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Abstract

We generalize electrical networks to include signed and complex lin-
ear networks, linear networks over arbitrary fields as well as infinite and
nonlinear networks. We formalize the idea of “layering” graphs with
boundary (∂-graphs) and networks using three related processes: (1)
“Layer-stripping” ∂-graphs by contracting boundary spikes and bound-
ary edges, (2) “elementary factorizations” in a category whose morphisms
are graphs with input and output (as in Baez-Fong [1]), (3) structures
called “scaffolds” involving partial orders on the set of edges. Layering
theory provides a formal description of discrete harmonic continuation
and the layer-stripping approach to the electrical inverse problem used by
Curtis-Ingerman-Morrow [4] and Johnson [11].

We define a class of “solvable” ∂-graphs for which this approach works
to solve the inverse boundary-value problem. Critical circular planar
∂-graphs and rectangular lattices are solvable, as are any ∂-subgraphs,
covering ∂-graphs, and box products of solvable ∂-graphs. We thus re-
prove [11]’s result that critical circular planar networks with bijective
zero-preserving nonlinear resistors can be recovered.

We generalize standard results about linear networks to arbitrary fields.
Layering theory provides a useful language and motivation for the electri-
cal linear group similar to the one described by Lam and Pylyavksyy [14],
and helps us classify the possible boundary behaviors for linear networks
over arbitrary fields. We show in particular that any feasible boundary
behavior can be represented by a circular planar network.

Finally, we generalize theorems about ranks and connections proved by
Curtis-Ingerman-Morrow [4] and de-Verdiere-Gitler-Vertigan to situations
that include many non-planar and nonlinear networks.

1Ph. D. Student at University of California Los Angeles. B.S. in Math from University of
Washington, 2015.
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Preface

Approach and Prerequisites:

The main thrust of this paper is concrete and geometric–it is about cutting
networks apart and gluing them together, stripping away a network layer by
layer, and propagating potential and current information step-by-step through
a network. The results are elementary and self-contained enough to be accessible
to advanced undergraduates familiar with linear algebra, set theory, basic graph
theory, and basic category theory.

But network theory is a multi-faceted subject reaching out to graph theory,
physics, probability, algebraic topology, and symplectic Lie theory. I therefore
make passing references to many branches of mathematics, yet none of the other
results are essential to understand the main proofs here.

I devote more time than strictly necessary to exposition and motivation.
The hope is that the reader will have to spend less time decrypting the technical
details, and see that most of the insights are simple, and once they are known,
it is only a matter of choosing the correct definitions to make the proofs work
in the best generality.

Familiarity with the results of Curtis-Ingerman-Morrow [4] or de Verdiere-
Gitler-Vertigan on electrical networks is very helpful in understanding the mo-
tivation. I include cursory explanations of the most important ideas.
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times in network theory: For instance, variants of the matrix-tree theorem were
rediscovered many times. Curtis-Ingerman-Morrow and de Verdiere solved the
inverse problem for circular planar networks simultaneously and independently.
Further examples can easily be found by googling and citation-chasing. If I
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have copied anyone else’s results, be assured it is unintentional, and I will insert
proper citations when I become aware.
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1 Introduction

Although elementary, the first two sections of the introduction provide key intu-
ition and motivation for the results. §1.3 gives the general definition of networks,
and §1.4 describes the main results and outline of the paper.

1.1 Linear Resistor Networks

This paper is motivated by the study of the electrical inverse problem for linear
resistor networks. I will sketch some basic ideas from [4] here, omitting proofs.

A linear resistor network consists of

• A finite connected graph G. V will denote the set of vertices and E the
set of oriented edges.

• A designation of a certain vertices of the graph as “boundary vertices.”
The remaining vertices are called “interior.” We call the set of boundary
vertices ∂V and the set of interior vertices V ◦.

• An assignment of a positive number γe = γe for each edge e, called the
conductance. The resistance is 1/γe. The assignment is also viewed as
function γ : E → (0,∞).

An electrical potential function is a function u : V → R. If e is an oriented edge,
then the voltage across e is given by u(e+) − u(e−), where e+ and e− are the
start and end points of e. The current across e is given by Ohm’s Law as

c(e) = γe(u(e+)− u(e−)).

The net current at a vertex p is
∑

e:e+=p

c(e) =
∑

e:e+=p

γe(u(p)− u(e−)).

A potential u is called harmonic if it satisfies Kirchhoff’s law that the net current
at each interior vertex is zero. According to this convention, the net current at
p is total current going out of p into the other vertices.

A potential u : V → R can be viewed as a vector in RV , and so can the
function V → R that maps a vertex to its net current. The relations for har-
monic potentials can thus be described in terms of the Kirchhoff matrix (a.k.a.
weighted graph Laplacian) K given by

Kp,q =



















−
∑

e:e+=p,
e−=q

γe, p 6= q

∑

e:e+=v

γe, p = q.

We view the rows and columns of K as indexed by the set V . The Kirchhoff
matrixK defines a linear transformation RV → RV , and the component indexed
by p is exactly the net current at p. K is symmetric and has row sums zero.
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Based on analogy with continuous models of electricity in PDE, [4] considers
the Dirichlet problem: Given φ ∈ R∂V , does there exist a harmonic potential u,
with u|∂V = φ? Is it unique? If so, what is the net current on the boundary?

Let us write K in block form putting the rows / columns indexed by ∂V
first:

K =

(

K∂V,∂V K∂V,V ◦

KV ◦,∂V KV ◦,V ◦

)

=

(

A B
BT C

)

We will similarly write our potential u in block form as (φ,w)T . We then want
to solve

(

A B
BT C

)(

φ
w

)

=

(

ψ
0

)

,

where φ is given, w is the unknown, and ψ is the vector representing the net
currents on the boundary vertices (we do not care what it is at the moment).
We can find w from φ if and only if C is invertible. But it turns out C is
positive-definite, so the Dirichlet problem has a unique solution.

The boundary current vector ψ is then given by

ψ = Λφ,

where Λ is the Schur complement

Λ = K/KV ◦,V ◦ = A−BC−1BT .

Λ is called the response matrix (a.k.a. the Dirichlet-to-Neumann map).

1.2 The Inverse Problem, Layer-Stripping

The electrical inverse problem is to determine γ from Λ and G. In other words,
knowing the structure of the network and its boundary behavior, we want to
figure out what type of resistors are in it. Algebraically, this amounts to checking
injectivity of the multi-rational map

(

A B
BT C

)

7→ A−BC−1BT

on the appropriate domain, but algebra alone is not too helpful.
The inverse problem cannot always be solved, nor has anyone discovered a

strategy that works well in all situations. One fairly general approach for “re-
covering” the conductances used by [4] and [11] is known as “layer-stripping.”
We start by finding an edge that is close enough to the boundary to be “ac-
cessible.” Using a cleverly chosen boundary value problem, we figure out the
conductance of this edge. Then, armed with this new information, we proceed
to find the conductances of edges further inside the network, away from the
boundary.

As an illustration, consider the network Γ shown in Figure 1. The edge
between vertices i and j will be called (i, j). An edge such as (1, 4) for which
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Figure 1: A network resembling the eyes and antennae of a fly. The boundary
vertices are black and the interior vertices white. The vertices are indexed by
1, . . . , 10 as shown.

1 2

3

4

5

6

7

8

9

10

one of the endpoints is a boundary vertex of degree 1 is called a boundary spike.
The conductances of boundary spikes are often the easiest to recover.

Recovering the Boundary Spike γ1,4:
I claim that there exists a harmonic function u with potential zero at 8 and

3, net current zero at 3, and potential one at 1. To see why this is helpful, first
observe that any such harmonic function will have net current γ1,4 at vertex 1.
Indeed, since u(3) = u(8) = 0, there is no current flowing on the edge (3, 8).
Since the net current on 3 is zero, there must also be no current on (3, 4), hence
u(4) = 0 as well. If u(1) = 1 and u(4) = 0, then the current on (1, 4) is γ1,4,
and this is also the net current at 1.

So then why is γ1,4 uniquely determined by Λ? Set-theoretically, we are
claiming this: Search through all the pairs (φ,Λφ) and you will find one (possibly
more than one) with φ(3) = φ(8) = 0 and φ(1) = 1 and (Λφ)(3) = 0. Then pick
some (φ,Λφ) satisfying these conditions, and magically (Λφ)(1) will be γ1,4.
Hence, γ1,4 is uniquely determined by Λ.

It only remains to prove that such a u exists. We will construct it step-
by-step through “harmonic continuation.” We start by setting u(3) = u(8) =
u(4) = 0 and u(1) = 1. [For best results, please write on the picture.] The
current flowing into vertex 4 from 3 and 1 has now been determined. Since 4 is
an interior vertex, the net current flowing into it is zero, so the current flowing
from 5 to 4 is uniquely determined, as is the potential u(5). We have some
freedom as to how to extend u further. We will somewhat arbitrarily set u to
0 at vertex 9. Then we choose u(10) to make vertex 9 have net current zero.

8



Figure 2: The network Γ′
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Choose the potential on 6 so as to make the net current at 5 zero. Arbitrarily
set u(7) = 0, then choose u(2) so that 6 will have net current zero.

Therefore, γ1,4 is uniquely determined by Λ. We can similarly recover γ2,6.
Removing the Boundary Spikes:

I claim that at this point, we can remove (1, 4) and (2, 6) from the network
without losing any information. In a transformation known as “boundary spike
contraction,” we will collapse the edge (1, 4) and merge vertices 1 and 4 into a
single boundary vertex which we will still call 4. We do the same for (2, 6). Call
the new network Γ′ (Figure 2).

I claim that the new response matrix Λ′ can be determined from Λ, γ1,4 and
γ2,6. Rather than giving an explicit formula for Λ′ (which is done in [4] §8),
I will instead work with the sets {(φ,Λφ)} ⊂ R∂V × R∂V and {(φ′,Λ′φ′)} ⊂
R∂V ′

× R∂V ′

.
Consider a pair (φ,Λφ) which represents the boundary data of a harmonic

function u, and let ψ = Λφ. Let u′ = u|V ′ . Then u′ is harmonic. Knowing
the potential and net current at 1, we can deduce the potential at 4; it is
u(4) = u(1) + ψ(1)/γ1,4. The same holds for 2 and 6. When we restrict to the
smaller network Γ′, the net current on 4 is the same as the net current on 1 in
Γ′ since in Γ the net current on 4 was zero. Thus, ψ′(4) = ψ(1). For the vertices
in ∂V ′ besides 4 and 6, the potential and net current of u′ are easy to find from
(φ, ψ). Thus, the boundary data (φ′, ψ′) is determined by the boundary data
(φ, ψ) and given by a simple formula.

We thus have a “natural” map (φ, ψ) → (φ′, ψ′). Checking that this map is a
bijection amounts to saying that any harmonic function on Γ′ uniquely extends
to a harmonic function on Γ, which the reader can easily check.

It follows that Λ′ is determined by Λ, γ1,4 and γ2,6. Therefore, to recover Γ,
it suffices to recover Γ′.

Recovering a Boundary Edge:

An edge such as (3, 4) for which both endpoints are boundary vertices is
called a boundary edge. These are also easy targets for recovering conductances.

9



To recover (3, 4), we only have to construct a harmonic function u such that
u(3) = u(8) = 0 and u(4) = 1. Then the only current coming into 3 is from 4,
and the net current at 3 is −γ3,4. The construction of u is left as an exercise.

After recovering the conductance of (3, 4), we can delete the boundary edge
by removing it from the graph while leaving the rest of the graph unchanged.
Call the new network Γ′′. Then any harmonic function on Γ′′ extends uniquely
to one on Γ′ and the map (φ, ψ) 7→ (φ′, ψ′) can be explicitly computed (exercise).
Thus, Λ′′ is uniquely determined by Λ′ and γ(3,4).

Continuing in this way, we can recover all the conductances in the network
(exercise). In the process, we keep “stripping away layers,” reducing to smaller
and smaller networks until all the edges have been removed.

1.3 Generalizations of Electrical Networks

The ideas in the above example adapt to much more general situations; for
instance,

• They were applied by Curtis-Ingerman-Morrow and de-Verdiere-Gitler-
Vertigan to “critical circular planar networks” (e.g. [5]).

• Students at the University of Washington REU considered networks with
signed conductances ([19] and [9]).2 Also, [15] uses signed conductances
in network transformations.

• Johnson [11] considers nonlinear electrical networks, where the current on
an edge e is given as a nonlinear function of the voltage. Amusingly, the
notation γe(u(e+) − u(e−)) is still used, but now γe is a function R → R

rather than a real number. Dually, the voltage can be a nonlinear function
of the current: u(e+) − u(e−) = ρe(c(e)), where c(e) is the current. [11]
shows that for critical circular planar networks where γe is bijective with
γe(0) = 0, the inverse problem can be solved.

• Zemke [21] applies similar techniques to attack the inverse problem for
infinite electrical networks.

• Harmonic continuation was used by various students of the UW REU for
specific networks that are not circular planar.

Aside from the inverse problem, there are a variety of mathematical reasons to
generalize electrical networks:

• Thinking of differential topology, Kenyon considers a vector bundle Lapla-
cian where the potentials at each vertex take values in some vector space
[13].

2I have not checked these papers thoroughly and [11] suggests they may contain errors. I
don’t use any results from these papers, only motivation.
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• In cellular homology theory which includes graphs as a special case, one
can consider weighted Laplacians on the chain groups over a given ring.
So it could be worthwhile to consider a network where the conductances
take values in some ring R and the potentials and currents take values
in an R-module M . Then the Z-module of harmonic functions on the
network could be studied using homological algebra. Avi Levy and I will
discuss this in an upcoming paper.

With these examples in mind, we make the following definitions/conventions:
A graph is given by a set V of vertices, a set E of oriented edges, an as-

signment of endpoints e+ and e− for each e ∈ E, a free involution¯: E → E
mapping an edge to its reverse, such that e+ = e− and e− = e+. We assume
V and E are countable and that each vertex is incident to finitely many edges.
We allow parallel and self-looping edges. We allow disconnected graphs. We
denote by E′ the set of edges (that is, pairs {e, e}). We assume familiarity with
basic graph terminology.

A graph-with-boundary or ∂-graph is a graph together with a partition of
V into a set of boundary vertices ∂V and a set of interior vertices V ◦. Unless
otherwise specified, we will assume that every component of the graph has at
least one boundary vertex.

Let M be an abelian group, written additively. A network taking values in
M is a ∂-graph together with a map Θ : E → P(M ×M) which assigns to
each edge a relation Θe ⊂M ×M , called its voltage-current relation, such that
Θe = −Θe.

A harmonic function on a network Γ is a pair of maps u : V → M and
c : E →M such that

a. c(e) = −c(e) for each e ∈ E.

b. (u(e+)− u(e−), c(e)) ∈ Θe for each e ∈ E.

c. The net current
∑

e:e+=p c(e) is zero for each p ∈ V ◦.

Note that the condition Θe = −Θe ensures that (a) and (b) are nicely consistent.
In general, for any function c : E →M with c(e) = −c(e), we call

∑

e:e+=p c(e),
the net current at p.

We say that Θe is given by a conductance function γe if

Θe = {(x, γe(x)) : x ∈M},

and it is given by a resistance function ρe if

Θe = {(ρe(y), y) : y ∈M}.

Thus, our definition includes both types of nonlinear networks considered in
[11].

H(G,Θ) denotes the space of harmonic functions. The boundary behavior
B = B(G,Θ) of a network is the set of pairs (φ, ψ) ∈ M∂V ×M∂V such that

11



there exists a harmonic function with potentials φ and net currents ψ on the
boundary vertices.3 There is a “natural” map Φ : H → B that sends a harmonic
function to its boundary data.

A BZ (“bijective zero-preserving”) network is a network where each Θe is
given by a bijective conductance function γe : M → M with γe(0) = 0 (or
equivalently by a bijective zero-preserving resistance function). If M needs to
be specified, then write BZ(M). For a harmonic pair (u, c) on a BZ network, c
is given as a function of u, so we can work either with the harmonic function
(u, c) or with the harmonic potential u.

BZ networks are the natural setting for the layer-stripping approach to the
inverse problem (cf. [11]). Indeed, upon careful reflection, the main ingredients
for recovering the network in the previous example were precisely that there
was a bijective zero-preserving relation between the voltage and current on each
edge. We will say that a ∂-graph G is recoverable over BZ if the Θ is uniquely
determined by B for any BZ network (G,Θ) on G–that is, Θ 7→ B(G,Θ) is
injective on the set of Θ’s where each Θe is a bijective zero-preserving relation.

1.4 Overview

It turns out the process of removing boundary spikes and boundary edges is
structurally similar to step-by-step harmonic continuation, and both can be
described by the idea of “layering.” Formalizing this idea enables us to generalize
the approach to the inverse problem given in [4], as well as some of their other
results.

“Layering” has three distinct formulations, each with their advantages and
disadvantages:

• A ∂-graph is layerable if there is a decreasing filtration of ∂-graphsG0, G1, . . .
such that Gn+1 is obtained from Gn by a reduction operation–a combina-
tion of removing boundary spikes and boundary edges (§3).

• The process of concatenating graphs together is viewed as composition in
a category of “IO-graphs” (as in Baez and Fong [1]). A graph with des-
ignated “input” and “output” vertices is viewed as a transformation from
the inputs to the outputs, and the morphisms are composed by identifying
the outputs of the first with the inputs of the second. In this framework,
layering a graphG with inputs P and outputs Q corresponds to factorizing
the morphism P → Q into elementary “layers” (§4).

• A scaffold is a certain type of partial order on the edges of G. A scaffold
can describe in what order we remove edges from the graph in a layerable
filtration, in what order we use the edges when constructing a harmonic
function through harmonic continuation, or in what order they occur in an
elementary factorization (§5). In this section, I define solvable and totally

3The idea of using the set of boundary data instead of a Dirichlet-to-Neumann map was
used in [11]. The name “boundary behavior” is inspired by [1].
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layerable ∂-graphs for which the inverse problem can be solved through
layer-stripping, so that they are recoverable over BZ.

∂-subgraphs are fundamental to all three flavors of layering, so they are
covered in §2. I define ∂-graph morphisms (essentially a combination of an
inclusion and a covering map), and in §3 and §5 I show that the “layering
structures” can be pulled back along ∂-graph morphisms by taking preimages.
This means that if the layer-stripping process can solve the inverse problem on
G, then it will also work for any ∂-subgraph or covering ∂-graph of G.

In §6, I specialize the theory to a graph embedded on the surface, use medial
graphs to construct scaffolds, and prove that critical circular planar graphs are
totally layerable (cf. [11]), as well as the “supercritical” half-planar graphs
of [21]. §6 provides something that is conspicuously missing from the theory
up through §5: general methods of constructing scaffolds without having any
preexisting scaffolds.

In §7, I review standard results about linear networks and generalize to
arbitrary fields. The layering theory is related to the action of the “electrical
linear group” of Lam and Pylyavsky [14], which in turn is used to characterize
the possible boundary behaviors of finite networks over a field F. As a corollary,
for any field other than F2, any feasible boundary behavior for n boundary
vertices can be represented by a layerable network with ≤ n(n− 1)/2+1 edges,
or by a layerable circular planar network.

In §8 I generalize [4]’s principle that the rank of the submatrix ΛP,Q is the
maximum size connection between P and Q. For linear networks over arbirary
fields, this principle holds generically as a consequence of the grove-determinant
formula discussed in §7. But provided there is an IO-graph factorization from P
to Q, this principle holds for all conductances and even generalizes to nonlinear
networks. The converse holds for the special case of a unique connection between
P and Q which also uses all the interior vertices.

§9 provides further methods of producing larger solvable ∂-graphs from
smaller ones–box products and a weaker type of ∂-graph morphism. As a corol-
lary, we prove that the an n-dimensional rectangular lattice is recoverable.

2 ∂-Graph Morphisms and Subnetworks

2.1 ∂-Graph Morphisms

If G1 and G2 are graphs, then a graph morphism f : G1 → G2 consists of two
maps V (G1) → V (G2) and E(G1) → E(G2) (which I will call f by abuse of
notation) such that f(e) = f(e), (f(e))+ = f(e+), and f(e)− = f(e−).

A ∂-graph morphism f : G1 → G2 is a graph morphism such that

• f maps V ◦(G1) into V
◦(G2).

• If p ∈ V ◦(G1), then f restricts to a bijection

{e ∈ E(G1) : e+ = p} → {e ∈ E(G2) : e+ = f(p)}.

13



• If p ∈ ∂V (G1), then this induced map is an injection.

The ∂-graphs form a category. The above conditions mean that, roughly speak-
ing, f is a graph isomorphism in a neighborhood of each interior vertex and a
monomorphism in a neighborhood of each boundary vertex. Thus, f behaves
like an immersion between smooth n-manifolds with boundary. Since such an
immersion is an open map, interior points map to interior points, and local
structure is preserved.

∂-Subgraphs: A ∂-subgraph of a ∂-graph G is a subgraph G′ such that the
inclusion map G′ → G is a ∂-graph morphism. Equivalently, G′ is a ∂-subgraph
if

• V (G′) ⊂ V (G), E(G′) ⊂ E(G), V ◦(G′) ⊂ V ◦(G).

• If p ∈ V ◦(G′), then p ∈ V ◦(G) and all edges incident to p are in E(G′).

Pullbacks of ∂-subgraphs: If f : G1 → G2 is a ∂-graph morphism, then
any ∂-subgraph S ⊂ G2 pulls back to a ∂-subgraph f−1(S) ⊂ G1 given by
V (f−1(S)) = f−1(V (S)) and E(f−1(S)) = f−1(E(S)) and V ◦(f−1(S)) =
f−1(V ◦(S)).

Categorical properties: The reader may verify that the category of ∂-
graphs has pullbacks constructed in a fairly typical way, but not products.
There is no terminal object. It has coproducts given by disjoint unions, but
push-forwards are not well-behaved. If we remove the restriction that the sets
of vertices and edges are countable, then the category has arbitrary limits. All
this makes sense given the analogy with immersions of n-manifolds.

For better categorical structure, one might want to expand the definition of
∂-graph morphism, but for my purposes, the geometric properties of ∂-graph
morphisms are more important. Intuitively, “layering” is analogous to creating
a foliation of an n-manifold, and only regular enough maps can be used to pull
back foliations.

Covering Maps: A ∂-graphmorphism f : G1 → G2 is a covering map if f is
surjective on the vertices and edges ofG2, f maps boundary vertices to boundary
vertices, and the induced map {e ∈ E(G1) : e+ = p} → {e ∈ E(G2) : e+ = f(e)}
is a bijection for all vertices. Covering maps form a subcategory of ∂-graphs.

Covering maps are easy to construct explicity. Let G be a ∂-graph and
S = {1, . . . , n} or N. For each e ∈ E(G), choose σe ∈ PermS with σe = σ−1

e .
Define a ∂-graph H by

• V (H) = V (G)× S.

• E(H) = E(G) × S.

• V ◦(H) = V ◦(G) × S.

• (e × j)+ = e+ × j.

• e× j = e× σ(j).

14



Then the map H → G is a covering map. As a fairly standard exercise, show
that if G is connected, then up to isomorphism all covering maps are constructed
this way. Also, any ∂-graph morphism f : G1 → G2 can be factored as f = g ◦h
where h is an inclusion and g is a covering map.

Network Morphisms and Subnetworks: If Γ1 = (G1,Θ1) and Γ2 =
(G2,Θ2) are networks, then a network morphism f : Γ1 → Γ2 is ∂-graph mor-
phism G1 → G2 that preserves the voltage-current relations of the edges, that is,
(Θ2)f(e) = (Θ1)e for e ∈ E(Γ1). A subnetwork of Γ is a network on ∂-subgraph
with the voltage-current relations inherited from Γ.

Pullbacks of Harmonic Functions: If (u, c) is a harmonic function on
Γ2, then (u ◦ f, c ◦ f) is harmonic on Γ1. Indeed, for e ∈ E(Γ1),

(u◦f(e+)−u◦f(e−), c◦f(e)) = (u(f(e)+)−u(f(e)−), c(f(e))) ∈ (Θ2)f(e) = (Θ1)e,

and for each p ∈ V ◦(Γ1),

∑

e:e+=p

c ◦ f(e) =
∑

e:e+=f(p)

c(e) = 0

since the map {e ∈ E(G1) : e+ = p} → {e ∈ E(G2) : e+ = f(e)} is a bijection
and f(p) ∈ V ◦(Γ2).

2.2 Subnetworks and Boundary Behavior

Overview: The way that subnetworks and boundary behavior interact is well-
known and unsurprising. Roughly speaking,

• Gluing: If we glue together a collection of networks along boundary ver-
tices, then the boundary behavior of the larger network depends only on
the boundary behaviors of the smaller ones (see e.g. [2]).

• Splicing: If Γ′ is obtained by replacing some part of Γ by another part
with the same boundary behavior, then Γ and Γ′ have the same boundary
behavior (see e.g. [10]).4

• Recoverability: A subnetwork of a recoverable network is recoverable (see
e.g. [2] Theorem 2.9, [16]).

In the case of gluing linear resistor networks, there is an explicit formula for the
response matrix of the larger network based on the smaller ones ([2] §2.1). But
these principles can be derived purely from set theory.

Subnetwork Partitions: A subnetwork partition of Γ is a collection of
subnetworks {Γα} such that

• V (Γ) =
⋃

α V (Γα),

• E(Γ) is the disjoint union of E(Γα).

4This principle is implicitly used when performing Y -∆ transformations–see §and [17].
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• The V ◦(Γα) is disjoint from V (Γβ) for any α 6= β.

A ∂-subgraph partition is defined the same way except without the voltage-
current relations.

Proposition 2.1. Suppose {Γα} is subnetwork partition of Γ. Then the bound-
ary behavior of Γ depends only on the boundary behavior of Γα.

Proof. Let S =
⋃

α ∂V (Γα). Let T ⊂
∏

α B(Γα) be the set of points ((φα, ψα))
where

a. If p ∈ V (Γα) ∩ V (Γβ), then φα(p) = φβ(p).

b. If p ∈ S ∩ V ◦(Γ), then
∑

α:α∈∂V (Γα)

ψα(p) = 0.

Since p is an endpoint of only finitely many edges, and each edge is in only
one subnetwork, the sum has only fintitely many nonzero terms.

Define F : T →M∂V ×M∂V by
∏

α(φα, ψα) 7→ (φ, ψ), where

1. φ(p) = φα(p) for p ∈ ∂V (Γ).

2. ψ(p) =
∑

α:p∈∂V (Gα) ψα(p),

which is well-defined by definition of T . Then B(Γ) = F (T ). Indeed, if
((φα, ψα)) ∈ T and (φα, ψα) is the boundary data of a harmonic function
(uα, cα), then (a) and (b) guarantee that they paste together to a harmonic
function on Γ, and (1) and (2) describe how to find its boundary data. Con-
versely, given any harmonic function on Γ, the restrictions to Γα will be har-
monic and their boundary data will be in T . Since we have described how to
find B(Γ) from B(Γα), we are done.

