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Euler characteristic reciprocity for chromatic

and order polynomials
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Abstract

The Euler characteristic of a semialgebraic set can be considered

as a generalization of the cardinality of a finite set. An advantage of

semialgebraic sets is that we can define “negative sets” to be the sets

with negative Euler characteristics. Applying this idea to posets, we

introduce the notion of semialgebraic posets. Using “negative posets”,

we establish Stanley’s reciprocity theorems for chromatic and order

polynomials at the level of Euler characteristics.
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1 Introduction

Let P be a finite poset. The order polynomial O≤(P, t) ∈ Q[t] and the strict
order polynomial O<(P, t) ∈ Q[t] are polynomials which satisfy

O≤(P, n) = #Hom≤(P, [n]),

O<(P, n) = #Hom<(P, [n]),
(1)

where [n] = {1, . . . , n} with normal ordering and

Hom≤(<)(P, [n]) = {f : P −→ [n] | x < y =⇒ f(x) ≤ (<)f(y)}

is the set of increasing (resp. strictly increasing) maps.
These two polynomials are related to each other by the following reci-

procity theorem proved by Stanley ([9, 10], see also [1, 3, 4] for a recent
survey).

O<(P, t) = (−1)#P · O≤(P,−t). (2)

By putting t = n, the formula (2) can be informally presented as follows.

“ #Hom<(P, [n]) = (−1)#P ·#Hom≤(P, [−n]). ” (3)

It is a natural problem to extend the above reciprocity to homomorphisms
between arbitrary (finite) posets P and Q. We may expect a formula of the
following type.

“ #Hom<(P,Q) = (−1)#P ·#Hom≤(P,−Q). ” (4)

Of course this is not a mathematically justified formula. In fact, we do not
have the notion of a “negative poset −Q.” The negative poset −Q in the
right-hand side does not make sense.

In [8], Schanuel discussed what “negative sets” should be. A possible
answer is that a negative set is nothing but a semialgebraic set which has a
negative Euler characteristic (Table 1). For example, the open simplex

◦
σd = {(x1, . . . , xd) ∈ Rd | 0 < x1 < · · · < xd < 1}
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Finite set Semialgebraic set
Cardinality Euler characteristic

Table 1: Negative sets

has the Euler characteristic e(
◦
σd) = (−1)d, and the closed simplex

σd = {(x1, . . . , xd) ∈ Rd | 0 ≤ x1 ≤ · · · ≤ xd ≤ 1}

has e(σd) = 1. Thus we have the following “reciprocity”

e(
◦
σd) = (−1)d · e(σd). (5)

This formula looks alike Stanley’s reciprocity (2). This analogy would indi-
cate that (2) could be explained via the computations of Euler characteristics
of certain semialgebraic sets.

In this paper, by introducing the notion of semialgebraic posets, we set-
tle Euler characteristic reciprocity theorems for poset homomorphisms and
chromatic functors, which imply Stanley’s reciprocities as corollaries. Semi-
algebraic posets also provide a rigorous formulation for (4).

Briefly, a semialgebraic poset P is a semialgebraic set with poset structure
such that the ordering is defined semialgebraically (see Definition 2.2). Finite
posets and the open interval (0, 1) ⊂ R are examples of semialgebraic posets.
A semialgebraic poset P has the Euler characteristic e(P ) ∈ Z which is an
invariant of semialgebraic structure of P (see §2.1). In particular, if P is
a finite poset, then e(P ) = #P , and if P is the open interval (0, 1), then
e((0, 1)) = −1.

The philosophy presented in the literature [8] suggests to consider the
“moduli space” Hom≤(<)(P,Q) of poset homomorphisms from a finite poset
P to a semialgebraic poset Q, and then computing the Euler characteristic of
the moduli space instead of counting the number of maps. We can naturally
expect that the product semialgebraic poset Q× (0, 1) could play the role of
the negative poset “−Q” since e(Q × (0, 1)) = −e(Q). In fact, we have the
following result.

Theorem 1.1 (Proposition 2.6 and Theorems 3.1, 3.5). Let P be a finite
poset, and Q be a semialgebraic poset.

(i) Hom≤(P,Q) and Hom<(P,Q) possess structures of semialgebraic sets.

