
ar
X

iv
:1

60
1.

00
25

8v
1 

 [
m

at
h.

O
C

] 
 3

 J
an

 2
01

6

Infinite Horizon Risk-Sensitive Control of Diffusions

Without Any Blanket Stability Assumptions

Ari Arapostathisa,1,, Anup Biswasb,2

aDepartment of Electrical and Computer Engineering, The University of Texas at Austin,
1616 Guadalupe St., UTA 7.508, Austin, TX 78701

bDepartment of Mathematics, Indian Institute of Science Education and Research,
Dr. Homi Bhabha Road, Pune 411008, India

Abstract

We consider the infinite horizon risk-sensitive problem for nondegenerate diffusions with a compact action
space, and controlled through the drift. We only impose a structural assumption on the running cost function,
namely near-monotonicity, and show that there always exists a solution to the risk-sensitive Hamilton–
Jacobi–Bellman (HJB) equation, and that any minimizer in the Hamiltonian is optimal in the class of
stationary Markov controls. Under the additional hypothesis that the data of the diffusion is bounded, and
satisfies a condition that limits (even though it still allows) transient behavior, we prove that the solution
of the HJB is unique, establish the usual verification result, and show that there exists a stationary Markov
control which is optimal in the class of all admissible controls. We also present some new results concerning
the multiplicative Poisson equation.
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1. Introduction

Optimal control under a risk-sensitive criterion has been an active area of research for the past 30
years. It has found applications in finance [6, 23, 34], missile guidance [37], cognitive neuroscience [35], and
many more. There are many situations which dictate the use of a risk-sensitive penalty. For example, if
one considers the risk parameter to be small then it approximates the standard mean-variance type cost
structure. Another reason that the risk-sensitive criterion is often desirable is because it captures the effects
of higher order moments of the running cost in addition to its expectation. To the best of our knowledge, the
risk-sensitive criterion was first considered in [27]. We also refer the reader to [39, 40] for an early account of
risk-sensitive optimal controls. For discrete state space controlled Markov chains, the risk-sensitive optimal
control problem is studied in [12–18, 28, 38]. For optimal control problems where the dynamics are modeled
by controlled diffusions, we refer the reader to [3–5, 7–9, 11, 20–22, 29, 32, 33].

In this article we deal with nondegenerate diffusions, controlled through the drift, with the control
taking values in a compact metric space (see (1.1) below). The goal is to minimize an infinite horizon
average risk-sensitive penalty, where the running cost is assumed to satisfy a near-monotonicity hypothesis
(Definition 1.1 below). We study the associated Hamilton-Jacobi-Bellman (HJB) equation and characterize
the class of optimal stationary Markov controls. In [22] a similar control problem is studied under the
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assumption of asymptotic flatness, and existence of a unique solution to the HJB is established. This work
is generalized in [33], where the authors impose some structural assumptions on the drift and cost (e.g., the
cost necessarily grows to infinity, the action set is a Euclidean space, etc). Risk-sensitive control problems
with periodic data are studied in [32]. Risk-sensitive control for a general class of controlled diffusions is
considered in [7–9], under the assumption that all stationary Markov controls are stable. However, the
studies in [7–9] neither establish uniqueness of the solution to the HJB, nor do they fully characterize the
optimal stationary Markov controls. One of our main contributions in this article is the development of a
basic theory that parallels existing results for optimal ergodic control problems. To this end, we remove the
stability hypothesis on the drift, and replace it by a much weaker hypothesis (see Assumption 1.1). Under
this hypothesis and the near-monotone structure of the running cost, we show that any optimal Markov
control is necessarily stable.

The dynamics are modeled by a controlled diffusion process X = {Xt, t ≥ 0} which takes values in the
d-dimensional Euclidean space R

d, and is governed by the Itô stochastic differential equation

dXt = b(Xt, Ut) dt+ σ(Xt) dWt . (1.1)

All random processes in (1.1) live in a complete probability space (Ω,F,P). The processW is a d-dimensional
standard Wiener process independent of the initial condition X0. The control process U takes values in a
compact, metrizable set U, and Ut(ω) is jointly measurable in (t, ω) ∈ [0,∞) × Ω. The set U of admissible

controls consists of the control processes U that are non-anticipative: for s < t, Wt −Ws is independent of

Fs := the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

We impose the standard assumptions on the drift b and the diffusion matrix σ to guarantee existence and
uniqueness of solutions. For more details on the model see Section 1.1.

Let c : Rd ×U → [1,∞) be continuous, and locally Lipschitz in its first argument uniformly with respect
to the second. For U ∈ U we define the risk-sensitive penalty by

R(U) = R(U ; c) := lim sup
T→∞

1

T
logEU

x

[
e
∫

T

0
c(Xt,Ut) dt

]
,

and the risk-sensitive optimal values by

λ∗ := inf
U∈U

R(U) , λ∗
m := inf

U∈USM

R(U) ,

where USM is the class of stationary Markov controls.
Unless λ∗ is finite, the optimal control problem, is of course ill-posed. For nonlinear models as in

the current paper, standard Foster-Lyapunov conditions are usually imposed to guarantee that λ∗ < ∞.
However, the objective of this paper is different. Rather, we impose a structural assumption on the running
cost function c, and investigate whether this is sufficient for characterization of optimality via the risk-
sensitive HJB equation. We need the following definition.

Definition 1.1 (near-monotone). A Borel measurable f : X → R, where X is a locally compact topolog-
ical space, is said to be near-monotone relative to λ ∈ R, if a sublevel set

{
x ∈ X × U : f(x) ≤ γ

}
for some

γ > λ, is nonempty and is contained in some compact subset of X . We also say that f is norm-like (or
inf-compact) if it is near-monotone relative to all λ ∈ R.

Note that the notion of near-monotonicity in the literature is often stricter—a function f is sometimes
called near-monotone if it is near-monotone relative to all λ < ‖f‖∞ [2].

The main results of the paper are summarized in Propositions 1.1–1.2, and Theorem 1.3 in Section 1.3.
Proposition 1.1 assumes that c is near-monotone with respect to λ∗, and imposes a mild condition that
limits the transient behavior of the controlled process. Existence and uniqueness of a solution to the HJB
equation, a characterization of the optimal stationary Markov controls, and a stochastic representation
of the solution to the HJB are obtained. If the running cost is near-monotone relative to λ∗

m, then we
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show in Proposition 1.2 that there exists a pair (V ∗, λ∗
m) ∈ C2(Rd) × R solving the HJB equation and any

measurable selector of the HJB is a stable, optimal Markov control. Under the same near-monotonicity
hypothesis, together with the assumption that c is norm-like, the risk-sensitive problem for denumerable
Markov decision processes is treated in [12], where a dynamic programming inequality is established.