Corollary 2.2. Suppose that {Γα} and {Γ′
α} are subnetwork partitions of Γ

and Γ′ respectively such that ∂V (Γα) = ∂V (Γα), ∂V (Γ) = ∂V (Γ′). If Γα has
the same boundary behavior as Γ′

α, then Γ has the same boundary behavior as
Γ′.

Corollary 2.3. If a ∂-graph G is recoverable over BZ(M), then so is any sub-
graph.

Proof. Let S be a subgraph of G and define a subgraph S′ by

V (S′) = V (G) \V ◦(S), E(S′) = E(G) \E(S), V ◦(S′) = V ◦(G) \V (S).

Then S and S′ form a ∂-subgraph partition of G. If S is not recoverable, then
there are two networks Σ1 and Σ2 on S with different voltage-current relations
and the same boundary behavior. Pick some BZ network Σ′ on S′. Then the
networks on G given by Σ1 ∪Σ′ and Σ2 ∪Σ′ have the same boundary behavior
but different voltage-current relations, so G is not recoverable.

Remark. One can replace “recoverability over BZ(M)” with “recoverability over”
any given set of voltage-current relations (appropriately defined), for instance,
linear voltage-current relations with positive real coefficients.
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3 Layering I: ∂-Graph Reductions

Here I formalize the process of contracting boundary spikes and boundary edges:
∂-Graph Reductions: As explained in §1.2,

• A boundary spike is an edge or oriented edge with one endpoint that is a
boundary vertex of degree 1. It is non-degenerate if the other endpoint is
an interior vertex.

• If e is a non-degenerate spike of G with e+ ∈ ∂V and e− ∈ V ◦, then G′

is obtained by contracting the spike if V (G′) = V (G) \ {e+}, V
◦(G′) =

V ◦(G) \ {e−}, and E(G′) = E(G) \ {e, e}.

• A boundary edge is an edge or oriented edge such that both endpoints are
boundary vertices.

• G′ is obtained from G by deleting the boundary edge e if V (G′) = V (G),
V ◦(G′) = V ◦(G), and E(G′) = E(G) \ {e, e}.

• A disconnected boundary vertex is a boundary vertex with no edges inci-
dent to it.

• G′ is obtained from G by deleting the disconnected boundary vertex p if
V (G′) = V (G) \ {p} and E and V ◦ are the same for G′ and G.

• We will refer to the reverse transformations as adjoining a boundary spike
/ boundary edge / disconnected boundary vertex.

A ∂-graph reduction is roughly speaking, some combination of contracting
boundary spikes, deleting boundary edges, and deleting disconnected boundary
vertices, such that the endpoints of edges removed do not overlap too much.
Precisely, a reduction is a transformation of a ∂-graph G into a subgraph G′

such that

1. The edges removed are all boundary spikes or boundary edges of G.

2. A boundary spike that is removed does not share any endpoints with any
of the other edges that are removed.

3. The vertices removed are all boundary vertices of valence 0 or 1.

4. The only boundary vertices of G′ that are interior in G are the endpoints
of boundary spikes that were removed.

If there is exactly one boundary spike/ boundary edge / disconnected boundary
vertex removed overall, then the reduction operation is called simple.

Reductions and ∂-Graph Morphisms If f : G → G′ is a ∂-graph mor-
phism, and S is obtained from G′ by a reduction, then f−1(S) is obtained from
G by a reduction (easy casework left to the reader). However, a boundary spike
contraction in G′ may produce a disconnected boundary vertex deletion in G
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or some combination of boundary spike contraction and disconnected boundary
vertex deletion in G. This is why the definition was phrased so as to allow
mixing boundary spike contraction, boundary edge deletion, and disconnected
boundary vertex deletion in one reduction operation.

Filtrations and Layerable ∂-graphs: A (decreasing) filtration of a graph
G is a sequence of ∂-subgraphs G = G0 ⊃ G1 ⊃ G2 ⊃ . . . such that

⋂∞
n=0Gn =

∅. If Gn+1 is obtained from Gn by a reduction, then the filtration is called a
layerable filtration and the ∂-graph is said to be layerable. A partial filtration
is a sequence of subgraphs G = G0 ⊃ G1 ⊃ . . . , and it is a partial layerable
filtration if each subgraph is obtained from the previous one by a reduction
operation.

If f : G → G′ is a ∂-graph morphism and G′
0, G

′
1, . . . is a layerable filtra-

tion of G′, then f−1(G0), f
−1(G1), . . . is a layerable filtration of G. Hence,

layerability of G′ implies layerability of G.
Electrical Properties: As exemplified in §1.2, if G′ is obtained from G by

a reduction, then the boundary behavior of G′ is determined by B(G) and the
voltage-current relations of the edges removed:

Lemma 3.1. Suppose that G′ is obtained from G by a reduction. Let Γ be a
BZ network on G and let Γ′ be the subnetwork on G′. Then

• Any harmonic function on Γ′ extends to a harmonic function on Γ.

• In the case of contracting boundary spikes or deleting boundary edges, the
extension is unique.

• B(Γ′) is determined by B(Γ) and the voltage-current relation of the spike.
The same holds switching Γ and Γ′.

Proof. Any reduction can be expressed in three steps as a contraction of non-
degenerate spikes, deletion of boundary edges, and deletion of disconnected
boundary vertices, so it suffices to consider each of these operations individually.

Contracting boundary spikes: Let’s consider the case of contracting one
boundary spike. Let e be the oriented boundary spike, ρe = γ−1

e the resistance
function. We want to show that any harmonic (u′, c′) on Γ′ extends to a unique
harmonic (u, c) on Γ. The only thing we need to decide is the current on e and
the potential on e+. Since e− is boundary in Γ′ but interior in Γ, there is only
one possible choice for c(e) that would yield net current zero on e−. We then
set u(e+) = u(e−) + ρe(c(e)).

Note that the boundary data of u is uniquely determined by ρe and the
boundary data of u′. Indeed, the net current of u on ι(e) equals the net current
of u′ on τ(e) equals ce, and u(e+) = u(e−) + ρe(ce). Also, ∂V (Γ′) \ {e−} =
∂V (Γ) \ {e+}, and the potential / net current on these vertices is the same for
u as it is for u′. Similarly, the boundary of u′ is uniquely determined by ρe and
the boundary data of u.

The same proof applies for contracting multiple boundary spikes, even in-
finitely many.
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Deleting Boundary Edges: The argument is similar: Any harmonic func-
tion on Γ restricts to harmonic function on Γ′. To find the boundary data of
(u, c) from (u′, c′) or (u′, c′) from (u, c), we keep the potentials the same, and
adjust the net currents on the boundary vertices according to the boundary po-
tentials together with conductance functions γe of the boundary edges removed.

Deleting Disconnected Boundary Vertices: Details left to reader. The
disconnected boundary vertex can have whatever potential we want but must
have net current zero since it does not interact with the rest of the network.

4 Layering II: IO-Graphs and Elementary Fac-

torization

4.1 The Category of Input-Output Graphs

Overview: John Baez and Brendan Fong describe “gluing networks together”
in terms of a composition in a category [1]. I will use the same construction
except that I assume less knowledge of category theory and work with infinite
/ nonlinear networks.

Roughly speaking, we label some of the boundary vertices of our graph as
“input” and some as “output” (allowing a vertex to be both input and output),
and think of our network as a transformation (morphism) from the input vertices
to the output vertices. We compose such morphisms by identifying the output
vertices of the first with the input vertices of the second. Next, we define a
functor from this category to the category of relations, which sends a network
with input and output to a relation describing how the boundary potential and
current data of harmonic functions on the inputs and outputs are related.

IO-Graphs: A graph with input and output or IO-graph is a graph G to-
gether with two sets P and Q and injective “labelling” functions i : P → V (G)
and j : Q → V (G). In this case, we say the triple (G, i, j) is an IO-graph from
P to Q. If (G, i, j) and (G, i′, j′) are two IO-graphs from P to Q, then we say
they are isomorphic if there is a graph isomorphism f : G → G′ such that the
following commutes:

PQ

V (G)

V (G′)

ij

i′j′

f

Remark. [1] does not assume the labelling function is injective. I make this
assumption for simplicity since I do not need the general case here.

The Category of IO-Graphs: We define the category of IO-graphs as
follows:
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• The objects are finite / countable sets.

• A morphism G : P → Q is an isomorphism class of IO-graphs from P to
Q.

• Composition is defined as follows: Suppose G1 : P → Q and G2 : Q → R,
and choose representatives (G1, i1, j1) and (G2, i2, j2) of the isomorphism
classes. Let G be the graph obtained from the disjoint union of G1 and
G2 by identifying j1(q) with i2(q) for each q ∈ Q. We define i : P → V (G)
by composing i1 with the obvious map V (G1) → V (G) and j : R → V (G)
is defined similarly. Then G2 ◦ G1 : P → R is the isomorphism class
represented by (G, i, j). (Check this is well-defined!)

• The identity morphism P → P is a represented by a graph with no edges
and V (G) = P , and i and j are the identity P → P .

The reason to use isomorphism classes is that the disjoint union of graphs is
only well-defined up to canonical isomorphism.

IO-Graphs and ∂-Graphs: Any IO-graph can be made into a ∂-graph by
defining ∂V = i(P ) ∪ j(Q). Conversely, if we have a ∂-graph G and write ∂V
as a union of two sets P and Q, then G represents an IO-graph morphism from
P to Q.

The Category of IO-Networks: IO-networks are defined the same way
but with voltage-current relations associated to the edges. An IO-network mor-
phism will be denoted G, and context will determine whether G represents an
isomorphism class of IO-graphs or IO-networks.

The Category of Relations: The category of relations Rel is the category
where the objects are sets and a morphism U → V is a relation R ⊂ U ×V . To
emphasize that these relations are not necessarily given by functions U → V , we
shall write R : U  V . If R1 : U  V and R2 : V  W , then R1 ◦R2 : U  W
is defined by (u,w) ∈ R1 ◦ R2 if and only if there exists v ∈ V such that
(u, v) ∈ R1 and (v, w) ∈ R2.

The IO Boundary Behavior Functor: Recall our networks take values
in a given abelian group M . We will define a functor X from the category of
IO-networks overM to the category of relations. If P is a finite / countable set,
define X (P ) = MP ×MP . By convention, X (∅) is a one-element set. Next,
suppose G : P → Q is an IO-network morphism. Suppose G is represented by
a network Γ and labellings i : P → V (Γ) and j : Q → V (Γ), and set ∂V (Γ) =
i(P ) ∪ j(Q). Let πP be the projection M∂V → MP and πQ : MB → MQ. Let
ιP and ιQ be the canonical inclusionsMP →M∂V andMQ →M∂V . We define
the relation

X (G) : (MP ×MP ) (MQ ×MQ)

as follows: If x = (x1, x2) ∈ MP ×MP and y = (y1, y2) ∈ MQ ×MQ, then we
say (x, y) ∈ X if and only if there exists a harmonic boundary data (φ, ψ) ∈ B(Γ)
such that

x1 = πPφ, y1 = πQφ, ιP (x2)− ιQ(y2) = ψ.
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More intuitively, (x, y) ∈ X if there exists a harmonic function on Γ with
boundary potentials consistent with x1 and y1 and boundary net currents con-
sistent with x2 and y2. Here x2 represents current flowing into the network at
the input vertices, and y2 represents current flowing out of the network at the
output vertices. If a vertex is both input and output, then current can flow in
at the input side and out at the output side.

If G : P → Q is an IO-network morphism, then X (G) is independent of the
choice of representation for the isomorphism class.

To see that X preserves composition, suppose G1 : P → Q and G2 : Q →
R. Let G = G2 ◦ G1 and let Γ1,Γ2,Γ be specific networks representing the
isomorphism classes. Without loss of generality Γ1 and Γ2 are subnetworks of
Γ.

Composition in the category of relations gives us that (x, z) ∈ X(G2)◦X(G1)
if and only if there exists some y with (x, y) ∈ X (G1) and (y, z) ∈ X (G2). In
that case (x, y) and (y, z) represent the boundary data of harmonic functions
on Γ1 and Γ2. By similar reasoning as in §2, these harmonic functions paste
together to a harmonic function on Γ with boundary data consistent with (x, z).
Conversely, for any (x, z) consistent with a harmonic function (u, c) on Γ, we can
choose y such that (x, y) and (y, z) are consistent with the restricted harmonic
functions on the subnetworks.

4.2 Elementary IO-graphs

The category of IO graphs enables us to express complicated networks as com-
positions of simpler ones. Our building blocks are networks on the following
four types of elementary IO-graphs :

1. A graph in which every component consists of either (a) an isolated vertex
which is both an input and an output or (b) one edge and two vertices,
where one of the vertices is an input and the other is an output. See
G2, G8, G10 in Figure 3.

2. A graph in which all the vertices are both inputs and outputs. See
G1, G3, G7, G9 in Figure 3.

3. A graph with no edges in which every vertex is an input. We call the
vertices which are not outputs input stubs. See G6 in Figure 3.

4. A graph with no edges in which every vertex is an output. We call the
vertices which are not inputs output stubs. See G4 in Figure 3.

An elementary factorization of an IO-graph morphism G : P → Q is a factoriza-
tion G = Gn◦· · ·◦G1 such that each Gj is represented by an elementary IO-graph
and all the type 3 elementary IO-graphs come before (to the right of) the type
4 elementary IO-graphs. If G is the identity morphism P → P = Q then we
make the convention that it has an elementary factorization of length zero. If
we are given a graph G representing G : P → Q and an elementary factorization
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of G, then we can assume without loss of generality that Gj is represented by a
subgraph Gj of G, and we will often make this simplification.

Remark. The usefulness of the stipulation that the type 3 IO-graphs come before
the type 4 ones will become clear in the next section. For the moment, the reader
can verify that, if we allowed type 3 IO-graphs to come after type 4 IO-graph,
then any morphism G : P → Q represented by a finite graph would admit a
factorization. It is unreasonable to expect such cheap factorizations to provide
useful information.

Factorization into Simple Elementary IO-Graphs: In the case of finite
graphs, any type 1 IO-graph can be factorized into type 1 IO-graphs with only
one edge. It is more convenient for writing out specific factorizations if we allow
several edges, since it makes the list of IO-graphs shorter; but in proving general
theorems we will often assume only one edge. The same considerations apply
to the other types of elementary IO-graphs.

Elementary IO-networks and Their Boundary Behavior: We define
an elementary IO-network to be a network on an elementary IO-graph. The
behavior of X on such IO-networks is easy to describe in the cases we are
interested in:

1. Suppose we have a type 1 network Γ with only one edge {e, e} with input
vertex p = e+ and output q = e−. Suppose Θe is given by a resistance
function ρe : M → M . Then (x, y) = ((x1, x2), (y1, y2)) is in X (Γ) if and
only if

(y1)q = (x1)p − ρe((x2)p)

(y2)q = (x2)p

(x1)r = (y1)r and (x2)r = (y2)r for r 6= p, q.

As a result, X (Γ) defines a bijective function MP ×MP →MQ ×MQ.

2. Suppose we have a type 2 network Γ with only one edge {e, e} with end-
points p = e+ and q = e−. Suppose Θe is given by a conductance function
γe :M →M . Then (x, y) ∈ X (Γ) if and only if

x1 = y1

(y2)p = (x2)p − γe((x1)p − (x1)q)

(y2)q = (x2)q + γe((x1)p − (x1)q)

(y2)r = (x2)r for r 6= p, q.

As a result, X (Γ) defines a bijective function MP ×MP →MQ ×MQ.

3. Suppose we have a type 3 network Γ with only one input stub p. Then
(x, y) ∈ X (Γ) if and only if (x2)p = 0 and for all r 6= p, (x1)r = (y1)r and
(x2)r = (y2)r.

4. The case of a type 4 network is symmetrical.
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Figure 3: An elementary factorization. The inputs are shown in blue and the
outputs in red.
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4.3 Elementary Factorization and Layerability

Elementary IO-Graphs and Reduction Operations: Any ∂-graph repre-
sents an IO-graph morphism G : ∅ → ∂V . Then

1. If G′ is a type 1 IO-graph morphism, then G′ ◦ G is obtained from G by
adjoining a boundary spike. (Or to be precise, this holds for some pair of
∂-graphs representing G′ ◦ G and G.)

2. If G′ is a type 2 IO-graph morphism, then G′ ◦ G is obtained from G by
adjoining a boundary edge.

3. Precomposing a type 3 IO-graph morphism corresponds to adjoining an
isolated boundary vertex.

4. Precomposing a type 4 IO-graph morphism corresponds to changing a
boundary vertex to interior.

The IO-graphs can thus be viewed as a geometric and categorical realization
of reduction operations and other graph transformations. I invite the reader to
reinterpret the proofs of §3 using elementary IO-networks.

If we consider G : ∅ → B instead and postcompose the elementary IO-
graphs, then the roles of type 3 and type 4 networks are reversed. These con-
siderations lead to . . .

Lemma 4.1. Let G be a finite ∂-graph. The following are equivalent:

a. G is layerable.

b. The IO-graph morphism ∅ → ∂ represented by G admits an elementary
factorization into networks of types 1, 2, and 4.

c. For some P,Q ⊂ ∂V with P ∪Q = ∂V , the morphism P → Q represented by
G admits an elementary factorization.

Proof. (a) =⇒ (b). A sequence of reductions on G can be interpreted as a
factorization into elementary IO-graphs. Details left to the reader.

(b) =⇒ (c) is trivial.
(c) =⇒ (a). Let G represent an IO-graph morphism G with factorization

G = Gn ◦ · · · ◦ G1. We can choose some k such that j ≤ k for any type 3 network
Gj and j > k for any type 4 network Gj . Then we define a layerable filtration
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of G using the subgraphs that represent

Gn ◦ · · · ◦ G1

Gn−1 ◦ · · · ◦ G1

. . .

Gk+1 ◦ · · · ◦ G1

Gk ◦ · · · ◦ G1

Gk ◦ · · · ◦ G2

. . .

Gk ◦ Gk−1

Gk

∅

4.4 Parametrizing the Space of Harmonic Functions

For layerable networks, this idea provides an easy way to parametrize the space
of harmonic functions and the boundary behavior. IfG is layerable, it is not hard
to show that we can express G : ∅ → ∂V in the form Gn ◦· · ·◦G1 ◦G0 where Gj is
a type 1 or type 2 network for j ≥ 1 and G0 is a type 4 network with no inputs.
Suppose Γ is a network on G with bijective conductance functions γe : M →M .
Then B(Γ0) = {(φ, 0)} ⊂ MV (G0) ×MV (G0) since any potentials are possible
but the net current at each vertex must be zero. Also, X (G0) = B(Γ0)×X (∅),
which we can identify with B(Γ0) since X (∅) is a one-element set. Then the
boundary behavior of Gj ◦ · · · ◦ G0 is given by

Bj = B(Gj ◦ · · · ◦ G0) = X (Γj) ◦ · · · ◦ X (Γ1)(B(Γ0)).

Hence, we have a bijective parametrization of Bj by MV (G0), and in particular
B(G) has such a parametrization. In the process, we have also parametrized the
space of harmonic functions HΓ since all edges of the graph were included in one
of the elementary factors. This yields the following corollary (the smoothness,
linearity, etc. of the maps below follows from our explicit formula for X (Gj)):

Proposition 4.2. Suppose Γ is a finite layerable network with bijective conduc-
tance functions γe. Then Φ : H(Γ) → B(Γ) is a bijection. Also,

a. If M is a field F and γe is a linear isomorphism F → F, then Φ is a linear
isomorphism, and the space of harmonic functions has dimension |∂V |.

b. If M is a topological abelian group and γe is a homeomorphism M → M ,
then Φ is a homeomorphism.

c. If M = R or C and γe is a diffeomorphism, then Φ is a diffeomorphism and
B(Γ) is a smooth |B|-dimensional submanifold of R∂V × R∂V .

This Fails in General: For an example where (a) fails, see 7.3. For an
example where (c) fails, consider the following graph:
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e1 e2

e4e3

Define resistance functions R → R as follows: Let ρe1(t) = ρe3(t) = t + 1
2 sin t

(the orientation of the edge does not matter since the function is odd), and
let ρe2(t) = ρe3(t) = −t. These are bijective C∞ resistance functions with a
C∞ inverse. The series with resistance functions ρe1 and ρe2 is equivalent to
a single-edge with resistance ρe1 + ρe2 . Thus, the network is equivalent to a
parallel connection

1 2

e1

e2

in which each edge has resistance function ρ(t) = 1
2 sin t. Let e1 and e2 be the

oriented edges shown in the picture. Thus, (u, c) is harmonic if and only if

u1 − u2 = 1
2 sin ce1 = 1

2 sin ce2 .

Now sin ce1 = sin ce2 is equivalent to ce2 = ce1 + 2πn or ce2 = π − ce1 + 2πn. If
ce1 = ce2 +2πn, then the net current ψ1 = ce1 + ce2 = 2ce1 +2πn and ψ2 = −ψ1

and u1 − u2 must be 1
2 sinψ1/2. If ce2 = π − ce1 + 2πn, then ψ1 = (2n + 1)π

and ψ2 = −ψ1 and u1 − u2 could be any number in [−1, 1]. Thus,

L ={(φ, ψ) : φ1 − φ2 = 1
2 sinψ1/2, ψ1 = −ψ2}

∪ {(φ, ψ) : φ1 − φ2 ∈ [−1, 1], ψ1 = (2n+ 1)π, ψ2 = −ψ1}.

This is not a smooth manifold because there is no Euclidean coordinate neigh-
borhood of the points where φ1 − φ2 = ±1 and ψ1 = (2n+ 1)π.

4.5 Parametrizing the IO Boundary Behavior

Motivation: In the last proposition, layerable filtrations correspond to only
one specific type of IO factorization where either the input or the output set is
trivial. If the input and output sets are nontrivial, the IO factorization gives
us much more information about the boundary data on the input and output
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side are related: For instance, for what boundary data on the input side can we
find a matching harmonic function on the network? How unique is it? What
possible outputs are compatible with the given input?

This is exactly the sort of question we asked in the example of §1.2. We
wanted to find a harmonic function that had certain potentials and net currents
on some subset of ∂V . Specifically, referring to Figure 1, we wanted potential
zero on 3 and 8, potential 1 on 1, and net current zero on 3. We could take
the inputs to be P = {1, 3, 8} and the outputs to be Q = {1, 8, 2, 7, 10}, and
ask whether x = ((1, 0, 0), (0, 0, 0)) is a valid input. Here (1, 0, 0) represents the
potentials on vertices 1, 3, and 8 and (0, 0, 0) represent their input net currents.
Since 1 and 8 are both inputs and outputs, setting the input current to zero
does not actually determine the net current of the harmonic function, but for
vertex 3, we are asking for the overall net current to be zero.

Parametrizing the IO Boundary Behavior: To answer the above ques-
tions, assume that

• Γ is a network given by bijective functions γe :M →M .

• Γ represents an IO-network morphism G : P → Q.

• There is an elementary factorization G = Gn ◦ · · · ◦ G1, such that Gj has
inputs Pj−1 and outputs Pj , with P0 = P and Pn = Q.

• All the type 3 networks Gj satisfy j ≤ k and all the type 4 networks Gj

satisfy j > k.

• Each elementary network has only one edge or one stub.

• The number of input stubs in Ni and the number of output stubs is No.

One could start with an input x0 ∈ MP0 ×MP0 and see what happens as one
works toward the output. But things will be nicer if we start in the middle:
Choose some xk ∈MPk ×MPk .

If Gk is type 1 or type 2, then there is a unique xk−1 ∈ MPk−1 ×MPk−1

that is compatible with xk. On the other hand, if Gk is type 3, then there are
multiple compatible values of xk−1 since the potential of the input stub can
be anything, but the input net current on the stub must be zero. However, in
all cases, xk−1 uniquely determines xk. Repeating this reasoning for Gk−2, . . . ,
G1, we can see that x0 uniquely determines xk, but if we start with xk, then
to find all possible values of x0 we must add one arbitrary parameter on each
input stub. So the set of possible x0’s which have a compatible xk is in bijective
correspondence with MPk ×MPk ×MNi .

Similarly, considering Gk+1, . . . , Gn, for any given xk, we can find a com-
patible xn after choosing No arbitrary parameters for the output stubs. On the
other hand, xk is uniquely determined by xn.

Let us call r = |Pk| the rank of the factorization (check this is well-defined,
independent of the choice of k so long as it is after all the type 3 networks
and before the type 4 networks). Suppose that πP : X (G) → MP ×MP and
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πQ : X (G) →MQ ×MQ are the obvious projections. Then the above reasoning
gives us bijections:

πP (X (G)) ∼=M2r+Ni, πQ(X (G)) ∼=M2r+No.

These bijections are “nice” in that they preserve whatever extra structure our
network has. For instance, for linear networks over a field, they are linear
isomorphisms.

Moreover, if x0 ∈ πP (X (G)), then x0 uniquely determines xk, and from xk,
we have MNo choices for xn. That is,

If x0 ∈ πP (X (G)), then π−1
P (x0) ∼=MNo .

If xn ∈ πQ(X (G)), then π−1
Q (xn) ∼=MNi .

This tells us exactly how many values of x0 are attainable and how many xn’s
are compatible with a given x0.

We have proven the following:

Proposition 4.3. Suppose Γ is a finite BZ(M) network representing a mor-
phism G : P → Q, and that it admits an elementary factorization of rank m
with Ni input stubs and No output stubs. Then there are bijections:

πP (X (G)) ∼=M2r+Ni ,

πQ(X (G)) ∼=M2r+No

π−1
P (xP ) ∼=MNo

π−1
Q (xQ) ∼=MNi ,

for any xP ∈ πP (X (G)) and xQ ∈ πQ(X (G)). Also,

• If M is a topological space and γe is a homeomorphism, then these bijec-
tions are homeomorphisms.

• If M is a field and γe is a linear map, then these bijections are linear
isomorphisms.

The numbers r, Ni, and No are detectable from “dimension” of

πP (X (G)), πP (X (G)), π−1
P (x0), π−1

Q (xn),

provided x0 and xn are feasible input/output and the conductance functions γe
have enough extra structure for the dimension to be well-defined. For instance,
in the case of linear networks, we take x0 = 0 and xn = 0 and check the
dimension of these sets as vector spaces. If M is a finite set, we check the
cardinality. If M = R and γe is a homeomorphism R → R, we check their
dimension as topological manifolds.

Remark. The number r has meaning independent of the factorization: It is the
maximum size connection between P and Q. See §8.
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Exercises:

1. In the example of Figure 3, find the “dimensions” of πP (X (G)), πQ(X (G)),
π−1
P (x0), and π

−1
Q (xn).

2. Work out an elementary factorization of the example from §1.2 to show
that the desired harmonic function exists. What degree of freedom do we
have in choosing the extension?

Remark. The reason we required the type 3 IO-graphs come before the type 4
ones was precisely so that the above argument would work. If we had inputs
stubs that came after output stubs, then if we started at the input side, we
would need to insert extra parameters when we came to an output stubs, and
then when we came to later input stubs to determine which parameters on the
output stubs were actually valid. The solutions to such equations will not always
yield the same answer for the final dimensions.

5 Layering III: Scaffolds

The uses of “scaffolds” are summarized in the following mantra: A scaffold
describes

• The order the edges occur in an elementary factorization.