(ii) The following reciprocity of Euler characteristics holds,

e(Hom<(P,Q)) = (−1)#P · e(Hom≤(P,Q× (0, 1))), (6)

e(Hom≤(P,Q)) = (−1)#P · e(Hom<(P,Q× (0, 1))). (7)
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(iii) Let T be a semialgebraic totally ordered set. Then

e(Hom≤(P, T )) = O≤(P, e(T )), (8)

e(Hom<(P, T )) = O<(P, e(T )). (9)

The formula (6) may be considered as a rigorous formulation of (4). Fur-
thermore, by putting Q = [n] and T = [n]× (0, 1), we can recover Stanley’s
reciprocity (2) from (6) and (8) (see §3.3).

Semialgebraic posets are also applicable to chromatic theory of finite
graphs. Let G = (V,E) be a finite graph. For any set X , we can associate the
graph configuration space χ(G,X) (Definition 4.1). If X is a semialgebraic
set, then χ(G,X) is also a semialgebraic set. The chromatic polynomial of
G is a polynomial χ(G, t) ∈ Z[t] determined by χ(G, n) = #χ(G, [n]). The
next result generalizes a result in [7, Theorem 2], where X was chosen to be
a complex projective space.

Theorem 1.2 (Theorem 4.2). Let G = (V,E) be a finite graph and X be a
semialgebraic set. Then

e(χ(G,X)) = χ(G, e(X)).

A “negative set” also appears in chromatic polynomials. Stanley estab-
lished a reciprocity, showing that (−1)#V ·χ(G,−n) can be interpreted as the
number of pairs of an acyclic orientation and a map V −→ [n] compatible
with the orientation ([11]). We can give a meaning of “#χ(G, [−n])” using
the above result, e(χ(G,X)) = χ(G, e(X)), when X = [n]× (0, 1). A precise
setting and results are stated below.

Let T be a totally ordered set. We introduce the moduli spaceAOC≤(G, T )
(resp. AOC<(G, T )) of the pairs consisting of an acyclic orientation on the
edges E of G with a compatible (resp. strictly compatible) map V → T
(Definition 4.4). When T is a semialgebraic totally ordered set, the moduli
spaces AOC≤(G, T ) and AOC<(G, T ) also admit structures of semialgebraic
sets. Part of the Euler characteristic reciprocity can be formulated as follows.

Theorem 1.3 (Theorem 4.5, Corollary 4.7). Let G = (V,E) be a finite graph
and T be a semialgebraic totally ordered set. Then

e(AOC≤(G, T )) = (−1)#V · e(AOC<(G, T × (0, 1))), (10)

e(AOC<(G, T )) = χ(G, e(T )). (11)

By putting T = [n] in (10) and T = [n]×(0, 1) in (11), we obtain Stanley’s
reciprocity (Corollary 4.8)

#AOC≤(G, [n]) = (−1)#V · χ(G,−n).
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2 Semialgebraic posets and Euler character-

istics

2.1 Semialgebraic sets

A subset X ⊂ Rn is said to be a semialgebraic set if it is expressed as a
Boolean connection (i.e. a set expressed by a finite combination of ∪,∩ and
complements) of subsets of the form

{x ∈ Rn | p(x) > 0},

where p(x) ∈ R[x1, . . . , xn] is a polynomial. Let f : X −→ Y be a map
between semialgebraic sets X ⊂ Rn and Y ⊂ Rm. It is called semialgebraic
if the graph

Γ(f) = {(x, f(x)) | x ∈ X} ⊂ Rm+n

is a semialgebraic set. If f is semialgebraic then the pull-back f−1(Y ) and
the image f(X) are also semialgebraic sets (see [2, 5] for details).

Any semialgebraic set X has a finite partition into Nash cells, namely,
a partition X =

⊔k

α=1Xα such that Xα is Nash diffeomorphic (that is a
semialgebraic analytic diffeomorphism) to the open cell (0, 1)dα for some dα ≥
0. Then the Euler characteristic

e(X) :=
k∑

α=1

(−1)dα (12)

is independent from the partition ([6]). Moreover, the Euler characteristic
satisfies

e(X ⊔ Y ) = e(X) + e(Y ),

e(X × Y ) = e(X)× e(Y ).

Example 2.1. As mentioned in §1, the closed simplex σd and the open

simplex
◦
σd have e(σd) = 1 and e(

◦
σd) = (−1)d.

2.2 Semialgebraic posets

Definition 2.2. (P,≤) is called a semialgebraic poset if

(1) (P,≤) is a partially ordered set, and
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(2) there is an injection i : P →֒ Rn (n ≥ 0) such that the image i(P ) is a
semialgebraic set and the image of

{(x, y) ∈ P × P | x ≤ y},

by the map i × i : P × P −→ Rn × Rn, is also a semialgebraic subset
of Rn × Rn.