Another interesting result proved in this article concerns uncontrolled diffusions and is stated in The-
orem 1.3 below. We show that if the process is recurrent and the running-cost function f near-monotone
relative to Λ(f) (the risk-sensitive penalty with running cost f), then the process is stable and the multi-
plicative Poisson equation has a unique solution. These results are the diffusion counterpart of the results
obtained in [2]. Let us also remark that unlike [2] our results do not assume any (geometric) Lyapunov type
stability on the dynamics.

The notation used in the paper is summarized in Section 1.2. Section 2 contains various results on the
multiplicative Poisson equation, which lead to the proof of Theorem 1.3. Section 3 is devoted to the proofs
of Propositions 1.1–1.2.

1.1. The model

The following assumptions on the diffusion (1.1) are in effect throughout the paper unless otherwise
mentioned.

(A1) Local Lipschitz continuity: The functions

b =
[
b1, . . . , bd

]T
: R

d × U → R
d , and σ =

[
σ
ij
]
: R

d → R
d×d

are locally Lipschitz in x with a Lipschitz constant CR > 0 depending on R > 0. In other words, for
all x, y ∈ BR and u ∈ U, we have

|b(x, u)− b(y, u)|+ ‖σ(x)− σ(y)‖ ≤ CR |x− y| .

We also assume that b is continuous in (x, u).

(A2) Affine growth condition: b and σ satisfy a global growth condition of the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ C
(
1 + |x|2

)
∀ (x, u) ∈ R

d × U ,

where ‖σ‖2 := trace
(
σσ

T
)
.

(A3) Nondegeneracy: For each R > 0, it holds that

d∑

i,j=1

aij(x)ξiξj ≥ C−1
R |ξ|2 ∀x ∈ BR ,

and for all ξ = (ξ1, . . . , ξd)
T ∈ R

d, where a := 1
2σσ

T.

In integral form, (1.1) is written as

Xt = X0 +

∫ t

0

b(Xs, Us) ds+

∫ t

0

σ(Xs) dWs . (1.2)

The third term on the right hand side of (1.2) is an Itô stochastic integral. We say that a process X =
{Xt(ω)} is a solution of (1.1), if it is Ft-adapted, continuous in t, defined for all ω ∈ Ω and t ∈ [0,∞), and
satisfies (1.2) for all t ∈ [0,∞) a.s. It is well known that under (A1)–(A3), for any admissible control there
exists a unique solution of (1.1) [1, Theorem 2.2.4]. We define the family of operators Lu : C2(Rd) 7→ C(Rd),
where u ∈ U plays the role of a parameter, by

L
uf(x) = aij(x) ∂ijf(x) + bi(x, u) ∂if(x) , u ∈ U .
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We refer to Lu as the controlled extended generator of the diffusion.
Let USM denote the set of stationary Markov controls. It is well known that under v ∈ USM (1.1) has

a unique strong solution [26]. Moreover, under v ∈ USM, the process X is strong Markov, and we denote
its transition function by P t

v(x, · ). It also follows from the work in [10] that under v ∈ USM, the transition
probabilities of X have densities which are locally Hölder continuous. Thus Lv defined by

L
vf(x) = aij(x) ∂ijf(x) + bi

(
x, v(x)

)
∂if(x) , v ∈ USM ,

for f ∈ C2(Rd), is the generator of a strongly-continuous semigroup on Cb(R
d), which is strong Feller. We

let Pv
x denote the probability measure and E

v
x the expectation operator on the canonical space of the process

under the control v ∈ USM, conditioned on the process X starting from x ∈ R
d at t = 0. We denote by

USSM the subset of USM that consists of stable controls, i.e., under which the controlled process is positive
recurrent, and by µv the invariant probability measure of the process under the control v ∈ USSM.

In the next section, we summarize the notation used in the paper.

1.2. Notation

The standard Euclidean norm in R
d is denoted by | · |, and 〈 · , · 〉 denotes the inner product. The set of

nonnegative real numbers is denoted by R+, N stands for the set of natural numbers, and 1 denotes the
indicator function. Given two real numbers a and b, the minimum (maximum) is denoted by a ∧ b (a ∨ b),
respectively. The closure, boundary, and the complement of a set A ⊂ R

d are denoted by Ā, ∂A, and Ac,
respectively. We denote by τ(A) the first exit time of the process {Xt} from the set A ⊂ R

d, defined by

τ(A) := inf {t > 0 : Xt 6∈ A} .

The open ball of radius r in R
d, centered at the origin, is denoted by Br, and we let τr := τ(Br), and

τ̆r := τ(Bc
r).

The term domain in R
d refers to a nonempty, connected open subset of the Euclidean space R

d. For
a domain D ⊂ R

d, the space Ck(D) (C∞(D)) refers to the class of all real-valued functions on D whose
partial derivatives up to order k (of any order) exist and are continuous, and Cb(D) denotes the set of all
bounded continuous real-valued functions on D. By a slight abuse of notation, whenever the whole space
R

d is concerned, we write f ∈ Ck(Rd) whenever f ∈ Ck(D) for all bounded domains D ⊂ R
d. The space

Lp(D), p ∈ [1,∞), stands for the Banach space of (equivalence classes of) measurable functions f satisfying∫
D
|f(x)|p dx < ∞, and L∞(D) is the Banach space of functions that are essentially bounded in D. The

standard Sobolev space of functions on D whose generalized derivatives up to order k are in Lp(D), equipped
with its natural norm, is denoted by Wk,p(D), k ≥ 0, p ≥ 1.

In general, if X is a space of real-valued functions on Q, Xloc consists of all functions f such that fϕ ∈ X
for every ϕ ∈ C∞

c (Q), the space of smooth functions on Q with compact support. In this manner we obtain
for example the space W

2,p
loc(Q).

For a continuous function g : R
d → [1,∞) we let L∞

g (or O(g)) denote the space of Borel measurable

functions f : Rd → R satisfying ess supx∈Rd
|f(x)|
g(x) < ∞, and by o(g) the subspace of functions f ∈ L∞

g

such that lim supR→∞ ess supx∈Bc
R

|f(x)|
g(x) = 0. We also let Cg(R

d) denote the Banach space of continuous

functions under the norm

‖f‖g := sup
x∈Rd

|f(x)|

g(x)
.