• The order the edges are removed in a layerable filtration.

• The order the edges are used in harmonic continuation.

I will start with the definition of scaffolds and some basic properties (§5.1),
postponing the discussion of motivation. The next three sections will explain
the three uses of scaffolds listed above, including motivation and examples as
well as more technical details. In §5.5, the machinery is in place to define solvable
graphs, for which the layer-stripping and harmonic-continuation approach works
to solve the inverse problem, and to deduce that if f : G → H is a ∂-graph
morphism, then solvability of H implies solvability of G.

5.1 Definition and Basic Properties

Scaffolds: A scaffold S on a ∂-graph G consists of

A. A strict partial order ≺ on the set of edges E′.

B. A partition of E′ into two sets, Lad(S) and Pl(S), whose elements are called
ladders and planks respectively.

C. For each ladder e, an assigned head endpoint head(e) and foot endpoint
foot(e). The head and foot are required to be distinct, so in particular e is
not a self-loop. A vertex will be called a head if it is the head of some ladder
and a non-head otherwise, and the same for “foot.”
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Figure 4: A scaffold on a ∂-graph. The ladders are colored orange and depicted
with an arrow pointing from the foot to the head.. The planks are simply black.
The numbers of the edges indicate the partial order. That is, e ≺ e′ if and only
if the number on e is less than the number on e′.
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(A), (B), (C) are required to satisfy the following conditions:

1. Every subset of E′ has a minimal element with respect to ≺;

2. If an edge e′ is incident to the head of a ladder e, then e′ � e;

3. If an edge e′ is incident to the foot of a ladder e, then e′ � e;

4. If interior vertices p1 and p2 are incident to e1 and e2 respectively and if
e1 � e2, then either p1 is a head or p2 is a foot.

An example is shown in Figure 4. The ladders are depicted with an arrow
pointing from the foot to the head. The ladders are unfortunately not always
drawn vertically, so the reader will have to imagine the graph as floating in deep
space where there is no global notion of “up.” As an exercise, verify that the
partial order and ladder assignment in the picture satisfies (1) - (4).

Top, Bottom, and Middle: Given a scaffold S, we can partition the edges
into three sets:

• The top TopS is the set of e such that e � e′ for some e′ incident to an
interior non-head.

• The bottom BotS is the set of e such that e � e′ for some e′ incident to
an interior non-foot.

• The middle MidS = E′ \ (TopS ∪ BotS).
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More intuitively, to find BotS, locate all the interior non-feet, then form the set
of edges incident to them, then form the set of everything � those. Condition
(4) guarantees that BotS and TopS are disjoint. Indeed, if there was an e ∈
BotS ∩ TopS, then by transitivity, there would be some e1 � e2 where e1
is incident to an interior non-head and e2 is incident to an interior non-foot,
contradicting (4).

Functoriality: Suppose f : H → G is a ∂-graph morphism and S is a
scaffold on G. We define a scaffold f∗S on H as follows:

A. Set e ≺ e′ if and only if f(e) ≺ f(e′).

B. Let e be a ladder if and only if f(e) is a ladder.

C. In that case, the two endpoints of e are distinct, and we can choose the head
and foot so that f(head(e)) = head(f(e)) and f(foot(e)) = foot(f(e)) (and
there is only one way to do this).

It’s straightforward to see that this defines a partial order on E′(H). Next, we
check that (1) - (4) are satisfied:

1. To find a minimal element of T ⊂ E′(H), pick any e such that f(e) is minimal
in f(T ).

2. Suppose p is the head of a ladder e and e′ 6= e is incident to p. Then f(p) is
the head of the ladder f(e), and f(e′) is incident to it, so f(e) ≺ f(e′), hence
e ≺ e′.

3. is symmetrical.

4. Suppose that e1 � e2 in H , and p1 and p2 are interior endpoints of e1 and
e2 respectively. Then f(p1) and f(p2) are interior in G and f(e1) � f(e2).
Thus, either f(p1) is a head or f(p2) is a foot. If f(p1) is a head, then so
is p1; this is because by definition of ∂-graph morphism, f maps the edges
incident to p1 bijectively onto the edges incident to f(p1). Similarly, if f(p2)
is a foot, then so is p2.

Let Scaf G be the set of scaffolds on G. By the above construction, this
defines a contravariant functor from ∂-graphs to sets. The reader may verify
that Top f∗S ⊂ f−1(TopS) and Bot f∗S ⊂ f−1(BotS), and hence Mid f∗S ⊃
f−1(MidS).

5.2 Scaffolds and Elementary Factorization

Scaffolds from Elementary Factorizations: Let G be a finite graph. The
intuition for the scaffold definitions, especially (2), (3), and (4), should become
clearer when we describe how to obtain a scaffold from an elementary factoriza-
tion:

• The partial order is defined by e ≺ e′ if the elementary IO-graph containing
e comes earlier in the factorization than the one containing e′.
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• The ladders are the edges in the type 1 elementary IO-graphs. The input
is the foot and the output is the head.

• The planks are the edges in the type 2 elementary IO-graphs.

• (2) holds because if e is a ladder, then head(e) is the output of the elemen-
tary IO-graph containing e, and so any other edges incident to head(e)
must have come in the later factors. (3) is symmetrical.

• An interior non-head must be an input stub and an interior non-foot must
be an output stub. In an elementary factorization, an edge incident to an
input stub must come strictly before an edge incident to an output stub.
This implies that (4) holds by contrapositive.

• If we imagine a “flow of information” from inputs to outputs, then the lad-
ders are parallel to the flow of information, and the planks are transverse
to it.

As an exercise, draw the scaffold produced from the elementary factorization
in Figure 3 from §4.2.

In general, scaffolds need not come from elementary factorizations. In a
scaffold, a boundary vertex can be incident to two ladders, which does not
happen when it comes from a factorization. Also, when a scaffold comes from
an elementary factorization, a stronger version of (4) holds where � is replaced
by 6≻.

Motivation: Why Scaffolds? The reader has probably been wondering
for a while why I introduce scaffolds rather than continuing to use elementary
factorizations for everything. First, elementary factorizations are tricky to gen-
eralize to infinite graphs. One would have to compose infinitely many IO-graph
morphisms. There might also be infinitely many type 3 and type 4 IO-graphs,
so to put all the type 3 IO-graphs before the type 4 ones, one would need some
indexing system more complicated than a sequence. (In fact, this is exactly the
function of the scaffold’s partial order.)

Second, elementary factorizations contain information that is redundant or
unnecessary for harmonic continuation, and it is tedious to write out the in-
put/output vertices for each elementary IO-graph when the most important
thing is the order in which the edges are used, and which parts of the graph
come after the input stubs and before the output stubs. A scaffold is much
easier to define, both in general theorems and in specific examples.

Third, the scaffold axioms (2) - (4) are defined purely in terms of local
conditions. All the global information is captured by the partial order. This is
what makes scaffolds so easy to pull back through ∂-graph morphisms, which
are also defined by local conditions.

Elementary factorizations on the other hand do not pull back nicely through
∂-graph morphisms. The problem comes from the inclusion maps of subgraphs.
Suppose that we have a factorization of a ∂-graph G from P to Q and that H is
a subgraph of G. The obvious way to try to get an elementary factorization of
H is by intersecting H with each of the subgraphs representing the elementary
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Figure 5: Example: Why one cannot induce factorizations on subgraphs.

factors. This gives some factorization in the category of IO-graphs, but not an
elementary factorization.

A variety of things go wrong: The inputs for a given elementary factor might
not be in H at all, and maybe some of the inputs are in H and some are not.
Finally, there could be boundary vertices in the subgraph that are not inputs or
outputs of the pulled-back factorization. Consider the following factorization of
the graph G in the left of Figure 5:

• G1 is a type 2 IO-graph using the first row of vertices and edges.

• G2 is a type 1 using the first row of vertical edges.

• G3 is type 2 using the middle row vertices and horizontal edges.

• G4 is type 1 using the second row of vertical edges.

• G5 is type 2 using the last row of vertices and edges.

In the right picture, there is a subgraph H obtained by changing one interior
vertex to boundary. This does not give an elementary factorization of H in any
obvious way. The middle vertex cannot be an input of the overall morphism
since it is the output of one of the type 1 factors, nor can this vertex be an
output for symmetrical reasons.

On the other hand, the scaffold on G derived from this elementary factoriza-
tion does create a scaffold on H , precisely because scaffolds allow a boundary
vertex to be incident to two ladders.

In sum, scaffolds are more flexible and easier to construct than elementary
factorizations. However, elementary factorizations make results about the input-
output relation easy to formulate precisely and prove, and in §8, it will be useful
to have both constructions available.

Elementary Factorizations from Scaffolds: A scaffold can be used to
produce a factorization as well, although it is more fussy and requires us to
make some arbitrary choices along the way. Assume G is a finite graph. We
will prove two claims:

a. If S is a scaffold with a total order and each boundary vertex is incident to at
most one ladder, then S corresponds to an elementary factorization with P
equal to the set of boundary non-heads and Q the set of boundary non-feet.
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b. If S is any scaffold, then we can complete the partial order to a total order,
and change some ladders to planks to produce a new scaffold where each
boundary vertex is incident to at most one ladder.

(a) Let e1, . . . , en be edges listed according to the total order. We can choose
a k such that

BotS ⊂ {e1, . . . , ek} and TopS ⊂ {ek+1, . . . , en}.

Let P be the set of boundary non-heads and Q the set of boundary non-feet. If
k ≥ 1, we claim that e1 is either a boundary spike with the boundary endpoint
in P or a boundary edge with both endpoints in P . Observe:

• If e1 is a ladder, then there cannot be any other edges incident to the
foot by condition (2) and minimality of e1. The foot can’t be interior–if
it was, then it would be an interior non-head, and hence e1 would be in
TopS, contrary to our assumption. Thus, h(e1) is a boundary spike, and
head(e1) ∈ P by definition of P . So e1 is a boundary spike with boundary
endpoint in P .

• If e1 is a plank, then neither of its endpoints can be a head by condition
(3), and hence they must be boundary vertices because e1 6∈ TopS. The
endpoints are also in P by definition. So e1 is a boundary edge with
endpoints in P .

Therefore, we have a factorization G = H1 ◦ G1 where G1 is a type 1 or type 2
IO-graph. We let P1 be the set of outputs for G1. The reader may verify that
P1 contains all the boundary non-heads of H1. Thus, if 2 ≤ k, we can repeat
the process using e2 and S1 instead of e1 and G and obtain a factorization
G = S2 ◦ G2 ◦ G1.

We repeat this process for the edges e2, . . . , ek to get a factorization

G = Hk ◦ Gk ◦ · · · ◦ G1.

Next, in a symmetrical way, we start at en and work our way backwards to
factorize

Hk = Gn ◦ · · · ◦ Gk+1 ◦ T .

Then T cannot have any interior vertices, and so T = T1 ◦ T2 where T1 is an
output-stub IO-graph and T1 is an input-stub IO-graph, and this completes the
factorization.

(b) An easy induction which we leave to the reader allows us to complete
the partial order of any given scaffold to a total order without changing the
beginning and end of the scaffold.

Next, we will change some ladders to planks until each boundary vertex only
has one ladder. Choose k such that BotS ⊂ {ej : j ≤ k} and TopS ⊂ {ej :
j > k}. Suppose that ei ≺ ej are ladders incident to a boundary vertex p, with
p = τ(ei) = ι(ej). Then either i ≤ k or j > k. In the first case, we can change
ei to a plank, and we will still have a scaffold. if the other endpoint q = foot(ei)
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was interior, then we have created a new interior non-foot; but all the edges
incident to q are � ei, so that the top and bottom are still disjoint. Similarly, in
the case j > k, we change ej to a plank. After repeating this for each boundary
vertex that is incident to two ladders, we are done.

5.3 Scaffolds and Layerability

Let G = G0 ⊃ G1 ⊃ . . . be a layerable filtration. Then each edge e is in
E(Gne

) \ E(Gne+1) for some ne. Define S as follows:

A. e ≺ e′ if and only if ne < ne′ .

B. e is a ladder if it is a boundary spike of Gne
and it is a plank if it is a

boundary edge of Gne
.

C. If e is a boundary spike in Gne
, then foot(e) is the boundary endpoint

removed in the spike contraction and head(e) is the other endpoint.

We then check conditions (1) through (4):

1. If T ⊂ E′, then we can choose an e ∈ T such that ne is minimal, since ne is
always a positive integer.

2. Suppose that e′ 6= e is incident to the head of the ladder e. Then e is one of
the boundary spikes removed from Gne

and the head is the vertex that was
not removed. By the definition of reduction operation, e′ cannot have been
removed in the reduction of Gne

to Gne+1, so that e′ ≻ e.

3. Exercise.

4. This holds trivially because all interior vertices are heads. Indeed, every
interior vertex must be removed at some point in the filtration, and before
that, it must have been changed to a boundary vertex. That can only happen
if it was the interior endpoint of some boundary spike which was contracted.

The precise relationship between layerability and scaffolds in the infinite
case is described in the next technical lemma, which may be omitted on a first
reading:

Lemma 5.1. For a ∂-graph G, the following are equivalent:

a. G admits a layerable filtration (that is, G is layerable).

b. There exists a scaffold S on G with TopS = ∅.

c. For any e ∈ E′(G), there is a scaffold S on G with e 6∈ TopS.

d. For any e ∈ E′(G), there is a finite partial layerable filtration G = G0 ⊃
· · · ⊃ Gn with e 6∈ E′(Gn).
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Proof. (a) =⇒ (b) =⇒ (c) is immediate given the above discussion.
(c) =⇒ (d). Define a new scaffold S ′ with the same ladders with the

same heads and feet S, but define the new partial order by taking the transitive
closure of the relations defined by conditions (2) and (3) of the scaffold definition.
(Thus, we are making as few edges comparable to each other as possible given
our assignment of ladders.) Every subset of E has a minimal element with
respect to S, which will automatically be minimal with respect to S ′.

I claim that for any e ∈ E′(G), there are only finitely many edges e � e0 in
S ′. If we suppose not, then there is a minimal edge e0 for which the claim does
not hold. There are only finitely many edges e1, . . . , en which incident to and
less than e0, and {e � e0} =

⋃n
j=1{e � ej}∪{e0} since the relations (2) and (3)

used to define our partial order only compare edges which are incident to each
other. By minimality of e0, {e � ej} is finite, which implies {e � e0} is finite,
which is a contradiction.

Now choose e. Let e1, . . . , ek = e be the edges � e in S ′. We can assume
they are listed in some nondecreasing order. Let G0 = G. Then e1 is a minimal
edge in G0. The conditions in the definition of a scaffold force e1 to be a
boundary spike if it is vertical and a boundary edge if it is a plank. Let G1 be
the graph formed by deleting/contracting this edge as appropriate. Then e2 is
a minimal edge in G1, hence a boundary spike or boundary edge. So (e) follows
by induction.

(d) =⇒ (a). We assumed in §1 that our graphs have countably many edges,
so we can write them in a sequence e1, e2, . . . . For each en, choose a kn and a
sequence of subgraphs G = Gn,1 ⊃ · · · ⊃ Gn,kn

as in (d). Then consider the
following filtration:

G = G1,1, G1,2, . . . G1,k1 ,

G1,k1 ∩G2,1, G1,k1 ∩G2,2, . . . G1,k1 ∩G2,k2

G1,k1 ∩G2,k2 ∩G3,1, . . . G1,k1 ∩G2,k2 ∩G3,k3

. . . . . .

The consecutive elements of this sequence, if they are not equal, are obtained
by removing a boundary spike or boundary edge as a result of our earlier obser-
vation. Thus, we have a partial layerable filtration which removes all the edges
in the graph. We can obtain a new filtration by replacing each reduction with
two reductions–first remove the edges in the original reduction, then remove any
isolated boundary vertices. The new filtration will remove all the vertices in the
graph as well as all the edges.

5.4 Scaffolds and Harmonic Continuation

Introduction: On finite graphs, we have already described the relationship
between scaffolds and elementary factorization, as well as elementary factoriza-
tion and harmonic continuation. Now we will perform harmonic continuation
directly from a scaffold. The process is roughly what one would expect based
on §4.5:
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• If e is a ladder, then at some point we will know the potential and net
current at the foot of e and use that information to find the potential at
the head of e.

• If e is a plank, then at some point we will know the potentials at both the
endpoints of e and use that information to find the current on e.

• If p is an interior non-head (similar to an output stub), then at some point
we will have to make an arbitrary decision about what potential to put
on p.

• If p is an interior non-foot, then the continuation process cannot always
guarantee that p has net current zero unless we choose the right initial
conditions. (In fact, when we are proving the existence of harmonic func-
tions, we will cheat by starting with a harmonic function that is defined
on all of BotS and zero on most of it, so the step-by-step continuation
will not be used at this point.)

Example: Let us illustrate this by revisiting the example from §1.2; refer
to that section as needed.

Suppose we have a BZ(M) network on Γ. Our goal is to recover the voltage-
current relation on the edge 3, which is given by a bijective zero-preserving
function γ1,4 : M → M (we assume the edge is oriented from the vertex 1 to
the vertex 4). Given x ∈ M , we want to create a harmonic function that has
potential zero on vertex 4 and potential x at vertex 1. Then the net current at
1 will be γ1(x); if we can do this for any x, then we will know γ1,4.

We will start by defining (u, c) on the edges 1, 2, 3 and their endpoints, and
then show that this extends to a harmonic function on the whole network. We
set potential zero on vertices 3, 4, and 8, and potential x at vertex 1. Now we
know the potential at the foot of edge 4 but not the head, and we know the
current on edge 4 based on the currents of edges 3 and 2. So there is a unique
potential on vertex 5 which yields net current zero at vertex 4.

We next have to decide what happens on edge 5, but first we must decide the
potential on vertex 9. This can be anything since 9 is not the head of any ladder.
Once that is chosen, then the current on the planks 5 and 6 is determined, hence
so is the current on the ladder 7. So the potential at the foot (9) determines the
potential at the head (10). Similarly, we use the ladder 8 to find the potential
on vertex 6.

After assigning an arbitrary potential to vertex 7, the current on the planks
9 and 10 is determined. From that, the current on the ladder 11 is determined,
and hence the potential on its head, vertex 2. At each interior vertex p, the last
edge we used was a ladder with p as its foot, and the current on the ladder was
chosen to make the function harmonic on at p.

Thus, we have proven the “existence” claim that there exists a harmonic
function with potential zero at vertices 3 and 8 and net current zero at 3, and
potential x at vertex 1. The second (“uniqueness”) claim we have to prove is
that any such harmonic function must have net current γ1,4(x) at vertex 1. In
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Figure 6: A scaffold on the network from Figure 1. The numbers on the vertices
are simply their indices, while the numbers on the edges indicate the partial
order, which in this case is a total order.
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this case, it is easy, but to motivate the general case, let us use the scaffold to
prove it. The edge 1 is a plank where the potential at both endpoints is zero.
This implies the current on the plank is zero. The next edge 2 is a ladder. We
know the net current and potential at the foot, and the current at the other edge
incident to the foot, so we know the current on the ladder, hence the potential
at its head, vertex 4. Since the potential at both endpoints of the plank 3 is
known, so is the current on 3.

Strategy for the General Case: The general use of scaffolds and har-
monic continuation to recover the voltage-current relation on a boundary spike
(or boundary edge) is the same in spirit. However, to prove the existence of a
harmonic extension in the infinite case, we must use Zorn’s lemma and phrase
things as a proof by contradiction. Both the existence and uniqueness proofs
crucially rely on the fact that in a scaffold, every subset of E′ has a minimal
element. We also need a general way of deciding what vertices we will use for
our starting point in both the existence and uniqueness part of the proof; there
are many reasonable choices, and I picked one that seemed to be the least work
for me writing the proof.

Statements and Proofs:

We need two more pieces of terminology: Let T ⊂ E′. The ∂-subgraph GT

induced by T is defined as follows:

• E′(GT ) = T .

• V (GT ) is the set of vertices incident to edges in T .
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• A vertex is interior in GT if and only if it is interior in G and all the edges
incident to it are in T .

A ∂-subgraph G′ ⊂ G is induced if and only if any vertex p ∈ V (G′) ∩ I(G)
with all edges incident to it contained in E(G′) must be interior in G′.

Let S be a scaffold on G. We say that G′ ⊂ G is a lower ∂-subgraph if
e ≺ e′ ∈ E(G′) implies e ∈ E(G′). We say that G′ ⊂ G is an upper ∂-subgraph
if e ≻ e′ ∈ E(G′) implies e ∈ E(G′).

Lemma 5.2. Suppose S is a scaffold on G and G′ is an induced lower subgraph.
Let e0 be a minimal edge not in G′ and suppose that e0 6∈ BotS. Let G′′ be the
subgraph induced by E′(G′)∪ {e0}. Let Γ be a BZ(M) network on G. Then any
harmonic function on Γ′ has some extension to Γ′′.

Proof. First, suppose e0 is a ladder. Since G′ is an induced lower subgraph,
the head of e0 is not in G′. Since e0 6∈ BotS, the head of e0 must either be a
boundary vertex or a foot in G. Hence, not all the edges incident to head(e0) are
in G′′, so that head(e0) must be a boundary vertex of G′′. So e0 is a boundary
spike of G′′, and thus, we can extend any harmonic function on Γ′ to a harmonic
function on Γ′′.

Next, suppose e0 is a plank. Then each of its endpoints is either a boundary
vertex or a foot in G, and hence a boundary vertex ofG′′. Thus, e0 is a boundary
edge of G′′, so any harmonic function on Γ′ extends to a harmonic function on
Γ′′.

Lemma 5.3. Suppose S is a scaffold on G and G′ is an induced lower subgraph
with BotS ⊂ E′(G′). Let Γ be a BZ(M) network on G. Then any harmonic
function on Γ′ extends to a harmonic function on Γ.

Proof. Let u′ be a harmonic potential on Γ′.5 Consider the set Z of pairs (Σ, v),
where Σ is an induced lower subnetwork of Γ, Γ′ ⊂ Σ, and v is a harmonic
potential on Σ which equals u′ on Γ′. Let Z be partially ordered by setting
(Σ1, v1) ≤ (Σ2, v2) if Σ1 ⊂ Σ2 and v2|V (Σ1) = v1. Note that (Γ1, u1) ∈ Z.
To apply Zorn’s lemma, note that every totally ordered subset C of Z has an
upper bound. Indeed, for two networks (Σ, v) and (Σ′, v) ∈ C, the corresponding
harmonic functions agree on the overlap, and hence they produce a well-defined
harmonic function v∗ on Σ∗ =

⋃

(Σ,v)∈C Σ, and (Σ∗, v∗) is an upper bound for

C. Hence, by Zorn’s lemma Z has a maximal element (Σ∗, v∗).
If Σ∗ is not all of Γ, then there is a minimal edge not in Σ∗. Then by the

previous lemma, we can extend v∗ to a larger induced lower subnetwork, which
contradicts maximality of (Σ∗, v∗). So we are done.

Lemma 5.4. Suppose S is a scaffold on G, and Γ is a BZ(M) network on G. Let
Γ′ be an induced lower subnetwork of Γ and suppose that E(Γ′) ⊂ BotS∩MidS.
If (u, c) is any harmonic function on Γ, then (u, c)|Γ′ is uniquely determined by

5Since the potentials on an edge uniquely determines the current, we can work with u

rather than (u, c).
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• The potentials on the vertices of ∂V (Γ) ∩ V (Γ′).

• The net current on the boundary vertices of Γ that are feet of ladders in
Γ′.

Proof. Suppose that u and v are two harmonic potentials on Γ′ with the same
potential on ∂V (Γ) ∩ V (Γ′) and net current on the boundary vertices of Γ that
are feet of ladders in Γ′. Suppose for contradiction that u and v do not agree
on all of Γ′. Let T be the set of edges e in Γ′ such that u and v disagree on one
or both endpoints of e. Then T has a minimal element e0. Then

• Suppose e0 is a ladder. If the foot is a boundary vertex of Γ, then by as-
sumption u and v have the same potential and net current there. Also, by
minimality of e0, u and v agree on all edges less than e0, and in particular
all other edges incident to foot(e0). Thus, u and v must have the same
current on e0, and hence the same potential at head(e0), which contradicts
our choice of e0.

• In the case where e0 is vertical and b(e0) is interior in Γ, we know from
e0 6∈ TopS that foot(e0) has some edges incident to it at foot(e0), and
hence u and v have the same potential and net current on foot(e0). The
same argument yields a contradiction.

• Suppose e0 is a plank. Since e0 6∈ TopS, we conclude that each endpoint is
either a boundary vertex of Γ or incident to edges less than e0. Thus, u and
v have potentials which agree on both endpoints of e0, which contradicts
our choice of e0.

Therefore, the only possibility is T is empty and u = v on Γ′.

Lemma 5.5. Let G be a ∂-graph. Suppose that either

1. e0 is a boundary spike and there is a scaffold S with e0 ∈ PlS ∩MidS, or

2. e0 is a boundary edge and there is a scaffold S with e0 ∈ LadS ∩MidS.

For any BZ(M) network Γ on G, Θe0 is uniquely determined by B(Γ) over
BZ(M).

Proof. Consider the case of a boundary spike first. Let p be the valence-one
boundary vertex of the spike, q the other vertex. Choose t ∈M . Let

• Γ0 be the subnetwork induced by {e ≺ e0}.

• Γ1 be the subnetwork induced by {e 6� e0}.

• Γ2 be the subnetwork induced by {e 6≻ e0}.

Note Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ Γ.
I claim that the potential u2 on Γ2 which is t at p and 0 everywhere else is

harmonic. Because e0 ∈ MidS, we know q is the bottom vertex of some vertical
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edge, hence not all edges of Γ incident to q are in Γ2, so that q is a boundary
vertex of Γ1. Hence, p is not adjacent to any interior vertices of Γ2, so u2 is
harmonic.

By Lemma 5.3, u2 extends to a harmonic function u on Γ satisfying:

a. u(p) = t.

b. u = 0 on ∂V (Γ) ∩ V (Γ0).

c. u has net current zero on the boundary vertices of Γ that are feet of ladders
in Γ0.

By Lemma 5.4, any harmonic function satisfying properties (a) - (c) must be
identically zero on Γ0, and in particular it must have potential zero at q. Since
q is the only neighbor of p, this implies the net current on p is −γe0(t) (if e0 is
oriented with (e0)+ = p). Thus, by imposing the boundary conditions of (a) -
(c), we obtain a unique net current on p which is −γe0(t). Since this holds for
all BZ(M) networks, γe0(t) is uniquely determined by B(Γ) over BZ(M). Since
t is arbitrary, γe0 is determined.

In the case of a boundary edge, the argument is the same with the following
changes:

• Let q = foot(e0), p = head(e0).

• To define u1 on Γ2, note p, q ∈ B(Γ2) and e0 is the only edge incident to
p in Γ2. Define u1 to be zero on Γ2 and t at vertex p.

• We recover γe0(t) by noting that it is the net current on q. This is because
by (3) all edges incident to q except e0 are in Γ0 and hence have current
zero.