Let P and Q be semialgebraic posets. The set of homomorphisms (strict
homomorphisms) of semialgebraic posets is defined by

Hom≤(<)(P,Q) =

{
f : P −→ Q

∣∣∣∣
f is a semialgebraic map s.t.
x < y =⇒ f(x) ≤ (<)f(y)

}
. (13)

Example 2.3. (1) A finite poset (P,≤) admits the structure of a semial-
gebraic poset, since any finite subset in Rn is a semialgebraic set. A
finite poset has the Euler characteristic e(P ) = #P .

(2) The open interval (0, 1) and the closed interval [0, 1] are semialgebraic
posets with respect to the usual ordering induced from R. Their Euler
characteristics are e((0, 1)) = −1 and e([0, 1]) = 1, respectively.

Let P and Q be posets. Recall that the product P × Q admits poset
structure by the lexicographic ordering:

(p1, q1) ≤ (p2, q2) ⇐⇒

{
p1 < p2, or,
p1 = p2 and q1 ≤ q2,

for (pi, qi) ∈ P ×Q.

Proposition 2.4. Let P and Q be semialgebraic posets. Then the product
poset P ×Q (with lexicographic ordering) admits the structure of a semial-
gebraic poset.

Proof. Suppose P ⊂ Rn and Q ⊂ Rm. Then

{((p1, q1), (p2, q2)) ∈ (P ×Q)2 | (p1, q1) ≤ (p2, q2)}

= {(p1, q1, p2, q2) ∈ (P ×Q)2 | (p1 < p2) or (p1 = p2 and q1 ≤ q2)}

≃
(
{(p1, p2) ∈ P 2 | p1 < p2} ×Q2

)
⊔
(
P × {(q1, q2) ∈ Q2 | q1 ≤ q2}

)

is also semialgebraic since semialgebraicity is preserved by disjoint union,
complement and Cartesian products.

Proposition 2.5. Let P and Q be semialgebraic posets. Then the first
projection π : P ×Q −→ P is a homomorphism of semialgebraic posets.
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Proof. This is straightforward from the definition of the lexicographic order-
ing.

The next result shows that the “moduli space” of homomorphisms from
a finite poset to a semialgebraic poset has the structure of a semialgebraic
set.

Proposition 2.6. Let P be a finite poset and Q be a semialgebraic poset.
Then Hom≤(P,Q) and Hom<(P,Q) have structures of semialgebraic sets.

Proof. Let us set P = {p1, . . . , pn} and L = {(i, j) | pi < pj}. Since each
element f ∈ Hom≤(P,Q) can be identified with the tuple (f(p1), . . . , f(pn)) ∈
Qn, we have the expression

Hom≤(P,Q) ≃ {(q1, . . . , qn) ∈ Qn | qi ≤ qj for (i, j) ∈ L}

=
⋂

(i,j)∈L

{(q1, . . . , qn) ∈ Qn | qi ≤ qj}.

Clearly, the right-hand side is a semialgebraic set.
The semialgebraicity of Hom<(P,Q) is similarly proved.

3 Euler characteristic reciprocity

3.1 Main results

We can formulate a reciprocity theorem for semialgebraic posets.

Theorem 3.1. Let P be a finite poset and Q be a semialgebraic poset. Then

e(Hom<(P,Q)) = (−1)#P · e(Hom≤(P,Q× (0, 1))), (14)

and
e(Hom<(P,Q× (0, 1))) = (−1)#P · e(Hom≤(P,Q)). (15)

Note that Q×(0, 1) in the right-hand side of (14) is a semialgebraic poset
with Euler characteristic

e(Q× (0, 1)) = −e(Q). (16)

In view of the relation (16), Theorem 3.1 may be considered as a generaliza-
tion of Stanley’s reciprocity (see Corollary 3.10).

Before the proof of Theorem 3.1, we present an example which illustrates
the main idea of the proof.
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Example 3.2. Let P = Q = {1, 2} with 1 < 2. Clearly we have

Hom<(P,Q) = {id}.

Let us describe Hom≤(P,Q × (0, 1)). Note that Q × (0, 1) is isomorphic to
the semialgebraic totally ordered set (1, 3

2
) ⊔ (2, 5

2
) by the isomorphism

ϕ : Q× (0, 1) −→

(
1,

3

2

)
⊔

(
2,

5

2

)
, (a, t) 7−→ a +

t

2
.

