bound v̄mi ≥ 0 for the average velocity. Hence, the values we
obtain in this way for v̄mi and v̄Mi are, respectively, larger and
smaller than the ones we would have obtained if we only took
into account the lead vehicle of the bubble.

For a given upper bound on the occupancy time and the
sets of v̄mi and v̄Mi for i ∈ L, a feasible schedule might
not always exist. Thus, to guarantee the feasibility of the
scheduling problem in a simple fashion, we assume that the
exit zone length Le is large enough. Specifically, we make the
following observation.

Lemma VII.4. (Existence of a feasible schedule). If the exit

zone length, Le ≥
(vM )2

−2um
+

(νnom)2

2uM
, then there always exists

a feasible schedule with which each vehicle is able to enter
the intersection with a speed of at least νnom.

Proof: Recall, that a schedule to a bubble is assigned
when all the vehicles in the bubble are still in the staging or
the mid zones. Clearly, the condition on Le implies that any
vehicle in the staging zone or the mid zone (xvj ≤ −Le) can
come to a complete stop and then accelerate to a speed of at
least νnom before arriving at the beginning of the intersection
(xvj = 0).

B. Vehicle controller design

The scheduler prescribes for each bubble a time at which
the vehicles in the bubble may start to cross the intersection.
The local vehicular control must ensure that the vehicles
of bubble i start and finish crossing the intersection within
the time interval [τi, τi + τ̄ occ

i ] while respecting the safety
constraints (8). In this section, we describe an algorithm to
achieve this task. The algorithm has three main parts: (i)
an uncoupled controller ensuring that the vehicle arrives at
the intersection at a designated time if the presence of all
other vehicles is ignored. This controller is applied when
the preceding vehicle is sufficiently far in front, (ii) a safe-
following controller ensuring that the vehicle follows the
preceding vehicle safely when the latter is not sufficiently far
in front; and (iii) a rule to switch between the two controllers.

1) Uncoupled controller: For each vehicle j ∈ {1, . . . ,mi}
in bubble i, we define,

τi,j , τi + (j − 1)T nom. (10)

Given the constraints that the scheduler takes into account,
we have τi ∈ [τei , τ

l
i ]. This, together with (9), implies that

τi,j ∈ [τei,j , τ
l
i,j ]. Now, let

(t, xvi,j , v
v
i,j) 7→ guc(τi,j , t, x

v
i,j , v

v
i,j)

be a feedback controller that ensures xvi,j(τi,j) = 0 for the
dynamics (1) starting from the current state (xvi,j(t), v

v
i,j(t))
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at time t (assuming feasibility), respecting the control and
velocity constraints, but not necessarily the inter-vehicle safety
constraints. We refer to it as the uncoupled controller. Such
a controller exists for each vehicle at least at t = tsi , where
tsi = siTcs is the time at which bubble i was scheduled, due
to the fact that τi,j ∈ [τei,j , τ

l
i,j ]. Here, we take as guc the

optimal feedback controller that generates velocity profiles as
shown in Figure 3 obtained by optimizing∫ τj

t

|uvj (s)|ds

with optimization variables a1, a2 (the areas of the indicated
triangles), vvj (τj), νl and νu, where we have dropped the
bubble index i. The constraints are νl ∈ [0, vvj (t)], νu ∈
[vvj (t), vM ], vvj (τi,k) ∈ [νnom, vM ], a1, a2 ≥ 0 and that the
total area under the curve must be equal to −xvj (t). The
feedback controller may be found by tabulating the optimal
control solution.

(a)

(b)

Fig. 3. Candidate velocity profiles to obtain guc, which takes form (a) or (b)
depending on the velocity vvj (t), νnom, vM , τj and the distance to go−xvj (t).

