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A TRICHOTOMY THEOREM

FOR TRANSFORMATION GROUPS

OF LOCALLY SYMMETRIC MANIFOLDS

AND TOPOLOGICAL RIGIDITY

SYLVAIN CAPPELL, ALEXANDER LUBOTZKY,

AND SHMUEL WEINBERGER

Abstract. Let M be a locally symmetric irreducible closed man-

ifold of dimension ≥ 3. A result of Borel [Bo] combined with

Mostow rigidity imply that there exists a finite group G = G(M)

such that any finite subgroup of Homeo+(M) is isomorphic to a

subgroup of G. Borel [Bo] asked if there exist M ’s with G(M)

trivial and if the number of conjugacy classes of finite subgroups

of Homeo+(M) is finite. We answer both questions:

(1) For every finite group G there exist M ’s with G(M) = G,

and

(2) the number of maximal subgroups of Homeo+(M) can be

either one, countably many or continuum and we determine

(at least for dimM 6= 4) when each case occurs.

Our detailed analysis of (2) also gives a complete characterization

of the topological local rigidity and topological strong rigidity (for

dimM 6= 4) of proper discontinuous actions of uniform lattices in

semisimple Lie groups on the associated symmetric spaces.

1. Introduction

A positive dimensional, oriented, closed manifold M has a very

large group of automorphisms (i.e., orientation preserving self home-

omorphisms). In fact this group Homeo+(M) is infinite dimensional.

But its finite subgroups are quite restricted. In 1969, Borel showed

(in a classic paper [Bo] but which appeared only in 1983 in his col-

lected works) that if M is a K(π, 1)-manifold with fundamental group

Γ = π1(M), whose center is trivial, then every finite transformation

group G in Homeo+(M) is mapped injectively into the outer automor-

phism group Out(Γ) by the natural map (or more precisely into the

subgroup Out+(Γ) – see §2 – which has an index at most 2 in Out(Γ)).

Let now M be a locally symmetric manifold of the form Γ\H/K

when H is a connected non-compact semisimple group with trivial
1
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center and with no compact factor and Γ a torsion free uniform ir-

reducible lattice in H . In the situation in which strong rigidity holds

(i.e., if H is not locally isomorphic to SL2(R)), Out(Γ) is a finite group,

G ≤ Out+(Γ); in fact, Out+(Γ) = NH(Γ)/Γ and it acts on M as the

group of (orientation preserving) self isometries Isom+(M) of the Rie-

mannian manifold M . It follows now from Borel’s theorem that every

finite subgroup of Homeo+(M) is isomorphic to a subgroup of one finite

group, G(M) = Isom+(M).

Borel ends his paper by remarking: “The author does not know

whether the finite subgroups of Homeo+(M) form finitely many con-

jugacy classes, nor whether one can find a Γ with no outer automor-

phism.”

The goal of the current paper is to answer these two questions. For

an efficient formulation of our results, let us make the following defini-

tion(s):

Definition 1.1. Let G be a finite group. An oriented manifold M will

be called G-exclusive (resp., G-weakly exclusive) if there is a faithful

action of G on M , so that G can be identified with a subgroup of

Homeo+(M) and if F is any finite subgroup of Homeo+(M), then F is

conjugate (resp., isomorphic) to a subgroup of G.

Note that Borel’s Theorem combined with strong rigidity implies

that unless H is locally isomorphic to SL2(R), M as above is always

at least Isom+(M)-weakly exclusive.

We now claim:

Theorem 1.2. For every finite group G and every 3 ≤ n ∈ N, there

exist infinitely many oriented closed hyperbolic manifolds M = Mn(G)

of dimension n, with G ≃ Isom+(M) and when n 6= 4 these Mn(G)

are also G-exclusive.

The very special case G = {e} answers Borel’s second question

(where one can also deduce it from [BL]). Along the way it also an-

swers the question of Schultz [Sc2], attributed there to D. Burghelea,

who asked whether there exist asymmetric closed manifolds with degree

one maps onto hyperbolic manifolds. Our examples are even hyperbolic

themselves.

The situation for dimension 2 is very different:

Theorem 1.3. For no group G, does there exist a G-weakly exclusive

2-dimensional closed manifold.
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In fact, for every closed, oriented surface Σg, of genus g, Homeo+(Σ)

has more than one (but only finitely many) isomorphism classes of

maximal finite subgroups, and this number is unbounded as a function

of g - see Proposition 6.2.

As mentioned before, for M as above with dimM ≥ 3,M is always

G-weakly exclusive. But the G-exclusiveness shown in Theorem 1.2

is not the general phenomenon. We can determine the situation in

(almost) all cases. But first we need another definition.

Definition 1.4. For an automorphism ϕ of a manifold M , denote by

Fix(ϕ) the fixed point set of ϕ and for a subgroup G ⊆ Homeo+(M),

denote its singular set S(G) = ∪{Fix(ϕ)|ϕ ∈ G,ϕ 6= id}. If M is

an oriented Riemannian manifold, then we will call S(Isom+(M)) the

singular set of M and we denote it SM .

We note that dim(M) − dim(SM) is always even, as we are only

considering orientation preserving actions.

Before stating our main theorem, let us recall that in our situation,

i.e., when M is locally symmetric, every finite subgroup of Homeo+(M)

is contained in a maximal finite subgroup. We can now give a very

detailed answer to Borel’s first question.

Theorem 1.5 (Trichotomy Theorem). Let M = Γ\H/K a locally

symmetric manifold as above, and assume dimM 6= 2 or 4. Let

G = Isom+(M), so G ∼= N/Γ where N = NH(Γ). Then one of the

following holds:

(a) Homeo+(M) has a unique conjugacy class of maximal finite sub-

groups, all of whose members are conjugate to Isom+(M).

(b) Homeo+(M) has countably infinite many maximal finite subgroups,

up to conjugacy or

(c) Homeo+(M) has a continuum of such subgroups (up to conjugacy).

These cases happen, if and only if the following hold, respectively:

(a) (i) SM = φ, i.e., Isom+(M) acts freely on M , or

(ii) the singular set SM is 0-dimensional and either dim(M) is di-

visible by 4 or all elements of order 2 act freely.

(b) M is of dimension equal 2 (mod 4), the singular set is 0-dimensional

and some element of order 2 has a non-empty fixed point set, or

(c) the singular set SM is positive dimensional, i.e., M has some non-

trivial isometry with a positive dimensional fixed point set.
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The cases treated in Theorem 1.2 are with N = NH(Γ) torsion free

(see §2), i.e., S(G) = φ where G = Isom+(M), so we are in case (a)(i)

and these manifolds M are Isom+(M)-exclusive also by Theorem 1.5.