A homomorphism f ∈ Hom≤(P,Q × (0, 1)) is described by the two values
f(1) = (a1, t1) and f(2) = (a2, t2) ∈ Q × (0, 1). The condition imposed on
a1, a2, t1 and t2 (by the inequality f(1) ≤ f(2)) is

(a1 < a2), or (a1 = a2 and t1 ≤ t2),

which is equivalent to a1 +
t1
2

≤ a2 +
t2
2
. Therefore, the semialgebraic set

Hom≤(P,Q× (0, 1)) can be described as in Figure 1. Each diagonal triangle

a1 < a2

a1 = a2 = 1, t1 ≤ t2

a1 = a2 = 2, t1 ≤ t2

Figure 1: f(1) ≤ f(2).

in Figure 1 has a stratification
◦
σ2 ⊔

◦
σ1. Therefore the Euler characteristic is

e(
◦
σ2⊔

◦
σ1) = e(

◦
σ2)+e(

◦
σ1) = (−1)2+(−1)1 = 0. On the other hand, the square

region corresponding to a1 < a2 has the Euler characteristic (−1)2 = 1.
Hence we have

e(Hom≤(P,Q× (0, 1))) = 1 = e(Hom<(P,Q)).

The following lemma will be used in the proof of Theorem 3.1.
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Lemma 3.3. Let P ⊂ Rn be a d-dimensional polytope (i.e., a convex hull of
a finite set). Fix a hyperplane description

P = {α1 ≥ 0} ∩ · · · ∩ {αN ≥ 0}

of P where αi are affine maps from Rn to R. For a given x0 ∈ P , define the
associated locally closed subset Px0

of P (see Figure 2) by

Px0
=

⋂

αi(x0)=0

{αi ≥ 0} ∩
⋂

αi(x0)>0

{αi > 0}.

Then the Euler characteristic is

e(Px0
) =

{
(−1)d, if x0 ∈

◦

P
0, otherwise (x0 ∈ ∂P ),

where
◦

P is the relative interior of P and ∂P = P r
◦

P .

x0

x0

Figure 2: Px0
.

Proof. If x0 ∈
◦

P , then Px0
=

◦

P . The Euler characteristic is e(
◦

P ) = (−1)d.
Suppose x0 ∈ ∂P . Then Px0

can be expressed as

Px0
=

⊔

F∋x0

◦

F , (17)

where F runs over the faces of P containing x0 and
◦

F denotes its relative
interior. Then we obtain the decomposition

Px0
=

◦

P ⊔
⊔

F∋x0,F⊂∂P

◦

F.

We look at the structure of the second component Z :=
⊔

F∋x0,F⊂∂P

◦

F . For
any point y ∈ Z, the segment [x0, y] is contained in Z. Hence Z is contractible

9



open subset of ∂P , which is homeomorphic to the (d− 1)-dimensional open
disk. The Euler characteristic is computed as

e(Px0
) = e(

◦

P ) + e(Z)

= (−1)d + (−1)d−1

= 0.

3.2 Proof of the main results

Now we prove (14) of Theorem 3.1. Let ϕ ∈ Hom<(P,Q× (0, 1)). Then ϕ is
a pair of maps

ϕ = (f, g),

where f : P −→ Q and g : P −→ (0, 1). Let π1 : Q× (0, 1) −→ Q be the first
projection. Since π1 is order-preserving (Proposition 2.5), so is f = π1 ◦ ϕ,
and hence f ∈ Hom≤(P,Q).

In order to compute the Euler characteristics, we consider the map

π1∗ : Hom
≤(P,Q× (0, 1)) −→ Hom≤(P,Q), ϕ 7−→ π1 ◦ ϕ = f. (18)

Let us set

M :=Hom≤(P,Q)rHom<(P,Q)

={f ∈ Hom≤(P,Q) | ∃x < y ∈ P s.t. f(x) = f(y)}.
(19)

Then obviously, we have

Hom≤(P,Q) = Hom<(P,Q) ⊔M. (20)

This decomposition induces that of Hom≤(P,Q× (0, 1)),

Hom≤(P,Q× (0, 1)) = π−1
1∗ (Hom<(P,Q)) ⊔ π−1

1∗ (M). (21)

By the additivity of the Euler characteristics, we obtain

e
(
Hom≤(P,Q× (0, 1))

)
= e

(
π−1
1∗ (Hom<(P,Q))

)
+ e(π−1

1∗ (M)). (22)

We claim the following two equalities which are sufficient for the proof of
(14).

e
(
π−1
1∗ (Hom<(P,Q))