Remark VII.5. (Optimality of the controller). Assuming there
exists a feasible controller that ensures the vehicle (i, j)
approaches the intersection at τi,j with a minimum velocity
of νnom, ignoring any other vehicles on the branch and given
the current time t and the vehicle state (xvi,j(t), v

v
i,j(t)), then

there exists an optimal solution with piecewise-constant-rate
velocity profiles as shown in Figure 3. We can see this
statement to be true by observing that in a given time τj − t,
the minimum and maximum travel distances are obtained with
velocity profiles belonging to the family depicted in Figure 3,
and that every other intermediate travel distance is obtained
by a continuous variation of the velocity profiles within the
family. •

Note that the control guc assumes the presence of no other
vehicles on the branch. Thus, the actual approach time, T ai,j ,
of the vehicle (i, j) may be later than τi,j . At time tsi , when
the bubble is scheduled, an optimal control guc does exist
for each of its vehicles because of the way the times τi,j are
defined in (10). However, at a future time t, such a feasible
guc might not exist because the vehicle is slowed down by

preceding vehicles and no control exists to ensure T ai,j = τi,j
along with the other constraints. Additionally, for t > T ai,j , i.e.,
after the vehicle enters the intersection, the optimal controller
is not well defined and does not exist. As a shorthand notation,
we use ∃Fi,k (respectively @Fi,k) to denote the existence
(respectively, lack thereof) of an optimal control guc. In order
for the control guc to be well defined at all times, we let

guc(τi,k, t, x
v
i,k, v

v
i,k) , uM , if @Fi,k.

2) Controller for safe following: As mentioned earlier, this
controller is applied only when a vehicle is sufficiently close to
the vehicle preceding it. Besides maintaining a safe-following
distance, the controller must also ensure that the resulting
evolution of the vehicles in the bubble i is such that the
occupancy time is no more than τ̄ occ

i . Here, we present a design
to achieve these goals. For a pair of vehicles j−1 and j, with
j following j − 1, we define the safety ratio as

σj(t) ,
xvj−1(t)− xvj (t)
D(vvj−1(t), vvj (t))

, (11)

which is the ratio of the actual inter-vehicle distance to the
safe-following distance. Hence, we would like to maintain
this quantity above 1 at all times. Notice from (8) that if
vvj−1(t) > vvj (t), then σj increases and safety is guaranteed.
Thus, it is sufficient to design a controller that ensures safe
following when vvj (t) ≥ vvj−1(t). For vehicle j, we denote
ζj , (vvj−1, v

v
j , σj). Define the unsaturated controller gus by

gus(ζj ,u
v
j−1) ,{
uvj−1, if vvj = 0,(
vvj−1

vvj

(
1 + σj

uv
j−1

−um

)
− 1
)(
−um

σj

)
, if vvj > 0.

The rationale behind this definition is as follows. As mentioned
above, it is sufficient to design a controller that ensures safe
following when vvj (t) ≥ vvj−1(t). Thus, if vvj = 0 then we
need to consider only the case of vvj−1 = 0. In this case, the
definition of gus ensures that the vehicle j stays at rest as
long as vehicle j − 1 is at rest and starts moving only when
j − 1 starts moving again. Further, since the relative velocity
and acceleration in this case would be zero, we see that σj
stays constant. As we see more thoroughly in the sequel, if
the vehicle is moving, vvj > 0, then guc ensures that σj stays
constant and thus ensuring safety. However, in the second case,
gus might cause vvj to exceed vM . Further, we would like
the vehicle to continue using the optimal uncoupled controller
if it does not affect the safety by decreasing σj . These
considerations motivate our definition of the safe-following
controller as

gsf (t, ζj , u
v
j−1) ,

min{guc(τj , t, xvj , vvj ), gus(ζj , u
v
j−1)}. (12)

3) local vehicular controller: Here, we design the
local vehicle controller by specifying a rule to switch be-
tween the uncoupled controller guc and the safe-following
controller gsf . To make precise whether two vehicles are
sufficiently far from each other, we introduce the coupling
set Cs defined by

Cs , {(v1, v2, σ) : v2 ≥ v1 and σ ∈ [1, σ0]}, (13)
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with σ0 > 1 a design parameter. Intuitively, if ζj ∈ Cs, then
vehicle j is going at least as fast as the vehicle in front of
it, and their safety ratio is close to 1. With this in mind, we
define the local vehicular controller for vehicle j,

uvj (t) =


guc, if ζj /∈ Cs, vvj < vM ,

[guc]
0
um
, if ζj /∈ Cs, vvj = vM ,

gsf , if ζj ∈ Cs, vvj < vM ,

[gsf ]0um
, if ζj ∈ Cs, vvj = vM .