An interesting corollary of the theorem is that if Homeo+(M) has

only finitely many conjugacy classes of maximal finite subgroups then

it has a unique one, the class of Isom+(M), in contrast to Theorem 1.3.

In dimension 4 when the action has positive dimensional singular

set, we do construct uncountably many actions. If the singular set is

finite, then we have countability, but we do not know whether/when

this countable set of actions consists of a unique possibility. As a

consequence, the following dichotomy holds in all dimensions:

Corollary 1.6. Let M be as above with arbitrary dimension. Then

Homeo+(M) has an uncountable number of conjugacy classes of finite

subgroups if and only if the singular set of Isom+(M) acting on M is

positive dimensional.

The uniqueness in Theorem 1.5 fails in the smooth case (i.e., for

Diff+(M)). In that case, the number of conjugacy classes is always

countable. The boundary between finite and infinite number of conju-

gacy classes of finite subgroups of Diff+(M) can be largely analyzed by

the methods of this paper, but works out somewhat differently (e.g.,

one has finiteness in some cases of one dimensional singular set) and

is especially more involved when the singular set is 2-dimensional. We

shall not discuss this here.

Finally, let us present our result from an additional point of view:

Given H as above and Γ a uniform lattice in it. It acts via the standard

action ρ0 by translation on the symmetric space H/K which topolog-

ically is R
d. The Farrell-Jones topological rigidity result implies that

if Γ is torsion free, every proper discontinuous (orientation preserving)

action ρ of Γ on H/K is conjugate within Homeo+(H/K) to ρ0. It has

been known for a long time (cf. [We2] for discussion and references)

that this is not necessarily the case if Γ has torsion. Our discussion

above (with some additional ingredient based on [CDK], [We2] - see

§7) gives the essentially complete picture. But first a definition:

Definition. For Γ, H,K and ρ0 as above, say

(1) The lattice Γ has topological strong rigidity if every proper

discontinuous action ρ of Γ on H/K, is conjugate to ρ0 by an

element of Homeo+(H/K).
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(2) Γ has local topological rigidity if for every proper discontinuous

action ρ of Γ on H/K, there exists a small neighborhood U of

ρ in Hom(Γ,Homeo+(H/K)) such that any ρ′ ∈ U is conjugate

to ρ by an element of Homeo+(H/K)).

The following two results follow from Corollary 1.6 and Theorem 1.5

(see §7):

Theorem 1.7. Let H be a semisimple group, K a maximal compact

subgroup and Γ an irreducible uniform lattice in H. Then Γ satisfies

the topological local rigidity if and only if for every non-trivial element

of Γ of finite order, the fixed point set of its action on H/K is zero

dimensional.

Theorem 1.8. For H,K and Γ as in Theorem 1.7 but assuming

dim(H/K) 6= 2, 4. Then one of the following holds:

(a) Γ has topological strong rigidity, i.e., it has a unique (up to conju-

gation) proper discontinuous action on H/K ≃ R
n.

(b) Γ has an infinite countable number of such actions, yet all are lo-

cally rigid.

(c) Γ has uncountably many (conjugacy classes) of such actions.

These cases happen if and only if the following hold, respectively:

(a) (i) Γ acts freely on H/K or

(ii) every torsion (i.e., non-trivial of finite order) element of Γ has

0-dimensional fixed point set in H/K and either dim(M) ≡ 0

(mod 4) or there are no elements of order 2.

(b) dim(H/K) ≡ 2(mod 4), the fixed point set of every torsion element

is 0-dimensional and there is some element of order 2, or

(c) there exist a torsion element in Γ with a positive dimensional fixed

point set.

The paper is organized as follows. In §2, we prove Theorem 1.2.

In §3, we give preliminaries for the proof of Theorem 1.5, which will

be given in §4. In this proof we depend crucially on the deep works of

Farrell and Jones [FJ1] [FJ2] and Bartels and Lueck [BL] related to the

(famous) Borel conjecture as well as work of [CDK]. In §5, we analyze

manifolds of dimension 4, while in §6 we prove Theorem 1.3. Section

7 discusses topological rigidity of lattices and proves Theorem 1.7 and

1.8.

Remark. If one allows orientation reversing actions then if dimM ≥ 7

there is a trichotomy theorem; rigidity holds if the action is free or the
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dimM ≡ 1 mod 4 or if dimM ≡ 3(4) and the elements of order 2 act

freely. The proof of this is similar to the one we give below for Theorem

1.5. We believe that the remaining cases, at least when dimM 6= 4,

work out similarly to that theorem.

Acknowledgment: This work was partially done while the authors

visited Yale University. They are grateful to Dan Mostow for a useful

conversation. We are also grateful to NYU, the Hebrew University,

ETH-ITS for their hospitality as well as to the NSF, ERC, ISF, Dr.

Max Rössler, the Walter Haefner Foundation and the ETH Foundation,

for their support.

2. Proof of Theorem 1.2

The proof of the theorem is in four steps:

Step I: In [BeL], M. Belolipetsky and the second named author showed

that for every n ≥ 3 and for every finite group G, there exist infin-

itely many closed, oriented, hyperbolic manifolds M = Mn(G) with

Isom+(M) ≃ G. More precisely, it is shown there that if Γ0 is the non-

arithmetic cocompact lattice in H = PO+(n, 1) constructed in [GPS],

then it has infinitely many finite index subgroups Γ withNH(Γ)/Γ ≃ G.

The proof shows that Γ can be chosen so that NH(Γ) is torsion free

and moreover NH(Γ)/Γ ≃ Isom+(M) = Isom(M) for M = Γ\Hn. This

implies that G = NH(Γ)/Γ acts on M freely, a fact we will use in Step

IV below.

Let M = Mn(G) be one of these manifolds, Γ = π1(M). So Γ can

be considered as a cocompact lattice in Isom+(Hn) = PO+(n, 1), the

group of orientation preserving isometries of the n-dimensional hyper-

bolic space H
n.