)
= (−1)#P · e (Hom<(P,Q)) (23)

e(π−1
1∗ (M)) = 0 (24)

10



We first prove (23). Let ϕ ∈ π−1
1∗ (Hom<(P,Q)), that is ϕ = (f, g) with

f ∈ Hom<(P,Q). By the definition of the ordering of Q × (0, 1), (f, g) is
contained in π−1

1∗ (Hom<(P,Q)) for arbitrary map g : P −→ (0, 1). This
implies

π−1
1∗ (Hom<(P,Q)) ≃ Hom<(P,Q)× (0, 1)#P , (25)

which yields (23).
The proof of (24) requires further stratification of M . Let

L(P ) := {(p1, p2) ∈ P × P | p1 < p2}.

For given f ∈ M , consider the set of collapsing pairs,

K(f) := {(p1, p2) ∈ L(P ) | f(p1) = f(p2)}.

Note that f ∈ M if and only if K(f) 6= ∅. We decompose M according
to K(f). Namely, for any nonempty subset X ⊂ L(P ), define the subset
MX ⊂ M by

MX := {f ∈ M | K(f) = X}.

Since L(P ) is a finite set,

M =
⊔

X⊂L(P )
X 6=∅

MX (26)

is a decomposition of M into finitely many semialgebraic sets. Therefore, we
obtain

e(π−1
1∗ (M)) =

∑

X⊂L(P )
X 6=∅

e(π−1
1∗ (MX)).

Thus it is enough to show e(π−1
1∗ (MX)) = 0 for all X ⊂ L(P ) as long as

π−1
1∗ (MX) 6= ∅ (note that π−1

1∗ (MX) = ∅ can occur for a nonempty X e.g.
when #Q = 1).

Now we fix X ⊂ L(P ) such that π−1
1∗ (MX) 6= ∅. Then we can show

that π−1
1∗ (MX) −→ MX is a trivial fibration. Indeed, for any f ∈ MX , the

condition imposed on g by (f, g) ∈ Hom≤(P,Q× (0, 1)) is

(p1, p2) ∈ X =⇒ g(p1) ≤ g(p2).

Hence the fiber π−1
1∗ (f) is independent of f ∈ MX and isomorphic to

FX := {(tp)p∈P ∈ (0, 1)P | (p1, p2) ∈ X =⇒ tp1 ≤ tp2}, (27)

11



and we have
π−1
1∗ (MX) ≃ MX × FX . (28)

The fiber FX is a locally closed polytope defined by the following inequalities.

0 < tp < 1, tp1 ≤ tp2 for (p1, p2) ∈ X.

The closure FX is defined by

FX = {(tp)p∈P ∈ [0, 1]P | tp1 ≤ tp2 for (p1, p2) ∈ X}.

Then FX is equal to the locally closed polytope (FX)x0
associated to the

point x0 = (1
2
, 1
2
, . . . , 1

2
) ∈ ∂FX . Since X 6= ∅, x0 is not contained in the

interior of FX . By Lemma 3.3, e(FX) = 0. Together with (28), we conclude
e(π−1

1∗ (MX)) = 0. This completes the proof of (14) of Theorem 3.1.
The proof of the other formula (15) is similar to and actually simpler

than that of (14) since we do not need Lemma 3.3. Again the first projection
π1 : Q× (0, 1) 7−→ Q induces a map

π1∗ : Hom
<(P,Q× (0, 1)) −→ Hom≤(P,Q).

We can prove that this map is surjective and each fiber of π−1
1∗ (MX) (now

X = ∅ is allowed) is isomorphic to

◦

FX = {(tp)p∈P ∈ (0, 1)P | tp1 < tp2 for all (p1, p2) ∈ X}.

This fiber is an open polytope of dimension #P and hence is isomorphic to
(0, 1)#P whose Euler characteristic is (−1)#P . Thus we obtain

e(Hom<(P,Q× (0, 1))) =
∑

X⊂L(P )

e(π−1
1∗ (MX)) =

∑

X⊂L(P )

e(MX ×
◦

FX)

=
∑

X⊂L(P )

e(MX) · (−1)#P = (−1)#P · e




⊔

X⊂L(P )

MX




= (−1)#P · e(Hom≤(P,Q)).

3.3 Stanley’s reciprocity for order polynomials

In this section, we deduce Stanley’s reciprocity (2) from Theorem 3.1. The
idea is to apply the theorem for semialgebraic totally ordered sets.