We adopt the notation ∂i :=
∂
∂xi

and ∂ij := ∂2

∂xi∂xj
for i, j ∈ N. We often use the standard summation

rule that repeated subscripts and superscripts are summed from 1 through d. For example,

aij∂ijϕ+ bi∂iϕ :=

d∑

i,j=1

aij
∂2ϕ

∂xi∂xj

+

d∑

i=1

bi
∂ϕ

∂xi

.
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1.3. Main results

Assumption 1.1. The data b and σ in (1.1) are bounded, and the constant CR in (A1) and (A3) does not
depend on R. Moreover,

max
u∈U

〈
b(x, u), x

〉+

|x|
−−−−→
|x|→∞

0 . (1.3)

Proposition 1.1. Let Assumption-1.1 hold, and suppose that c is near-monotone relative to λ∗. Then the

HJB equation

min
u∈U

[
L

uV (x) + c(x, u)V (x)
]
= λV (x) ∀x ∈ R

d

has a solution (V ∗, λ∗) ∈ C2(Rd)× R satisfying infRd V ∗ > 0.
Moreover, the following hold:

(i) The solution (V ∗, λ∗) is unique in the class

V◦ :=
{
(V, λ) ∈ C2(Rd)× R : V (0) = 1 , inf

Rd
V > 0 , λ ≤ λ∗

}
,

and provided that c is bounded, it is also unique in the larger class

V :=
{
(V, λ) ∈ C2(Rd)× R : V (0) = 1 , V > 0 , λ ≤ λ∗

}
.

(ii) Any v∗ ∈ USM that satisfies

L
v∗

V ∗(x) + c
(
x, v∗(x)

)
V ∗(x) = min

u∈U

[
L

uV ∗(x) + c(x, u)V ∗(x)
]

a.e. x ∈ R
d (1.4)

is stable, and is optimal, i.e., R(v∗) = λ∗.

(iii) A control v∗ ∈ USM is optimal only if it satisfies (1.4).

(iv) For any v∗ ∈ USM satisfying (1.4), we have

V ∗(x) = µv∗(V ∗) lim inf
T→∞

E
v∗

x

[
e
∫

T

0
[c(Xt,v

∗(Xt))−λ∗] dt
]
,

where, as defined earlier, µv∗ is the invariant probability measure of (1.1) under the control v∗, and

µv∗(V ∗) :=
∫
Rd V

∗ dµv∗ .

Proof. This is contained in Theorems 3.3–3.4 in Section 3. �

Remark 1.1. The hypothesis in (1.3) of Assumption 1.1 may be replaced by the following. There exists a

C2 function Vo, satisfying lim inf |x|→∞
Vo(x)
1+|x|2 > 0, such that

[
LuVo(x)

]+
√
Vo(x)

−−−−→
|x|→∞

0 ∀u ∈ U .

It is clear from the proof that the result of Lemma 3.2 in Section 3 holds under this assumption. It is also
evident that (1.3) may be replaced by the more general hypothesis that EU

x

[
|Xt|

]
∈ o(t) under any U ∈ U,

which is the conclusion of Lemma 3.2 on which the proof of Theorem 3.3 is based. Note that when the data
b and σ is bounded, it is always the case that EU

x

[
|Xt|

]
∈ O(t).

Proposition 1.2. Suppose that c is near-monotone relative to λ∗
m. Then the HJB equation

min
u∈U

[
L

uV (x) + c(x, u)V (x)
]
= λV (x) ∀x ∈ R

d

has a solution (V ∗, λ∗
m) ∈ C2(Rd) × R. Also, any v∗ ∈ USM that satisfies (1.4) is stable, and is optimal in

the class USM, i.e., R(v∗) = λ∗
m.
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The proof of Proposition 1.2 is in Section 3.

Remark 1.2. The linear growth condition in (A2) guarantees that trajectories do not suffer an explosion
in finite time. This assumption is a quite standard, but may be restrictive for some applications. As far as
the results of Proposition 1.2 are concerned, it may be replaced by the weaker condition

2〈x, b(x, u)〉+ ‖σ(x)‖2 ≤ C1

(
1 + |x|2

)
, ∀ (x, u) ∈ R

d × U .

The proofs of these results depend heavily on properties of the multiplicative Poisson equation (MPE).
To summarize these we consider an uncontrolled diffusion

dXt = b(Xt) dt+ σ(Xt) dWt , (1.5)

where σ satisfies (A1)–(A3), while b is measurable and has affine growth. We let Ex denote the expectation
operator induced by the strong Markov process with X0 = x, governed by (1.5), and L := aij(x) ∂ij +
bi(x) ∂i, with a := 1

2σσ
T. Let f : Rd → R+ be measurable and locally bounded, and define

Λ(f) := lim sup
T→∞

1

T
log Ex

[
e
∫

T

0
f(Xt) dt

]
∀x ∈ R

d .

We assume Λ(f) < ∞. We say that (Ψ, λ) ∈ W
2,p
loc(R

d)×R, p > d, Ψ > 0, is a solution of the multiplicative
Poisson equation (MPE) if it satisfies

LΨ(x) + f(x)Ψ(x) = λΨ(x) a.e. x ∈ R
d . (1.6)

We refer to λ as the eigenvalue of the MPE.
With respect to Theorem 1.3 stated below, note that we do not assume that the running cost is norm-

like, or even near-monotone in the sense of [2, p. 126]. Nor do we assume that Λ(αf) < ∞ for some α > 1,
as is common in the literature. This should be compared with [2, Theorem 1.2], and [12, Theorem 2.2]
for irreducible Markov chains, as well as the more general results in [30, 31]. Therefore, in the case of
nondegenerate diffusions, Theorem 1.3 is an improvement of existing results on the MPE.

Theorem 1.3. Suppose that the diffusion in (1.5) is recurrent, and that f : Rd → R+ is near-monotone

relative to Λ(f). Then, for λ ∈ [0,Λ(f)], there exists a unique solution (Ψ, λ) ∈ W
2,p
loc(R

d)×R, p > d, Ψ > 0,
to the MPE in (2.4), satisfying Ψ(0) = 1, and the following hold.

(i) The diffusion in (1.5) is positive recurrent, and λ = Λ(f).

(ii) For some positive constants C0 and β, it holds that

∣∣∣Ψ(x)− µ(Ψ)Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds

]∣∣∣ ≤ C0 e
−βtΨ(x) ∀x ∈ R

d , ∀ t > 0 ,

where µ is the invariant probability measure of the diffusion in (1.5).

(iii) The function Ψ satisfies

Ψ(x) = Ex

[
e
∫

T

0
[f(Xt)−Λ(f)] dtΨ(XT )

]
∀T > 0 .

(iv) There exists a bounded open ball B◦, and ξ◦ < Λ(f) such that, with τ◦ := τ(Bc
◦), we have

Ex

[
e
∫

τ◦

0
[f(Xt)−ξ◦] dt

]
< ∞ ∀x ∈ B

c

◦ .

and

Ψ(x) = Ex

[
e
∫

τ◦

0
[f(Xt)−Λ(f)] dt Ψ(Xτ◦

)
]

∀x ∈ B
c

◦ .

Proof. The proof of Theorem 1.3 is contained in Lemmas 2.4 and 2.7 and Corollary 2.8 of Section 2. �
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2. Some results on the multiplicative Poisson equation

In this section we establish basic properties of the MPE through lemmas that lead to the proof of
Theorem 1.3. Some well known properties of the MPE are summarized in the following lemma.