Step II: The Mostow Strong Rigidity Theorem [Mo] for compact hy-

perbolic manifolds asserts that if Γ1 and Γ2 are torsion free cocompact

lattices in Isom(Hn), then every group theoretical isomorphism from Γ1

to Γ2 is realized by a conjugation within Isom(Hn) (or in a geometric

language, homotopical equivalence of hyperbolic manifolds implies an

isomorphism as Riemannian manifolds). Applying Mostow’s theorem

for the automorphisms of Γ = π1(M) implies that Aut(Γ) can be iden-

tified with NIsom(Hn)(Γ), the normalizer of Γ in Isom(Hn). Hence the

outer automorphism group Out(Γ) = Aut(Γ)/Inn(Γ) of Γ is isomor-

phic to NIsom(Hn)(Γ)/Γ and hence also to Isom(M), which in our case

is equal to Isom+(M) by step I.
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Step III: In [Bo], Borel showed that if Γ is a torsion free cocompact

lattice in a simple non-compact Lie group H , with a maximal compact

subgroup K and associated symmetric space X = H/K, then every

finite subgroup F of Homeo(M) whereM = Γ\X , is mapped injectively

into Out(π1(M)) = Out(Γ) by the natural map. If F ≤ Homeo+(M),

then its image is in Out+(Γ) which the kernel of the action of Out(Γ)

on Hn(Γ,Z) ≃ Z, so [Out(Γ) : Out+(Γ)] ≤ 2. Borel’s result is actually

much more general; the reader is referred to that short paper for the

general result and the proof which uses Smith theory and cohomological

methods.

Anyway, applying Borel’s result for our M = Mn(G) finishes the

proof of the first part of Theorem 1.2. In particular, one sees that in

all these examples, G = Isom+(M) acts freely on M since the isometry

group, in this case, is the group of covering transformations which act

freely on M .

Step IV: We have shown so far that whenever a finite group F acts

on M as above, there is a natural injective homomorphism F →֒

Out+(π1(M)) ∼= Isom+(M). Denote the image of F in Isom+(M) by L.

Our next goal is to show that F is conjugate to L within Homeo+(M).

For ease of reading we will call M with the action of F , M ′, to avoid

confusion.

There is actually an equivariant map M ′ → M that is a homotopy

equivalence. To see this, note that NH(Γ) is torsion free and hence

so is Γ, the preimage of L in NH(Γ) w.r.t. the natural projection

NH(Γ) → Out(Γ) = Out(π1(M)). Similarly, let us consider all of the

possible lifts of all of the elements of F to the universal cover, which

form a group Γ
′

(the orbifold fundamental group of M ′/F , which we

presently show is the genuine fundamental group) that fits in an exact

sequence:

1 → Γ(= π1(M)) → Γ
′

→ F → 1

As Γ is centerless and F and L induce the same outer automorphism

group, it follows that Γ
′

is also torsion free and as a corollary F = Γ
′

/Γ

acts freely on M ′. Hence M ′/F is homotopy equivalent to M/L as

both have Γ
′

≃ Γ as their fundamental group. By the Borel conjec-

ture for hyperbolic closed manifolds (which is a Theorem of Farrell

and Jones [FJ1] for n ≥ 5 and of Gabai-Meyerhoff-Thurston [GMT]

for n = 3) the map M ′/F → M/L is homotopic to a homeomorphism

which preserves π1(M
′) = π1(M), as did the original homotopy equiv-

alence. Since liftability in a covering space is a homotopy condition,
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this homeomorphism can be lifted to the cover M ′ → M , producing a

conjugating homeomorphism between the actions. Theorem 1.2 is now

proved.

In summary, the above proof is analogous to (and relies on) the fact

that Mostow rigidity gives a uniqueness of the isometric action (or

in different terminology, the uniqueness of the Nielsen realization of

a subgroup of Out(Γ)). At the same time, the Farrell-Jones/Gabai-

Meyerhoff-Thurston rigidity gives the uniqueness of the topological re-

alization in the case of free actions. We will see later that this freeness

condition is essential.

3. Some ingredients for the proof of Theorem 1.5

The proof of Theorem 1.5 is based on results, sometimes deep theo-

rems, some of which are well-known and others which might be folklore

(or new). We present them in this section and use them in the next

one.

Ingredient 3.1. For v ≥ 3, there exists infinitely many non-simply

connected homology spheres Σv, each bounding a contractible manifold

Xv+1 such that the different fundamental groups π1(Σ) are all freely

indecomposable and are non isomorphic to each other. Moreover, X ×

[0, 1] is a ball.

Proof. For v > 4 this is very straightforward. According to Kervaire

[Ker], a group π is the fundamental group of a (PL) homology sphere

iff it is finitely presented and superperfect (i.e., H1(π) = H2(π) =

0). Moreover every PL homology sphere bounds a PL contractible

manifold (this is true for v ≥ 4, and for v = 3 in the topological

category [Fr]). The product of a contractible manifold with [0, 1] is

a ball as an immediate application of the h-cobordism theorem (see

[Mi1]).

For v = 3, we could rely on the work of Mazur [Ma] in the PL

category, but would then need to use subsequent work on the structure

of manifolds obtained by surgery on knots. Instead, as we will be

working in the topological category, we rely on [Fr] which shows that the

analogue of all of the above holds topologically for v = 3, aside from the

characterization of fundamental groups: however, using the uniqueness

of the JSJ ([JS], [J]) decomposition of Haken 3-manifolds, homology

spheres obtained by gluing together nontrivial knot complements are

trivially distinguished from one another.
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For v = 4, note that all the fundamental groups of the v = 3 case

arise here as well: if Σ3 is a homology sphere then ∂(Σo ×D2) is a ho-

mology 4-sphere with the same fundamental group (where Σo denotes,

as usual, the punctured manifold). �

We also need:

Ingredient 3.2. For m− 1 > c0 ≥ 3 and every orientation preserving

linear free action ρ of G = Zp on Sc0 (in particular, c0 is odd), there

exist an infinite number of homology spheres Σc0 with non-isomorphic

fundamental groups and with a G = Zp-free action satisfying: For each

such Σ there exists an action of G on Bm fixing 0 ∈ Bm such that

(1) The action of G on Sm−1 is isomorphic to the linear action ρ⊕

Identity, and

(2) the local fundamental group πlocal1 (Bm \ F, 0) is isomorphic to

π1(Σ), when F is the fixed point set. Moreover, this action is

topologically conjugate to a PL action on a polyhedron.

Let us recall what is meant by the local fundamental group: This

is the inverse limit lim
←−

α

π1(Uα, xα) where the {Uα} is a sequence of

connected open neighborhoods converging down to 0, and xα ∈ Uα \F

is a sequence of base points. Note that by the Jordan Curve Theorem,

Uα \ F is connected as codim F ≥ 2. Also the induced maps are well

defined up to conjugacy, so the limit is well defined.