Example 3.4. Any semialgebraic set X ⊂ R with induced ordering is a
semialgebraic totally ordered set. Furthermore, since Rn is totally ordered
by the lexicographic ordering, any semialgebraic set X ⊂ Rn admits the
structure of a semialgebraic totally ordered set.
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The Euler characteristic of Hom≤(P, T ), with T a semialgebraic totally
ordered set, can be computed by using the order polynomial O≤(<)(P, t).

Theorem 3.5. Let P be a finite poset and T be a semialgebraic totally or-
dered set. Then

e(Hom≤(P, T )) = O≤(P, e(T )), (29)

e(Hom<(P, T )) = O<(P, e(T )). (30)

Before proving Theorem 3.5, we need several lemmas on the Euler char-
acteristics of configuration spaces.

Definition 3.6. Let X be a semialgebraic set. The ordered configuration
space of n-points on X , denoted by Cn(X), is defined by

Cn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}.

Lemma 3.7. e(Cn(X)) = e(X) · (e(X)− 1) · · · (e(X)− n + 1).

Proof. It is proved by induction. When n = 1, it is obvious from C1(X) = X .
Suppose n > 1. Consider the projection

π : Cn(X) −→ Cn−1(X), (x1, . . . , xn) 7−→ (x1, . . . , xn−1).

Then the fiber of π at the point (x1, . . . , xn−1) ∈ Cn−1(X) is

X r {x1, . . . , xn−1},

which has the Euler characteristic

e(X r {x1, . . . , xn−1}) = e(X)− (n− 1).

Therefore, from the inductive assumption, we have

e(Cn(X)) = e(Cn−1(X)) · (e(X)− n+ 1)

= e(X) · (e(X)− 1) · · · (e(X)− n+ 1).

Remark 3.8. We will give a stronger result later (Theorem 4.2 and Corollary
4.3).

Lemma 3.9. Let T be a semialgebraic totally ordered set. Then

e(Hom<([n], T )) =
e(T ) · (e(T )− 1) · · · (e(T )− n + 1)

n!
. (31)

13



Proof. The set

Hom<([n], T ) = {(x1, . . . , xn) ∈ T n | x1 < · · · < xn}.

This is obviously a subset of the configuration space Cn(T ). Moreover, using
the natural action of the symmetric group Sn on Cn(T ) and the fact that T
is totally ordered, we have

Cn(T ) =
⊔

σ∈Sn

σ(Hom<([n], T )).

Since the group action preserves the Euler characteristic, we obtain the fol-
lowing.

e(Cn(T )) = n! · e(Hom<([n], T )).

Proof of Theorem 3.5. We fix ε ∈ {≤, <}. Let f ∈ Homε(P, T ). Since P is
a finite poset, the image f(P ) ⊂ T is a finite totally ordered set. Suppose
#f(P ) = k. Then the map f is decomposed as f = β ◦ α, where

P
α

−→ [k]
β

−→ T

α : P −→ [k] is surjective, while β : [k] −→ T is injective. Hence β can
be considered as an element of Hom<([k], T ), and we have the following
decomposition,

Homε(P, T ) =
⊔

k≥1

Homε,surj(P, [k])×Hom<([k], T ), (32)

where Homε,surj(P, [k]) is the set of surjective maps in Homε(P, [k]). By
putting T = [n] and then extending n to real numbers t, we obtain the
expression for the (strict) order polynomial,

Oε(P, t) =
∑

k≥1

#Homε,surj(P, [k]) ·
t(t− 1) · · · (t− k + 1)

k!
, (33)

which was already obtained by Stanley [9, Theorem 1]. Using (32), Lemma
3.9 and (33), we have

e(Homε(P, T )) =
∑

k≥1

e(Homε,surj(P, [k])) · e(Hom<([k], T ))

=
∑

k≥1

#Homε,surj(P, [k]) ·
e(T )(e(T )− 1) · · · (e(T )− k + 1)

k!

= Oε(P, e(T )).

This completes the proof of Theorem 3.5.
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Corollary 3.10 (Stanley’s reciprocity [9]). Let P be a finite poset and n ∈ N.
Then

#Hom<(P, [n]) = (−1)#P · O≤(P,−n). (34)

Proof. Since Hom<(P, [n]) is a finite poset, the cardinality is equal to the
Euler characteristic: #Hom<(P, [n]) = e(Hom<(P, [n])). We apply the Euler
characteristic reciprocity (Theorem 3.1),

e(Hom<(P, [n])) = (−1)#P · e(Hom≤(P, [n]× (0, 1))).