(14)

Note that [guc]
0
um
6= guc only if @Fj . This controller has the

vehicle use the safe-following controller when in the coupling
set, and the uncoupled controller otherwise. The following
result describes some features of the dynamical behavior of
vehicles under (14) when in the coupling set.

Lemma VII.6. (Vehicle behavior in the coupling set). For
some t, let ζj(t) ∈ Cs and uvj−1(t) ∈ [um, uM ]. Then, the
following hold:

(i) gus(ζj , u
v
j−1) ∈ [um, uM ],

(ii) If vvj < vM and gsf (t, ζj , u
v
j−1) = gus(ζj , u

v
j−1) or if

vvj = vM and gsf (t, ζj , u
v
j−1) = [gsf (t, ζj , u

v
j−1)]0um

=
gus(ζj , u

v
j−1), then σ̇j = 0,

(iii) If vvj = vvj−1 ≥ 0 and gsf (t, ζj , u
v
j−1) = gus(ζj , u

v
j−1),

then σ̇j = 0 and uvj = uvj−1,
(iv) If vvj = vM , then gus(ζj , uvj−1) ≥ [gus(ζj , u

v
j−1)]0um

=
0 only if

vvj−1 ≥ vv ,
−umvM

−um + σ0uM
.

Proof: For the sake of conciseness, we drop the arguments
of the functions wherever it causes no confusion.

(i) For vvj = 0, the claim readily follows from the definition
of gus. For fixed σj ≥ 1, vvj ≥ vvj−1 ≥ 0 and vvj > 0, we see
that gus is maximized and minimized when uvj−1 = uM and
uvj−1 = um, respectively. The result then follows by observing,
after some computations, that gus(ζj , uM ) − uM ≤ 0 and
gus(ζj , um)− um ≥ 0.

(ii) and (iii) From (11) observe that

σ̇j =
vvj−1 − vvj − σjḊ(vvj−1(t), vvj (t))

D(vvj−1(t), vvj (t))

=
vvj−1 − vvj −

σj

−um
(vvj u

v
j − vvj−1u

v
j−1)

D(vvj−1(t), vvj (t))

where we have used the fact that vvj ≥ vvj−1 in the coupling
set Cs. Claim (ii) now follows by substituting uvj = gsf = gus
and using the definition of gus. A similar argument can be
used to show claim (iii).

(iv) Setting vvj = vM in the definition of gus and using the
fact that gus ≥ 0, we have

vvj−1 ≥
−umvM

−um + σjuvj−1

.

To obtain the necessary condition on vvj−1, we set uvj−1 = uM
and σj = σ0, the maximum values for each.

In Lemma VII.6, claim (i) states that gus respects the control
constraints. Claims (ii) and (iii) give some sufficient conditions
for ensuring the safety ratio σj is constant. Claim (iii) also

states that the relative acceleration, and hence also the relative
velocity, stays zero. Finally, claim (iv) is a necessary condition
on the velocity of vehicle j − 1 for gus and the saturated
[gus]

0
um

to differ.
The following result states that if at any instant in time the

optimal controller does not exist (because the vehicle has been
slowed down by preceding vehicles), then a vehicle not in the
coupling set moves at the maximum speed.

Lemma VII.7. (Vehicle exits the coupling set at maximum
speed if the optimal controller does not exist). Let t1 be any
time such that ζj(t1) ∈ Cs and ζj(t) /∈ Cs for t ∈ (t1, t1 + δ)
for some δ > 0. If @Fj at time t1, then vvj (t) = vM for all
t ∈ [t1, t1 + δ).