Lemma 2.1. Let f be near-monotone relative to λ, and (Ψ, λ) ∈ W
2,p
loc(R

d)× R, p > d, Ψ > 0 on R
d, be a

solution to (1.6). Suppose that at least one of (a) or (b) are true:

(a) The diffusion (1.5) is recurrent.

(b) infRd Ψ > 0.

Then the following hold:

(i) The function Ψ is inf-compact. In particular, infRd Ψ > 0.

(ii) The diffusion (1.5) is geometrically ergodic, i.e., it is positive recurrent with invariant probability

measure µ, and there exist positive constants κ and β, such that if g : Rd → R is any locally bounded

measurable function satisfying ‖g‖Ψ < ∞, it holds that

∣∣Ex[g(Xt)]− µ(g)
∣∣ ≤ κe−βt ‖g‖Ψ

(
1 + Ψ(x)

)
∀ t > 0 . (2.1)

(iii) It holds that Λ(f) ≤ λ.

Proof. Let B be a bounded ball and δ > 0 a constant, such that f − λ > δ in Bc. Then with τ̆ ≡ τ(Bc)
we have

Ψ(x) ≥ Ex

[
eδτ̆ Ψ(Xτ̆)1{τ̆ < ∞}

]
∀x ∈ B

c
. (2.2)

If (a) holds, then since infB Ψ > 0 by the Harnack inequality, part (i) follows. Therefore (a) implies (b),
and we continue the proof by assuming (b).

Since LΨ < −δΨ on Bc, and infRd Ψ > 0, it is well known that (2.1) holds (see [19, 24]). This proves
part (ii).

By (1.6) and Fatou’s lemma we have

Ψ(x) ≥ Ex

[
e
∫

T

0
[f(Xt)−λ] dtΨ(XT )

]

≥
(
inf
Rd

Ψ
)
Ex

[
e
∫

T

0
[f(Xt)−λ] dt

]
,

and part (iii) follows by taking log and dividing by T . �

We quote a result from [36] on eigensolutions of the Dirichlet problem.

Lemma 2.2. For each n ∈ N, there exists a unique pair (Ψ̂n, λ̂n) ∈
(
W2,p(Bn)∩C(B̄n)

)
×R, for any p > d,

satisfying Ψ̂n > 0 on Bn, Ψ̂n = 0 on ∂Bn, and Ψ̂n(0) = 1, which solves

LΨ̂n(x) + f(x) Ψ̂n(x) = λ̂n Ψ̂n(x) a.e. x ∈ Bn . (2.3)

Moreover, λ̂n ≤ λ̂n+1 for all n ∈ N.

We refer to (Ψ̂n, λ̂n) as the Dirichlet eigensolution of the MPE on Bn.

Lemma 2.3. Let (Ψ̂n, λ̂n) be as in Lemma 2.2. Then

(i) λ̂n ≤ Λ(f) for all n ∈ N.
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(ii) Any limit point (Ψ̂, λ̂) ∈ W
2,p
loc(R

d) × R of the Dirichlet eigensolutions (Ψ̂n, λ̂n) in (2.3) as n → ∞ is

a solution of the MPE (1.6).

(iii) If f is near-monotone relative to Λ(f), then λ̂n ր Λ(f) as n → ∞.

(iv) It holds that λ̂n < λ̂n+1 for all n ∈ N.

Proof. Parts (i) and (ii) are as in [8, Lemma 2.1], while part (iii) follows by part (i) and Lemma 2.1 (iii).

Part (iv) is a straightforward application of the strong maximum principle. Suppose λ̂n = λ̂n+1. Then
we can find constant κ > 0 such that φ := κΨ̂n+1 − Ψ̂n ≥ 0 in Bn and φ attains the value 0 at some point
in Bn. By (2.3) we have

Lφ− (f − λ̂n)
−φ = −(f − λ̂n)

+φ ≤ 0 in Bn .

Therefore by [25, Theorem 9.6] we must have φ = 0 on Bn, which is a contradiction to the fact that φ > 0
on ∂Bn. �

For the remaining of this section we assume that (1.5) is recurrent, and f : Rd → R+ is near-monotone
relative to Λ(f). This implies that (1.5) is positive recurrent. We let µ denote the invariant probability
measure of the Markov process governed by (1.5). Lemma 2.3 shows that there exists a positive solution
Ψ ∈ W

2,p
loc(R

d), p > d, to

LΨ(x) + f(x)Ψ(x) = Λ(f)Ψ(x) a.e. x ∈ R
d . (2.4)

Then, necessarily infRd Ψ > 0 by Lemma 2.1.

Lemma 2.4. The map

Ψ(x) = lim
T→∞

Ex

[
e
∫

T

0
[f(Xt)−Λ(f)] dt

]
. (2.5)

is in W
2,p
loc(R

d), p > d, and is a positive solution of (2.4). It also satisfies

Ψ(x) = Ex

[
e
∫

T

0
[f(Xt)−Λ(f)] dt Ψ(XT )

]
∀T > 0 . (2.6)

In general, if a function Ψ ∈ W
2,p
loc(R

d), p > d, such that infRd Ψ > 0, solves (2.4) and satisfies (2.6), then
for some positive constants C0 and β, it holds that

∣∣∣Ψ(x)− µ(Ψ)Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds

]∣∣∣ ≤ C0 e
−βt Ψ(x) ∀x ∈ R

d , ∀ t > 0 . (2.7)

Proof. We first establish (2.7). Using the martingale property in (2.6) over a 2t horizon, and conditioning
at FX

t := σ(Xs , 0 ≤ s ≤ t), we have

Ψ(x) = Ex

[
e
∫ 2t
0

[f(Xs)−Λ(f)] ds Ψ(X2t)
]

= Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds

EXt
[Ψ(Xt)]

]
.

Therefore, by (2.1), we obtain

∣∣∣Ψ(x)− µ(Ψ)Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds

]∣∣∣ ≤ κe−βt
Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds

(
1 + Ψ(Xt)

)]

≤ 2κ
(
inf
Rd

Ψ ∧ 1
)−1

e−βtΨ(x) ∀ t > 0 , (2.8)

and (2.7) follows.
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If f is bounded then any positive solution of (2.4) satisfies (2.6). Indeed, by [1, Lemma 3.7.2], we obtain

Ex

[
e
∫

t∧τn
0

[f(Xs)−Λ(f)] ds Ψ(Xt∧τn
)1{t ≥ τn}

]
≤ e‖f‖∞ t

Ex

[
Ψ(Xτn

)1{t ≥ τn}
]
−−−−→
n→∞

0 ∀ t > 0 .

Thus the claim follows by applying the monotone convergence theorem to

Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds Ψ(Xt)1{t < τn}

]
.