Proof. For every homology sphere Σ′ of odd dimension c0, let Σ =

pΣ′ = Σ′#Σ′# · · ·#Σ′ p times. We now give Σ a free Zp action, by

taking connected sum along an orbit of the free linear action on Sc0

with the permutation action on pΣ′. The action on Sc0 bounds a linear

disk Dc0+1. One can take the (equivariant) boundary connect sum of

this disk with pX,X the contractible manifold that Σ′ bounds to get

a contractible manifold Z with Zp action fixing just one point which is

locally smooth at that point and has the given local representation ρ

there.

For motivation, consider now c(Σ)×Bm−c0−1 where c(Σ) is the cone

of Σ. It is a ball, by Edwards’s theorem [D] (combined with the h-

cobordism theorem), and has an obvious Zp action as desired except

that the action on the boundary is not linear: the fixed set is Sm−c0−2

but it is not locally flat.

Instead, let Z be the locally linear contractible manifold bounded by

Σ, constructed above. The manifold Z ∪ (Σ× [0, 1])∪Z is a sphere (by
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the Poincaré conjecture). If one maps this to [0, 1] by the projection on

Σ× [0, 1] and extending by constant maps on the two copies of Z, then

the mapping cylinder of this map ϕ : Z ∪ (Σ × [0, 1]) ∪ Z → [0, 1] is

a manifold, again by Edwards’s theorem. It has an obvious Zp action

with fixed set an interval. The action on the boundary sphere is locally

smooth with two fixed points, so that an old argument of Stallings

[St2] shows that it is topologically linear with ρ as above. Note that

the nonlocally flat points of the fixed point set correspond to the points

where the local structures is c(Σ)× [0, 1]; hence the local fundamental

group is π1(Σ), as required. This proves the result for the case m =

c0 + 2.

For m > c0 + 2, one can spin this picture: Map (Sm−c0−1 ×Zc0+1)∪

(Bm−c0−1 × Σ) to Bm−c0 in the obvious way and again the mapping

cylinder produces a ball with locally linear boundaries and desired fixed

set. This time the linearity of the boundary action follows from Illman

[I]. �

We will also need the following group theoretical result:

Proposition 3.3. If {πi}
∞

i=1 and {π′i}
∞

i=1 are two infinite countable

families of non-isomorphic freely indecomposable groups such that
∞

∗
i=1

πi

is isomorphic to
∞

∗
i=1

π′i, then after reordering for every i, πi is isomor-

phic to π′i.

Proof. Recall that by the Bass-Serre theory, a group Γ is a free product
∞

∗
i=1

πi if and only if Γ acts on a tree T with trivial edge stabilizers and a

contractible quotient and with one to one correspondence between the

vertices of T and the conjugates of πi(i ∈ N) in Γ, where each vertex

corresponds to its stabilizer. Now assume Γ ≃
∞

∗
i=1

πi and also Γ ≃
∞

∗
j=1

π′j

with the corresponding trees T and T ′. Fix i ∈ N, as Γ acts on T ′ with

trivial edge stabilizers and πi is freely indecomposable, πi fixes a vertex

of T ′. Hence there exists j ∈ N s.t. πi ⊆ π
′τ
j . In the same way π

′τ
j is a

subgroup of some πδ
k for some δ ∈ Γ. This means that πi ⊆ πδ

k. But in

a free product a free factor cannot have a non-trivial intersection with

another factor or with a conjugate of it. Moreover, if πi ∩ πδ
i 6= {e},

then πδ
i = πi. Indeed, if g is in this intersection, it fixes the fixed vertex

of πi as well as that of πδ
i , hence also the geodesic between them, in

contradiction to the fact that Γ acts with trivial edge stabilizers.

We deduce that πi ⊆ π
′τ
j ⊆ πi and hence πi = π

′τ
j .
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This shows by symmetry that the collections {πi} and {π′j} are iden-

tical. �

Finally, let us recall the famous Borel conjecture which asserts that

two aspherical manifolds which are homotopy equivalent are homeo-

morphic. Moreover, the original homotopy equivalence is homotopic to

a homeomorphism. This conjecture of Borel was proved by Farrell and

Jones [FJ2] for the locally symmetric manifolds M discussed in this pa-

per, if dim(M) ≥ 5 and by Gabai-Meyerhoff-Thurston [GMT] for the

case of dim(M) = 3. This, in particular, says that there is a unique

cocompact proper topological action of Γ = π1(M) on the symmetric

space H/K for any uniform torsion-free lattice.

But if Γ ⊲ Γ is a finite extension with torsion, then the situation

is more delicate. In fact, as we will see, there is no rigidity anymore

in the topological setting and Γ may have many inequivalent actions

on H/K. In other words, the “equivariant Borel conjecture” is not

true. It is of interest (though not really relevant to the goals of this

paper) to compare this with the analogous situation in the setting of

C∗-algebras, where the analogue of the Borel conjecture is the Baum-

Connes conjecture. This latter conjecture is known to be true in many

situations, even in its equivariant form, i.e., for groups with torsion,

while the equivariant Borel conjecture fails in some of those cases ([CK],

[Q], [We1], [We2]). The failure is due to the non-vanishing of the Nil

and the first author’s UNil groups (see [BHS] and [Ca])1. The latter is

the source of non-rigidity in the case of isolated singularities.

The specific outcome relevant for our needs is the following:

Ingredient 3.4. If △ is a lattice containing Γ a torsion free uniform

lattice in H as a normal subgroup of finite index, so that the normalizer

of any finite subgroup is finite, then the proper discontinuous actions

of △ on (the topological manifold) H/K are in a one to one correspon-

dence with the action of △/Γ on Γ \ H/K, inducing the given outer

automorphism of Γ. If dim(H/K) 6= 4 then this action is unique unless

dim(H/K) is 2 mod 4 and △ contains an infinite dihedral subgroup.

In that case, the number of conjugacy classes is infinite and countable.

Proof. Any proper action of △ is automatically free when restricted to

Γ (by torsion freeness). The action is cocompact, because if it were not,

1More accurately, these algebraic reasons explain the failures of the equivari-

ant Borel conjecture relevant here. [We2] gives other sorts of examples when the

singular set is high dimensional.
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this quotient space would show that the cohomological dimension of Γ

is less than dim(H/K) which cannot happen, since there is a cocompact

action. As a result, the Borel conjecture, proved for uniform lattices by

[FJ2], shows that all of these actions are standard for the Γ subgroup,

i.e., equivalent to the original action of Γ on H/K.