Proof: Under the hypotheses of the result, and as a
consequence of Lemma VII.6(iii), the only way vvj (t1) =
vvj−1(t1) is possible is if gsf = guc < uM at t1, i.e., ∃Fj .
However, by assumption @Fj at time t1. Thus, it follows that
vvj (t1) > vvj−1(t1). By definition of t1, we then conclude that
σj(t1) = σ0. Next, at t1, since @Fj it means guc = uM and
thus gsf = gus. Then, from (ii), we see that vvj (t1) < vM is
not possible and that in fact vvj (t1) = vM and gsf = gus >
[gsf ]0um

= 0. During the interval (t1, t1 + δ), we see from the
second case of (14) that uvj = [guc]

0
um

= [uM ]0um
= 0, which

proves the result.

C. Upper bound on guaranteed occupancy time

The last element of the design is the upper bound on the
guaranteed occupancy time for a bubble. To obtain this, we
first upper bound the inter-approach times of vehicles in a
given bubble at the beginning of the intersection.

Proposition VII.8. (Upper bound on the inter-approach times
of vehicles in a bubble at the intersection). For any bubble i
and any vehicle j ∈ {2, . . . ,mi}, if vvi,j−1(T ai,j−1) ≥ νnom,
then vvi,j(T

a
i,j) ≥ νnom and T ai,j − T ai,j−1 is upper bounded by

T iat ,

{
σ0T

nom, if vv ≥ νnom,

max{σ0T
nom, T fol(vv)}, if vv < νnom,

where vv is defined in Lemma VII.6(iv) and

T fol(v) ,
σ0D(v, vM )−Dg(v)

vM
,

Dg(v) , vM
(νnom − v

uM

)
−
(νnom + v

2

)(νnom − v
uM

)
.

Proof: First notice from (14) that uvi,j(t) ≤ guc, for all t
such that ∃Fi,j . Further notice that if at some time t1, @Fi,j
then it remains @Fi,j for all t ≥ t1 for otherwise it means
there exists some control policy starting from t = t1 such that
T ai,j = τi,j and vvi,j(T

a
i,j) ≥ νnom and Remark VII.5 guarantees

∃Fi,j at t = t1. Thus, for each vehicle (i, j), T ai,j ≥ τi,j .
Now, there are two cases - ether the optimal controller

exists until the vehicle reaches the intersection or it becomes
infeasible earlier. We consider each of these cases separately.
In the first case, notice that for any vehicle (i, j), for j ∈
{2, . . . ,mi}, if ∃Fi,j at t = T ai,j , then it follows from the
definition of T ai,j that T ai,j = τi,j and vvi,j(T

a
i,j) ≥ νnom and

from (10), we have that T ai,j − T ai,j−1 ≤ T nom.
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Now, we only need to be concerned about the case @Fi,j
first occurring at some time tf < T ai,j . From now, we also
drop the bubble index i. Clearly, at time tf , ζj ∈ Cs. Now,
there are two sub-cases - either ζj(T aj ) ∈ Cs or ζj(T aj ) /∈ Cs.
In the first sub-case, we have by definition that σj(T aj ) ≤ σ0

and vvj (T aj ) ≥ vvj−1(T aj ). Then, the fact that vvj−1(t) ≥ νnom

for all t ≥ T aj−1 implies

xvj−1(T aj )− xvj (T aj ) = σj(T
a
j ) · D(vvj−1(T aj ), vvj (T aj ))

≤ σ0 ·Dnom

where we have used the definition of Dnom and the mono-
tonicity properties of the safe-following distance function D
in arriving at the inequality. Now, imagine a virtual particle
rigidly fixed to vehicle j−1 at a distance of σ0D

nom behind it.
Since vvj−1(t) ≥ νnom for all t ≥ T aj−1, we can then conclude
that T ai,j − T ai,j−1 ≤ σ0

Dnom

νnom = σ0T
nom.

Finally, we are left with the sub-case when ζj(T
a
j ) /∈ Cs.