If f is not bounded, then the truncated function f ∧ ℓ is clearly near-monotone relative to Λ(f ∧ ℓ) for
all large enough ℓ ∈ N. Let (Ψ(ℓ),Λ(f ∧ ℓ)) be the limit of the Dirichlet eigensolutions corresponding to
f ∧ ℓ. Then Ψ(ℓ) satisfies (2.6). Since any limit point of Ψ̄ of Ψ(ℓ) as ℓ → ∞ satisfies LΨ̄ + fΨ̄ = Λ̄Ψ̄, with
Λ̄ = limℓ→∞ Λ(f ∧ ℓ) ≤ Λ(f), it follows by Lemma 2.1 (iii) that Λ(f) ≤ Λ̄ and therefore Λ̄ = Λ(f). It is
straightforward to show that for some bounded ball B and ℓ̄ ∈ N, we have LΨ(ℓ) ≤ −δΨ(ℓ) on Bc for all
ℓ ≥ ℓ̄. This implies that infℓ≥ℓ̄ infRd Ψ(ℓ) > 0, and also that (2.1) holds for Ψ = Ψ(ℓ), for some constants κ

and β that do not depend on ℓ ≥ ℓ̄.

We normalize Ψ(ℓ) so that µ
(
Ψ(ℓ)

)
= 1, and with C0 := 2κ

(
infℓ≥ℓ̄ infRd Ψ(ℓ)∧1

)−1

we use (2.8) to write

∣∣∣∣Ψ
(ℓ)(x)− Ex

[
e
∫

T

0
[(f∧ℓ)(Xt)−Λ(f∧ℓ)] dt

]∣∣∣∣ ≤ C0e
−βTΨ(ℓ)(x) ∀ℓ ≥ ℓ̄ . (2.9)

Taking limits as ℓ → ∞ we obtain
∣∣∣∣Ψ̄(x) − Ex

[
e
∫

T

0
[f(Xt)−Λ(f)] dt

]∣∣∣∣ ≤ C0e
−βT Ψ̄(x) . (2.10)

This also shows that Ψ̄ = limℓ→∞ Ψ(ℓ).
It easily follows by (2.9)–(2.10) that there exist constants T0 ∈ R+ and M = M(T ) > 0 such that

Ψ(ℓ) ≤ M(T )Ψ̄(x) ∀T > T0 , ℓ ≥ ℓ̄ .

Therefore, using the identity

Ψ(ℓ)(x) = e[Λ(f)−Λ(f∧ℓ)]T
Ex

[
e
∫

T

0
[(f∧ℓ)(Xt)−Λ(f)] dtΨ(ℓ)(XT )

]
,

and passing to the limit as ℓ → ∞, employing dominated convergence for the integral, it follows that

Ψ̄(x) = Ex

[
e
∫

T

0
[f(Xt)−Λ(f)] dt Ψ̄(XT )

]
∀T > T0 . (2.11)

By Fatou’s lemma

Ψ̄(x) ≥ Ex

[
e
∫

T

0
[f(Xt)−Λ(f)] dt Ψ̄(XT )

]
∀T > 0 . (2.12)

Combining (2.11)–(2.12) we deduce that (2.11) holds for all T > 0. This completes the proof. �

To simplify the notation define the Nisio semigroup Tt, t ≥ 0, acting on nonnegative measurable functions
by

Tt g(x) := Ex

[
e
∫

t

0
[f(Xs)−Λ(f)] ds g(Xt)

]
.

Note that if Ψ is a positive solution of (2.4), then Tt : L
∞
Ψ → L∞

Ψ .

Lemma 2.5. Let Ψ be a positive solution of (2.4) satisfying (2.6), and let B◦ be an open ball centered at

the origin such that infBc
◦
Ψ ≥ 2µ(Ψ). Then

lim
t→∞

Tt 1B◦
(x) ≥

Ψ(x)

2µ(Ψ)
∀x ∈ R

d . (2.13)
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Proof. By (2.6) we have (
inf
Bc

◦

Ψ
)
Tt 1Bc

◦
≤ Tt

(
Ψ1Bc

◦

)
≤ Ψ ,

which after rearranging we write as

Tt 1B◦
≥ Tt 1Rd −

(
inf
Bc

◦

Ψ
)−1

Ψ .

The inequality in (2.13) follows by letting t → ∞ and using Lemma 2.4. �

Lemma 2.6. There exists a bounded open ball B◦ and a constant δ > 0, such that if f̃ := f − δ1B◦
, then

Λ(f̃) < Λ(f).

Proof. Let δ > 0 be small enough such that the sublevel set {x : f(x) ≤ Λ(f) + 2δ} is bounded, and let B
be a bounded open ball that contains it. Let G be the class of measurable functions g : Rd → [0, δ], and for
each g ∈ G let

(
Ψg,Λ(f − g)

)
∈ W

2,p
loc(R

d)× R, p > d, Ψg > 0, be the solution to the multiplicative Poisson
equation

LΨg(x) + (f − g)(x)Ψg(x) = Λ(f − g)Ψg(x) a.e. x ∈ R
d ,

as defined in Lemma 2.4. Since Λ(f−g) ≤ Λ(f), then Λ(f−g)−f+g+δ < 0 on Bc, and combining this with
Harnack’s inequality, we deduce that there exists a finite constant κ0 such that (Λ(f−g)−f+g+δ)Ψg ≤ κ0

for all g ∈ G. With τ̆ ≡ τ(Bc) we have

Ψg(x) ≥ Ex

[
eδτ̆ Ψg(Xτ̆)1{τ̆ < ∞}

]
∀x ∈ B

c
, ∀ g ∈ G ,

from which if follows, again by using Harnack’s inequality, that there exists a bounded ball B◦ such that
infBc

◦
Ψg ≥ 2κ0

δ
for all g ∈ G. Since

LΨg =
(
Λ(f − g)− f + g

)
Ψg

≤ κ0 − δΨg ,

it follows that µ(Ψg) ≤
κ0

δ
for all g ∈ G. Therefore, infBc

◦
Ψg ≥ 2µ(Ψg) for all g ∈ G, and in particular for

g = δ1B◦
.

It is clear that Λ(f̃) ≤ Λ(f). Suppose that Λ(f) = Λ(f̃). Write (2.4) as

LΨ(x) + δΨ(x)1B◦
(x) = [Λ(f̃)− f̃(x)] Ψ(x) .

Let
T̃t g(x) := Ex

[
e
∫

t

0
[f̃(Xs)−Λ(f̃)] dsg(Xt)

]
.

By Itô’s formula, we obtain

Ψ(x) ≥ δ

∫ T

0

T̃t
(
Ψ1B◦

)
(x) dt + T̃T Ψ(x) . (2.14)

Since infB◦
Ψ > 0, it follows by Lemma 2.5 that limt→∞ T̃t

(
Ψ1B◦

)
(x) > 0, for all x ∈ R

d, and therefore
the first term of (2.14) diverges as T → ∞. This of course is a contradiction, and therefore, we must have
Λ(f) > Λ(f̃). �

The following lemma plays a crucial role in obtaining the stochastic representations in Proposition 1.1 (iii).