5.5 Solvable and Totally Layerable ∂-Graphs

Let G0, G1, . . . be a layerable filtration of a ∂-graph G. We say that it is a
solvable filtration if it satisfies the following:

• For each spike e removed from Gn, there is a scaffold on Gn in which e is
a plank in MidS.

• For each boundary edge e removed from Gn, there is a scaffold on Gn in
which e is a ladder in MidS.

A ∂-graph which admits a solvable filtration is called solvable. This name is
appropriate because these are precisely the graphs for which the inverse problem
can be solved through layer-stripping with repeated application of harmonic
continuation:

Theorem 5.6. Any solvable ∂-graph is recoverable over BZ(M).
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Proof. Let Γ be a BZ network on G. Let G0, G1, . . . be a solvable filtration,
and let Γ0,Γ1, . . . be the corresponding subnetworks. By Lemma 5.5, the con-
ductance functions of the edges removed from Gn are uniquely determined by
B(Γn) over BZ(M). By Lemma 3.1, B(Γn+1) is determined by B(Γn) and these
conductance functions. Hence, by induction each conductance function and each
B(Γn) is uniquely determined by B(Γ) over BZ(M).

Proposition 5.7. Let f : H → G be a ∂-graph morphism. If G0, G1, . . . is a
solvable filtration of G, then f−1(G0), f

−1(G1), . . . is a solvable filtration of H.
Hence, if G is solvable, then so is H.

Proof. We already know that a layerable filtration pulls back to a layerable
filtration. To see that f−1(G0), f

−1(G1), . . . is a solvable filtration, we just pull
back the scaffolds used for each edge as in §5.1.

A more symmetrical (and it turns out stronger) condition than solvability
is total layerability. We say that a ∂-graph G is totally layerable if for any
edge e, there exists a scaffold S with e ∈ PlS ∩ MidS and a scaffold S ′ with
e ∈ LadS ′ ∩MidS ′.

Proposition 5.8.

1. If f : H → G is a ∂-graph morphism and G is totally layerable, then so is
H.

2. Any totally layerable ∂-graph is layerable.

3. If G is a totally layerable, then it is solvable. In fact, any layerable filtra-
tion of G is a solvable filtration.

Proof. The first claim follows immediately from properties of the Scaf functor
in §5.1. (2) follows from Lemma 5.1. To prove (3), let G0, G1, . . . be a layerable
filtration. If e is a boundary spike / boundary edge of Gn−1, then there exists a
scaffold on G in which e is a horizontal / vertical middle edge, and this induces
a scaffold on Gn as well.

Solvability and total layerability are not equivalent. Figure 7 shows
a ∂-graph which is solvable but not totally layerable. A solvable filtration is
shown in Figure 8. To check the solvability condition for the first three reduction
operations, we use the scaffold depicted in Figure 9. Constructing the scaffolds
for the remaining steps is left as an exercise for the reader.6

However, this ∂-graph is not totally layerable. Let’s index the vertices as in
Figure 7 and denote by (i, j) the edge between vertices i and j. I claim that
there does not exist a scaffold in which (1, 2) is a ladder in MidS.

6Alternatively, the theory of critical circular planar graphs developed in the next chapter
can be used to show that the third graph in the filtration is totally layerable, hence solvable.
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Figure 7: A ∂-graph which is solvable but not totally layerable.

1 2

3

4
5

6 7

8

9

10

Suppose for contradiction such a scaffold S exists.7 As a result of §5.2, we
can assume without loss of generality that each boundary vertex is incident to
at most one ladder. We can also assume that 1 is the foot of (1, 2) and 2 is the
head. Now we have

(1, 3) ≺ (1, 2) ≺ (2, 3).

Since (1, 2) is assumed to be in the middle of S, we know 3 must be both a head
and a foot. Hence, (3, 6) and (3, 7) are both ladders, and one must be oriented
going into 3 and one going out. Since each boundary vertex (in particular,
vertex 6 or 7) is incident to at most one ladder, we conclude that (9, 7) and
(9, 6) are planks.

We now treat two cases:

• Suppose (6, 3) is oriented from 6 to 3 and (3, 7) is oriented from 3 to 7.
Then

(9, 7) ≻ (3, 7) ≻ (2, 3) ≻ (1, 2),

and so (9, 7) 6∈ BotS. Hence, 9 must be a foot. We already know (9, 7)
and (9, 6) are planks, so the ladder with 9 as its foot must be either (9, 8)

7For best results when reading this proof, the reader should keep referring to Figure 7 and
mark in pencil the ladders and planks in each of the scenarios considered. Time and space
constraints prevent me from including figures for each case.
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Figure 8: A solvable filtration of the ∂-graph in Figure 7.

44



Figure 9: A scaffold on the graph from Figure 7. The vertical edges are orange.
The numbering indicates the order of the edges, which in this case is a total
order.
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or (9, 10). It cannot be (9, 8) because in that case

(9, 8) ≺ (8, 6) ≺ (6, 3) ≺ (3, 7) ≺ (7, 9) ≺ (9, 8),

a contradiction. So suppose (9, 10) is a ladder with 9 as its foot. In that
case, 5 is incident to only one ladder (4, 5), since all the other boundary
vertices adjacent to 5 already have other ladder incident to them. Since
(5, 1) ≺ (1, 2) ∈ MidS, vertex 5 must be a head. But since

(5, 10) ≻ (9, 10) ≻ (9, 7) ≻ (3, 7) ≻ (2, 3) ≻ (1, 2),

vertex 5 must be a foot as well. This contradicts the fact that 5 can only
be incident to one ladder.

• Suppose (7, 3) is oriented from 7 to 3 and (3, 6) is oriented from 3 to 6. By
similar reasoning as before, since (9, 7) ≺ (1, 2), we have (9, 7) 6∈ TopS,
hence 9 must be a head. We know (8, 9) cannot be a ladder with 9 as its
head, since then we would have

(8, 9) ≺ (9, 7) ≺ (7, 3) ≺ (3, 6) ≺ (6, 8) ≺ (8, 9).

On the other hand, if (10, 9) is a ladder with its head at 9, then similar to
before, 5 can only be incident to one ladder. Since

(5, 10) ≺ (10, 9) ≺ (9, 7) ≺ (7, 3) ≺ (3, 1) ≺ (1, 2) ∈ MidS,

we know 5 must be a head. But since

(5, 6) ≻ (6, 3) ≻ (2, 3) ≻ (1, 2) ∈ MidS,

we know 5 must be a foot. Thus, we have another contradiction.

For further intuition about why solvability is a weaker condition than total
layerability, see §9.

6 Layering Graphs on Surfaces

6.1 Medial Strand Arrangements

The study of graphs on surfaces, especially the disk, has made heavy use of
graph embeddings and the medial graph. Before we detail how to construct
scaffolds and elementary factorizations using a medial graph, we need some
technical definitions. Our goal here is to define “embedding” and “medial graph”
in enough generality to cover a lot of degenerate cases that are not usually
considered, so that we can safely pass to any subgraph without having to modify
our definitions ad hoc. In achieving this goal, we do not care whether “the”
medial graph is well-defined, only that some medial graph is there for us to use.
This approach was essentially adopted in [11] for the disk.
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Those who are unfamiliar with medial graphs should consult [6], [11], or
Figure 10 for intuition before diving in.

For any graph G, there is a corresponding topological space, the quotient
space obtained from E× [0, 1] by identifying (e, t) with (e, 1− t) and identifying
(e, 0) and (e′, 0) if e+ = (e′)+. We will call this topological space G as well since
no confusion will result. An embedding of a graph on a surface with boundary
S is a function f : G→ S which is a homeomorphism onto its image, such that
f(x) ∈ ∂S if and only if x corresponds to a boundary vertex. Let’s identify
f(G) with G.

The embedding is non-degenerate if each component of S \G is homeomor-
phic to an open disk. Unfortunately, a non-degenerate embedding can easily
become degenerate when we pass to a subgraph, or even delete a boundary
edge.

It will be helpful to have a generalization of a “chord diagram” or “pseudoline
arrangement,” which we will call a “strand arrangement.” A strand arrangement
on a surface with boundary S is a collection of curves on S called strands such
that

• Each strand s admits a continuous parametrization fs by [0, 1], S1, R, or
[0,∞) which is a closed map, and is locally a homeomorphism onto its
image.

• The endpoints of any strand parametrized by [0, 1] or [0,∞) must be on
∂S. No other points of the strands are allowed to be on ∂S.

• For each x ∈ S there are at most two strand segments which intersect
there. That is,

⋃

s f
−1
s (x) contains at most two points.

• Call a point where two strands intersect or one strand intersects itself a
vertex. We assume the vertices form a discrete set, and none of these
points are on ∂S.

• For any point x ∈ S, there is a neighborhood that intersects at most two
strands. This prevents infinitely many strands from accumulating near a
point.

If S is compact, then any strand arrangement will form a ∂-graph embedded
on S where the vertices of the strand arrangement are interior vertices of the
graph and the endpoints of the strands are boundary vertices (by some tedious
topological argument). This fails in the non-compact case because some strands
may run off to ∞, but this is perfectly allowable for my purposes.

A lens in a strand arrangement is a loop formed by one or two arcs of strands.
If an arrangement has no lenses, it is called lensless.

The components of S minus the union of the strands are called cells. Two
cells A and B are adjacent if ∂A ∩ ∂B contains some strand segment. A two-
coloring of the cells is an assignment of a “white” or “black” color to each cell
such that no adjacent cells are the same color. Depending on the surface, not
all strand arrangements may admit a two-coloring of the cells.

47



For a graph G embedded on S, a compatible medial strand arrangement is a
strand arrangement with a two-coloring of the cells such that

• Each black cell is homeomorphic to the disk (though the closure might
not be homeomorphic to the closed disk).

• There is a bijective correspondence between vertices of G and black cells
such that each black cell contains the corresponding vertex.

• If A is a black cell, then ∂A intersects ∂S if and only if the corresponding
vertex of G is a boundary vertex.

• There is a bijective correspondence between the edges of G and vertices of
the strand arrangement (“medial vertices”) such that each edge of G con-
tains the corresponding medial vertex and no other points of any strand.

• At each medial vertex, the two strands “cross” the edge e of G. That is,
there is some neighborhood N of the vertex and homeomorphism h : N →
D such that h(N ∩ e) = D∩R and the image of each parametrized strand
starts on side of the x-axis moves the other side, intersecting it exactly
once.

Depending on how degenerate the embedding is, there may be many different
compatible medial strand arrangements.

6.2 ∂-Subgraph Partitions and Elementary Factorizations

for Embedded Graphs

Embeddings and medial strand arrangements provide a way of constructing ∂-
subgraph partitions of a graph. Suppose G is a ∂-graph embedded on S with
medial strand arrangementM. Let C be another strand arrangement. Let {Sα}
be the components of S \ C. Assume that

• For each medial cell A, A ∩ Sα is homeomorphic to a disk.

• Each strand of C intersects the boundary of a medial cell in finitely many
points.

• C doesn’t contain any medial vertices of G.

We can define a subgraph Gα of G as follows:

• The vertices of Gα are the vertices of G whose medial cells intersect Sα.

• The edges of Gα are the edges of G whose medial vertices are contained
in S◦

α.

• A vertex of Gα is interior if and only if its medial cell is contained in S◦
α.
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Figure 10: A lensless strand arrangement for a ∂-graph embedded on the disk.
The medial strands are blue. As an exercise, color in all the cells which have
vertices of G.
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Then the Gα’s form a ∂-subgraph partition of G (exercise). Also, Gα is embed-
ded in Sα with medial strand arrangement M∩ Sα. If a subgraph partition is
constructed in this way, we say it is compatible with the embedding (and medial
strand arrangment).

The embedding also provides a way to assign input and output vertices to
make G into an IO-graph. Take a partition of ∂S into two sets D1 and D2 (for
instance, two arcs of the boundary of a disk). Then declare p ∈ ∂V (G) to be
input if the closure of its medial cell intersects D1 and output if the closure of
its medial cell intersects D2.

If D1 and D2 are above, an elementary factorization of G into IO-graph
morphsims G1, . . . , Gn is compatible with the embedding if

• G1, . . . , Gn form a ∂-subgraph partition compatible with the embedding,
where Gj corresponds to the subsurface Sj .

• The input vertices of G1 are the ones whose medial cells in S1 touch D1,
and the output vertices of Gn are the one whose medial cells in Sn touch
D2.

• The input vertices of Gj+1 are the ones whose medial cells touch ∂Sj ∩
∂Sj+1 and the output vertices of Gi are the ones whose medial cells touch
∂Sj ∩ ∂Sj+1.

Roughly speaking, the factorization is produced by cutting S into thin slices,
along with the medial cells.

6.3 Producing Scaffolds from the Medial Strands

An orientation of a strand arrangement is a choice of orientation for each strand.
It is acyclic if there is a no loop formed by oriented strand segments.

An orientation O of the medial strands naturally produces a relation on E′

and an assignment of vertical and horizontal edges (which may or may not form
a scaffold). We can define a relation ≺ on the medial vertices by setting a ≺ b
if there is an increasing path from a to b along medial edges. Define ≺ on the
edges E′(G) by the relation on the corresponding medial vertices.

Suppose e ∈ E′(G) corresponds to a medial vertex a. Define e to be a ladder
if and only if the ingoing medial edges at a are on the boundary of one black
cell, and the outgoing edges are on the boundary of the other black cell. In
this case, foot(e) is the G vertex corresponding to the black cell bounded by
the ingoing edges, and head(e) is the black cell bounded by the outgoing edges.
Equivalently, e is a ladder if the oriented strands cross e in opposite directions.
Otherwise, e is a plank. See Figure 11.

For this to be a bona fide scaffold, we need to guarantee several things:

• ≺ defines a partial order; this is a equivalent to saying that the orientation
of the medial strands is acyclic.

• Every subset has a minimal element (for infinite graphs).
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• Conditions (2), (3), and (4) in the scaffold definition are satisfied.

Desired Behavior of Medial Cells: One way to achieve (2), (3), and (4)
is to arrange that for any interior medial black cell A, ∂A can be partitioned
into two arcs, the first arc when oriented according to O moves counterclockwise
around ∂A, and the second arc moves clockwise (see Figure 12). That is, all the
strand segments in the first arc are oriented counterclockwise around ∂A and
the strand segments in the second are oriented clockwise. For boundary medial
black cells, we want the same behavior, except that either arc of ∂A is allowed
to contain portions of the boundary of the surface. If an interior or boundary
cell is non-compact, then either one of the two arcs is allowed to contain the
point at ∞. Unable to think of a better name, we refer to these conditions as
the Desired Behavior for the strands that bound a medial cell.

This will guarantee that there are at most two ladders incident to any vertex
of G, and that scaffold conditions (2) and (3) are satisfied. It also guarantees
that each interior vertex is both a head and a foot, so that scaffold condition
(4) is trivially satisfied, and every edge is in MidS.

To produce a scaffold, the orientation must be chosen judiciously. We will
explain how to do this on the disk and half-plane since other surfaces are more
complicated and not well understood.

Remark. There is no reason that we could not divide the strands into segments
and give a different orientation to each segment, so long as the segment divisions
do not fall on medial vertices. This approach is potentially more flexible and
adaptable to general surfaces.

6.4 ∂-Graphs in the Disk

Overview: A ∂-graph that can be embedded in the disk is called circular
planar. A circular planar ∂-graph is called critical if it has a lensless medial
strand arrangement. [4] and de Verdiere showed that critical circular planar ∂-
graphs are recoverable over positive linear real conductances, and [11] extended
that result to the nonlinear case. Here I will use scaffolds produced from the
medial strands to show that critical ∂-graphs are totally layerable, as well to
produce a host of elementary factorizations for them.

The Orientation Oθ: Suppose we are given a ∂-graph embedded in the
disk with a lensless medial strand arrangement. If eiθ ∈ ∂D is not the endpoint
of any strand, then we can define an Oθ of the strands as follows: If a strand s
has endpoints eiα and eiβ with θ < α < β < θ + 2π, then the positive direction
moves from eiα to eiβ . I claim Oθ produces a scaffold. First, we show it is
acyclic:

Lemma 6.1. For any lensless strand arrangement in D, Oθ defines an acyclic
orientation.

Proof. The proof is by induction on the number of strands. It clearly holds for
one strand. Suppose it holds for n− 1 strands and consider n strands s1, . . . , sn
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Figure 11: Scaffold produced by orienting medial strands in the disk. Medial
strands are blue. Ladders are orange.

eiθ

Figure 12: Desired Behavior of oriented medial strands on the boundary of
medial black cell containing an interior vertex.
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with endpoints eiαj and eiβj with θ < αj < βj < θ + 2π. Without loss of
generality, αn = min(αj).

From the Jordan curve theorem, we know that D \ sj has two components,
one on the left of sj and one on the right of sj . Since the strand arrangement is
lensless, sj can only cross sk in one direction and the direction can be detected
from the positions of the start and endpoints of sj and sk on ∂D. For any j 6= n,
we have θ < αn < αj , and this implies that sj either does not cross sn or sj
crosses sn from right to left. Thus, there is no strand that crosses sn from left
to right.

From the induction hypothesis, s1, . . . , sn−1 do not form any oriented loops.
Thus, if a loop exists it must contain some segment of sn and clearly it cannot
be entirely contained in sn. Thus, the loop must exit sn at some point. After
that, it must move into the left component of D \ sn because no strand crosses
sn from left to right. But then at some point the loop must return to (or cross)
sn from the left component of D \ sn, which implies there is some strand which
crosses sn from left to right, causing a contradiction. So there is no loop.

Next, we describe the behavior of Oθ on the boundary of a medial cell. Note
that for a lensless strand arrangement on the disk, each medial cell is bounded
by a Jordan curve formed by segments of the strands (as can be proved using
the Jordan curve theorem and induction on the number of strands). Hence, the
boundary of the cell has a well-defined counterclockwise orientation.

Lemma 6.2. Let A be a cell of a lensless strand arrangement on D. Let
s1, . . . , sn be the strands that intersect ∂A, listed in CCW order around ∂A
and oriented in the same direction as the CCW orientation of ∂A (with A on
the left of each sj). Let xj and yj be respectively the start and end of sj. Then
x1, . . . , xn occur in CCW order around ∂D, and so do y1, . . . , yn.

Remark. We do not assume in the hypothesis that s1, . . . , sn are distinct, al-
though that turns out to be true.

Proof. Suppose A is an interior cell. Let z be the vertex of ∂A where s1 and s2
intersect. Let C be the counterclockwise arc of ∂D from x1 to x2. Let h1 and
h2 be the arcs of s1 and s2 from x1 and x2 to z, so that C, h1, and h2 bound a
triangle T .

Suppose for contradiction that there is some other xj ∈ C. Let w be the
first point where sj hits ∂T . If w ∈ h2, then sj crosses s2 there from left to
right. It cannot intersect s2 again since M is lensless, but that implies it cannot
intersect ∂A because A is on the left side of s2. So suppose w ∈ h1. Then at w,
sj crosses from the left to the right side of s2, and this occurs before the point z
along s2, which implies z ∈ ∂A is on the right side of sj . This also is impossible
because A is supposed to be on the left side of sj .

This contradiction proves that there is no xj between x1 and x2, and the
same argument applies to xk and xk+1 for all k, hence x1, . . . , xn occur in
counterclockwise order. By a symmetrical argument, y1, . . . , yn occur in coun-
terclockwise order. In the case of a boundary cell, similar reasoning applies
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except that arcs of ∂D may intervene between the strand segments; details left
to the reader.

Now consider a medial cell A. Let sj and xj and yj as above. Suppose
that xj = eiaj and yj = eibj . We can assume without loss of generality that
θ < a1 < a2 < · · · < an < θ + 2π, that b1 < · · · < bn < b1 + 2π, and that
aj < bj < aj + 2π. Then whenever bj < θ + 2π, the orientation of sj given by
Oθ matches the orientation of ∂A, and whenever θ + 2π < bj, the orientations
are opposite. Let k be the last index with bk < θ+2π. Then ∂A can be divided
into two arcs

∂A∩ (s1 ∪ · · · ∪ sk), ∂A∩ (sk+1 ∪ · · · ∪ sn),

such that Oθ orients the first arc CCW around A and the second CW. This
shows that the strands that bound a medial cell have the Desired Behavior, and
thus

Lemma 6.3. For a ∂-graph in the disk with a lensless medial strand arrange-
ment M, the orientation Oθ defines a scaffold Sθ.

Total Layerability:

Theorem 6.4 (cf. [4] Theorem 2 and [11] Theorem 6.7). A critical circular
planar ∂-graph is totally layerable, hence solvable and recoverable over BZ(M)
for any M .

Proof. Let e be any edge and let a be the corresponding medial vertex, and
s1 and s2 the strands that meet there. Note s1 and s2 divide D into four
components, and e is contained in two opposite components. If eiθ is on the
boundary of one of the components that contains e, then e is a plank in the
scaffold Sθ, and if eiθ is on the boundary of one of the other components, then
e is a ladder. In either case, e ∈ MidSθ since all edges are in MidSθ.

Elementary Factorizations between Circular Pairs: The scaffold Sθ

not only allows us to prove total layerability, but it can also be used to construct
elementary factorizations compatible with the medial strand arrangement.

Any two “cut-points” eiθ and eiφ divide ∂D into two arcs; let C1 be the
CCW arc from eiθ to eiφ and let C2 be the other arc. Let P and Q be the sets
of vertices of G whose medial cells touch C1 and C2 respectively. Then P and
Q are called a circular pair. P ∩Q contains at most two vertices. The strands
fall into three types:

• A strand with both endpoints on C1 is called reentrant on C1.

• A strand with both endpoints on C2 is called reentrant on C2.

• A strand with one endpoint on C1 and one on C2 is called transverse.

Theorem 6.5 (cf. [6]). Let G be a ∂-graph on D with a lensless M. Assume
the boundary of each medial cell intersects ∂D in at most one arc. Suppose P
and Q are a circular pair produced by cut-points eiθ and eiφ. Then
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1. The IO-graph morphism G : P → Q represented by G admits an elemen-
tary factorization compatible with the medial strand arrangement.

2. If r is the rank of the elementary factorization, then

2r = #(transverse strands) + |P ∩Q|.

Proof. We produce a factorization from the scaffold Sθ and medial strands by
a similar method to §5.2, also adapting techniques from [6]. Our first goal is to
find one of the following:

a. A C1-reentrant medial strand s with no medial vertices on it. In this case,
there is a black cell on one side of s. Because the closure of a medial cell
only intersects C1 in one arc, not two, the black medial cell must be one
component of D \ s and must represent an isolated boundary vertex of G on
C1.

b. A triangular medial cell formed by two medial strand segments and an arc
of C1. The two strand segments meet at some medial vertex a. If the cell
is black, then a represents a boundary spike of G and the black cell is the
boundary vertex of the spike and is in P and not Q. If the cell is white, then
a represents a boundary edge of G between two vertices in P .

The transverse strands are all oriented to start at C1 and end at C2. Using
the Jordan curve theorem, the reentrant strands on C1 do not intersect those on
C2. Thus, the medial vertices on the C1-reentrant strands come before those on
the C2-reentrant geodesics in our partial order, when they are comparable. Let
W be the set of medial vertices a such that a 6� b for some b on a C2-reentrant
geodesic.

Assume (a) does not occur and that W is nonempty, and we will prove (b)
occurs. Let a1 be a minimal element of W . Then two medial strands s1 and t1
meet at a1, and s and t have no medial vertices between C1 and a1. Let T1 be
the triangle formed by C1 and the segments of s1 and t2 from C1 to a1. Now
T1 is either a medial cell satisfying (b), or else T1 contains some whole medial
strands, which are necessarily C1-reentrant. In this case, let M1 be the union of
the medial strands contained in T1. Let a2 be a minimal medial vertex in M1.
Then a2 is the vertex of a medial triangle T2 by the same reasoning as before.
T2 either satisfies (b) or contains some M2. This process must terminate after
finitely many steps since Mj+1 contains strictly fewer strands than Mj. Hence,
there is a triangle satisfying (b).

Therefore, either (a) or (b) occurs or else there are no C1-reentrant strands
and W is empty. If (a) or (b) occurs, we can write G = G′ ◦ G1 where G1 is an
elementary IO-graph of type 1, 2, or 3 and the factorization can be represented
by cutting D into two components with a curve g1 from eiθ to eiφ.

Let U1 be the component of D\ g1 containing G
′. Then U1 is homeomorphic

to D (by standard results from topology) and the scaffold satisfies all the same
properties as before. (The cutting may produce medial cells which intersect ∂U1
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in two arcs, but not we cannot produce any which intersect g1 in two arcs.) We
can repeat this process with U1 instead of D and g1 instead of C1, and we can
continue to repeat it until the smaller ∂-graph has no reentrant strands on its
version of C1 and its version of W is empty. We thus obtain a factorization
G = G′′ ◦Gn ◦ · · ·◦G1, where the Gj ’s are type 1, 2, or 3, and G′′ has no reentrant
medial strands on its “input” boundary gn, and in fact all medial vertices are
� to a medial vertex on a C2-reentrant strand.

Next, we repeat this process starting at C2 with a C2-reentrant strands with
no medial vertices or a maximal medial vertex in our partial order. So we
produce elementary IO-graph morphisms G′

j of type 1, 2, or 4. In the end, we
have G = G′

1 ◦ · · · ◦ G
′
m ◦ G∗ ◦ Gn ◦ · · · ◦ G1. This G

∗ has no reentrant strands and
no edges in the graph; it represents the identity IO-graph morphism. Thus, the
factorization is complete, proving (1).

In G∗, all the medial cells touch both boundary arcs, and so all the vertices
of G∗ are both inputs and outputs. Since G∗ is after to the type 3 IO-graphs
and before the type 4 IO-graphs, the maximum connection between the two
boundary arcs is the same for G∗ as for G, that is, the number of vertices of G∗.
When we passed to a subgraph at each stage of the proof, we did not change the
number of transverse strands or the number of medial black cells whose closures
contain a cut-point (the cells corresponding to P ∩ Q). Thus, G∗ and G have
the same number of transverse medial strands. Since (2) holds for G∗, it holds
for G as well.

6.5 ∂-Graphs in the Half-Plane

In [21], a ∂-graph G embedded in the upper half-plane H ⊂ C is called super-
critical if it a compatible medial strand arrangement such that

• Each medial strand begins and ends on R rather than going off to ∞.

• The medial graph is lensless.

[21] adapts the techniques of [11] to prove recoverabiliy of supercritical half-
planar ∂-graphs. i shall prove

Theorem 6.6. Any supercritical half-planar ∂-graph G is totally layerable.
More precisely, for each edge e0 there is a scaffold S such that e0 is a lad-
der (resp. plank) and MidS = E, and S can be chosen so that {e : e ≻ e0} is
finite.