Note that [n]× (0, 1) is a semialgebraic totally ordered set (with the lexico-
graphic ordering) with the Euler characteristic e([n]×(0, 1)) = −n. Applying
Theorem 3.5, we have

e(Hom≤(P, [n]× (0, 1))) = O≤(P,−n),

which implies (34).

4 Chromatic polynomials for finite graphs

4.1 Chromatic polynomials and Euler characteristics

Let G = (V,E) be a finite simple graph with vertex set V and edge (un-
oriented) set E. The chromatic polynomial is a polynomial χ(G, t) ∈ Z[t]
which satisfies

χ(G, n) = #{c : V −→ [n] | v1v2 ∈ E =⇒ c(v1) 6= c(v2)},

for all n > 0. The chromatic polynomial is also characterized by the following
properties:

• if E = ∅ then χ(G, t) = t#V ;

• if e ∈ E, then χ(G, t) = χ(G − e, t) − χ(G/e, t), where G − e and
G/e are the deletion and the contraction with respect to the edge e,
respectively.

Definition 4.1. For a set X , define the set of vertex coloring with X (or
the graph configuration space) by

χ(G,X) = {c : V −→ X | v1v2 ∈ E =⇒ c(v1) 6= c(v2)}. (35)
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The assignment X 7−→ χ(G,X) can be considered as a functor ([12]). The
space χ(G,X) is also called the graph (generalized) configuration space ([7]).

The chromatic polynomial χ(G, t) ∈ Z[t] satisfies χ(G, n) = #χ(G, [n])
for all n ∈ N.

In this section, we investigate the Euler characteristic aspects of the chro-
matic polynomial for a finite graph.

When X is a semialgebraic set, χ(G,X) is also a semialgebraic set. The
following result generalizes [7, Theorem 2], where the result is shown when
X is a complex projective space.

Theorem 4.2. Let G = (V,E) be a finite graph and X be a semialgebraic
set. Then

e(χ(G,X)) = χ(G, e(X)). (36)

Proof. This result is proved by induction on #E. When E = ∅, e(χ(G,X)) =

e(X#V ) = e(X)#V = χ(G, e(X)). Suppose e ∈ E. Then we can prove

χ(G− e,X) ≃ χ(G,X) ⊔ χ(G/e,X).

Using the additivity of the Euler characteristic and the recursive relation for
the chromatic polynomial, we obtain (36).

Note that for the complete graph G = Kn, χ(Kn, X) is identical to
the configuration space Cn(X) of n-points. Applying Theorem 4.2 to the
complete graph Kn (which has the chromatic polynomial χ(Kn, t) = t(t −
1) · · · (t− n + 1)), we have the following.

Corollary 4.3. e(Cn(X)) = e(X)(e(X)− 1) · · · (e(X)− n+ 1).

4.2 Acyclic orientations

To formulate the reciprocity for chromatic polynomials, we recall the notion
of acyclic orientations on a graph G.

Let G = (V,E) be a finite simple graph. The set of edges E can be
considered as a subset of

(V × V r∆)/S2,

where ∆ = {(v, v) | v ∈ V } is the diagonal subset and S2 acts on V × V by
transposition.

There is a natural projection

π : V × V r∆ −→ (V × V r∆)/S2.
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An edge orientation on G is a subset Ẽ ⊂ V ×V r∆ such that π|Ẽ : Ẽ
≃

−→ E

is a bijection. An orientation Ẽ is said to contain an oriented cycle, if there
exists a cyclic sequence (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) ∈ Ẽ for some

n > 2. The orientation Ẽ is called acyclic if it does not contain oriented
cycles.

Definition 4.4. Let G = (V,E) be a finite graph. Fix an acyclic orientation

Ẽ ⊂ V × V r∆. Let T be a totally ordered set.

(1) A map c : V −→ T is said to be compatible with Ẽ if

(v, v′) ∈ Ẽ =⇒ c(v) ≤ c(v′).

(2) A map c : V −→ T is said to be strictly compatible with Ẽ if

(v, v′) ∈ Ẽ =⇒ c(v) < c(v′).

We denote the sets of all pairs of an acyclic orientation with a compatible
map, and with a strictly compatible map, by

AOC≤(G, T ) :=

{
(Ẽ, c)

∣∣∣∣∣
Ẽ is an acyclic orientation, and c : V → T

is a map compatible with Ẽ

}
,

and

AOC<(G, T ) :=

{
(Ẽ, c)

∣∣∣∣∣
Ẽ is an acyclic orientation, and c : V → T

is a map strictly compatible with Ẽ

}
,

respectively. If T is a semialgebraic totally ordered set, then these spaces
possess the structures of semialgebraic sets. In the next section, we will see
a reciprocity between these two spaces from which Stanley’s reciprocity for
chromatic polynomials is deduced.