Thus, suppose that there exists te ≥ tf such that ζj(t) /∈ Cs
for all t ∈ (te, T

a
j ], and ζj(tj) ∈ Cs. From Lemma VII.7, it

follows that vvj (t) = vM for all t ∈ [te, T
a
j ]. Next, by the

definition of te, note that σj(te) = σ0 and σj(t) > σ0 for
all t ∈ (te, T

a
j ]. Also, notice from Lemma VII.6(ii)-(iv) that

vvj−1(te) ≥ vv . Thus,

xvj−1(T aj−1)− xvj (T aj−1) ≤ xvj−1(te)− xvj (te)
= σ0D(vvj−1(te), v

v
j (te))

≤ σ0D(vv, vM ),

where the first inequality follows from the fact that vvj−1(t) ≤
vvj (t) = vM for all t ∈ [te, T

a
j ]. Consequently, if vv ≥ νnom,

then D(vv, vM ) ≤ D(νnom, vM ) and hence we deduce T ai,j −
T ai,j−1 ≤ σ0T

nom. If on the other hand vv < νnom, then the
bound on xvj−1(T aj−1)−xvk(T aj−1) can be further improved by
the following argument. Since by design vvj−1(T aj−1) ≥ νnom,
for vvj−1(te) ∈ [vv, νnom) it takes a non-zero time for vehicle
j−1 to reach the intersection during which the relative distance
xvj−1 − xvj decreases by at least Dg(v

v
j−1(te)). Thus, we see

that T ai,j−T ai,j−1 ≤ T fol(vvj−1(te)). The result now follows by
noting that v 7→ T fol(v) attains its maximum at v = vv , and
hence, T ai,j − T ai,j−1 ≤ T fol(vv).

As a consequence of Proposition VII.8, we can guarantee an
upper bound on the intersection occupancy time of a bubble.

Corollary VII.9. (Guaranteed upper bound on occupancy
time of a bubble). For any bubble i, its occupancy time τ occ

i

is upper bounded as τ occ
i ≤ τ̄ occ

i , where

τ̄ occ
i = (mi − 1)T iat + max

{
L+ ∆

νnom , T iat
}
. (15)

Proof: From Proposition VII.8, we see that the last vehi-
cle mi in bubble i approaches the intersection at time T ai,mi

satisfying T ai,mi
≤ T ai,1 + (mi − 1)T iat. Since each vehicle

travels with a velocity of at least νnom after approaching the
intersection, the vehicle (i,mi) (and thus the bubble i) exits
the intersection no later than T ai,mi

+ L+∆
νnom .

The reasoning for the inclusion of T iat in the second term
of (15) is as follows. If the bubble i′ that uses the intersection
immediately after bubble i is from the same branch as i, then

we would like to have a safe-following distance between the
last vehicle (i,mi) of bubble i and the first vehicle (i′, 1)
of bubble i′ at the time the vehicle (i′, 1) approaches the
intersection at its assigned time, T ai′,1 = τi′,1 = τi′ .

VIII. PROVABLY SAFE OPTIMIZED TRAFFIC
COORDINATION

This section brings together the discussion above on the
individual aspects (dynamic vehicle clustering into bubbles,
optimized planning and scheduling of the bubbles, and local
distributed control for safety and execution of plans) of our
hierarchical-distributed coordination approach to intersection
traffic. The following result shows that the design ensures
vehicle safety and satisfies the prescribed schedule.

Theorem VIII.1. (Provably safe optimized traffic coordi-
nation). Consider a traffic intersection with four incoming
branches operating under Assumptions (i)-(v) in Section III,
where the vehicle dynamics are given by (1) under the local

vehicular controller (14). Assume the exit zone length
satisfies Le ≥ −(vM )2/2um + (νnom)2/2uM and that, at
initial time t0 = 0, vehicles on each branch k ∈ {1, . . . , 4}
are within the staging zone. Furthermore, suppose that at each
ts = sTcs for each s ∈ N0, the vehicles in the staging zone that
are clustered by the clustering into bubbles algorithm
are in a safe configuration (σj(ts) ≥ 1 for each new vehicle
j). Then,