Finiteness of {e : e ≻ e0} implies that the harmonic functions constructed for
solving the inverse problem in §5.4 are finitely supported. Here’s why this could
be useful: For positive linear networks or nonlinear networks with “physically
meaningful” increasing conductance functions γe : R → R, one might only want
to consider bounded or finite-power harmonic functions (as in [21]). However,
harmonic continuation might a priori produce unbounded or infinite-power har-
monic functions. On the other hand, finitely supported functions automatically
satisfy whatever growth conditions one wants to impose at infinity.
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Without the finiteness condition, one can prove that a supercritical half-
planar ∂-graph is totally layerable using an orientation of the medial strands,
similar to the method for the disk, but slightly more complicated, because we
must make sure every subset has a minimal element. However, the finiteness
condition makes the proof more tricky. The basic plan is as follows:

Let t0 < t1 be two points on the real line that are not the endpoints of medial
strands. The goal is to construct a scaffold such that the harmonic continuation
process will “begin” on (−∞, t0]∪ [t1,∞) and “end” on [t0, t1]. This cannot be
accomplished by simply orienting each medial strand. Instead, we will divide H
into three pieces, produce a scaffold on each piece, and then patch the scaffolds
together. The most annoying part of the proof is finding the correct way of
cutting up H.8

Division of H into Three Regions: Each strand divides H into two
components–one is bounded, and we will call it the “inside,” and the other is
unbounded, and we will call it the “outside.” Each strand has an endpoint
which is further left on the real axis and one which is further right, and hence
there is a left-to-right orientation of each strand. In the left-to-right orientation
of the strand, the inside is on the right of the strand and the outside is on the
left.

Let U be the union of all the following regions:

• The inside of a [t0, t1]-reentrant strand.

• Any triangle bounded by a segment of a strand with one endpoint on
(−∞, t0] and one endpoint on [t0, t1], a strand with one endpoint on [t0, t1]
and one endpoint on [t1,∞), and a segment of [t0, t1].

Claim. U is the region to the right of some oriented Jordan arc C0 formed by
strand segments and segments of [t0, t1] such that

• The path starts at t0 and ends at t1.

• Each strand used in the path has at least one endpoint on [t0, t1].

• For each strand segment in the path, the orientation of the path matches
the left-to-right orientation of the strand.

• For each segment of [t0, t1] in the path, the orientation in the path matches
the increasing orientation of [t0, t1].

Proof. Let O be the orientation of M formed by orienting each strand from left
to right. Then O is acyclic. Indeed, any cycle would be formed by only finitely
many strands s1, . . . , sn. If F is a conformal map of H onto D and eiθ = F (∞),
then the orienation O of s1, . . . , sn corresponds to Oθ on the disk. But we
already showed this is acyclic. Thus, O defines a partial order on the medial
vertices. This can be extended to a partial order on the medial vertices and

8On a first reading of the paper, one might skip this proof. When reading the proof, start
by reading the claims and drawing a picture.
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endpoints of strands such that if two endpoints x, y are on the real line with
x < y in R, then x ≺ y.

We say that a region satisfies (∗) if it is the region to the right of some path
satisfying the conditions of the Claim. Note that U is defined as the union of
finitely many regions which satisfy (∗). Thus, it suffices to show that if U1 and
U2 satisfy (∗), then so does U1 ∪U2. Let g1 and g2 be the corresponding paths.
The intersection points / intervals of g1 and g2 must occur in increasing order
along g1 and in increasing order along g2, and hence they occur in the same
order for g1 and g2. Thus, we can form a path g3 as follows: Between any two
consecutive intersection points / intervals, follow either g1 or g2, whichever one
is farther to the left. Then U1∪U2 is the region to the right of g3, hence satisfies
(∗).

Claim. There exists an oriented Jordan arc C′
0 such that

• C′
0 does not contain any medial vertices.

• If s is a medial strand with one endpoint on [t0, t1] and one endpoint on
(−∞, t0] ∪ [t1,+∞), then C′

0 intersects s exactly once.

• The region to the left of C′
0 contains U and does not contain any medial

vertices not in U .

• The start point t′0 of C′
0 is to the left of t0 with no endpoints of strands

in between them. The end point t′1 of C′
0 is to the right of t1 with no

endpoints of strands in between.

Proof. Let A1, . . . ,An be the medial cells outside U whose closures intersect C0,
listed in order along C0. Construct C1 inductively starting on R ∩ ∂A1, then
going into A2, and so forth.

The hardest condition to verify is the second one: Suppose s is a medial
strand with one endpoint on (−∞, t0] and one endpoint on [t0, t1]. If s crosses
C′

0, then it must enter U immediately afterward. At the point where it enters
U , it must either cross a [t0, t1]-reentrant strand or enter a triangle formed
by strands s1 and s2, where s1 has enpoints on (−∞, t0] to [t0, t1] and s2 has
endpoints on [t0, t1] and [t1,+∞). Move along s starting at the endpoint on
(−∞, t0. If s crosses a [t0, t1]-reentrant strand, then it cannot cross it again,
and hence is trapped inside U and cannot cross C′

0 again. If it enters a triangle
formed by s1 and s2, then it must have crossed s1 at some point. Then the
triangle formed by s1 and s is inside U , so the rest of s must also be inside
U . A symmetrical argument works if s has one endpoint on [t0, t1] and one on
[t1,∞).

Claim. There is a point z on C′
0 such that

• Any strand starting on (−∞, t0] and ending on [t0, t1] must intersect C′
0

before z (“before” along C′
0).
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• Any strand starting on [t1,+∞) and ending on [t0, t1] must intersect C′
0

after z.

Proof. Let A1, . . . ,An be as above. Since C′
0 ends on the outside of all strands

with endpoints on (−∞, t0] and [t0, t1], there must be a first Aj that is on the
the outside of all such strands. Let z be a point of C′

0 inside Aj , and let s1 be
the last strand with endpoints on (−∞, t0] before Aj .

Suppose for contradiction s is a strand with endpoints on [t1,∞) and [t0, t1]
that intersects C′

0 before z. Since s only intersects C′
0 once, the only way it can

do this is by crossing s1 outside of C′
0, which contradicts the definition of U .

Claim. There exists an oriented curve C1 injectively parametrized by [0,+∞)
such that

• C1 starts at z and goes to complex ∞.

• C1 does not contain any medial vertices.

• C1 intersects each strand at most once.

• C1 only crosses strands from inside to outside.

• C1 never intersects C′
0 again.

Proof. For a given medial cell A bounded by strands s1, . . . , sn, there are two
possibilities:

1. A is on the inside of some sj .

2. A is on the outside of each sj . In this case, by a connectedness argument,
A is exactly the intersection of the outsides of the sj ’s, and hence is
unbounded.

We construct C1 inductively cell by cell, starting at z. As long as we are in a
cell where (1) holds, we can continue into another cell by crossing a strand from
inside to outside. If we ever reach a cell where (2) holds, we can stay inside the
cell and go to ∞. Because we only ever cross strands from inside to outside, we
never cross the same strand twice or enter the same medial cell twice.

We never enter U because to do that, we would have to cross from the
outside to the inside of some strand (by previous Claims about U). Thus, we
can arrange that we never cross C′

0 (since C′
0 was defined to “skirt the outside

of” U).
Now we prove the path goes to ∞. This is trivial if (2) ever occurs.
If (1) occurs infinitely many times, then I claim the path is eventually outside

any given strand s. The path crosses infinitely many strands from inside to
outside. However, the inside of s only intersects finitely many strands, so the
path cannot stay inside s forever, and once it goes outside of s it cannot come
back inside.

Suppose K ⊂ H is compact, and we will show that the path is eventually
outside of K. Then only finitely many medial cells intersect K. Let K ′ be the
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union of the medial cells that intersect K and satisfy (1). Since we assumed (2)
never occurs, the path never enters any unbounded cells, so it suffices to show
the path is eventually outside K ′. But any cell of K ′ is on the inside of some
strand, and we just proved that the path is eventually outside every strand.

Claim. Let C2 be the arc of C′
0 before z and let C3 be the arc of C′

0 after z. Then
C1, C2, and C3 divide H into three simply connected regions homeomorphic to
the disk:

• R1 is the region outside C′
0 and to the left of C1. It is bounded by (−∞, t′0],

C1, and C2.

• R2 is the region outside C′
0 and to the right of C2. It is bounded by

[t′1,+∞), C1, and C3.

• R3 is the region inside C′
0. It is bounded by [t′0, t

′
1], C2 and C3.

Proof. Use the Jordan curve theorem and conformal equivalence of the half-
plane and disk.

Claim. Let G1, G2, G3 be the ∂-subgraph partition of G induced by the division
of H into R1, R2, and R3, and let M1,M2,M3 be the corresponding medial
strand arrangements. Then

• Any strand of M1 either has both endpoints on (−∞, t′0] or one endpoint
on (−∞, t′0] and one on C2 ∪ C1.

• Any strand of M2 either has both endpoints on [t′1,+∞) or one endpoint
on [t′1,+∞) and one on C3 ∪ C1.

Proof. Consider a medial strand s from the original medial strand arrangement
M.

• If s is [t0, t1]-reentrant since then it would is entirely contained in U ⊂ R3,
so there is nothing to prove.

• Suppose s has one endpoint on (−∞, t0] ∪ [t1,+∞) and one on [t0, t1].
Then it crosses C′

0 exactly once. Since C1 only crosses strands from inside
to outside and it starts outside s, we know s never crosses C1, so we are
done.

• Suppose s has one endpoint on (−∞, t0] and one on [t1,+∞), and that
it never crosses C′

0. Then we are done since C1 intersects each strand at
most once.

• Suppose s has one endpoint on (−∞, t0] and one on [t1,+∞), and that
it crosses C′

0 at some time. Orient s to start on (−∞, t0] and end on
[t1,+∞). Note s cannot intersect a [t0, t1]-reentrant strand. Thus, once s
enters U , it must be inside one of the triangles in the definition of U , hence
it has gone to the inside of a strand s′ with one endpoint on [t0, t1] and
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one endpoint on [t1,+∞). Since C1 is outside of s′, s can never intersect
C1 after this point. But by a symmetrical argument, s can never intersect
C1 before exiting U . Thus, it can never intersect C1 at all.

Furthermore, if s crosses C2 and hence enters U , it is inside s′ and hence
remains outside R1 and never crosses C2 again. Thus, s can must cross
C2 exactly once and C3 exactly once by symmetry.

Construction of Scaffold:

The scaffold will be defined so that the direction of harmonic continuation
is roughly as follows:

• In G1, it will go from (−∞, t′0] to C2 ∪ C1.

• In G2, it will go from [t′1,+∞) to C3 ∪ C1.

• In G3, it will go from C2 ∪ C3 to [t′0, t
′
1].

Claim. Let O1 be the orientation of M1 defined as follows:

• A (−∞, t′0]-reentrant strand is oriented from right to left.

• A strand with one endpoint on (−∞, t′0] and one on [t′0, t
′
1] is oriented to

start on (−∞, t′0].

Then O1 defines a scaffold S1 on G1.

Proof. Let F : H → D be a conformal map and let eiθ = F (t′0). The orientation
O1 matches Oθ on the disk, and hence is acyclic. The same argument shows
that the medial cells have the Desired Behavior.

To show that every subset has a minimal element, it suffices to show that
any descreasing path of medial strand segments must terminate. Let C be any
such path, and let Z be the set of strands used in the path. Let s0 be the strand
with the endpoint closest to t′0 on the real line. Then no strand can cross from
the right (outside) of s to the left (inside) of s. Hence, once the decreasing path
reaches s, it remains trapped in the closure of the region inside s, which contains
only finitely many medial vertices. Hence, the path must terminate.

Claim. Symmetrically, Let O2 be the orientation of M2 defined as follows:

• A [t′1,+∞)-reentrant strand is oriented from right to left.

• A strand with one endpoint on [t′1,+∞) and one on [t′0, t
′
1] is oriented to

start on [t′1,+∞).

Then O2 defines a scaffold S2 on G2.
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To contruct a scaffold on G3, note there is a homeomorphism F : R3 → D

(by corollaries of the Jordan curve theorem), and the homeomorphism extends
to the closures. In particular, G3 is circular planar with no lenses in the medial
strands. Let S3 be the scaffold obtained by pulling back Sθ through F , where
θ is chosen with eiθ = F (t′1). This is chosen so that all the strands with one
endpoint on C2 ∪ C3 and one on [t′0, t

′
1] are oriented from C2 ∪ C3 to [t′0, t

′
1].

The following observations are useful for patching the three scaffolds to-
gether:

• Any interior vertex of G1 or G2 is both a head and a foot.

• Observe that a vertex of G1 whose medial cell touches C1 ∪C2 is a head,
but not a foot, because there are no oriented strands that start at C1∪C2.
A symmetrical claim holds for G2.

To define the scaffold S on G, we splice the partial orders for S1, S2, and S3,
and declare that the edges of G1 are ≺ the edges of G2, and the edges of G2 are
≺ the edges of G3. The above observations with some casework imply that all
the conditions in the scaffold definition are satisfied, except that the conditions
(2) and (3) might not be satisfied at a vertex of G whose medial cell is split by
C1, C2, and C3. If the medial cell is split be C1, then the corresponding vertex
p will be the head of a ladder in G1 and a ladder in G2. We change the ladder
from G2 to a plank, and then because edges in G1 are ≺ edges in G2, conditions
(2) and (3) are now satisfied at p.

After doing this for all the vertices whose medial cells are split by C1, we do
the same thing for all the vertices whose medial cells are split by C2 ∪C3. Such
a vertex must be a head in S1 or S2. It may or may not be a head in S3, but
by changing some ladder to a plank if necessary, we can arrange that it is not.

These changes may reduce the number of interior vertices which are feet.
But everything which was a head before is still a head, since we only changed
a ladder to a plank in cases where the head of the ladder was also the head of
a different ladder. Therefore, condition (4) is satisfied, and we indeed have a
scaffold S on G. Moreover, TopS = ∅, since every interior vertex is a head.

Properties of the Scaffold:

Claim. Let D ⊂ R3 be the union of the regions enclosed by a s ∪ C2 ∪ C3 for
each strand s in M3 that is reentrant on C2 ∪ C3. Then

a. Any edge whose medial vertex is in R3 \D is in MidS.

b. Any edge whose medial vertex is on a [t0, t1]-reentrant strand is in MidS.

c. If e ∈ E′(G3), there are only finitely many edges ≻ e in S.

Proof. (a) Suppose p is a vertex in P was the head of a ladder e in S3. Let
s1 and s2 be the strands which cross at the medial vertex of e. If we assume
that s1 and s2 both have their ending points on [t′0, t

′
1], then A is contained in

the triangle bounded by s1, s2, and [t′0, t
′
1]. Since A touches C2 ∪ C3 this is

impossible. This implies the medial vertex of e must be in D.
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Since MidS3 is all of E′(G3) by construction of Sθ, the only way that an
edge e0 ∈ E′(G3) can be in BotS is if e0 � e1 where e1 is incident to a vertex
which was changed from a foot in S3 to a non-foot in S. This vertex is the foot
in S3 of some ladder e2 such that p = head(e2) is a vertex in P . The previous
paragraph implies that the medial vertex of e2 is in D. But since e0 � e1 ≺ e2,
and there are no oriented strands which ever enter D from outside, this implies
that the vertex of e0 is also in D.

By contrapositive, if the medial vertex of e0 is not in D, then e0 ∈ MidS.
This proves the first claim.

(b). By construction of R3, any [t0, t1]-reentrant strand is fully contained in
R3 and is also [t′0, t

′
1]-reentrant. Such a strand cannot ever enter D because M3

is lensless. Thus, all the medial vertices on such a strand are in R3 \D.
(c). If e ∈ E′(G3), then the only edges ≻ e are edges in G3, and G3 is finite

since it is contained in a compact region.

Proof of Theorem 6.6: Choose an edge e0. By choosing t0 and t1 correctly
and constructing a scaffold as above, we can arrange that the medial vertex of
e0 is on a [t0, t1]-reentrant strand, and e0 is either a plank or a ladder as desired.
Thus, the Theorem follows from the previous claim.

7 Linear Networks

This chapter has several purposes:

• To collect known results about linear resistor networks, and explain them
in a manner consistent with this paper’s notation.

• To generalize known results to networks over any field rather than just R,
or indicate how they fail to generalize.

• To detail the consequences of layering theory for linear networks.

7.1 Basic Notions

Linear Networks: Let F be a field. Then a linear network over M = F is
a network on a ∂-graph G such that each Θe = {(t, aet)} for some nonzero
ae = ae ∈ F. Linear networks are automatically BZ(F). We shall assume in this
chapter that all ∂-graphs are finite, and there are no self-looping edges.

Remark. Some of the results hold for rings as well as fields, but we shall work
with fields for simplicity. Many of them also hold in the “projective” case where
Θe is allowed to be any line in F × F, but this will add too many annoying
exceptions, so I will leave it to others.

Harmonic Potentials: Let H(Γ) be the set of F-valued harmonic functions
(u, c) on Γ, with ce = ae · (uι(e) − uτ(e)). Then H(Γ) is a linear subspace of
FV × FE . Since c is determined by u, H(Γ) is linearly isomorphic to the space
U(Γ) of harmonic potentials, so we will work with U(Γ) instead of H(Γ).
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The Kirchhoff Matrix: Recall U(Γ) is the set of all u ∈ FV such that

∑

e∈ι−1(v)

ae(u(e+)− u(e−)) = 0 for each v ∈ I.

These equations can be compactly expressed in terms of the Kirchhoff matrix
K ∈MV (F), which is defined exactly the same way as in §1.1, to wit:

Kp,q =

{
∑

e:e+=p,
e−=q

ae, p 6= q

−
∑

e:e+=p ae, p = q.

The Kirchhoff matrix is symmetric. K defines a linear transformation FV → FV ,
and the component indexed by p is

(Ku)p = −
∑

e∈ι−1(p)

ae(uι(e) − uτ(e)),

which is the net current at p produced by u. If πV ◦ : FV → FV ◦

and π∂V :
FV → F∂V are the obvious projection maps, then u is harmonic if and only if
πV ◦Ku = 0, hence

U(Γ) = ker(πV ◦K) ⊂ F
V .

The Dirichlet Problem: As discussed in §1.1, the Dirichlet problem is this:
Given φ ∈ F∂V , does there exists a harmonic potential u such that π∂V (u) = φ?
The answer is yes for all φ if and only if the submatrix KV ◦,V ◦ is invertible.
In this case, we say that the network is Dirichlet-nonsingular, and otherwise,
it is Dirichlet-singular. If Γ is Dirichlet-nonsingular, then the net current for
a harmonic function u with π∂V (u) = φ is given by Λφ, where Λ is the Schur
complement K/KV ◦,V ◦ .

The Neumann Problem: While the Dirichlet problem specifies the poten-
tials on the boundary vertices, the Neumann problem specifies the net currents.
Of course, if ψ ∈ F∂V is to represent the net current of some harmonic function,
then the coordinates of ψ must sum to zero, because the sum of the entries in
any column of the Kirchhoff matrix is zero. In fact, the net currents of the
boundary vertices in any connected component of G must sum to zero as well.

Assuming that G is connected9 and has some boundary vertices, the Neu-
mann problem is this: Given ψ ∈ F∂V such that

∑

p∈∂V ψp = 0, is there some
harmonic potential u such that the net current of u on the boundary vertices is
given by ψ? In other words, is there some u such that π∂V (Ku) = ψ? Is this u
unique up to adding a constant? If we let A ⊂ FV be the subspace on which the
coordinates sum to zero, then having a unique solution to the Neumann problem
is equivalent to K|A : A → A being invertible, or equivalent to K having rank
|V | − 1.

9If G is not connected, then we can simply treat the components separately.
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7.2 A Grove-Determinant Formula

Overview: To attack the Dirichlet and Neumann problems, and for other
purposes described in §8, we want to determine when certain submatrices of K
are invertible. Our main tool is Proposition 7.4 below, which is a consequence
of the grove-determinant formula Theorem 7.1.

The grove-determinant formula is a generalization of the matrix-tree theorem
attributed to Kirchhoff. The version presented here is a special case of Robin
Forman’s [8], often used in the probabilistic study of spanning forests by Richard
Kenyon and David Wilson (see e.g. [13]), and it is similar in spirit to the
“determinant-connection formula” ([4] Lemma 4.1).

Forests and Groves: Let G be a graph. A spanning tree T is a subgraph
(without boundary) such that T is connected, every vertex is in T , and T has
no cycles. A forest F is a subgraph F with no cycles; the components of F have
no cycles, and are therefore trees. A grove is a forest such that each component
contains a boundary vertex.

Let P and Q be disjoint subsets of ∂V with |P | = |Q| = n. Let F(P,Q) be
the set of groves F such that each connected component either

• contains exactly one vertex from P and one from Q and no other boundary
vertices, or

• contains exactly one vertex from ∂V \ (P ∪ Q) and no other boundary
vertices.

Choose a fixed indexing of V by the integers 1, . . . , |V | with the boundary
vertices written first. LetKP∪V ◦,Q∪V ◦ be the submatrix ofK with rows indexed
by P ∪V ◦ and columns by Q∪V ◦, ordered according to our given indexing. Let
p1, . . . , pn be the vertices of P and q1, . . . , qn the vertices of Q ordered according
to the same indexing. For any F ∈ F(P,Q), there is a permutation τ ∈ Sn such
that pj and qτ(j) are in the same component of F ; call this permutation τF .

Theorem 7.1 (Grove-determinant Formula, [8], [13]). Let Γ be a finite linear
network over F. Let P and Q be disjoint subsets of B with |P | = |Q| = n. Then

detKP∪V ◦,Q∪V ◦ = (−1)n
∑

F∈F(P,Q)

sgn τF
∏

e∈E′(F )

ae.

The proof consists of intensive bookkeeping and will not be used in the rest
of this paper. It is included here in my notation for the sake of completeness.

Proof. Let m = |V ◦|. Let p1, . . . , pn+m be the vertices of P ∪I and q1, . . . , qn+m

be the vertices of Q ∪ I, so that P = {p1, . . . , pn} and Q = {q1, . . . , qn} and
pj = qj ∈ V ◦ for j > n. For σ ∈ Sn+m, let mσ be the number of indices j with
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pj = qσ(j), or equivalently the number of fixed points j > n of σ. Then

detKP∪V ◦,Q∪V ◦ =
∑

σ∈Sn+m

sgnσ

n+m
∏

j=1

κpj ,qσ(j)

=
∑

σ∈Sn+m

sgnσ







∏

pj 6=qσ(j)

∑

e:e+=pj
e−=qσ(j)

(−ae)











∏

pj=qσ(j)

∑

e:e+=pj

ae





=
∑

σ∈Sn+m

(−1)n+m−mσ sgnσ







∏

pj 6=qσ(j)

∑

e:e+=pj
e−=qσ(j)

ae











∏

pj=qσ(j)

∑

e:e+=pj

ae





Our goal is to expand each of the sums inside the product. Fix σ; choosing one
term from each of the inner sums amounts to choosing for each j an edge ej
such that (1) (ej)+ = pj and (2) if pj 6= qσ(j), then (ej)− = qσ(j). Let Y be the
collection of all sequences Y = {e1, . . . , en+m} such that (ej)+ = pj. We will
say that σ ∈ Sn+m and Y ∈ Y are compatible if (2) is satisfied for every ej ∈ Y .
Then

detKP∪I,Q∪I =
∑

σ∈Sn+m

(−1)n+m−mσ sgnσ
∑

compatible
Y ∈Y

∏

e∈Y

ae

=
∑

Y ∈Y

∑

compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ
∏

e∈Y

ae

=
∑

Y ∈Y

(

∏

e∈Y

ae

)

∑

compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ.

Our outer sum is now indexed by Y rather than Sn+m. Our next goal
is to show that the inner sum will be zero for any Y which contains a cycle
of the graph or a pair {e, e}. Suppose that Y contains a sequence of edges
ej(1), . . . , ej(k) with (ej(ℓ))− = (ej(ℓ+1))+ for ℓ = 1, . . . , k − 1 and (ej(k))− =
(ej(1))+. If σ is compatible with Y , there are two possibilities: Either

(A) σ(j(ℓ)) = j(ℓ) for all ℓ or

(B) j(1) 7→ j(2) 7→ . . . 7→ j(k) 7→ j(1) is a cycle of σ.

In fact, there is a one-to-one correspondence between compatible permutations
satisfying (A) and those satisfying (B). Let ξ ∈ Sn+m be the cycle j(1) 7→
j(2) 7→ . . . 7→ j(k) 7→ j(1). Then the permutations compatible with Y can
be grouped into pairs {σ, ξσ}, where σ satisfies (A) and ξσ satisfies (B). Then
mξσ = mσ − k and sgn ξ = (−1)k+1, so

(−1)n+m−mξσ sgn(ξσ) = (−1)n+m−mσ−k(−1)k+1 sgnσ = −(−1)n+m−mσ sgnσ,
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and the two terms have opposite signs. Thus,

∑

compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ = 0

because the terms for σ and ξσ cancel.
Therefore, it suffices to consider elements Y ∈ Y which do not contain cycles

or pairs {e, e}, and which have at least one compatible σ. Let Z be the set of
all such Y , so that

detKP∪V ◦,Q∪V ◦ =
∑

Y ∈Z

(

∏

e∈Y

ae

)

∑

compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ.

We now claim there is a one-to-one correspondence between Z and F(P,Q),
and that for each Y ∈ Z, there is exactly one compatible permutation σ. We
begin by assigning a forest F (Y ) to each Y . If Y ∈ Z, then there is a unique
forest F with E(F ) = Y ∪ Y . Call it F (Y ). In order to show F (Y ) ∈ F(P,Q),
observe:

a. Any vertex p ∈ P ∪V ◦ has a unique outgoing oriented edge in Y . Therefore,
starting at a given p ∈ V , we can form a path of oriented edges in Y that
reaches a vertex in V \ (P ∪ V ◦) = ∂V \ P . Therefore, every component of
F (Y ) contains an element of ∂V \ P .

b. Assume for contradiction that two elements of ∂V \ P are in the same com-
ponent of F (Y ). Then there is a path of oriented edges e1, . . . , ek in Y ∪ Y
with (e1)+ ∈ ∂V \ P and (ek)− ∈ ∂V \ P . Since Y has no edges exiting
vertices in ∂V \ P , we have e1 ∈ Y and ek ∈ Y . Since each ej is either in
Y or Y , there is some j with ej ∈ Y and ej+1 ∈ Y , which contradicts the
fact that Y has at most one edge exiting a given vertex. This contradiction
shows that every component of F (Y ) contains only one element of ∂V \ P .

c. Suppose pj ∈ P . Let σ be the permutation compatible with Y . For some
k, σk(j) = j ≤ n, so there must be a smallest value of k ≥ 1 such that
σk(j) < n. Then for 1 ≤ ℓ < k, pσℓ(j) = qσℓ(j) is an interior vertex, and
qσk(j) ∈ Q. This implies that there is a path in Y from pj to some vertex of
Q. Thus, we have every component of F (Y ) that has a vertex in P also has
a vertex in Q.

d. Combining (a), (b), and (c) together with the fact that |Q| = |P |, we conclude
that each component of F (Y ) contains at most one vertex of P , and therefore
F (Y ) ∈ F(P,Q).