Lemma 2.7. Let B◦ be as in Lemma 2.6, and define τ◦ := τ(Bc
◦). Then, the following hold

(i) There exists ξ◦ < Λ(f) such that

Ex

[
e
∫

τ◦

0
[f(Xt)−ξ◦] dt

]
< ∞ ∀x ∈ B

c

◦ . (2.15)
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(ii) The Dirichlet eigensolutions (Ψ̂n, λ̂n) in (2.3) have the stochastic representation

Ψ̂n(x) = Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt Ψ̂n(Xτ◦

)1{τ◦ < τn}
]

∀x ∈ Bn \B◦ ,

for all large enough n ∈ N.

(iii) If Ψ is any limit point, as n → ∞, of the Dirichlet eigensolutions (Ψ̂n, λ̂n) in (2.3), then

Ψ(x) = Ex

[
e
∫

τ◦

0
[f(Xt)−Λ(f)] dt Ψ(Xτ◦

)
]

∀x ∈ B
c

◦ . (2.16)

Proof. Let f̃ := f − δ1B◦
. Then (2.15) follows by selecting ξ◦ = Λ(f̃), which by Lemma 2.6 is smaller

than Λ(f).

Let n0 ∈ N be such that λ̂n > ξ◦ for all n ≥ n0. Also, without loss of generality we may assume that
f − ξ◦ > 0 on Bc

◦. With M(x) denoting a bound for (2.15), we obtain

lim sup
T→∞

Ex

[
e
∫

T

0
[f(Xt)−λ̂n] dt Ψ̂n(XT )1{T < τ◦ ∧ τn}

]
≤ M(x)

(
sup

Bn\B◦

Ψ̂n

)
lim sup
T→∞

e−(λ̂n−ξ◦)T

= 0 ∀x ∈ Bn \B
c

◦ . (2.17)

Therefore, using (2.17) and monotone convergence, and since Ψ̂n = 0 on ∂Bn, we obtain

Ψ̂n(x) = lim
T→∞

Ex

[
e
∫

T

0
[f(Xt)−λ̂n] dt Ψ̂n(XT )1{T < τ◦ ∧ τn}

]

+ lim
T→∞

Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt Ψ̂n(Xτ◦

)1{τ◦ ≤ T ∧ τn}
]

= Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt Ψ̂n(Xτ◦

)1{τ◦ < τn}
]
. (2.18)

This proves part (ii) of the lemma.
To prove (2.16) we write (2.18) as

Ψ̂n(x) = Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt Ψ(Xτ◦

)1{τ◦ < τn}
]

+

(
sup
B◦

∣∣Ψ− Ψ̂n

∣∣
)

Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt 1{τ◦ < τn}

]

≤ Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt Ψ(Xτ◦

)
]
+

(
sup
B◦

∣∣Ψ− Ψ̂n

∣∣
)

Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt

]
. (2.19)

Note that the terms on the right hand side of (2.19) are finite by (2.15). Since λ̂n is nondecreasing in n,

and λ̂n ր Λ(f), we have

Ex

[
e
∫

τ◦

0
[f(Xt)−λ̂n] dt Ψ(Xτ◦

)
]

−−−−→
n→∞

Ex

[
e
∫

τ◦

0
[f(Xt)−Λ(f)] dt Ψ(Xτ◦

)
]

≤ Ψ(x) (2.20)

by monotone convergence and (2.2). Since Ψ̂n → Ψ as n → ∞, uniformly on compact sets, it follows that
the second term of the right hand side of (2.19) converges to 0 as n → ∞. Thus taking limits in (2.19) as
n → ∞, and using (2.20) we obtain (2.16). This completes the proof. �

Corollary 2.8. Suppose that the diffusion in (1.5) is recurrent, and f : Rd → R+ is near-monotone relative

to Λ(f). Then there exists a unique positive solution Ψ ∈ W
2,p
loc(R

d), p > d, satisfying Ψ(0) = 1, to the MPE

in (2.4). In particular, Ψ satisfies (2.5)–(2.7).
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Proof. Let Ψ be as in Lemma 2.7 (iii), B◦ as in Lemma 2.6, and Ψ̃ some other solution to (2.4). By Itô’s
formula and Fatou’s lemma we have

Ψ̃(x) ≥ Ex

[
e
∫

τ◦

0
[f(Xt)−Λ(f)] dt Ψ̃(Xτ◦

)
]

∀x ∈ B
c

◦ ,

while Ψ satisfies (2.16). Therefore, if Ψ < Ψ̃ on B◦ then Ψ < Ψ̃ on R
d. This implies that if we scale Ψ until

it touches Ψ̃ in at least one point from below, then it has to touch it at a point x̃ ∈ B◦. Thus Ψ̃ = Ψ on R
d

by the strong maximum principle. �

3. Proofs of Propositions 1.1–1.2

For the proof of Proposition 1.1 we need some auxiliary lemmas. The lemma which follows is the
nonlinear Dirichlet eigenvalue problem studied in [36], combined with a result from [8, Lemma 2.1].

Lemma 3.1. For each n ∈ N, there exists a unique pair (V̂n, λ̂n) ∈
(
C2(Bn)∩C(B̄n)

)
×R, satisfying V̂n > 0

on Bn, V̂n = 0 on ∂Bn, and V̂n(0) = 1, which solves

min
u∈U

[
L

uV̂n(x) + c(x, u) V̂n(x)
]
= λ̂n V̂n(x) , x ∈ Bn . (3.1)

Moreover, λ̂n ≤ λ∗.

Lemma 3.2. Suppose that σ is bounded and

max
u∈U

〈
b(x, u), x

〉+

|x|
−−−−→
|x|→∞

0 .

Then,

lim sup
t→∞

1

t
E
U
x

[
|Xt|

]
= 0 ∀U ∈ U .

Proof. We claim that for each ε > 0 there exists a positive constant Cε such that εCε → 0, as ε ց 0, and

max
u∈U

〈
b(x, u), x

〉+
≤ Cε

(
1 + ε |x|

)
∀x ∈ R

d .