(i) each vehicle belongs to some cluster, each bubble is
scheduled by the schedule optimization algorithm
at least once. Moreover, at each ts, this strategy op-
timizes the schedule of the bubbles L given by the
clustering into bubbles algorithm by minimizing
the simplified cost function CL,

(ii) the schedule assigned to the bubbles respects the non-
collision constraints (3), with the occupancy time of each
bubble i upper bounded by τ̄ occ

i as given in (15),
(iii) inter-vehicle safety is ensured (σj ≥ 1) for all vehicles

and for all time subsequent to t0, and
(iv) the first vehicle (i, 1) of each bubble i approaches the

intersection at τi, the bubble uses the intersection only
within its allotted time interval [τi, τi + τ̄ occ

i ], and each
vehicle travels with a velocity of at least νnom after
approaching the intersection.

Proof: (i) This claim follows from the clustering

into bubbles and the schedule optimization algo-
rithms. Claim (ii) is ensured by the inclusion of the non-
collision constraints (3) in the schedule optimization

algorithm and the feasibility of the scheduling problem guar-
anteed by Lemma VII.4.

(iii) Inter-vehicular safety is a direct consequence of
Lemma VII.6 - for σj ∈ [1, σ0], if ζj ∈ Cs, then σj either
stays constant or increases; if on the other hand ζj /∈ Cs, then
it means vvj < vvj−1 and xvj−1−xvj increases while D(vvj−1, v

v
j )

stays constant at L and thus σj increases. Thus σj(t) ≥ 1 is
guaranteed for all vehicles j and for all t ≥ ts.

(iv) If no bubble precedes bubble i on its branch, then
the vehicle (i, 1) approaches the intersection at its designated
time τi,1 = τi, with at least a velocity of νnom. Then, by
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applying Proposition VII.8 inductively, we see that the last
vehicle (i,mi) of bubble i approaches the intersection with a
velocity of at least νnom and T ai,mi

≤ T ai,1 + (mi− 1)T iat and
it takes at most (L+ ∆)/νnom amount of time to go past the
intersection. Thus from (15), we see that claim (iv) is satisfied
in this case.

Now suppose bubble q precedes bubble i on its branch and
suppose claim (iv) is true for bubble q. From our reasoning
above, T aq,mq

≤ T aq,1 + (mq − 1)T iat = τq + (mq − 1)T iat.
Now, using arguments analogous to those in Proposition VII.8,
we see that if @Fi,1 at any time t ∈ [ts, T

a
i,1], then we have

T ai,1 ≤ T aq,mq
+ T iat. However, note from (3) and (15) that

τi ≥ τq + τ̄ occ
q ≥ τq + (mq − 1)T iat + T iat ≥ T aq,mq

+ T iat,

where in obtaining the second inequality we have used (15).
Recall from the first paragraph of the proof of Proposi-
tion VII.8 that for any vehicle (i, j), T ai,j ≥ τi,j and in
particular T ai,1 ≥ τi. Thus, we conclude that ∃Fi,1 for all time
t ∈ [ts, T

a
i,1] = [ts, τi] and that vehicle (i, 1) approaches the

intersection at its assigned time τi with a velocity of at least
νnom. Hence, by using induction over all vehicles in bubble i
and over all bubbles i themselves we conclude that claim (ii)
holds.

Theorem VIII.1 does not guarantee the optimal operation
of the system at the level of individual vehicles under the
proposed hierarchical-distributed coordination approach. How-
ever, this result guarantees the optimality at the level of
bubbles, on each time ts = sTcs, for the bubbles scheduled
at ts. We believe this is a good compromise in balancing the
trade-off between optimal vehicle operation and complexity of
planning and control.