Note that this argument did not use the fact that the manifold on

which △ acts is H/K; it would apply automatically to any contractible

manifold. This shows that such a manifold is automatically Euclidean

space, as follows quite directly from [St1].

With this preparation, the result now follows from [CDK] together

with [BL]. The condition on normalizers is equivalent to the discrete-

ness of the fixed point set. (For every finite group G, NH(G)/G acts

properly on the fixed set of G on H/K.) Assuming the Farrell-Jones

conjecture for △, which is a theorem of [BL], [CDK] gives a descrip-

tion of the set of actions in terms of UNil groups and maximal infinite

dihedral subgroups △.2 A lattice that contains an infinite dihedral

subgroup, contains a maximal one (by discreteness: the Z subgroups

cannot keep growing in a nested sequence, since they correspond to

shorter and shorter closed geodesics and a compact manifold has a

positive injectivity radius).

�

4. Proof of theorem 1.5

For Theorem 1.2, we have depended on the fact that the construc-

tion of [BeL] produced free actions. The constructions we presently

describe show that whenever a manifold M of dimension ≥ 5 has an

(orientation preserving) action whose singular set (i.e., the union of the

fixed sets of all nontrivial subgroups) is positive dimensional, there are

actually continuously many actions on M that induce the same outer

automorphisms of their fundamental group but are not topologically

conjugate.

2Essentially the argument shows that, unlike what is done in the next section in

the situation where the singular set is positive dimensional, the action of △/Γ is

equivariantly homotopy equivalent to the linear one. Since the singular set is very

low dimensional, one can promote this to an isovariant homotopy equivalence. At

that point, surgery theory can be used to reduce this problem to issues in K-theory

and L-theory that are handled by the Farrell-Jones conjecture. It turns out that

the K-groups of △ are the limit of those of the finite subgroups of △; however,

because of UNil, the analogous statement is not true for L(△) and the calculation,

in this case, reduces to the infinite dihedral subgroups.
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To prove part (c) of the Theorem it suffices to prove it for cyclic

group, i.e., that if a cyclic group G = Zp, p prime, has a positive

dimensional fixed point set, then there is a continuum of such non-

equivalent actions.

Let V be a component of the fixed set of the action of G. Let

v = dim(V ) and let ρ be the normal representation of Zp on R
c (c =

m− v, the codimension of V in M). If v > 2, take Σv and Xv+1 as in

Ingredient 3.1. The product X × D(ρ) is a ball with an action of Zp

whose fixed set is X . The action of G on the boundary ∂(X×Dc(ρ)) =

(X×Sc−1(ρ))∪(Σ×Sc−1(ρ)) (Σ×D(ρ) has Σ as its fixed set (as G has no

fixed points on Sc−1(ρ) and a unique fixed point - the origin - in the

disk D(ρ)). The normal representation to this fixed set is still ρ. We

can take equivariant connected sum of M with this G-sphere to obtain

a new G-action on M#Sc+v ≃ M whose fixed set is V#Σ. Since the

fixed set of the new action does not have the same fundamental group

as V (e.g., by Grushko’s theorem as π1(Σ) was assumed nontrivial), it

is not conjugate to the original action. Of course it induces the same

outer automorphism on π1. Notice that we can think of this procedure

as being a local equivariant insertion; near a point x ∈ V we modify

the action of G only in a small specified ball. This procedure can be

done any finite number of times to get countably many non-conjugate

actions.

In fact, we can even get a continuum of actions of G on M . Let us

first make a definition: For a finite group G acting topologically on a

manifold M , we say that x in M is a decent fixed point, if the action

of G in some open neighborhood of x is topologically conjugate to a

simplicial action on a polyhedron. Now, apply the process above with

smaller and smaller disjoint balls in M converging to some point x0

using any choice of π1(Σ)’s provided by Ingredient 3.1. The outcome

is a copy of M with an action of G on it with a fixed point set W

containing x0, which is the unique non-decent point on M . This set W

is not a manifold, but W \{x0} is. Moreover, the fundamental group of

W \{x0} is isomorphic to the free product of the fundamental group of

the original set V with the free product of the infinitely many different

π1(Σ)’s which have been used. Now, if two such constructions lead to

equivalent actions of G on M , then this unique non-decent point of the

fixed point set should be preserved. Proposition 3.3 would imply that

the two collections of π1(Σ)’s are equal. An infinite countable set has
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a continuum number of subsets and we can therefore get a continuum

number of non-conjugate actions of G. This proves case (c) for v ≥ 3.

In the case of v ≥ 3, we replaced balls Bm (with isometric local G-

action) of M , by copies of the same ball with new G-actions. The new

action preserved the original normal action ρ but changed dramatically

the fixed point set. For v = 1 or 2, we are not able to argue like that

(for lack of suitable Σ’s as above). Instead we will keep the fixed point

set in Bm but deform the normal action ρ. In fact, this second method

works whenever c = m − v > 2, so altogether the two methods cover

all cases if dimM ≥ 5.

One now imitates the procedure described before to modify the orig-

inal isometric action of G on M at a ball around a fixed point by

replacing it with some Bm as in Ingredient 3.2. The resulting action is

not equivalent to the original one as π1(Σ) can be recovered from it as

the local fundamental group at a fixed point. Doing this procedure any

finite number of times with different Σ’s each time, gives us an infinite

countable collection of non conjugate actions. To get a continuum, we

argue as before. In fact, this version is easier: The family of π1(Σ)’s

used can be recovered from the action of G on M as being exactly the

collection of non-trivial local fundamental groups at decent fixed points

of G.

This finishes the proof of part c of Theorem 1.5.

Now, the proof of part (a) is exactly the same as Step IV in the proof

of Theorem 1.2.

Part (b) can be deduced from Ingredient 3.4. The existence of a

dihedral subgroup in Γ is equivalent to the existence of an involution

in G fixing a point in M . This is indeed the case: If Γ contains a

dihedral group, it contains an element of order 2. This element has

a fixed point on H/K and hence also on M . In the other direction:

assume τ ∈ G is an involution fixing a point p of M . Then by [CF],

τ has at least a second fixed point q. Let α be a geodesic from p to

q, then τ(α) is another such geodesic and indeed, α ∪ τ(α) is a closed

geodesic γ ∈ π1(M, p) = Γ. The group generated by γ and τ is a

dihedral group.