Indeed, if f is nonnegative and f(x) ∈ o(|x|), we write

f(x) ≤ sup
|x|<R

f(x) +
(
sup
|x|≥R

f(x)
|x|

)
|x|

= MR + εR|x|

< 1 +MR + εR|x|

= (1 +MR)
(
1 + εR

1+MR
|x|

)
,

which proves the claim since εR ց 0 as R ր ∞.
By Itô’s formula, under any control U ∈ U, we have

E
U
x

[
|Xt|

2
]
≤ |x|2 +

∫ t

0

E
U
x

[
2 〈b(Xs, Us) , Xs〉

+ + trace
(
a(Xs)

)]
ds

≤ |x|2 + C′
ε

∫ t

0

(
1 + ε E

U
x [|Xs|]

)
ds , (3.2)
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where C′
ε also satisfies εC′

ε → 0, as ε ց 0. Let ϕ(t) denote the right hand side of (3.2). Then

ϕ̇(t) ≤ C′
ε

(
1 + ε

√
ϕ(t)

)
,

which implies that
ϕ̇(t)√

ε−2 + ϕ(t)
≤ 2 εC′

ε . (3.3)

Integrating (3.3), and using (3.2), we obtain

E
U
x

[
|Xt|

]
≤

√
ε−2 + ϕ(t) ≤ εC′

ε t+
1

ε2
. (3.4)

Since (3.4) holds for all ε > 0, the result follows. �

Theorem 3.3. Let Assumption-1.1 hold, and suppose that c is near-monotone relative to λ∗. Then the

following hold

(i) There exists a solution (V ∗, λ∗) ∈ C2(Rd) × R, satisfying V ∗(0) = 1 and infRd V ∗ > 0, to the HJB

equation

min
u∈U

[
L

uV (x) + c(x, u)V (x)
]
= λV (x) ∀x ∈ R

d . (3.5)

(ii) If c is bounded, and (V, λ) ∈ V satisfies (3.5), then λ = λ∗, and infRd V > 0. In general, if (V, λ) ∈ V◦

satisfies (3.5), then any measurable selector from the minimizer of (3.5) belongs to USSM and is optimal,

i.e., R(v) = λ∗.

Proof. Truncate c by letting c(ℓ) := c ∧ ℓ, ℓ ∈ N. As shown in [8, Lemma 2.1], any limit point, (Vℓ, λℓ) ∈

C2(Rd) × R of the eigensolutions
(
V̂n,ℓ, λ̂n,ℓ

)
of the Dirichlet problem on Bn in Lemma 3.1, as n → ∞,

satisfies
min
u∈U

[
L

uVℓ(x) + c(ℓ)(x, u)Vℓ(x)
]
= λℓ Vℓ(x) ∀x ∈ R

d . (3.6)

Clearly then, Vℓ > 0 on R
d, Vℓ(0) = 1, and λℓ ≤ λ∗ by Lemma 3.1. Since b, σ, and c(ℓ) are bounded, the

uniform Harnack property implies that there exists a constant κ = κ(ℓ) > 0 such that

e−κ(1+|x|) ≤ Vℓ(x) ≤ eκ(1+|x|) ∀x ∈ R
d . (3.7)

Let vℓ be a measurable selector from the minimizer of (3.6). A straightforward application of Fatou’s lemma
on the stochastic representation of the solution Vℓ of (3.6) shows that

Vℓ(x) ≥ E
vℓ
x

[
e
∫

T

0
[c(ℓ)(Xt,v(Xt))−λℓ] dt Vℓ(XT )

]
∀T > 0 . (3.8)

Evaluating (3.8) at x = 0, taking the logarithm on both sides, applying Jensen’s inequality, dividing by T ,
and rearranging terms, we obtain

1

T
E
vℓ
x

[∫ T

0

c(ℓ)
(
Xt, v(Xt)

)
dt

]
+

1

T
E
vℓ
x

[
logVℓ(XT )

]
≤ λℓ +

1

T
logVℓ(x) . (3.9)

Hence, since
∣∣log Vℓ(XT )

∣∣ ≤ κ
(
1 + |XT |

)
by (3.7), it follows by Lemma 3.2 that

lim sup
T→∞

1

T
E
vℓ
x

[∣∣logVℓ(XT )
∣∣] = 0 .

Therefore, by (3.9) we obtain

lim sup
T→∞

1

T
E
vℓ
x

[∫ T

0

c(ℓ)
(
Xt, vℓ(Xt)

)
dt

]
≤ λℓ .
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Since λℓ ≤ λ∗, it follows that vℓ is stable for all large enough ℓ (by [1, Theorem 2.6.10 (e)]). Therefore
Vℓ is inf-compact, and R(vℓ; c

(ℓ)) ≤ λℓ by Lemma 2.1. By the same argument as in the proof of Lemma 2.5
it follows that lim infℓ→∞ infRd Vℓ > 0. Hence, (Vℓ, λℓ) converges as ℓ → ∞, along a subsequence, to some
(V ∗, λ̄) satisfying (3.5), and such that V ∗(0) = 1 and infRd V ∗ > 0. Let v be a measurable selector from the
minimizer of (3.5). Then, by Lemma 2.1, v is stable and R(v; c) ≤ λ̄. This of course implies that λ̄ = λ∗.
This proves part (i).

The proof of part (ii) follows by repeating the argument in the preceding paragraph. �

Theorem 3.4. Let the assumptions of Theorem 3.3 hold. Then:

(i) The solution (V ∗, λ∗) ∈ C2(Rd)×R of (3.5) is unique in the class V◦, and provided c is bounded, it is

also unique in V.

(ii) Any v̌ ∈ USM that is optimal satisfies

L
v̌V ∗(x) + c

(
x, v̌(x)

)
V ∗(x) = min

u∈U

[
L

uV ∗(x) + c(x, u)V ∗(x)
]

a.e. x ∈ R
d . (3.10)

(iii) Part (iv) of Proposition 1.1 holds.

Proof. We first show uniqueness. By Theorem 3.3 (ii) it suffices to prove uniqueness in the class V◦.
Suppose that a pair (V̌ , λ̌) ∈ V◦ solves

min
u∈U

[
L

uV̌ (x) + c(x, u) V̌ (x)
]
= λ̌ V̌ (x) , x ∈ R

d . (3.11)

Let v̌ be a measurable selector from the minimizer of (3.11). It then follows by Theorem 3.3 that R(v̌) =
λ̌ = λ∗, and infRd V̌ > 0.

We simplify the notation, by defining c̄v(x) := c
(
x, v(x)

)
, for v ∈ USM. If c is bounded, we let V ∗ be

some limit point of V̂n in Lemma 3.1 as n → ∞. Otherwise, we let V ∗ be some limit point of Vℓ in the proof
of Theorem 3.3 as ℓ → ∞. By (3.11) and (3.5) we have

L
v̌V̌ (x) + c̄v̌(x) V̌ (x) = λ∗ V̌ (x) , (3.12)

L
v̌V ∗(x) + c̄v̌(x)V

∗(x) ≥ λ∗ V ∗(x) (3.13)

for all x ∈ R
d. Let B◦ be defined as in Lemma 2.6 with Ψ replaced by V̌ and µ ≡ µv̌. Recall that τ◦ := τ(Bc

◦).
By (3.12), Lemma 2.7 and Corollary 2.8, we obtain

V̌ (x) = E
v̌
x

[
e
∫

τ◦

0
[c̄v̌(Xt)−λ∗] dt V̌ (Xτ◦

)
]

∀x ∈ B
c

◦ . (3.14)