Next, we want to prove that Y 7→ F (Y ) defines a bijection Z → F(P,Q).
Injectivity: Note F (Y ) uniquely determines Y ∪ Y , so we only need to show
F (Y ) determines the orientation of each edge in Y . Since any component of
F (Y ) contains a vertex of ∂V \ P , for any given edge e in F (Y ), we can choose
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a path in F (Y ) from some vertex p ∈ V to some vertex q ∈ ∂V \ P which uses
e, and we can assume the path is an embedded path, that is, it has no repeated
vertices or edges. Since F (Y ) is a forest, there is only one such path from p to
q, so this must be the same as the one constructed in (a). Thus, the orientation
of e in Y must match its orientation in the path from p to q. So Y is uniquely
determined by F (Y ).

Surjectivity: Given some F ∈ F(P,Q), each component contains exactly one
vertex of ∂V \P . One can easily check that procedure used to prove injectivity
produces a well-defined orientation for each edge in F , hence defines some Y ∈ Y
with no cycles or pairs {e, e}. To check Y ∈ Z, we must also produce some σ
compatible with Y .

Decompose τF into disjoint cycles η1, . . . , ηK . For each ηk, we define a cycle
σk ∈ Sn+m as follows: Let ηk be given by i1 7→ i2 7→ iR 7→ i1 (the dependence
on k has been suppressed in the notation). There is a unique embedded path
in F from pir to qir+1 and the other vertices in the path are interior, so the
vertices in all the paths have the form

pi1 , pj1,1 = qj1,1 , pj1,2 = qj1,2 , . . . , pj1,k1 = qj1,n1
, qi2

pi2 , pj2,1 = qj2,1 , pj2,2 = qj2,2 , . . . , pj2,k2 = qj2,n2
, qi3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

piR , pjR,1 = qjR,1 , pjR,2 = qjR,2 , . . . , pjR,k2
= qjR,nR

, qi1 .

We define the cycle ξk by

i1 7→ j1,1 7→ j1,1 7→ j1,2 7→ . . . 7→ j1,n1 7→ i2

i2 7→ j2,1 7→ j2,1 7→ j2,2 7→ . . . 7→ j2,n2 7→ i3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iR 7→ jR,1 7→ jR,1 7→ jR,2 7→ . . . 7→ jR,nR
7→ i1.

Then let σ = ξ1ξ2 . . . ξn. This implies that Y 7→ F (Y ) is a bijection Z →
F(P,Q).

I claim that in fact σ is uniquely determined by Y (or equivalently by F ).
Suppose σ is compatible with Y . Write σ as a product of cycles ξ1, . . . , ξℓ.
Suppose ξk is given by j1 7→ j2 7→ . . . 7→ jL 7→ j1. If each jℓ was greater
than n (corresponding to an interior vertex), then we would have pjℓ = qjℓ ∈ I
and the edges ej1 , . . . , ejL ∈ Y would form a cycle or pair {e, e}, contradicting
our assumptions about Y . Thus, some of the indices in the cycle are ≤ n; it
follows that ξ1, . . . , ξk must represent boundary-to-boundary paths just as in
our original construction, and the paths are uniquely determined by F .

We now know there is a bijection between Z and F(P,Q), and there is ex-
actly one permutation σY compatible with Y . It only remains to relate sgnσY
and sgn τF (Y ). Consider a cycle ηk which maps i1 7→ i2 7→ iR 7→ i1, and let

ji,1, . . . , ji,nr
be as above. Let zk =

∑R
r=1 nr, which is the number of interior

vertices in the paths corresponding to ηk. Then sgn ξk = (−1)zk sgn ηk. The
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total number of interior vertices in the paths is
∑K

k=1 zk. The interior ver-
tices not in the paths are exactly the vertices pj for which σ(j) = j. Hence,
∑K

k=1 zk = m−mσ. Therefore,

sgnσ = sgn(ξ1 . . . ξn) = (−1)
∑

k
zk sgn(η1 . . . ηn) = (−1)m−mσ sgn τF .

Thus, (−1)n+m−mσ sgnσ = (−1)n sgn τF . Therefore,

∑

Y ∈Z

(−1)n+m−mσY sgnσY
∏

e∈Y

ae = (−1)n
∑

F∈F(P,Q)

sgn τF
∏

e∈E′(F )

ae.

Corollary 7.2. Let F = F(∅,∅). Then detKV ◦,V ◦ =
∑

F∈F

∏

e∈E′(F )

ae.

Corollary 7.3 (Matrix-Tree Theorem). Let G be a connected graph (without
boundary). Let K be the Kirchhoff matrix of the electrical network where each
edge has conductance ae = 1. For p, q ∈ V , (−1)p−q detKV \{p},V \{q} is the
number of spanning trees of G.

Proof. If p = q, then make G into a graph with boundary by setting ∂V = {p}.
Reindex the vertices so that p occurs first; this does not change the determinant.
Then by the previous theorem,

detKV \{p},V \{p} = detKV ◦,V ◦ =
∑

F∈F

sgn τF .

Since p is the only boundary vertex, each grove is a spanning tree, so the result
is the number of spanning trees. If p 6= q, set ∂V = {p, q}. Reindex the vertices
so that p and q occur first; this does not change the determinant, but it does
change (−1)p−q to −1. Compute

detKV \{p},V \{q} = detK{q}∪V ◦,{p}∪V ◦ = −
∑

F∈F({q},{p})

sgn τF .

Again, since p and q are the only boundary vertices, each grove is a spanning
tree, and τF is the identity.

The grove-determinant formula allows us to test when KP∪V ◦,Q∪V ◦ is in-
vertible for networks over various fields. In particular:

Proposition 7.4. Let G be a finite linear network over a field F. Let P,Q ⊂ ∂V
be disjoint with |P | = |Q| = n. Then

a. If F(P,Q) = ∅, then detKP∪V ◦,Q∪V ◦ = 0.

b. If F(P,Q) has exactly one element, then detKP∪V ◦,Q∪V ◦ 6= 0.

c. If F(P,Q) has more than one element, then there exist linear networks over
R for which detKP∪V ◦,Q∪V ◦ is positive, negative, and zero. The determinant
is nonzero for some positive numbers.

69



Proof. In case (a), the grove-determinant formula expresses the term as a sum
over an empty index set, which is zero. In case (b), there is exactly one term in
the sum, which is a product of nonzero numbers, hence nonzero. Now consider
case (c). Let F1 and F2 be two distinct groves. All the groves must have the same
number of edges, as is clear from the proof of the grove-determinant formula.
Thus, there is some e0 ∈ E′(F1) \ E

′(F2) and e1 ∈ E′(F2) \ E
′(F1). Choose

a sign sgn e = ±1 for each edge in E as follows: Set sgn e = 1 for e 6= e0, e1
and choose sgn e0 such that sgn e0 sgn τF1 = 1 and sgn e1 sgn τF2 = −1. Choose
ǫ < 1/|F(P,Q)| and set

ae =

{

sgn e, e ∈ E′(F1)

ǫ sgn e, 6∈ E′(F1).

Then in the grove expansion of detKP∪I,Q∪I , the term for F1 dominates, making
the determinant positive. In the other hand, if

be =

{

sgn e, e ∈ E′(F2)

ǫ sgn e, 6∈ E′(F2),

then the determinant is negative. Applying the intermediate value theorem to
the connected region {c ∈ RE′

: sgn ce = sgn e} shows that there are nonzero
numbers ce which will make the determinant zero.

The same argument shows that whatever sign we choose for the edges, we
can make detKP∪I,Q∪I nonzero; in particular, this holds if we want the weights
to be positive.

7.3 Dirichlet-Singular and Neumann-Singular Networks

over R

Proposition 7.4 enables us to determine immediately when the Dirichlet and
Neumann problems have a unique solution.

Dirichlet-Singular Networks: Assume that G is connected and has some
boundary vertices. As the reader can verify, this implies that there is at least
one grove in F . Hence, if ae > 0,

detKV ◦,V ◦ =
∑

F∈F

∏

e∈E′(F )

ae > 0.

Therefore, the Dirichlet problem has a unique solution (see §7.1). However,
for most graphs there will be real values of ae 6= 0 for which KV ◦,V ◦ is not
invertible. In fact, the only ∂-graphs for which the Dirichlet problem always a
unique solution for any linear network over R are so trivial that the Dirichlet
problem will also have a unique solution in the nonlinear case:

Proposition 7.5. Let G be a finite ∂-graph. The following are equivalent:

a. If G′ is the graph obtained from G by deleting all boundary edges, then G′ is
a forest with one boundary vertex in each component.

70



b. The Dirichlet problem has a unique solution for any BZ(M) network on G.

c. The Dirichlet problem has a unique solution for any linear network over R

on G.

Proof. (c) =⇒ (a). By Proposition 7.4, (c) implies that F has only one element,
and this implies (a) as the reader may verify.

(a) =⇒ (b). Given any φ ∈ M∂V , we define u to be constant on each
component of G′. Details left to the reader.

(b) =⇒ (c) trivially.

A more delicate question is, for linear networks, what are the possible values
of dimkerKV ◦,V ◦? This depends on the graph, but in some cases, it is easy to
find a lower bound: Suppose G1, . . . , GN form a subgraph partition of G and
∂V (Gk) ⊂ ∂V (G) for all k. Suppose there are Dirichlet-singular conductances
for each Gk, and let the conductances on G be the same as the conductances on
the Gk’s. Since kerKI,I is nontrivial for each Gk, there is a nonzero harmonic
potential uk on Gk, and we can extend it to G by setting it to zero on the
other vertices. The potentials thus defined are linearly independent because uk
is nonzero on Gk, but uj for j 6= k is zero on Gk. Thus, dimkerKI,I ≥ N .

Neumann-Singular Networks: If ae > 0, the Neumann problem has a
unique solution. By similar reasoning as in Corollary 7.3, for any p, q,

(−1)p−q detKV \{p},V \{q} =
∑

spanning
trees T

∏

e∈E′(T )

ae.

Since G is connected, it has a spanning tree, so the right hand side is positive if
ae > 0. So K has rank |V |−1 and the Neumann problem has a unique solution.
This also shows that the determinant of any |V | − 1 by |V | − 1 submatrix of K
is the same up to sign, so to see whether the Neumann problem has a unique
solution, it suffices to check one of them. Similar to the Dirichlet problem, we
have

Proposition 7.6. Let G be a finite connected ∂-graph with at least one boundary
vertex. The following are equivalent:

a. G is a tree.

b. The Neumann problem has a unique solution (up to adding a constant to the
potential) for any BZ(M) network on G.

c. The Neumann problem has a unique solution (up to adding a constant to the
potential) for any linear network over R on G.

Proof. (c) =⇒ (a) because if G is not a tree, then there is more than one
spanning tree for G, so by Proposition 7.4, there exist real weights for the edges
of G that will produce a Neumann-singular network.

(a) =⇒ (b) is left to the reader.
(b) =⇒ (c) trivially.
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Figure 13: Singular conductances on the triangle-in-triangle network. Boundary
vertices are colored in. Vertices are labelled with their index. Edges are labelled
with their conductance.
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For linear networks, what are the possible values of dimkerK? It must
be ≥ 1. Now suppose G1, . . . , GN form a subgraph partition of G, such that
each Gk is connected and any cycle of G is contained in some Gk. Suppose
there exist Neumann-singular conductances on each Gk, and use them to define
conductances on G. Then for each Gk, there exists a non-constant harmonic
potential uk on Gk with net current zero on every vertex. We can extend uk
to G by defining it to be constant on each Gk; this will be consistent because
every cycle is contained in some Gk. Then the uk’s are linearly independent, so
dimkerK ≥ N + 1.

Harmonic Functions with Potential and Net Current Zero on the

Boundary: For some networks, it is possible for a nonzero harmonic function
to have potential and current zero on the boundary, even if there are no com-
ponents without boundary vertices. Consider the “triangle-in-triangle” network
with boundary vertices {1, . . . , 6} and interior vertices {7, 8, 9} and edges with
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coefficients ae shown in the figure. The Kirchhoff matrix is





























0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
−1 1 0 −1 1 0 0 0 0
0 −1 1 0 −1 1 0 0 0
1 0 −1 1 0 −1 0 0 0





























.

Let ep be the vector with 1 on vertex p and zero elsewhere. Then e7 + e8 + e9
is a harmonic potential which is zero on the boundary and also has net current
zero at each boundary vertex.

However, if G is a finite layerable graph, then this behavior is impossible:
Any harmonic function with potential zero and net current zero on each bound-
ary vertex must be identically zero by Proposition 4.2.

7.4 Local Network Equivalences

Overview: In §2.2, we stated the principle of “subnetwork splicing”: If Γ′ is
obtained by replacing some subnetwork of Γ by another subnetwork with the
same boundary behavior, then Γ and Γ′ have the same boundary behavior. For
linear networks with positive weights, there are several well-known replacements
we can make (“local network equivalences”):

• A “series” can be replaced by a single edge with the appropriately chosen
weight.

• A pair of parallel edges can be replaced by a single edge.

• A “Y ” and a “∆” are interchangeable.

• A “star” can be replaced by a network on a complete graph.

However, over arbitrary fields, it is not always possible to find weights on the
new graph that will produce the same boundary behavior. I will explain each of
these transformations, carefully noting when they do and do not generalize to
arbitrary fields, and finish by summarizing two applications from the literature.

Series Reduction: A series is the following configuration:

a b

If a+ b 6= 0, then this has the same boundary behavior as

ab
a+b
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In other words, a series can be reduced to a single edge, and the resistances add:
The original resistances were 1/a and 1/b, and the new resistance is 1/a+ 1/b.
This shows that the series is not recoverable; in fact, there is a one-parameter
family of conductances on the series graph which produce the same boundary
behavior.

If a+ b = 0, then the series is Dirichlet-singular. The two boundary vertices
must have the same potential. The potential of the interior vertex is indepen-
dent of the boundary potentials, but depends on the current flowing from one
boundary vertex to the other. In this case, changing the conductances to ca
and cb for some c 6= 0 will produce an electrically equivalent network.

Any ∂-graph which contains a series is not recoverable for any field except
F2 If a and b are any weights on the series with a + b 6= 0, we can produce a
network with the same boundary behavior by replacing the series subnetwork
with a single-edge subnetwork. This transformation is called a series reduction.

Suppose a+ b = 0 and p and q are the endpoints of the series, and r is the
middle vertex. If the series is a subnetwork of a larger network in which p is
an interior vertex, then we can produce an electrically equivalent network by
“collapsing” the series–identifying p and q and removing r and the edges in the
series. This is because any harmonic function must have the same potential on
p and q, and the amount of current flowing from p to q is independent of the
potentials.

Parellel Reduction: A parallel circuit is the following configuration:

a

b

If a + b 6= 0, then this is equivalent to a single edge with conductance a + b.
If a + b = 0, then it is equivalent to a network with no edges. Substituting a
parallel edge for a single edge or no edge is another local electrical equivalence.

Y -∆ Transformation: A Y (left) and a ∆ (right) are the following types
of networks:10

a

b

c

C

A

B

For any Y with a+ b+ c 6= 0, there is a unique equivalent ∆ with

A =
bc

a+ b+ c
, B =

ac

a+ b+ c
, C =

ab

a+ b+ c
.

10The Y -∆ transformation has been known to electrical engineers since at least 1899 [12].
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This can be proved by computing the response matrix Λ for each network. If
a + b + c = 0, then in the Y the Dirichlet problem does not always have a
solution; however, this is impossible in a ∆, so there is no equivalent ∆. For
any ∆ with 1/A+ 1/B + 1/C 6= 0, there is a unique equivalent Y with

a =
AB +BC + CA

A
, b =

AB +BC + CA

B
, c =

AB +BC + CA

C
.

However, if 1/A+1/B+1/C = 0, then the ∆ is Neumann-singular because it is
a tree, so there is no equivalent Y . A Y -∆ transformation is the transformation
that replaces a Y subnetwork with an equivalent ∆ subnetwork or vice versa.
⋆-K Transformation: The final type of local electrical equivalence is the

⋆-K transformation (also known as the “star-mesh” or “star-polygon transfor-
mation”).11 An n-star is a graph with n boundary vertices and one interior
vertex, and one edge from the interior vertex to each boundary vertex. The
complete graph Kn is a graph with n boundary vertices and one edge between
each pair of distinct boundary vertices. For example, here are networks on 4-star
and K4 graphs:

1

2

3

4

a1

a2

a3

a4

1

2

3

4

b1,2b2,3

b3,4 b1,4

b1,3

b2,4

Index the vertices of the n-star and Kn by 1, . . . , n. Let aj be the conductance
of the star edge incident to j and bi,j the conductance of the edge in the Kn

between vertices i and j. Let σ = a1 + · · ·+ an. For any star with σ 6= 0, there
is an equivalent Kn with conductances bi,j = aiaj/σ. If σ = 0, then the star
has Dirichlet-singular boundary behavior and hence is not equivalent to a Kn.
If n ≥ 4, most Kn’s are not equivalent to a star, unlike the n = 3 case of Y -∆
transformations:

Lemma 7.7 (modification of [17]). Let n ≥ 4. A network on a Kn has the
same boundary behavior as some n-star if and only if

• It satisfies the quadrilateral rule: bi,jbk,ℓ = bi,kbj,ℓ for distinct i, j, k, ℓ.

• It is Neumann-nonsingular.

11This has also been known to electrical engineers for a long time. See e.g. [20]. The
terminology and applications described here are from [17] and [10].
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Proof. If the network has the same boundary behavior as some n-star, then for
distinct i, j, k, ℓ,

bi,jbk,ℓ =
aiajakaℓ

σ2
= bi,kbj,ℓ.

A star is a tree and is therefore not Neumann-singular. Thus, the Neumann
problem always has some solution on the Kn network. Since this network has
only boundary vertices, this implies that rankK = |V | − 1, so the Kn network
is Neumann-nonsingular.

Suppose conversely that a Kn network satisfies these two conditions. Fix i
and choose distinct k, ℓ 6= i, and let

ai =
∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

.

The quadrilateral rule guarantees that the right hand side is independent of k
and ℓ. But for a fixed k and ℓ, this is the current on vertex i of the potential
χi − (bi,ℓ/bk,ℓ)ek on the Kn network. This function has net current 0 on vertex
ℓ, but since bi,ℓ/bk,ℓ is independent of the choice of ℓ, it has current 0 on all
vertices other than k and i. Since the potential is not constant and the network
is not Neumann-singular, there must be nonzero net current on i and k, so ai
must be nonzero.

Now we must verify that σ =
∑

ai 6= 0 and that aiaj/σ = bij . By extending
F to a larger field if necessary, we can assume that there exists ci with

c2i = bi,kbi,ℓ/bk,ℓ for distinct k, ℓ 6= i,

and again this is independent of k, ℓ. Then

c2i c
2
j =

bi,kbi,j
bj,k

bj,kbi,j
bi,k

= b2i,j

so that cicj = ±bi,j. By choosing c1 first and then modifying cj for j 6= 1 if
necessary, we can guarantee c1cj = b1,j for j 6= 1. Then for i 6= 1 we have

cicj = b1,ib1,j/c
2
1 = bi,j

as well. Then

ai =
∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

=
∑

j 6=i

cicj + c2i = ci

n
∑

j=1

cj .

Since ai 6= 0, the sum is nonzero; hence,

σ =

n
∑

i=1

ci

n
∑

j=1

cj =

(

n
∑

i=1

ci

)2

6= 0.

The Kn is equivalent to the star because

aiaj
σ

=
(ci
∑n

k=1 ck) (cj
∑n

k=1 ck)

(
∑n

k=1 ck)
2 = cicj = bi,j.
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Y -∆ Transformations and Recoverability: [4] §6 and §13 applies Y -∆
transformations as follows: Y -∆ transformations preserve recoverability over
the positive linear conductances. For suppose G′ is obtained from G by a Y -
∆ transformation and G′ is recoverable over the positive linear conductances.
For any positive linear conductances on G, we can find equivalent conductances
on G′. These conductances are uniquely determined by L over the positive
linear conductances. In particular, the conductances on the Y or ∆ in G′ are
determined, but then we can find the conductances on the corresponding ∆ or
Y in G, so G is also recoverable.

We say two graphs are Y -∆ equivalent if there is a sequence of Y -∆ transfor-
mations which will change one into the other. This is an equivalence relation. If
G is Y -∆ equivalent to G′ and G′ has a series or parallel configuration, then G′ is
not recoverable, and hence G is not recoverable over the positive linear conduc-
tances. This is one of the best methods for showing a graph is not recoverable
over R.

[4] shows that if a ∂-graph in the disk has a medial strand arrangement
with lenses, then there is a sequence of Y -∆ moves that will produce a parallel
or series configuration, and hence G is not recoverable over the positive linear
conductances. Combined with Theorem 6.4, this yields

Theorem 7.8 (cf. [4] Lemmas 13.1 and 13.2, [11] Theorem 6.7). Let G be a
∂-graph embedded in the disk with a medial strand arrangement M. Then the
following are equivalent:

• M is lensless.

• G is recoverable over positive linear conductances over R.

• G is recoverable over BZ(M) for any abelian group M .

Using ⋆-K Transformations to Compute the Boundary Behavior:

[17] used ⋆-K transformations as follows: For any finite graph G, there is a
sequence of ⋆-K moves and parallel circuit reductions that will transform it
into a graph with no interior vertices. Let Γ be a signed linear network on G,
and suppose that at each step, the star is non-singular, so an equivalentK can be
found. After the final step, the response matrix is exactly the Kirchhoff matrix
because there are no interior vertices. So the ⋆-K transformation provides a
way to compute the response matrix from the Kirchhoff matrix in small steps,
and in some cases, this is a useful technique for determining recoverability over
positive (real) linear conductances.

7.5 The Electrical Linear Group

Overview: It is well-known that there is a relationship between electrical net-
works and symplectic vector spaces (e.g. [14], [1], [18]). In particular, Lam and
Pylyavskyy [14] describe an “electrical linear group” whose positive part acts
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on positive linear circular planar networks with n boundary vertices by adjoin-
ing boundary spikes and boundary edges. They prove it is isomorphic to the
symplectic Lie group Sp2n(R).

I will construct an electrical linear groupELn(F) which (in the final analysis)
differs only slightly from Lam and Pylyavskyy’s. However, the approach will be
different–it will be defined over arbitrary fields, using the language/motivation of
elementary IO-network morphisms, and with no a priori restrictions on network
planarity.12

Type 1 and 2 Elementary IO-Networks over F: Let IO-net(F) be the
category of IO-networks given by linear networks over F. Let [n] = {1, . . . , n}.
For t ∈ F \ {0}, let Uj(t) : [n] → [n] be the type 1 IO-network morphism given
by a network described as follows:

• The vertices are p1, . . . , pn and p′j . The labelling [n] → V for the inputs
is given by k 7→ pk, and the labelling [n] → V of the outputs is given by
j 7→ p′j and k 7→ pk for k 6= j.

• There is only one edge. It is between pj and p′j , and the conductance is
1/t.

For i 6= j, let Ui,j(t) : [n] → [n] be the type 2 IO-network morphism described
as follows:

• The vertices are p1, . . . , pn. The labellings [n] → V for the inputs and the
outputs are both given by k 7→ pk.

• There is only one edge. It is between pi and pj , and the conductance is t.

We define Uj(0) = id and Ui,j(0) = id.
In §4.2 we gave an explicit description of the IO boundary behavior of type

1 and type 2 elementary IO-networks. From this, we can see that the relation

X (Uj(t)) : F
[n] × F

[n]
 F

[n] × F
[n]

defines a bijective function (which is clearly linear). We will identify F[n] × F[n]

with F2n, so that the first n coordinates represent potentials and the last n
coordinates represent input/output net current. From the formulas in §4.2 we
easily deduce that the matrix of X (Uj(t)) : F

2n → F2n is

Ξj(t) =

(

I −tEj,j

0 I

)

,

where Ei,j is the n×nmatrix with a 1 in the (i, j) position and zeroes elsewhere.
(The conductance was chosen to be −1/t so that we would get a t in the final
formula.) Similarly, X (Ui,j(t)) defines a linear isomorphism F2n → F2n whose
matrix is

Ξi,j(t) =

(

I 0
−t(Ei,i + Ej,j − Ei,j − Ej,i) I

)

.

12But unfortunately I will not address the generalizations of electrical Lie groups suggested
in their paper.

78



From the parallel and series reduction transformations, we can conclude that

Ξj(s)Ξj(t) = Ξj(s+ t) and Ξi,j(s)Ξi,j(t) = Ξi,j(s+ t).

Definition of ELn(F): The electrical linear group ELn(F) is the subgroup
of GL2n(F) generated by Ξj(t) and Ξi,j(t) for t ∈ F. Equivalently, ELn(F) is
the set of linear isomorphisms of F2n representing X (G) for some G : [n] → [n]
in IO-net(F) which admits an elementary factorization into type 1 and type
2 elementary IO-networks. (We know that the latter is a subgroup because
Ξj(t)

−1 = Ξj(−t) and Ξi,j(t)
−1 = Ξi,j(−t).)

Remark. The matrices Ξj(t) and Ξi,j(t) were written down in [11] based on the
Lie algebra relations in [14]. The IO-net(F) perspective gives these matrices a
“natural” and concrete electrical meaning.

The Electrical Grassmannian: Define the electrical Grassmannian EGn(F)
as the set of boundary behaviors B(Γ) ⊂ F2n for linear networks over F with n
boundary vertices.

Action of ELn on EGn: As in §4.4, if G is an IO-net(F) morphism
∅ → [n], then Uj(t)◦G is a morphism formed by adjoining a spike of conductance
1/t to the network, and moreover, the boundary behavior

B(Uj(t) ◦ G) = X (Uj(t)) ◦ B(G) = Ξj(B(G)).

That is, the boundary behavior of the new equivalence class of networks is
found by taking the image of the original boundary behavior under the map
multiplication by Ξj . The same applies for Ui,j(t), Ξi,j(t), and adjoining a
boundary edge of conductance t. This implies that ELn(F) acts on EGn(F) by
taking images under linear transformations.

7.6 Characterization of Linear Boundary Behavior

ELn and EGn have a simple description in terms of symplectic vector spaces.
Let Ω be the 2n× 2n matrix given in block form by

Ω =

(

0 −I
I 0

)

.

Recall that

• The standard symplectic form on F2n is ω(x, y) = xTΩy.

• The symplectic group Sp2n(F) is the group of matrices in GL2n(F) satis-
fying ATΩA = Ω, or equivalently, ω(Ax,Ay) = ω(x, y) for all x, y.

• A Lagrangian subspace of F2n is a subspace W of dimension n such that
ω(x, y) = 0 for all x, y ∈W .

Theorem 7.9 (cf. [14] Theorem 3.1, [1]). Let c0 = (~1,~0) ∈ F2n be the vector
with n ones and n zeroes. Then
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• If F 6= F2, then ELn(F) is the group of symplectic matrices A ∈ Sp2n(F)
with Ac0 = c0.

• EGn(F) is the set of Lagrangian subspaces containing c0.

The theorem will be broken into several lemmas, and exposition mingled
with the proof. We will first prove that any element of EGn is Lagrangian and
any element of ELn is symplectic, then tackle the harder converse.

Lemma 7.10. If Γ is a finite linear network over F with ∂V = [n], then B(Γ)
is n-dimensional.