This finishes the proof of Theorem 1.5 for dimM ≥ 5.

To prove Theorem 1.5 for dimension 3 observe that case (b) does not

occur; since the fixed point set is of even codimension. Now, case (a) is

exactly as before, with this time the work of Gabai-Meyerhoff-Thurston

[GMT] replacing the work of Farrell and Jones.
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For part (c), we use the same procedure of replacing a ball around

one fixed point by an exotic action. This time the work of Bing [Bi],

provides us with uncountably many actions of G = Zp on B3. (Bing

discusses R
3, but his construction clearly works on B3 and produces

actions with given linear G action on ∂B3.) As the actions are distin-

guished by the structures of this non-locally flat set as a subset of the

line, they remain inequivalent in any manifold. �

5. The case of dimM = 4

Theorem 1.5 may hold true in dimension 4 as well, but we can only

prove part (c) of it, namely:

Theorem 5.1. Let M be a locally symmetric irreducible manifold of

dimension 4, with a G = Zp faithful isometric action whose fixed point

set V is positive dimensional. Then G has a continuum number of

inequivalent topological actions on M .

Proof. First note that dimV = 2 as the codimension must be even.

The Smith conjecture asserts that if Zp acts topologically on Sn, n ≥ 3

with a smooth Sn−2 as its fixed point set then Sn−2 is isotopic to the

unknot. While this conjecture is true for n = 3, it turns out to be false

when n ≥ 4 as we now discuss.

Theorem 5.2. There exist an infinite number of G = Zp actions ρi, i ∈

N on S4 satisfying:

(1) The fixed point set is a non trivial knotted S2 ⊂ S4.

(2) The complement of the knot is a 4-dimensional manifold Ni,

which fibers over the circle, with fibres F 0
i , each a 3-dimensional

manifold with boundary S2. Once this S2 is filled by a ball, the

resulting closed manifold Fi is irreducible.

(3) For every i 6=j, π1(Fi) is not isomorphic to a subgroup of π1(Fj).

Note that π1(Fi) = πi(F
0
i ) and this is a normal subgroup of π1(Ni),

equal to [π1(Ni), π1(Ni)] with the quotient isomorphic to Z. Also, as

Fi is irreducible, π1(Fi) is freely indecomposable. We postponed the

proof of Theorem 5.2, using it first to prove 5.1.

Given x ∈ V ⊂ M , we will replace a punctured sphere S4 around

x ∈ M (with its G-action) by a punctured S4 around a fixed point

provided by Theorem 5.2. (We can adjust the action on the sphere to

have the same normal representation as that of V just by changing the

generator of G = Zp.) More precisely, as in the proof of Theorem 1.5,
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we replace M by M#S4, but the latter is homeomorphic to M . The

new fixed point set is V#S2.

This time, neither the fundamental group of the fixed set nor the

local fundamental group distinguishes the two actions. Thus we will

argue slightly differently: Look at the universal cover M̃ of M . Take Ṽ

to be one of the components of the lift of V in X̃ containing a lift of x

(actually Ṽ is the universal cover of V since π1(V ) injects into π1(M)).

The complement of it has fundamental group isomorphic to Z (as by

Hadamard’s Theorem this is diffeomorphic to the linear inclusion Ṽ ≃

R
2 ⊂ R

4 ≃ M̃ , whose complement is homotopy equivalent to a circle).

On the other hand, if W̃ is a lift ofW (= the fixed points of the modified

action) then the fundamental group of its complement is an infinite

amalgamated free product of π1(Ni) with itself amalgamated along Z

(generated by the meridian). This group is certainly not isomorphic to

Z and hence the two actions are not equivalent. Repeating this with

the different Ni’s gives us countably many inequivalent actions, as the

different π1(Ni)’s are not isomorphic to each other. (These groups have

π1Fi ∗ π1Fi ∗ . . . as their commutator subgroups.)

To get a continuum number, we argue as follows: Let Ω be an infinite

subset of N. For every fixed i ∈ Ω, apply the procedure above infinitely

many times around disjoint balls in M converging to a point xi ∈ M .

Do it in such a way that the set {xi}i∈Ω has a unique limit point x0.

We got therefore a new action on G on M depending on Ω. We want

to show that different Ω’s lead to non-equivalent actions. Indeed, the

indecent points are {xi}i∈Ω as well as x0 (which is a unique limit point

of the indecent points). Now if two families Ω and Ω′ lead to equivalent

actions then the conjugating homeomorphism takes, after reordering,

xi, i ∈ Ω to x′j , j
′ ∈ Ω′. Looking, as before, at the neighborhood of a

lift of xi (and xj′,) in the universal cover, we deduce that π1(Fj′) is a

subgroup of the infinite amalgamated product of infinitely many copies

of π1(Ni). In fact it is in the (unique) kernel of the map from this group

onto Z. Thus π1(Fj′) is a subgroup of this kernel which is just a free

product of infinitely many copies of π1(Fi). By the Kurosh Subgroup

Theorem every subgroup of this kernel is a free product of subgroups of

π1(Fi) and of a free group. As π1(Fj′) is freely indecomposable (since

Fj′ is irreducible) we deduce that π1(Fj′) is isomorphic to a subgroup

of π1(Fi). By part (3) of Theorem 5.2 this implies i = j′ and hence

Ω = Ω′ and Theorem 5.1 is now proven. �

Let us now prove Theorem 5.2.
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Proof. There are many ways of doing this construction. We rely essen-

tially on the work of [Gi] and [Z] and inessentially on work of [Mi2] to

choose an explicit method. In [Z], Zeeman modified Artin’s spinning

construction of knots in S4 to twist spinning: for a knot K in S3 the

q-twist spin of K is a knot in S4 whose complement fibers over the

circle, and whose fiber is the q-fold branched cover of S3 (punctured)

branched over K. Its monodromy is exactly the deck transformation.

If p is prime to q, the monodromy has a p-th root, which can be used to

build a Zp action on the complement. Using the 4-dimensional Poincaré

conjecture [Fr], Giffen observes3 that this action can be extended to one

on the sphere with the twist spun knot as fixed set.