By Lemma 2.7 (i), there exists ξ◦ < λ∗ such that

E
v̌
x

[
e
∫

τ◦

0
[c̄v̌(Xt)−ξ◦] dt

]
< ∞ ∀x ∈ B

c

◦ . (3.15)

First suppose c is bounded. Let λ̂n be as in Lemma 3.1, and n0 ∈ N be large enough so that λ̂n > ξ◦,
and Bn0 ⋑ B◦. Since v̌ is in general suboptimal for (3.1), by Itô’s formula, and also using (3.15) and the

fact that V̂n = 0 on ∂Bn, following the argument in (2.17)–(2.18), we obtain

V̂n(x) ≤ E
v̌
x

[
e
∫

τ◦

0
[c̄v̌(Xt)−λ̂n] dt V̂n(Xτ◦

)1{τ◦ < τn}
]

∀x ∈ Bn \B◦ ,

and using a triangle inequality as in (2.19), and taking limits as n → ∞, we obtain

V ∗(x) ≤ E
v̌
x

[
e
∫

τ◦

0
[c̄v̌(Xt)−λ∗] dt V ∗(Xτ◦

)
]

∀x ∈ B
c

◦ . (3.16)
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If c is not bounded, following the argument in the previous paragraph, we obtain

Vℓ(x) ≤ E
v̌
x

[
e
∫

τ◦

0
[c̄

(ℓ)
v̌ (Xt)−λℓ] dt Vℓ(Xτ◦

)
]

∀x ∈ B
c

◦ , (3.17)

for all ℓ sufficiently large. Let ℓ0 ∈ N be such that λℓ > ξ◦ for all ℓ ≥ ℓ0. By monotone convergence, we
obtain from (3.17) that

Vℓ(x) ≤ E
v̌
x

[
e
∫

τ◦

0
[c̄v̌(Xt)−λℓ] dt Vℓ(Xτ◦

)
]

∀x ∈ B
c

◦ , (3.18)

and that the right hand side of (3.18) is finite for all ℓ ≥ ℓ0. Hence, using (3.18) and the triangle inequality
in (2.19), and letting ℓ → ∞ along a subsequence over which Vℓ converges, we obtain (3.16).

Hence, in either case, following the proof of Corollary 2.8, and using (3.12)–(3.14) and (3.16), we deduce
that V̌ = V ∗.

Next we show that every optimal control satisfies (3.10). Let v̌ ∈ USM such that R(v̌) = λ∗. Since c is
near-monotone relative to λ∗, it follows that v̌ ∈ USSM. Thus, by Theorem 1.3 there exists a unique positive
V̌ ∈ W

2,p
loc(R

d), p > d, with V̌ (0) = 1, which solves the MPE in (3.12) a.e. in R
d, and clearly (3.13) holds.

Using the argument in the preceding paragraph we obtain (3.14) and (3.16). Thus, again by the argument
in the proof of Corollary 2.8, we must have V̌ = V ∗. This proves part (ii).

Part (iii) follows by Theorem 1.3. �

Proof of Proposition 1.2. Let ε0 > 0 be small enough so that c is near-monotone relative to λ∗
m+ε0, and

for ε ∈ (0, ε0), let vε ∈ USM be a ε-optimal control relative to λ∗
m. In other words, vε satisfies R(vε) ≤ λ∗

m+ε.
Define

bvεn (x, u) :=




b(x, u) for x ∈ Bn and u ∈ U ,

b
(
x, vε(x)

)
for x ∈ Bc

n ,

and cvεn (x, u) in an exactly analogous manner. Let Un,vε
SM denote the class of stationary Markov controls that

agree with vε on Bc
n. By [36, Theorem 1.1], there exists a unique pair (V vε

n,k, λ
vε
n,k) ∈

(
W2,p(Bk)∩C(Bk)

)
×R,

for any p > d, satisfying V vε
n,k > 0 on Bk and V vε

n,k(0) = 1, which solves

min
u∈U

[
L

uV vε
n,k(x) + cvεn (x, u)V vε

n,k(x)
]
= λvε

n,k V
vε
n,k(x) a.e. x ∈ Bk , (3.19)

and V vε
n,k = 0 on ∂Bk (compare with Lemma 2.2). Following the proof of [8, Lemma 2.1], we deduce that

λvε
n,k ≤ λ∗

m + ε. Taking limits as k → ∞ along some subsequence, we obtain by (3.19) a pair (V vε
n , λvε

n ) ∈

W
2,p
loc(R

d)× R, for any p > d, satisfying λvε
n ≤ λ∗

m + ε, V vε
n > 0 on R

d, and V vε
n = 1, which solves

min
u∈U

[
L

uV vε
n (x) + cvεn (x, u)V vε

n (x)
]
= λvε

n V vε
n (x) a.e. x ∈ R

d . (3.20)

It also follows by elliptic regularity that the restriction of V vε
n in Bn is in C2(Rd).

Let v̂n be a measurable selector from the minimizer of (3.20). Since v̂n ∈ U
n,vε
SM , it follows that v̂n ∈ USSM.

Let B(ε0) be a bounded open ball such that c(x, u) > λ∗
m + ε0 for all (x, u) ∈ Bc(ε0) × U. Applying Itô’s

formula to (3.20), and using Fatou’s lemma, we obtain, with τ̆ ≡ τ

(
Bc(ε0)

)
, that

V vε
n (x) ≥ E

v̂n
x

[
e
∫

τ̆

0
[cvεn (Xt,v̂n(Xt))−λvε

n ] dt V vε
n (Xτ̆)

]

≥

(
min

∂B(ε0)
V vε
n

)
E
v̂n
x

[
exp

(
1
2 (ε0 − ε) τ̆

)]
∀x ∈ Bc(ε0) . (3.21)

It follows by (3.21) and Harnack’s inequality that

inf
n∈N

inf
Rd

V vε
n > 0 . (3.22)
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Thus, taking limits in (3.21) as n → ∞, along some subsequence, we obtain a pair (V vε , λvε) ∈ C2(Rd)×R,
satisfying λvε ≤ λ∗

m + ε, infRd V vε > 0, and V vε = 1, which solves

min
u∈U

[
L

uV vε(x) + c(x, u)V vε(x)
]
= λvε V vε(x) a.e. x ∈ R

d . (3.23)

By Lemma 2.1 (iii), we have λvε = R(vε). Taking any limit of (3.23) as ε ց 0 along some subsequence, we
obtain a function V ∗ ∈ C2(Rd), satisfying

min
u∈U

[
L

uV ∗(x) + c(x, u)V ∗(x)
]
= λ∗

m V ∗(x) , x ∈ R
d . (3.24)

It holds that infRd V ∗ > 0 by (3.22), and V ∗(0) = 1 by construction.
Let v∗ be a measurable selector from the minimizer of (3.24). Then v∗ ∈ USSM, and R(v∗) = λ∗

m by
Lemma 2.1. �
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