Proof. This is clearly the case for Dirichlet-nonsingular networks. However,
the statement is not as obvious as it initially appears, since the space of har-
monic potentials can have dimension strictly greater than n; for instance, see
the triangle-in-triangle example of §7.3.

Recall U(Γ) is the kernel of KV ◦,V , the submatrix of the Kirchhoff matrix
containing the rows indexed by the interior vertices. Let Φ : U(Γ) → B(Γ)
be the map that sends a harmonic function to its boundary potential / net
current data, which is surjective by definition of B(Γ). Then kerΦ is the space
of harmonic potentials that have potential and net current zero on the boundary.
That is,

kerΦ =

{(

0
w

)

∈ F
V : w ∈ F

V ◦

,K

(

0
w

)

= 0

}

,

which is isomorphic to kerKV,V ◦ . Since K is symmetric, KV,V ◦ = KT
V ◦,V . Then

after three applications of the rank-nullity theorem, we have

dimB(Γ) + dim kerΦ = rankΦ + dimkerΦ

= dimU(Γ) = dimkerKV ◦,V

= |V | − rankKV ◦,V

= |∂V |+ |V ◦| − rankKV,V ◦

= |∂V |+ dimkerKV,V ◦

= |∂V |+ dimkerΦ,

and hence dimB(Γ) = |∂V |.

Lemma 7.11. If Γ is as above, then B(Γ) is a Lagrangian subspace of F2n.

Proof. Heuristically, this is a generalization of the fact that the response matrix
of a network is symmetric. Indeed, if 〈·, ·〉 is the standard “inner product” on
Fn, then

ω(x, y) = 0 for x, y ∈ B(Γ)

is equivalent to

〈φ1, ψ2〉 = 〈φ2, ψ1〉 for (φ1, ψ1), (φ2, ψ2) ∈ B(Γ).

This clearly holds if ψj = Λφj and Λ is symmetric.
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For the general case, suppose that (φ1, ψ1) and (φ2, ψ2) are the boundary
data for harmonic potentials (φ1, w1) and (φ2, w2), with wj ∈ FV ◦

. Then by
harmonicity, KV ◦,∂V φj +KV ◦,V ◦wj = 0, and also ψj = K∂V,∂V φj +K∂V,V ◦wj .
Applying symmetry of the Kirchhoff matrix,

〈φ1, ψ2〉 = 〈φ1,K∂V,∂V φ2〉+ 〈φ1,K∂V,V ◦w2〉

= 〈φ1,K∂V,∂V φ2〉+ 〈KV ◦,∂V φ1, w2〉

= 〈φ1,K∂V,∂V φ2〉 − 〈KV ◦,V ◦w1, w2〉 ,

which is unchanged when we switch φ1 and φ2 and w1 and w2.

Lemma 7.12. If Γ is as above, then B(Γ) contains c0.

Proof. The constant potential function 1 is harmonic.

Lemma 7.13. Any A ∈ ELn(F) is symplectic and fixes c0.

Proof. By direct computation, the generators Ξj(t) and Ξi,j(t) are in Sp2n(F)
and fix c0.

Alternatively, whenever we have a IO-network morphism G : [n] → [n] of
linear networks such that X (G) is a bijective function, it must be a linear iso-
morphism represented by a symplectic matrix. To verify this, take a network
Γ representing G. If we forget the labelling of inputs and outputs, B(Γ) is a
Lagrangian subspace of F∂V ×F∂V , and with a little casework this implies X (G)
is represented by a symplectic matrix. Since the constant potential is harmonic,
this matrix must also fix c0.

Our next goal is to show that any Lagrangian subspace of F2n is the boundary
behavior of some network, for which this lemma turns out to be useful:

Lemma 7.14. Suppose V is a Lagrangian subspace of F2n. For S ⊂ [2n], let
πS : F2n → FS be the coordinate projection. Then there is a partition of [n] into
two sets S and T such that

• πS(x) = 0 implies π[n](x) = 0 for x ∈ V .

• πS∪(n+T ) defines an isomorphism V → FS∪(n+T ).

Proof. Let W = {w ∈ Fn : (0, w) ∈ V }. If (x, y) ∈ V and w ∈ W , then

0 = ω((x, y), (0, w)) = −〈x,w〉 ,

and hence

W ⊂ π[n](V )⊥ = {w ∈ F
n : 〈w, x〉 = 0 for x ∈ π[n](V )}.

However, note thatW ∼= ker(π[n]|V ), hence by the rank-nullity theorem dimW+
dimπ[n](V ) = dimV = n. We also know by the rank-nullity theorem that

dimπ[n](V ) + dimπ[n](V )⊥ = n for any field. Therefore, W = π[n](V )⊥.
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From basic linear algebra, we can choose S ⊂ [n] such that πS : Fn → FS

restricts to an isomorphism π[n](V ) → FS . Let T = [n]\S. SinceW = π[n](V )⊥,
this implies that πT : Fn → FT defines an isomorphism W → FT (details13).
This implies that πS∪(n+T ) : F2n → FS∪(n+T ) defines an isomorphism V →

FS∪(n+T ). One way to see this is to by applying the five-lemma to the diagram

0 W V π[n](W ) 0

0 FT FS∪(n+T ) FS 0.

Corollary 7.15. If Γ is a linear network over F, then there is a partition of ∂V
into two sets P and Q such that potentials on P and net currents on Q uniquely
determine the other boundary data.

Lemma 7.16. Let V be a Lagrangian subspace of F2n containing c0. Then V
is the boundary behavior of some linear network over F.

Proof. Choose a partition of [n] into two sets S and T as in the previous lemma.
By reindexing the coordinates, assume that S = [ℓ] for some ℓ ≤ n. Let m =
n− ℓ. Then we can choose a basis x1, . . . , xn of V such that





| . . . |
x1 . . . xn
| . . . |



 is of the form









I 0
∗ 0
∗ ∗
0 I









,

where the sizes of the blocks are








ℓ× ℓ ℓ×m
m× ℓ m×m
ℓ× ℓ ℓ×m
m× ℓ m×m









.

Then define V ′ := Ξℓ+1(−1) . . .Ξn(−1)(V ) and note that

V ′ = im

(

I Eℓ+1,ℓ+1

0 I

)

. . .

(

I En,n

0 I

)









I 0
∗ 0
∗ ∗
0 I









= im









I 0
∗ I
∗ ∗
0 I









= im









I 0
0 I
∗ ∗
∗ I









,

which can be written as

V ′ = im

(

I
Λ

)

13π[n](V )∩(FT ×0S) = 0 in Fn, which implies π[n](V )+(FT ×0S) = Fn since dim π[n](V ) =

|S| = n− |T |. Hence taking orthogonal complements π[n](V )⊥ ∩ (FS × 0T ) = 0
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with n × n blocks. Since Ξj(t) is symplectic and fixes c0, V
′ is a Lagrangian

subspace that contains c0. This implies Λ is symmetric and has row sums zero.
Thus, Λ has the form

Λ =
∑

i<j

−λi,j(Ei,i − Ei,j − Ej,i + Ej,j),

and this implies that
(

I
Λ

)

=
∏

i<j

(

I 0
−λi,j(Ei,i − Ei,j − Ej,i + Ej,j) I

)(

I
0

)

,

or in other words,

V ′ =
∏

i<j

Ξi,j(λi,j)(F
n × 0n),

so that

V =
n
∏

k=ℓ+1

Ξk(1)
∏

i<j

Ξi,j(λi,j)(F
n × 0n).

Now Fn × 0n is the boundary behavior of a network with n boundary vertices
with no edges. Hence, if we adjoin boundary edges of conductances λi,j between
vertices i and j whenever λi,j 6= 0, and then adjoin boundary spikes of conduc-
tance −1 to the vertices ℓ+1, . . . , n, then we obtain a network whose boundary
behavior is V .

Corollary 7.17. Any V ∈ EGn(F) can be expressed as the boundary behavior
of a layerable network with ≤ 1

2n(n+ 1) + 1 edges.

Proof. In the previous proof, the number of boundary edges added was the
number of nonzero entries of Λ above the diagonal. Since

Λ =

(

∗ ∗
∗ I

)

,

with the last block being m × m, the number of nonzero entries is at most
1
2ℓ(ℓ − 1) + ℓm. The number of boundary spikes adjoined was m, so recalling
ℓ+m = n, the total number of edges is at most

m+
1

2
(n−m)(n−m−1)+(n−m)m=

1

2
n(n−1)−

1

2
m(m−3) ≤

1

2
n(n−1)+1.

Corollary 7.18. Let Y = {(i, j) ∈ [n] × [n] : i < j}. For S ⊂ n, define
̥S : FY → EGn(F) by

̥S((ti,j)) =
∏

k∈S

Ξk(−1)
∏

i<j

Ξi,j(ti,j)(F
n × 0n).

Then the images US = ̥S(F
Y ) cover EGn(F) and the transition maps are

rational functions. Hence, for F = R or C, EGn is a smooth real/complex
manifold of dimension n(n− 1)/2.
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Proof. The fact that the US ’s cover EGn follows from the previous proofs, and
the reader may explicitly compute the transition functions.

The proof of Theorem 7.9 is completed by the next lemma:

Lemma 7.19. Suppose F 6= F2. If A ∈ Sp2n(F) and Ac0 = c0, then A ∈
ELn(F).

Proof. The proof is elementary but a bit tedious: It amounts to constructing
explicit factorizations in terms of the generators for ELn(F). We proceed by
induction on n.

For n = 1, any symplectic matrix A that fixes c0 must be of the form

A =

(

1 t
0 1

)

= Ξ1(t).

For the induction step, it suffices to find A1, . . . , Aℓ ∈ ELn(F) such that

A1 . . . AℓA =









∗ 0 ∗ 0
0 1 0 0
∗ 0 ∗ 0
0 0 0 1









,

where each “∗” is (n−1)× (n−1). (Heuristically, A1 . . . ANA is the behavior of
IO-network where the nth input vertex equals the nth output, and this vertex
is isolated; we are thus reducing to a case of networks with n − 1 inputs and
outputs.) The matrix A′ formed by deleting the nth and 2nth row and column
of A1 . . . ANA must be symplectic and fix c0 ∈ F2(n−1). So by the induction
hypothesis A′ ∈ ELn−1(F), which implies A ∈ ELn(F).

Our first goal is to findA1, . . . , Am generators ofELn(F) such that Am . . . A1A
fixes e2n (the last column is e2n). (Heuristically, Am . . . A1A corresponds to an
IO-network where the nth input vertex is the same as the nth output, but is
not necessarily an isolated vertex.) Let x = Ae2n; it suffices to show that by
multiplying by elements of ELn we can map x to e2n. There are several cases:

1. Suppose that the “potential” xn 6= 0 and that the “net currents” xn+1, . . . , x2n−1 6=
0. Let

y =

(

n−1
∏

k=1

Ξk(xk/xn+k)

)

x.

Then y1, . . . , yn−1 = 0, yn = xn 6= 0. Next, let

z =

(

n−1
∏

k=1

Ξk,n(−yn+k/yn)

)

y.

Then z1, . . . , zn−1 = 0 and zn+1, . . . , z2n−1 = 0. But ω(c0, z) = ω(c0, x) =
1, so z2n = 1. Thus, multiplying by Ξn(−zn) will make the nth entry zero,
yielding e2n.
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2. If xn = 0 but xn+1, . . . , x2n−1, x2n 6= 0, then we can multiply by Ξn(1) to
make xn 6= 0, then proceed to Case 1.

3. Suppose that some of “currents” xn+1, . . . , xn+k are zero, but the “poten-
tials” x1, . . . , xn are not all equal. For each j with xn+j = 0, we can find
a k with xj 6= xk. Then multiply by some Ξj,k(t) to make it nonzero. In
order to guarantee that the “net current” at k is still nonzero, we choose
t 6= 0 and t 6= −xn+k/(xk − xj). This is possible because F has at least
three elements. Once we have done this for every j, proceed to Case 2.

4. Suppose that x1, . . . , xn are all equal to some constant t. Since the vec-
tor c0 is fixed by A and all matrices in ELn, it is not possible that
xn+1, . . . , x2n are all zero. Hence, there is some xn+k 6= 0, and we can
multiply by some Ξk(1) to make the new xk 6= t. Then proceed to Case 3.

Thus, if we let A1, . . . , Am be the matrices used in the above operations and
B = Am . . . A1A, then Be2n = e2n.

Our next task is find Am+1 . . . Aℓ such that Aℓ . . . Am+1B fixes both e2n and
en. Let x = Ben, and consider the following cases:

1. Suppose that the “net currents” xn+1, . . . , x2n are all nonzero. Observe

xn = ω(e2n, x) = ω(Be2n, Ben) = ω(e2n, en) = 1.

Let

y =

(

n−1
∏

k=1

Ξk(xk/xn+k)

)

x,

so that y1, . . . , yn−1 = 0 and yn = 1. Then let

z =

(

n−1
∏

k=1

Ξk,n(−yn+k)

)

y.

Then z1 = y1, . . . , zn = yn, and zn+1, . . . , z2n−1 = 0. But ω(c0, z) =
ω(c0, en) = 0, so z2n = 0 as well. Hence, z = en.

2. If some of “currents” xn+1, . . . , xn+k are zero, but the “potentials” x1, . . . , xn
are not all equal, we can multiply by Ξj,k(t)’s to make all the “currents”
nonzero (as in the previous part of the proof). Then proceed to Case 1.

3. Suppose that x1, . . . , xn are all equal to 1. One of the “net currents” must
be nonzero; so in fact, at least two of them are nonzero. Hence, we can
multiply by Ξk(1) for some k 6= n to make the new xk 6= 1. Then proceed
to Case 2.

In all these cases, we never multiplied by a Ξn(t) matrix. Thus, if we let Am+1,
. . . , Aℓ be the matrices used in the above operations, then each one fixes e2n,
and thus

C = Aℓ . . . Am+1B = Aℓ . . . A1A
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also fixes e2n, besides fixing en.
Because CTΩC = Ω, we know CT = ΩC−1Ω−1. Since C−1 fixes en and e2n,

we know CT fixes Ωen = e2n and Ωe2n = −en. Thus, the nth and 2nth rows
of C are en and e2n, and so are the nth and 2nth columns. Thus, C has the
desired form and the induction step is complete.

Closing Remarks: This lemma fails in the case of F2. For instance, for
n = 2,









1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1









6∈ EL2(F2)

despite being symplectic and fixing c0. An easy way to see this is to compute the
orbit of e4 under the action of EL2(F2) on F4

2; the orbit has only four elements
and does not contain e1 + e2 + e4, which is the last column of the matrix of
above.14

As with EGn(F), the construction in Lemma 7.19 provides parametrizations
of ELn(F) for which the transition functions are rational. For a given A, we
parametrize a “neighborhood” using the parameters for Case 1 of each step,
keeping the parameters in the other steps fixed. From this, we work out that
the “dimension” of ELn(F) is n(2n− 1), which is the same as fo EG2n(F).

The action of ELn(F) on EGn(F) is transitive; indeed, the proof of Lemma
7.16 showed that every element of EGn(F) is in the orbit of Fn × 0n. However,
the action is not faithful: There exist nontrivial elements of ELn which fix
every element of EGn. These elements are the kernel of the homomorphism Υ
from ELn to the group of bijections EGn → EGn given by Ξ 7→ FΞ, where
FΞ : EGn → EGn : L 7→ Ξ(L). The reader can verify that (for F 6= F2) the
kernel consists of matrices of the form

(

I + 1αT 1βT + β1T

0 I − α1T

)

,

where 1 is the vector with every entry 1 and α, β ∈ Rn with
∑n

k=1 αk = 0.

7.7 Generators of ELn and Circular Planarity

The Quest for Planarity: Network planarization (given a network, find a
circular planar network with the same boundary behavior) has long been a goal
of electrical engineers, who desired to print out flat circuit components with
certain behavior. For instance, [20] suggests using the ⋆-K transformation to
find planar equivalents. Thanks to [4] Theorem 4 (and related results), we now
know exactly what response matrices can occur for circular planar networks
with positive linear conductances, which ought to be the end of the matter as
far as engineering is concerned.

14I have not worked out precisely what happens for F2, but might do it later. This would
be a good problem for REU students.
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Many non-planar networks with positive real conductances cannot have the
same boundary behavior as a circular planar network with positive conduc-
tances. However, if we allow negative conductances, it is much easier to “pla-
narize” a network. The REU paper [19] conjectured that any real response
matrix could be represented by a circular planar network with signed real con-
ductances, and [9] and [11] suggest using the ⋆-K transformation with signed
conductances.

This turns out to be true for all fields other F2:

Theorem 7.20. Let F 6= F2. Every element of EGn(F) can be represented by
a layerable circular planar network.

To prove this, we will use the electrical linear group and⋆-K transformation:

Theorem 7.21. Let F 6= F2. The electrical linear group is generated by Ξj(t)
for j = 1, . . . , n and Ξj,j+1(t) for j = 1, . . . , n− 1 and t ∈ F \ {0}.

Recall that we defined ELn(F) using Ξj(t) together with Ξj,k(t) for all j 6= k.
The smaller set of generators in Theorem 7.21 more closely resembles [14]’s
definition of the electrical linear group. If we view ELn(F) as acting on EGn(F)
by adjoining boundary spikes and boundary edges to networks, the theorem says
that it suffices to consider adjoining boundary edges between consecutively-
indexed boundary vertices, rather than between any pair of boundary vertices.

Theorem 7.20 will follow easily from Theorem 7.21. Indeed, by Corollary
7.17, any element of EGn(F) can be represented by a layerable network, and
hence has the form

A(Fn × 0n) for some A ∈ ELn(F).

But A can be represented as a product of the generators in Theorem 7.21,
which implies that A(Fn × 0n) is the boundary behavior of a network obtained
from a network of isolated boundary vertices by adjoining boundary spikes, and
adjoining boundary edges between consecutively-indexed boundary vertices. If
we embed the original trivial network in the disk with the boundary vertices
indexed in CCW order, then at each step the modified network can still be
embedded in the disk with the boundary vertices indexed in CCW order, so
Theorem 7.20 follows.

To prove Theorem 7.21, it suffices to show that each Ξj,k for j < k−1 can be
written in terms of the desired generators. By induction on k − j, it suffices to
show Ξj,k(t) can be expressed in terms of Ξk−1’s, Ξj,k−1’s and Ξk−1,k’s, which
follows from the next lemma:

Lemma 7.22. Let F 6= F2. For any distinct indices i, j, k, Ξi,k(t) can be ex-
pressed in terms of Ξi,j’s, Ξj’s, and Ξj,k’s.

Proof. For simplicity in drawing pictures, we will assume i = 1, j = 2, and
k = 3. We can also assume n = 3, since for general n, one simply has to add
more rows/columns to all the matrices, filling the new spaces with ones on the
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diagonal and zeroes elsewhere (this corresponds to adding isolated input/output
boundary vertices to an IO-network for the indices larger than 3).

We begin with an IO-network representing Ξ1,3(a) for given a 6= 0. Here the
inputs are blue and the outputs red, and the inputs/outputs 1, 2, and 3 are in
order from left to right:

a

We then transform this network by local network equivalences. For some param-
eter b to be chosen later, add in a series with conductances b and−b (representing
Ξ2(1/b) and Ξ2(−1/b) = Ξ2(1/b)

−1):

a

−b

b

Next, add some cancelling parallel edges:

a

−b

b

−b

b

a

−a

−b

b

a

−a

We want to choose b so that the K4 subnetwork in the middle will be equivalent
to a star. Examining the formulas in Lemma 7.7, we choose b 6= 0 so that
a+ 3b 6= 0, which is possible because F has at least three elements. Set

c = 3a+ a2/b = (a+ 3b)(a/b) 6= 0, d = a+ 3b,

and then the K4 is equivalent to a 4-star with conductances c, d, d, d, and hence
our network becomes

88



−b

c

d

−b

d

−a

−b

d

−a

This represents the product of15

Ξ2(−1/b)

Ξ1,2(−b)Ξ2,3(−b)

Ξ2(1/c)

Ξ1,2(d)Ξ2,3(d)

Ξ2(1/d)

Ξ1,2(−a)Ξ2,3(−a),

which completes the proof.

Inefficiency of This Construction: Though Theorem 7.20 is a good
result, the proof given here is a terribly inefficient algorithm for constructing
a circular planar network representing a given boundary behavior, in the sense
that it adds too many unnecessary edges. I urge future researchers to find
a better method–perhaps by giving a circular planar version of the proofs of
Lemmas 7.16 and 7.19.

Impossibility of Using Critical Circular Planar: One might hope to
show that any boundary behavior can be represented by a critical circular planar
network, but this is overly optimistic. Consider the following network:

a

b

c

d

Suppose that a+ b+ c = 0 and 1/b+1/c+1/d = 0 (which can happen for most
fields). Then the network is both Dirichlet-singular and Neumann-singular.
However, there does not exist a critical circular planar network, or indeed any
network recoverable over positive linear conductances, which has three boundary
vertices and is both Dirichlet- and Neumann-singular. To be Dirichlet-singular,

15The matrix at the top of the list is applied first, which means that it goes on the right

when we write the product out.
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it must have an interior vertex, and the interior vertex must have degree ≥ 3
for the network to be critical circular planar. Since any such network cannot
have more than 3 edges, the only possibility is a Y . However, a Y cannot be
Neumann-singular.

This example also shows that not every network is equivalent to a network
with ≤ 1

2n(n − 1) edges, as we might hope, so the bound in Corollary 7.17 is
sharp in this case.

8 Rank and Connections

[4] and others have noted the relationship between connections through a ∂-
graph and the rank of certain submatrices of the response matrix. Known
generic results for linear networks can be derived from the grove-determinant
formula, but in some cases, elementary factorizations provide results that hold
in all cases generalize to nonlinear networks.

All networks in this chapter are assumed to be finite.

8.1 Connections and the Grove-Determinant Formula

Connections: Let P and Q be sets of boundary vertices. A connection from
P to Q is a collection of disjoint boundary-to-boundary paths such that each
path starts in P and ends in Q. There may be a vertex p ∈ P ∩Q; in this case,
any connection from P to Q may include the length-0 path from p to itself. But
because the paths are disjoint, no other paths can use a vertex in P ∩Q.

A connection between P and Q is full if every vertex in P and every vertex
in Q is in one of the paths. If there is a full connection from P to Q, then P
and Q must have the same cardinality. Because of our convention for the case
where P ∩Q 6= ∅, there is a one-to-one correspondence between full connections
from P to Q and full connections from P \Q to Q \ P .

Maximum Connection: Letm(P,Q) be the maximum size connection be-
tween P and Q (the maximum number of paths in a connection). Equivalently,
m(P,Q) is the largest size of a full connection from some subset of P to some
subset of Q.

Ranks and Connections for Dirichlet-Nonsingular Linear Networks:

Assume Γ is a inear network over F and that KV ◦,V ◦ is invertible. Suppose
P and Q are disjoint subsets of B with |P | = |Q|. Then the submatrix ΛP,Q is
equal to the Schur complement KP∪V ◦,Q∪V ◦/KI,I by elementary computation.
Schur’s formula for Schur complements tells us that16

det ΛP,Q = detKP∪V ◦,Q∪V ◦/ detKV ◦,V ◦ ,

and hence ΛP,Q is invertible if and only if KP∪V ◦,Q∪V ◦ is invertible.
If there exists a full connection from P to Q, then edges in the paths can be

completed to a grove in F(P,Q), and conversely, any grove in F(P,Q) contains

16This is easily proved by block row reduction, see e.g. [3].
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a full connection. If there is no connection from P to Q, then Proposition 7.4
tells us that det ΛP,Q = 0. If there is a connection, then we can choose positive
numbers such that KP∪V ◦,Q∪V ◦ is invertible (and we already know KV ◦,V ◦ is
invertible for positive conductances), and hence Λ is defined and det ΛP,Q 6= 0.
Thus, we have

Lemma 8.1. Suppose Γ is a finite linear network over F, and detKV ◦,V ◦ 6= 0.

• If ΛP,Q is invertible, then there is a full connection between P and Q.

• If there is a full connection between P and Q and F = R, there exist some
positive conductances that will make ΛP,Q invertible.

Now suppose P and Q do not necessarily have the same cardinality, but are
still disjoint sets of boundary vertices. Then by considering all subsets of P and
Q we see that

Proposition 8.2. For finite linear networks with detKV ◦,V ◦ 6= 0, we have
rankΛP,Q ≤ m(P,Q) always, and equality holds for some positive real conduc-
tances.

8.2 Rank, Connections, and Elementary Factorization

Elementary factorizations enable us to describe conditions on G that will guar-
antee that rankΛP,Q = m(P,Q) for all Dirichlet-nonsingular networks on G. In
fact, we will find a substitute for rankΛP,Q that makes sense even for Dirichlet-
singular networks.

Rather than assuming P and Q are disjoint as we did before, we will assume
P ∪ Q = ∂V . Suppose Γ is linear network on G. Then Γ represents an IO-
network morphism G : P → Q, and

X (G) : FP × F
P
 F

Q × F
Q.

is a linear relation, that is, a linear subspace of (FP × FP )× (FQ × FQ).
Rank of a Linear Relation: In general, for finite-dimensional vector

spaces W1 and W2 and a linear relation R : W1  W2, we define rankR to
be the maximal rank of a linear map T from some subspace of W1 to a sub-
space of W2 such that (w, Tw) ∈ R for all w. Let π1 and π2 be the projections
R→ W1 and R →W2. Then R defines a linear isomorphism

π1(R)/π1 ◦ π
−1
2 (0) → π2(R)/π2 ◦ π

−1
1 (0).

From this (with some linear algebra) we can see

rankR = dim π1(R)/π1 ◦ π
−1
2 (0) = dimπ2(R)/π2 ◦ π

−1
1 (0)

= dim π1(R)− dimπ−1
1 (0) = dim π2(R)− dimπ−1

1 (0)

(since dimπ2◦π
−1
1 (0) = dimπ−1

1 (0) and the same holds with π1 and π2 switched).
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Lemma 8.3. Suppose Γ is a Dirichlet-nonsingular linear network. Suppose P
and Q are a partition of ∂V , so that Γ represents a morphism G : P → Q. Then

rankX (G) = 2 rankΛP,Q.

Proof. Let πP , πQ be the projection of X (G) onto FP × FP and FQ × FQ. Note
that π−1

Q (0) is isomorphic to the space of harmonic potentials which have zero
potential and net current on Q. Since the Dirichlet problem has a unique so-
lution, these functions are parametrized by their potentials on P . Thus, the
space is isomorphic to kerΛQ,P , so that dimπ−1

Q (0) = dimkerΛQ,P . To com-

pute πP (X (G)), we apply Λ to F∂V , then record the potential and current data
on P . This means the matrix

(

IP 0
ΛP,P ΛP,Q

)

maps FB = FP ×FQ onto πP (X (G)) ⊂ FP ×FP . Row reducing the left half will
make the matrix block diagonal, and then we can see its rank is |P |+rankΛP,Q.
Hence,

rankX (G) = dimπP (X (G)) − dimπ−1
Q (0)

= |P |+ rankΛP,Q − dim kerΛQ,P

= rankΛP,Q + rankΛQ,P = 2 rankΛP,Q.