IX. SIMULATIONS

This section presents simulations of our proposed
hierarchical-distributed design and comparisons with a signal-
based traffic coordination approach under varying traffic con-
ditions. Table I specifies the system parameters that we keep
fixed across all the simulations presented here. The parameters

TABLE I
SYSTEM PARAMETERS

Parameter Symbol Value
General parameters

Car length L 4m
Intersection length ∆ 12m
Zone lengths Ls, Lm, Le 70m
Max. speed limit vM 60km/h
Max. accel. uM 3m/s2

Min. accel. um −4m/s2

HD algorithm parameters
Nominal speed of crossing νnom 48km/h
Parameter in (13) σ0 1.2
Nominal inter-vehicle approach time T nom ≈ 1.23s
Upper-bound on inter-vehicle approach time T iat ≈ 1.58s
Time period for execution of Algorithm 1 Tcs 3.77s
Max. # new bubbles on branch k N̄k 2
Max. # bubbles scheduled N̄ 8

Signal-based algorithm parameters
Green-time 10s

T nom and T iat are computed parameters, while the remaining
ones in the table are design choices.

A. Dynamic traffic generation

In order to simulate dynamically generated traffic, new
vehicles are spawned every Tcs units of time anywhere in the
staging zone of each branch as a Poisson arrival process [19].
In order to ensure safe following at the moment vehicle j is
spawned, we define the arrival process on σj rather than on
vehicle distances. To be precise, let ts = sTcs be the time at
which vehicle j is spawned. Then, we let σj(ts) = σ, with σ
drawn from the distribution with probability density function
1 + (1/µ)e−(1/µ)σ so that σj(ts) ≥ 1 and the distribution has
a mean of 1 + µ. Thus, the smaller the value of µ the greater
is the density of the generated traffic.

The velocity of vehicle j at ts, vvj (ts), takes a random value
uniformly chosen from the interval [0, vM ]. Then, the position
of vehicle j at ts, xvj (ts) is obtained from (11) as

min{−(Le + Lm), xvj−1(ts)− σj(ts)D(vvj−1(ts), v
v
j (ts))},

where xvj−1(ts) and vvj−1(ts) are the position and the velocity
of the last vehicle previously defined on the same branch as
that of vehicle j. If there is no previously defined vehicle on
the branch, then xvj−1(ts) =∞. Recall from Section V that if
Tcs <

Ls

vM
, then vehicles entering the problem domain during

the time interval [ts − Tcs, ts] are within the staging zone
at ts. This explains the imposition of the upper bound −(Le+
Lm) on xvj (ts). Finally, the number of vehicles spawned on
a branch at ts is determined as follows. The procedure to
spawn new vehicles described above is repeated as long as the
spawned vehicle is in the staging zone, i.e., xvj (ts) ∈ [−(Le+
Lm + L− s),−(Le + Lm)].

B. Signal-based traffic coordination

The vehicle control policy in the simulations with signal-
based traffic coordination is given by (14) with gsf given
by (12) and with guc = uM . The traffic signaling policy is as
follows - at any given time only one of the four branches has
the right of way (green or yellow signal). The other branches
do not have a right of way (red light). When the signal changes
to green from red for a branch, it stays green for a period of
time we call green-time and then it turns to yellow. When
the signal for a branch is yellow the vehicles on that branch,
which are yet to cross the intersection, are divided into two
groups - those that can come to a stop before the beginning
of the intersection and those that cannot. For the first group
of vehicles, a virtual vehicle is introduced at position L and
having a velocity of 0 so that the control policy (14) with the
added virtual vehicle ensures that the second group of vehicles
comes to a stop before the intersection. The second group of
vehicles continue with the usual control policy. The signal
changes from yellow to red when the first group of vehicles
all cross the intersection. The virtual vehicle for the branch is
retained as long as the branch has yellow or red signals. The
branches get the right of way in a round-robin manner.