If one starts with (r, s) torus knots, one obtains the Brieskorn mani-

fold associated to (q, r, s) as the closed fibers. These groups, as observed

in [Mi2] are central extensions of the (q, r, s)-triangle groups. Their

quotients by their centers have as torsion exactly the cyclic groups of

order {q, r, s}; then by, for example, letting q, r, s run through primes

these groups do not embed in one another. �

6. The case of dimM = 2

The phenomena in dimension 2 genuinely differ from those in higher

dimension. Let us note that Step I and Step III in the proof of Theorem

1.2 work equally well in dimension 2. In Borel’s result there is no

assumption on the dimension. The paper [BeL] assumes n ≥ 3, but

the result is true also for n = 2. In fact, it was proved earlier by

Greenberg [Gr] with the following elegant argument: He showed that in

the Teichmüller space classifying the hyperbolic structures on a given

surface Sg of genus g, or better yet, classifying conjugacy classes of

cocompact lattices of PSL2(R) isomorphic to π1(Sg), almost every such

lattice is maximal and non-arithmetic. Hence by Margulis’ criterion for

arithmeticity, it is equal to its commensurability group. Now given a

finite group G, choose g large enough so that π1(Sg) is mapped onto

G (this is possible since π1(Sg) is mapped onto Fg, the free group on

g generators, so taking g greater or equal to the number of generators

of G will do). Now, let Γ be a non-arithmetic maximal lattice with

epimorphism π : Γ ։ G with kernel ∧. Then NPSL2(R)(∧) = Γ and so

Isom+(Σ) = G for Σ = ∧\H2, as needed.

3 Giffen’s paper also shows that for p odd, one can avoid using the Poincaré con-

jecture (which was not known in any category at the time that paper was written).
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Moreover, it is also true that given a surface S of genus σ ≥ 2,

there are only finitely many conjugacy classes of finite subgroups in

Homeo+(S). (These are, by the Nielsen realization theorem [Ke], in one

to one correspondence with the conjugacy classes of finite subgroups

of the mapping class group MCG(S).) The analysis below shows that

this number is more than 1 for every genus, in contrast to parts (a)

and (b) of Theorem 1.5, in spite of the fact that the singular set is

always 0-dimensional. To see the finiteness note first that for any finite

group G there are only finitely many conjugacy classes of subgroups

of G. That all topological actions of finite groups on surfaces can be

smoothed is classical [K]. Smooth actions can be made isometric on

some hyperbolic structure either by direct construction (cut paste PL

methods) or by using the uniformization theorem: there is a unique

hyperbolic structure conformal to any invariant Riemannian metric,

and that hyperbolic metric has an isometric action of G.

The finiteness of the number of actions is either obvious by thinking

of the data required to reconstruct Σ → Σ/G in terms of the quo-

tient manifold, ramification points, and group homomorphisms from

π1(Nonsingular part of Σ/G)→ G. (See our discussion of the Riemann-

Hurwitz formula below.) As one varies over all finite groups, one has

only a finite amount of data for any fixed genus.

Despite all this, let us show that Theorem 1.2 fails in dimension 2 in

the strongest possible way, namely:

Theorem 6.1. For no finite group G does there exists a G-weakly ex-

clusive 2-dimensional closed manifold. In fact, for every genus σ > 1,

the set of isomorphism classes of finite maximal subgroups of Homeo+(Sσ)

is finite with more than one element, while for σ = 0 or 1, there are

no maximal finite subgroups.

Recall first that closed, oriented surfaces are classified by their genus

0 ≤ σ ∈ Z. Clearly the surfaces of genus 0 (the sphere) and genus 1 (the

torus) cannot be G-weakly exclusive for any G since each of them has

self-automorphisms of unbounded finite order. So from now on assume

σ ≥ 2. Now, if S = Sσ and G is a finite group of automorphisms,

then by [K] and the Hurwitz bound |G| ≤ 84(σ − 1). The Riemann-

Hurwitz formula asserts that in this case, letting S̄ = S/G, π : S → S̄

the quotient map which is a ramified covering, ramified at 0 ≤ r ∈ Z

points with ramification indices m1, . . . , mr and if S̄ is of genus ρ then
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the following holds

(1) 2σ − 2 = |G|(2ρ− 2 +

r
∑

i=1

(1−
1

mi

)).

What is even more important for us is the converse. Namely if G

is a finite group generated by elements a1, . . . , aρ, b1, . . . , bρ, c1, . . . , cr
where

(2)

ρ
∏

j=1

[aj , bj]

r
∏

j=1

ci = 1 and

(3) for i = 1, . . . , r, ci is of order mi

and if (1) holds, then G acts faithfully on S = Sσ with quotient S̄ =

S/G of genus ρ and ramification indices m1, . . . , mr.

The Hurwitz upper bound actually follows from equation (1): To

get the largest G, for a fixed σ, one wants the term in brackets on

the right-hand side to be minimal but positive. A careful elementary

analysis shows that the smallest value is 1
42

and it is obtained only if

ρ = 0, r = 3 and {m1, m2, m3} = {2, 3, 7}. One also observes that if

this value is not attained then the next one is 1
24

with ρ = 0, r = 3 and

{m1, m2, m3} = {1, 2, 8}. It is known that for infinitely many g’s, the

upper bound of 84(σ − 1) is attained but for infinitely many others it

is not (cf. [L]). In the second case it follows that |G| ≤ 48(σ − 1).

The converse result allows one to prove that various groups act faith-

fully on Sσ. For example, by taking ρ = 2 and r = 0 we see that

(a) The cyclic group cσ−1 of order σ − 1 acts faithfully on Sσ.

Similarly, by taking ρ = 1, r = 2 and m1 = m2 = σ

(b) The cyclic group Cσ of order σ acts faithfully on Sσ.

Finally, the following group

Hσ = 〈x, y|x4 = y2(σ+1) = (xy)2 = x−1y)2 = 1〉

is shown in [Ac] and [Mc] to be of order 8(σ+1). (Note that by the two

last relations every element ofHσ can be written as xayb with 0 ≤ a < 4

and 0 ≤ b < 2(σ + 1)). By taking as 3 generators c1 = x, c2 = y and

c3 = (xy)−1 which are of orders 4, 2(σ+1) and 2, respectively, one sees

that equation (1) is satisfied with ρ = 0, r = 3 and (m1, m2, m3) =

(4, 2(σ + 1), 2) and hence:

(c) The group Hσ of order 8(σ + 1) acts faithfully on Sσ.
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Let us mention in passing that Accola [A] and Macmillan [Mc] used

(c) to prove a lower bound (as an analogue to the upper bound of

Hurwitz) and they showed that for infinitely many σ’s, this lower bound

of 8(σ + 1) is best possible.