Exercise. Suppose P and Q are not disjoint but ∂V = P ∪Q. Let P ′ = P \Q
and Q′ = Q \ P . Find rankX (G) in terms of rankΛP ′,Q′ .

Theorem 8.4. Let G represent a morphism G : P → Q which admits an
elementary factorization of rank r. Then

1. r = m(P,Q).

2. For any linear network on G, we have rankX (G) = 2r = 2m(P,Q).

3. For any Dirichlet-nonsingular network on G, we have rankΛP,Q = m(P,Q).

Proof. (1). Write the elementary factorization as G = Gn ◦ · · · ◦ G1, and let k be
an index that is before all the type 4 networks and after or equal to the type
3 networks. Let Gj : Pj−1 → Pj . To create a connection of size m, we start
from the middle of the factorization. We want each path to contain exactly
one element of Pk. If Gk is type 2 or 3, then our paths are length zero, and if
it is type 1, we use the edges in the network for our paths and hence have a
connection from Pk to Pk−1. We continue to extend the paths inductively. Once
we have a connection from Pk to some subset Rj of Pj through Gk ◦ · · · ◦ Gj , we
extend the paths into Gj−1–if it is type 2 or 3, there is nothing to do, and if it is
type 1 we use the edges that have endpoints in Rj and thus obtain a connection
to some Rj−1 ⊂ Pj−1. Hence, we have a connection from Pk to some subset of
P0. In the same way, we can extend our paths from Pk through Gk+1, . . . ,Gn.
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Therefore, we have a connection of size |Pk| = r from P to Q, with the paths
formed by edges from type 1 networks.

On the other hand, it is easy to verify (by induction on the number of
elementary IO-graphs) that any path from a vertex in P to a vertex in Q must
contain a vertex of every Pj . In particular, every path in a connection from a
subset of P to a subset of Q must use a vertex from Pk, so there can be at most
|Pk| = m paths.

(2). From §4.5, we see that

rankX (G) = dimπP (X (G)) − dimπ−1
Q (0) = 2r +Ni −Ni = 2r,

where Ni is the number of input stubs. (3) follows from the previous lemma.

Generalization to the Nonlinear Case: As remarked in §4.5, the rank
r of the factorization can be detected from the “dimensions” of πP (X (G)) and
π−1
Q (0) for any class of nonlinear networks for which a suitable notion of dimen-

sion exists–for instance, if M = R and γe : R → R is a homeomorphism, or if
M is finite. Hence, the maximum size connection m(P,Q) is also detectable.
Informally, the size of connections in the ∂-graph is visible in the dimensions
of projections and slices of the boundary behavior B(Γ). This is a consequence
of topological-combinatorial structure of the ∂-graph that does not rely upon
linearity.

8.3 Application to Circular Planar ∂-Graphs: The Cut-

Point Lemma

Theorem 8.4 is especially useful in the case of critical ∂-graphs on the disk, since
we know a priori that elementary factorizations exist between any circular pair
P and Q by Theorem 6.5, and moreover the rank of the elementary factorization
is related to the number of transverse medial strands. This yields the following
corollary, in which the last equality was proved by [4] under the name of the
“Cut-Point Lemma:”

Corollary 8.5 (cf. [4] Theorem 4.2, [6] “Cut-Point Lemma”). Let Γ be a linear
network on a critical ∂-graph on the disk, and let P and Q be a circular pair.
There is an elementary factorization of G from P to Q. If r is the rank of the
factorization, then

rankX (G) = 2r = 2m(P,Q) = #(transvserse strands) + |P ∪Q|.

The original argument of [4] that rankΛP,Q = m(P,Q) worked for non-
critical ∂-graphs on the disk, but relied upon having positive linear conduc-
tances: For positive linear conductances, if there is a full connection between
P ′ ⊂ P and Q′ ⊂ Q, then by circular planarity, there is only one possible
permutation τF for F ∈ F(P,Q) in the grove-determinant formula and hence
sgndetΛP ′,Q′ = sgn τF and det ΛP ′,Q′ 6= 0. Thus, rankΛ(P,Q) ≥ m(P,Q) by
virtue of having a nonzero minor of size m(P,Q). The same minor is nonzero
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for all positive conductances. By contrast, for linear conductances over an ar-
bitrary field, any given minor of ΛP,Q of size m(P,Q) might (a priori) be zero.
Our corollary says that the size m(P,Q) minors cannot all be zero at the same
time.

Curtis-Morrow in [6] also showed that for a critical network on the disk with
positive linear conductances, the ∂-graph is determined up to Y -∆ equivalence
by the response matrix. In a nutshell, the response matrix tells us the maximum
size connections between all circular pairs, and from this we can deduce how
many reentrant medial strands there are on a given arc of the boundary circle.
Next, we determine what order the endpoints of the medial strands occur on the
boundary circle (the “Z-sequence”), and then what the ∂-graph could possibly
be. Thanks to Corollary ??, the same process will work to determine the Z-
sequence for linear networks over arbitrary fields, and for appropriate nonlinear
networks; however, the notion of Y -∆ equivalence is more problematic and
requires further study.

8.4 Unique Full Connections Using All Interior Vertices

The relationship between connections, factorizations, and mixed-data boundary
value problems is particularly strong in the case of a unique full connection which
uses all the interior vertices.

Theorem 8.6. Let G be a finite ∂-graph and assume each interior vertex has
valence at least 2. Suppose ∂V = P ∪Q and P ′ = P \Q and Q′ = Q \ P . The
following are equivalent:

a. There is a unique full connection between P ′ and Q′, and this connection
uses all the interior vertices.

b. There exists a scaffold S in which the heads are V \P and the feet are V \Q.

c. The IO-graph morphism P → Q represented by G admits a factorization into
type 1 and type 2 networks.

d. For any M and any BZ(M) network on G, potentials on P and net currents
on P ′ determine a unique harmonic function on Γ.

e. For any signed linear network Γ over R, potentials on P and net currents on
P ′ determine a unique harmonic function on the network.

Remark. Let (∗) be the condition that potentials on P and net currents on P ′

determine a unique harmonic function. In (2) and (3) it is important that (∗)
holds for all conductances. Even if it holds for most signed linear conductances,
the elementary factorization may not exist.

Proof. (b) =⇒ (c) =⇒ (d) follows from the general theory developed so far,
and (d) =⇒ (e) is trivial.

To prove (e) =⇒ (a), note that tor signed linear conductances {ae}, (∗) is
equivalent to the submatrix KP ′∪V ◦,Q′∪V ◦ being invertible. If this holds for all
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signed linear conductances, then F(P,Q) has exactly one element by Proposition
7.4. Let F be this element. Each component contains either one vertex in P ∩Q,
or it contains one vertex in P ′ and one in Q′. Each component is a tree, but
I claim that each component is actually a path. Otherwise, there would be an
interior vertex p with only one edge e in F incident to it. By assumption, there
is another edge e′ incident to p. The other endpoint of e′ is in some component
of F , so F \ {e} ∪ {e′} is another grove in F(P,Q). The components of F thus
provide a full connection from P to Q. The full connection is unique because if
there were another full connection, then we could add edges to complete it to a
different grove.

(a) =⇒ (b). There is a unique full connection between P ′ and Q′ if and only
if there is a unique full connection between P and Q, as a simple consequence of
our definition of connection. Suppose there is a unique full connection between
P and Q that uses all the interior vertices. We define a scaffold S as follows:

i. The ladders are the edges in the paths of the connection.

ii. The foot-to-head orientation of each ladder is the same as its orientation in
the path.

iii. We define ≺ by setting e ≺ e′ if e ∈ LadS and e′ are incident at foot(e)
and e ≻ e′ if e ∈ LadS and e′ are incident at head(e). Then we take the
transitive closure.

Assuming that ≺ actually defines a partial order, the conditions (2) and (3)
of the scaffold definition are satisfied by construction, (4) is trivial since any
interior vertex is both a head and a foot, and (1) is trivial since the ∂-graph is
finite.

To prove that ≺ defines a partial order, it suffices to show that there is no
“precedence loop”

e1 ≺ e2 ≺ · · · ≺ eK ≺ e1,

in which each pair of edges is comparable by the primitive relations given in
(iii). The basic idea is that if we had such a loop, then we could construct a
different connection between P and Q as indicated in Figure 14.

To make this rigorous, consider the precedence loops with the minimal num-
ber of planks, and from those, choose one with the minimal number of edges in
all. Let α1, . . . , αn be the paths in the connection. Then observe:

• Any precedence loop must contain some planks, since otherwise it would
have to be contained in one of the αm’s, which is impossible. We also can-
not have two planks in a row since the primitive relations do not compare
planks with planks.

• In the loop which we chose, e1, . . . , eK must be distinct, since otherwise
we could find a loop with either fewer planks or the same number of planks
and fewer ladders.
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Figure 14: Proof of Theorem 8.6: (a) =⇒ (b)
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• Suppose there are some i < j < k where ej a plank and ei and ek are
ladders in the same path αm, and that ei comes before ek in the path αm.
If we replace the segment ei+1 . . . ek−1 of the loop with the segment of αm

from ei to ek, then we get a precedence loop with fewer planks. Thus,
this cannot happen in our chosen loop. The same reasoning holds for any
cyclic permutation of the indices 1, . . . ,K. Thus, the loop must intersect
each path in an “interval”; that is, Im = {k : ek ∈ αm} is of the form
{1, . . . , k} after some cyclic permutation of the indices.

Hence, our loop has the following form: It moves forward along some path of the
connection (which we will call α1 after reindexing), then crosses by a plank to
some other path α2, and it continues in the same way until it crosses from some
αℓ back to α1. The paths α1,. . . ,αℓ are distinct. It follows that the vertices in
our loop must be distinct and the loop looks essentially like the one portrayed
in the Figure except that it might not visit every path of the connection. If the
remaining paths are αℓ+1, . . . , αn, then we construct our new full connection as
follows: α′

j = αj for j = ℓ + 1, . . . , n. For j = 1, . . . , ℓ, α′
j follows αj until it

meets an endpoint of a plank from the loop, then it crosses the plank to αj−1,
and it continues along αj−1 until it reaches Q (indices written mod ℓ). So ≺
does actually define a partial order and (b) is proved.

Some Remarks:

• Note the similarity of Theorem 8.6 to Propositions 7.5 and 7.6 regarding
the Dirichlet and Neumann problems. These theorems say that geomet-
ric conditions characterize all the situations when a certain mixed-data
boundary value problem has a solution for any linear network over R.
Surprisingly, the conditions are the same for the linear case and the non-
linear case.

• (c) =⇒ (a) is easy to prove directly, but (a) =⇒ (c) is rather surprising.
One corollary is the following: Suppose G is a ∂-graph with no boundary
spikes or boundary edges, and suppose there is a full connection between
P and Q that uses the all the interior vertices. Then there is another full
connection between P and Q. Test this out on a few examples.

• For G a critical ∂-graph on the disk and P , Q a circular pair, we can add
a sixth equivalent condition: All the medial strands are transverse.

9 Box Products and Weak ∂-Graph Morphisms

A standard construction in graph theory is the box product ; for ∂-graphs G and
H , we define G�H as follows:

• V (G�H) = V (G)× V (H).

• V ◦(G�H) = V ◦(G) × V ◦(H).
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• E(G�H) = E(G) × V (H)
∐

V (G)× E(H).

• e× p = e× p and p× e = p× e.

• (e × p)+ = e+ × p and (p× e)+ = p× e+.

A natural question is whether the box product of solvable or totally layerable
∂-graphs is solvable or totally layerable. This would for instance provide an easy
to way to show that variants of a rectangular lattice are recoverable over BZ(M).

We want to pull back scaffolds on G1 and G2 to scaffolds on G1�G2 via
the projection maps π1, π2 from G1�G2 to G1 and G2 that send an element
of V (G1�G2)

∐

E(G1�G2) to the first or second coordinate. However, these
maps are not a ∂-graph morphisms since they do not even map edges to edges–
by construction, the first or second coordinate of an edge in E(G1�G2) could
be a vertex in G1 or G2.

Thus, we extend the definition of ∂-graph morphism as follows: A weak ∂-
graph morphism f : G → H is a function V (G)

∐

E(G) → V (H)
∐

E(H) such
that

• A vertex maps to a vertex.

• An interior vertex maps to an interior vertex.

• If e ∈ E(G) and f(e) is an oriented edge, then f(e) = f(e) and (f(e))+ =
f(e+).

• If e ∈ E(G) and f(e) is a vertex, then f(e) = f(e) and f(e+) = f(e).

• If p is any vertex, then the map {e : e+ = p, f(e) 6= p} → {e : e+ = f(p)}
is injective, and if p is interior then it is bijective.

Exercise. The projections G1�G2 → G1 and G1�G2 → G2 are weak B-graph
morphisms.

Exercise. ∂-graphs with weak ∂-graph morphisms form a category.

Exercise. Define a weak network morphism. Suppose f : Γ1 → Γ2 is a weak
network morphism, and that (0, 0) ∈ Θe for each edge in Γ1. If (u, c) is harmonic
on Γ2, show that (f∗u, f∗c) = (u ◦ f, c ◦ f) is harmonic on Γ1, where we define
f∗ce = 0 if f(e) is a vertex.

If f : G→ H is a weak ∂-graph morphism and H ′ is a subgraph of H , then
we define f−1(H ′) as follows:

V (f−1(H ′)) = V (G) ∩ f−1(V (H ′)),

E(f−1(H ′)) = f−1(V (H ′) ∪ E(H ′)),

V ◦(f−1(H ′)) = f−1(V ◦(H ′)) ∩ V ◦(G).

Now that we allow edges to map to vertices, we must modify the definition
of scaffold to make the partial order include the vertices. An extended scaffold
on a ∂-graph G consists of
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• A partial order � on V (G)
∐

E′(G).

• A partition of E′(G) into ladders and planks.

• An assignment of a head and foot for each plank.

such that

1. Every subset has a minimal element.

2. If e is a ladder then foot(e) ≺ e ≺ head(e).

3. If e′ is incident to the head of a ladder e, then e′ ≻ e.

4. If e′ is incident to the foot of a ladder e, then e′ ≺ e.

5. If p1 and p2 are interior vertices incident to e1 and e2 respectively, with
e1 � e2, then either p1 is a head or p2 is a foot. The same holds if p1 � p2
or p1 ≺ e2 or e1 ≺ p2.

Any extended scaffold defines a scaffold when ≺ is restricted to the edges.
Conversely, any scaffold can be completed to an extended scaffold by adding
the relations foot(e) ≺ e ≺ head(e) for each ladder to the partial order, then
taking the transitive closure. To show this is a partial order, we only have to
show there is a no loop x1 ≺ · · · ≺ xn ≺ x1 for xj ∈ V (G)

∐

E′(G), where each
of the comparisons is one of the relations in our original scaffold or one of the
relations foot(e) ≺ e ≺ head(e). If a sequence of the form e ≺ p ≺ e′ occurs
in the loop, then e and e′ must be vertical and head(e) = p = foot(e′). Hence,
e ≺ e′ and we can delete p from the loop. Thus, any loop in the new order
could be shortened to a loop in the original order, which shows there cannot be
a loop.

To show every subset has a minimal element, consider S ⊂ V (G)
∐

E′(G).
Let S′ be the set of edges which are in S or incident to vertices in S. Because
S′ has a minimal element by assumption, we can deduce by some casework that
S has a minimal element. (2) and (3) follow from the corresponding conditions
for scaffolds and (5) is easy to verify by casework.

Suppose that f : G→ H is a weak ∂-graph morphism and S is an extended
scaffold on H , then we define f∗S on G as follows:

• e is a ladder if and only if f(e) is a ladder.

• In that case, we choose head(e) and foot(e) such that f(head(e)) = head(f(e))
and f(foot(e)) = foot(f(e)).

• x ≺ y if and only if f(x) ≺ f(y).

The reader may verify that this defines a scaffold and is functorial. Then we
have

Theorem 9.1.
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a. If G and H are totally layerable, then so is G�H.

b. If f : G → H is a weak ∂-graph morphism, H is solvable, and G has no
self-loops or parallel edges, then G is solvable.

Proof. For (a), choose an edge e× p ∈ E′(G�H). There is an extended scaffold
on G where e is a ladder / plank in MidS, and this induces a scaffold on
E′(G�H). The case for p× e ∈ E′(G�H) is symmetrical.

For (b), let H = H0, H1, . . . be a solvable filtration of H and assume without
loss of generality that each step only includes one type of reduction operation
(contracting non-degenerate spikes, deleting boundary edges, deleting isolated
boundary vertices). Then consider three cases:

1. Suppose Hn is obtained from Hn−1 by deleting boundary edges. Then
f−1(Hn) is obtained from f−1(Hn−1) by deleting boundary edges. For
any boundary edge e that is removed from Hn−1, we have an extended
scaffold in which it is a ladder in the middle of the scaffold. This pulls
back to an extended scaffold where the edges in f−1(e) are ladders in the
middle of the scaffold.

2. Suppose Hn is obtained from Hn−1 by contracting non-degenerate bound-
ary spikes. Then f−1(Hn) is obtained from f−1(Hn−1) in two steps:

A. Delete the edges in f−1(p) for any boundary vertex p at the end of a
spike; these are necessarily boundary edges.

B. Contract the edges in f−1(e) for each boundary spike e contracted in
Hn−1; the edges f−1(e) are now boundary spikes.

To create the extended scaffolds for step (A), choose a spike e with bound-
ary vertex p, and let S be an extended scaffold on Hn−1 where e is a plank
in the middle of the scaffold. We can assume S is obtained from an ordi-
nary scaffold in the manner described above, and so p is not comparable
to anything in the partial order. Then in f∗S, the edges in f−1(p) are
planks and not comparable to anything else. Pick an edge ǫ ∈ f−1(p). We
modify the scaffold as follows:

• Change ǫ to a ladder, and choose a distinct head and foot (it does
not matter which one is which). This is possible because G has no
self-looping edges.

• If ǫ′ ∈ f−1(e) is incident to ǫ at head(ǫ), set ǫ′ ≻ ǫ and do the
symmetrical thing at the foot. We assume G has no parallel edges,
and hence we will not have ǫ′ ≺ ǫ ≺ ǫ′.

• Let η be the edge in f−1(e) incident to head(ǫ). Set ǫ ≺ η and
everything which is greater than η, and do the symmetrical thing at
the foot of ǫ. Since ǫ was not comparable to anything originally, we
still have a partial order, and since η was in the middle of the orginal
scaffold, ǫ is in the middle of the new one.
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For step (B), for each spike e removed, we can choose an exctended scaffold
S on H in which e is a ladder in the middle of the scaffold. Then f∗S is
an extended scaffold where the edges in f−1(e) are ladders in the middle
of the scaffold.

3. Suppose Hn is obtained from Hn−1 by deleting isolated boundary vertices.
Let p be such a vertex. Since Hn is solvable, it has some extended scaffold
S on it (in the case where Hn has no edges, it has a scaffold trivially).
The extended scaffold f∗S on f−1(Hn) can be extended to an extended
scaffold on f−1(Hn−1) since it is the disjoint union of f−1(Hn) and some
components with only boundary vertices, and no loops or parallel edges.
Similarly to case (2), we can arrange that any given edge in f−1(p) is
vertical.

Example: Rectangular Lattices:

A (finite) rectangular lattice is the box product of ∂-graphsG1�G2� . . .�Gn,
where each Gj is a path. Various lattices can be constructed by different as-
signments of boundary vertices for each path. It seems most natural that for a
given path, the boundary vertices should be nothing, one of the endpoints, or
two of the endpoints.

Proposition 9.2. Let n ≥ 2, and suppose G is the box product of paths G1,
. . . , Gn, and that it in each Gj, both endpoints are boundary vertices. Then G
is totally layerable.

Proof. Let fj : G → Gj be the projection. For each path Gj , we can form a
scaffold Sj where every edge is a ladder and MidSj is everything. Given e ∈
E(G1) and p2, . . . , pn in V (G2), . . . , V (Gn) respectively, the edge e×p2×· · ·×pn
is a ladder in Mid f∗

1S1 and a plank in Mid f∗
2S2. The same argument applies

to any edge in G after permuting the coordinates.

Proposition 9.3. Let n ≥ 2. Let G1 be a path ∂-graph where both endpoints
are boundary vertices, let G2 be a path ∂-graph where one endpoint is a boundary
vertex, and let G3, . . . , Gn be path ∂-graphs with no boundary vertices. Then the
box product of G1, . . . , Gn is solvable.

Proof. G1�G2 is circular-planar, and has a lensless medial strand arrangement
(exercise). Thus, it is totally layerable, hence solvable, so by the Theorem,
G1� . . .�Gn is solvable.

The total layerability or solvability of other types of rectangular lattices can
be deduced from these two Propositions: Indeed, if G′ is obtained from G by
changing some interior vertices to boundary, then G′ is a ∂-subgraph of G, hence
total layerability or solvability of G implies total layerability or solvability of
G′.
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10 Problems for Further Research

Beyond Linear Algebra: [11] and this paper show that much of what [4]
initially proved using linear algebra actually holds for any BZ(M) network. As
developed here, network theory is not fundamentally about linear algebra–it is
about the topological-combinatorial structure of ∂-graphs. On the other hand,
linear algebra was still used for some of the results.

Beyond Circular Planar ∂-Graphs: Various attempts have been made
to move beyond circular planar ∂-graphs (see e.g. [13]). In particular, Lam
and Pylyavskyy [15] study the inverse problem for positive linear networks on
the cylinder S1 × [0, 1] (or equivalently the annulus). Rather than the response
matrix as typically defined, they consider the “universal response matrix”–an
appropriately defined infinite response matrix for a periodic network on an infi-
nite strip corresponding to the given cylindrical network. They conjecture that
if the medial graph of the network on the strip is lensless, then the conductances
are uniquely determined by the universal response matrix up to an action of the
symmetric group Sn, where n is the number of self-looping medial strands on
the cylinder.

Using the standard response matrix rather than the universal response ma-
trix, the theory of networks on the cylinder is much more dicey. Based on my
earlier work at the REU:

• There exists a network on the annulus which is recoverable for positive
linear conductances; however, its dual (with respect to the annular em-
bedding) is not recoverable. However, these two networks have the same
medial strands, so there is no simplistic medial-strand test for recoverabil-
ity.

• There exists a network on the annulus which is recoverable for positive
linear conductances and most real conductances, but fails to be recoverable
for all signed real conductances. Incidentally, it is recoverable for bijective
zero preserving conductance functions γe : R → R which are increasing.
Sign conditions are crucial to the recovery process.

• The theory of layering adapts to the annulus better than the methods
of [11].17 and medial strands can be used to create scaffolds and recover
networks in certain cases, but the criteria for solvability are not yet known
and are probably ugly.

• It is unclear whether linear recoverability over R implies nonlinear recov-
erability.

For more complicated surfaces, things will become even messier, and the uni-
versal cover itself will be less tractable.

Beyond ∂-Graphs on Surfaces: Given the complexity of annular net-
works, I decided to phrase layering theory in purely ∂-graph-theoretic terms

17Indeed, I arrived at the idea of elementary factorizations through annular networks
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without embeddings. Embeddings and medial graphs are sometimes extremely
useful, but sometimes another approach is better. For instance, embedding a
ten-dimensional rectangular lattice on a surface is a terrible way to see whether
it is recoverable. There may yet be other combinatorial/∂-graph-theoretic cri-
teria for solvability, total layerability, or recoverability over BZ(M) that do not
assume an embedding on a surface.

Strengths and Weaknesses of Layering Theory:

• Layering theory is good for using geometric conditions to prove results
about boundary behavior for a lot of nonlinear networks. However, to
start with properties of boundary behavior and deduce geometric results,
we often resorted to linear algebra.

• Solvability and total layerability make sense for infinite and non-planar
∂-graphs; however, they are limited to layerable graphs, which are a very
small portion of all ∂-graphs.

• It is easy to create scaffolds from other scaffolds (or from medial graphs),
but hard to create them from scratch.

• Layering theory provides many tools for proving ∂-graphs are recoverable,
but none for proving they are not recoverable.

• Layering theory provides many ways of constructing complicated solvable
graphs, but not an efficient way to decide whether a given complicated
graph is solvable.

Problems for Further Research:

1. Find interesting examples of M and subsets of BZ(M).18

2. Find universal ∂-graph-theoretic conditions that characterize recoverabil-
ity over BZ(M) for all M .

3. Are the conditions the same for general BZ(M) as for signed linear net-
works over R?

4. Find nicer conditions that are equivalent to solvability.

5. For a given surface, find elegant conditions that will guarantee total lay-
erability or solvability.

6. Given a ∂-graph which is not solvable, is there some covering ∂-graph of
it, which is solvable?19

18More generally, one can choose a different M for each vertex, and/or a different M for
the potential and currents, and formulate a definition of bijective zero-preserving networks
for which the layering theory mostly still applies. One application would be to situations as
in [13], where there have a different vector space for each vertex, and a notion of “parallel
transport” along an edge that would be useful for a graph on a smooth surface.

19For instance, for a circular planar ∂-graph G where the medial graph has only one lens
which is a two-pole lens and contains 0, taking the preimage of G and M under z 7→ z2 will
create a circular planar ∂-graph with a lensless strand arrangement.
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7. Generalize the theory of harmonic continuation to non-layerable networks.

8. The idea of discrete harmonic continuation (“information propagation”)
and partial orders may be useful for things other than ∂-graphs.20

9. Study the nonlinear inverse problem on non-layerable networks. It is con-
ceivable that some networks are recoverable for “most” smooth nonlinear
bijective zero-preserving γe : R → R, and that the linear conductances
represent a “small” pathological set of conductances.21

10. Associate algebraic, topological, or some other type of objects to a ∂-graph
that will test layerability, solvability, or total layerability. If possible, make
them functorial on the category of ∂-graphs.22

11. Find an efficient algorithm to transform a non-planar linear network into
a circular planar network with the same boundary behavior. (Efficient
means smallest number of steps or smallest number of edges in the final
result.)

12. Characterize ELn(F2) and EGn(F2).

13. For a given ∂-graph and field F, characterize the set of possible boundary
behaviors.

14. Let F be an algebraically closed field. Study ELn(F) and EGn(F) from
the viewpoint of algebraic geometry. “Projectivize” by letting the voltage-
current relation on an edge be any linear relation F  F rather than a
bijective one.

20Harmonicity is given by a set of relations between different quantities called potential
and current. The quantities and relations are indexed by the vertices/edges/interior ver-
tices/incidences of the ∂-graph. The boundary behavior is a relation between certain quanti-
ties which are “visible” while other quantities remain “hidden.” One could replace the ∂-graph
by some other combinatorial structure, and still use an auxiliary partial order like a scaffold
as an aid to harmonic continuation for a more general type of inverse problem. However, such
a theory would be completely opaque without other motivating examples.

21For instance, suppose G does not have a series or a parallel circuit, but it Y -∆ equivalent
to a network that does. Y -∆ transformations do not work for smooth nonlinear conduc-
tances. The more complicated nonlinear boundary behavior might capture the properties of
the conductance functions better than in the linear case.

22Avi Levy and I are developing a “harmonic cohomology” for ∂-graphs that tests something
like the failure of layerability.
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