C. Results and discussion

In the first set of simulations we simulated the signal-based
algorithm and the proposed hierarchical-distributed (HD) al-
gorithm for different values of µ and with WT = 1 in the
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Fig. 4. Cars per minute (CPM) is the number of cars that cross the intersection in a simulation time of 1 minute. The cost per car (CPC) is computed with
WT = 1 in (2). (a) and (c) are for the signal-based control while (b) and (d) plots are for the HD algorithm.
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Fig. 5. Time taken to reach car cap (TCC) is time taken for 50 cars that crossed the intersection. The cost per car (CPC) is computed with WT = 1 in (2).
(a) and (c) are for the signal-based control and (b) and (d) plots are for the HD algorithm.

cost function (2). For each µ, 10 trials were conducted, each
for 1 minute of simulation time. The results are summarized
in Figure 4. Note that as per (15) the inter-approach times of
vehicles is lower bounded by T iat in our simulations, which
sets a uniform upper bound on the intersection throughput of
around 38 cars per minute (CPM). This is the limiting factor,
which explains the nearly constant throughput across µ and
across different trials in Figure 4(b). As can be seen from
Figure 4(a), the throughput in the signal-based coordination
is significantly higher, at the expense of higher cost. For
this reason, to have a fairer comparison, we have performed
simulations with the simulation time in each trial determined
by the time it takes 50 cars (TCC) to cross the intersection,
summarized in Figure 5. In a loose sense, Figures 4(a) and 5(a)
on the one hand and Figures 4(b) and 5(b) on other hand are
inverted. Note that both in Figures 4 and 5 the HD algorithm
performs better in terms of cost. Also note the lesser dispersion
in the case of the HD algorithm, which points to a more
socially equitable distribution of the cost. Also note that nearly
steady throughput is a valuable feature for traffic management
for a network of intersections, such as a city grid.

Figures 6(b) and 6(c) summarize the results of simulations
performed for different values of µ and WT in the cost func-
tion (2), varied from 0.1 to 10. The throughput is consistently
better in the signal-based control except for low-density traffic
(high µ). In terms of cost, except in the cases with very high
density traffic (low µ) and high weightage to travel time in the
cost function, the HD algorithm does better than the signal-
based control.

Computational expense: Simulations presented here were
performed on an Intel Core i3-3227U processor in MATLAB
R2014a running on the Linux Mint 17.2 operating system. The

most computationally expensive component of our design is
the branch-and-bound algorithm for scheduling the bubbles.
For scheduling 8 bubbles, this typically took about 1 second.
Next most expensive is the k−means algorithm, which took
about 13ms per instance. The controller guc was implemented
based on an explicit solution to the optimal control problem.
On average, an instance of guc was executed in about 0.5ms
when the optimal control problem was feasible.

X. CONCLUSIONS

We have studied the problem of coordinating traffic at an
intersection in order to reduce travel time and improve vehicle
energy efficiency while avoiding collisions. Our provably
correct intersection management solution relies on communi-
cation among vehicles and the infrastructure, and combines
hierarchical and distributed control to optimally schedule
the passage of vehicle bubbles through the intersection. Our
dynamic bubble-based approach has the advantage of reducing
the complexity of the computationally intensive scheduling
problem and making the solution applicable for different traffic
conditions. Simultaneously, the modular nature of the major
aspects of our design make it easier to make improvements
in the future. Finally, since the central traffic manager at
the intersection requires only aggregate data of a bubble,
this decomposition provides a certain amount of privacy.
We have performed simulations to illustrate the performance
of our design and compared it against a traditional, signal-
based intersection management approach. Our hierarchical-
distributed algorithm performs better than signal-based control
in terms of cost except for high traffic densities and high
weightage to travel time in the cost function. The guaranteed
throughput is, however, worse due to the conservativeness
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Fig. 6. Summary of simulations with a cap of 50 cars for various values of µ and the weight WT in the cost function (2). (a) Average (over 10 trials) time
taken for 50 cars to cross the intersection for the HD algorithm. The ratio of the average (over 10 trials) time (b) and cost (c) taken for 50 cars to cross the
intersection for the signal-based coordination over the HD algorithm.

of the upper bound on inter-approach times of the vehicles.
We believe further analysis would improve this component
and yield better throughput. Other future work will study
the computational complexity of the proposed algorithm, the
characterization of the expected size of the generated bubbles,
the incorporation of information about incoming traffic density
to improve throughput, the inclusion of privacy preservation
requirements, and the extension to coordinated management
for networks of intersections.
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