4.3 Euler characteristic reciprocity for chromatic poly-

nomials

We formulate a reciprocity for chromatic polynomials in terms of Euler char-
acteristics.

Theorem 4.5. Let G = (V,E) be a finite simple graph and T be a semial-
gebraic totally ordered set. Then

e(AOC≤(G, T )) = (−1)#V · e(AOC<(G, T × (0, 1))), (37)

e(AOC<(G, T )) = (−1)#V · e(AOC≤(G, T × (0, 1))). (38)
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To prove Theorem 4.5, we give alternative descriptions of AOC≤(<)(G, T )

in terms of poset homomorphisms and graph configuration spaces. Let Ẽ be
an acyclic orientation of G = (V,E). Then Ẽ determines an ordering on V ,

called the transitive closure of Ẽ, defined by

v < v′ ⇐⇒ ∃v0, . . . , vn ∈ V s.t.

{
v = v0, v

′ = vn, and

(vi−1, vi) ∈ Ẽ for 1 ≤ i ≤ n.

This ordering defines a poset which we denote by P (V, Ẽ).

A map c : V −→ T is compatible with Ẽ if and only if c is an increasing
map from P (V, Ẽ) to T . Hence the set of maps compatible with Ẽ is identified

with Hom≤(P (V, Ẽ), T ). We have the following decomposition.

AOC≤(G, T ) ≃
⊔

Ẽ: acyclic ori.

Hom≤(P (V, Ẽ), T ). (39)

Similarly, AOC<(G, T ) is decomposed as follows.

AOC<(G, T ) ≃
⊔

Ẽ: acyclic ori.

Hom<(P (V, Ẽ), T ). (40)

Proof of Theorem 4.5. We prove (37). Using the above decompositions (39)
and (40) together with Theorem 3.1, we obtain

e(AOC≤(G, T )) = e




⊔

Ẽ: acyclic ori.

Hom≤(P (V, Ẽ), T )




=
∑

Ẽ: acyclic ori.

e
(
Hom≤(P (V, Ẽ), T )

)

= (−1)#V ·
∑

Ẽ: acyclic ori.

e
(
Hom<(P (V, Ẽ), T × (0, 1))

)

= (−1)#V · e




⊔

Ẽ: acyclic ori.

Hom<(P (V, Ẽ), T × (0, 1))




= (−1)#V · e(AOC<(G, T × (0, 1))).

This completes the proof. The second formula (38) is proved similarly.

To deduce Stanley’s reciprocity on chromatic polynomials ([11]), we need
the following.

18



Proposition 4.6. Let G = (V,E) be a finite simple graph and T be a semi-
algebraic totally ordered set. Then we have an isomorphism of semialgebraic
sets:

AOC<(G, T ) ≃ χ(G, T ).

Proof. The map from χ(G, T ) to AOC<(G, T ) is constructed as follows. Let

c : V −→ T be an element of χ(G, T ). Let vv′ ∈ E be an edge. Define Ẽ by

Ẽ = {(v, v′) | vv′ ∈ E and c(v) < c(v′) in T}.

Then Ẽ is the unique acyclic orientation of G with which c is strictly compati-
ble. The assignment c 7−→ (Ẽ, c) determines a map χ(G, T ) −→ AOC<(G, T ).

It is easy to see that (Ẽ, c) 7−→ c gives the converse. Hence we have the iso-
morphism AOC<(G, T ) ≃ χ(G, T ).

Theorem 4.2 and Proposition 4.6 imply the following.

Corollary 4.7. Let G = (V,E) be a finite simple graph and T be a semial-
gebraic totally ordered set. Then

e(AOC<(G, T )) = χ(G, e(T )). (41)

Applying Theorem 4.5 and Corollary 4.7, we can compute as follows (note
that T × (0, 1) is also a semialgebraic totally ordered set).

e(AOC≤(G, T )) = (−1)#V · e(AOC<(G, T × (0, 1)))

= (−1)#V · χ(G, e(T × (0, 1)))

= (−1)#V · χ(G,−e(T )).

Putting T = [n], we have the following Stanley’s reciprocity.

Corollary 4.8. Let G = (V,E) be a finite graph and n ∈ N. Then

#AOC≤(G, [n]) = (−1)#V · χ(G,−n).
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