Back to our goal: We want to show that S = Sσ cannot be G-weakly

exclusive for any finite group G. Assume it is, then (a), (b) and (c)

imply that Cσ−1, Cσ and Hσ are subgroups of G and hence:

(4) ℓ.c.m(σ − 1, σ, 8(σ + 1))||G|.

Now clearly ℓ.c.m(σ − 1, σ, 8(σ + 1)) ≥ (σ−1)σ(σ+1)
2

and by the Hurwitz

Theorem |G| ≤ 84(σ − 1). This implies 1
2
σ(σ + 1) ≤ 84, i.e., σ ≤ 12.

Now checking case by case for σ = 6, 7, 9, 10, 11, 12, one sees that

ℓ.c.m(σ − 1, σ, 8(σ + 1)) > 84(σ − 1) in all these cases, which leads to

a contradiction. We are left with σ = 8 and 2 ≤ σ ≤ 5.

For σ = 8, we observe that if S8 is G-weakly exclusive than by (b),

C8 is a subgroup of G and so is H8 of (c). But C8 is cyclic, while the

2-sylow subgroup of H8 contains the non-cyclic subgroup of order 4,

generated by xy and x−1y. Thus the 2-sylow subgroup of G is non

cyclic and hence of order greater than 8, i.e., at least 16. This implies

that G is of order at least 7 ·16 ·9 > 84 ·7. This contradicts the Hurwitz

upper bound and hence S8 cannot be G-weakly exclusive.

To handle the case σ = 5, let us observe that the Hurwitz upper

bound of 84(σ − 1) = 336 is obtained in this case. Indeed, look at

G = SL2(7), a group of order 336 with the generators

c1 =

(

1 1

0 1

)

, c2 =

(

0 1

−1 0

)

and c3 where

c−13 = c1c2 =

(

−1 1

−1 0

)

of orders 7, 2 and 3, respectively.

Thus if S5 is G-weakly exclusive, G must be SL2(7) since Hurwitz

bound is attained for this group. But SL2(7) does not contain the

group H5 of (c) of order 48, since 48 does not divide 336.

Consider now the case σ = 4. We claim that Sym(5) of order 120

acts on it. Indeed, taking ρ = 0, r = 3 and

c1 = (1, 2, 3, 4, 5), c2 = (1, 2) and c3 = (c1c2)
−1 = (5, 4, 3, 1)
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of orders 5, 2 and 4 respectively. We get a solution to (1) and hence

Sym(5) acts on S4. Assume now that S4 is G-weakly exclusive. The

Hurwitz bound 84.3 = 254 cannot be obtained in such a case, since

120 does not divide 254. Thus G is of order at most 48 · 3 = 154, but

we know that its order should be divisible by 120. Hence |G| = 120

and G = Sym(5). But (c) above shows that G should also contain H4

which is of order 40. As Sym(5) has no subgroup of order 40, we get a

contradiction. Hence S4 is not G-weakly exclusive.

For σ = 2 and 3, a full classification of the finite groups acting on Sσ

is given in [Bro]. From the list there it is clear that Sσ is not G-weakly

exclusive also in these last two cases. The Theorem is now fully proved.

�

The Theorem says in particular that for every g, Homeo+(Σg) has at

least two conjugacy classes of maximal finite subgroups (even isomor-

phism classes). In fact, the number of those is unbounded as a function

of g:

Proposition 6.2. The number of isomorphism classes of maximal fi-

nite subgroups of Homeo+(Σg) (or equivalently of MCG(Σg)) is un-

bounded as a function of g.

Proof. Let Γ be a fixed cocompact lattice in PSL(2, R) which is the

fundamental group of a surface of genus 2. Every normal subgroup △

of Γ of index n defines a covering surface Σr when r = n+1, for which

Γ/△ serves as a group of (orientation preserving) isometries and hence

define a finite subgroup of Homeo+(Σr). Now, the number of isomor-

phism classes of finite groups of order at most n which are generated

by 2 elements is super polynomial (in fact, this number of groups grows

like nO(log n) – see [Lu] and the references therein). Thus, there is an

infinite set of r’s for which there is an unbounded number of non iso-

morphic finite subgroups of Homeo+(Σr) of order r − 1. Even if these

subgroups are not maximal, there are also unboundedly many isomor-

phism classes of maximal subgroups. Indeed, each one of the above is

of index at most 84 (by Hurwitz upper bound) in a maximal subgroup.

Now, every maximal subgroup containing one of these subgroups is gen-

erated by at most 2 + log2(84) < 9 elements. The number of bounded

index subgroups in any group with a bounded number of generators is

uniformly bounded. This finishes the proof of the Proposition. �

7. Topological rigidity

In this section we prove Theorem 1.7 and 1.8.
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Theorem 1.8 is proved essentially the same way as Theorem 1.5, but

two modifications are needed: Theorem 1.5 was proved by restricting

to actions of the cyclic group G = Z/p, while now we need similar

results for actions of general finite groups G. Let us indicate how the

method of proof for Z/p generalizes to general G.

(1) Note that if H is any group acting semifreely (i.e., with only

two kinds of orbits, fixed points and free orbits) the literally

same proof as for Z/p works.

(2) Now if G is a finite group, consider the least singular of the

singular points, i.e., the non-singular points of the singular set.

Each of these will be fixed by some group H . The H-fixed set

consists of points fixed by H , and maybe also some more singu-

lar points fixed by a larger group. We will do our modification

near points that are fixed only by H or by a conjugate of it.

These points are the G orbit of points fixed just by H .

(3) The modification will be done as follows. Start with a semi-free

H-sphere S with fixed set Σ and normal representation - the H

representation that occurs at a fixed point of H (that is on the

top stratum of the singular set, as in # 2). We can consider

the product space (G × S)/H , where H acts on the left on G

and the right on S. So, G acts on this product. The underlying

topological space is G/H×S, but the action is more interesting.

It is called the induction of the H-action on S to G.

(4) Now take connected sum along an orbit of M with (G× S)/H .

It is homeomorphic to M , but the singular set is modified by

connect sums of copies of Σ in various places.

(5) Similar tricks work when we do Edwards modifications.

With the above modification all the results proved in Sections 2-5

can be modified to work with general finite group G.

The second modification is easier: We should think of proper discon-

tinuous actions of Γ on H/K as follows. Let △ be a normal finite index

torsion free subgroup of Γ. Then M = △\H/K is a compact manifold

upon which G = Γ/△ acts. Note that M is indeed compact whatever

the (proper discontinuous) action of Γ on H/K is, since the cohomolog-

ical dimension of △ is dim(H/K) as deduced from its original isometric

action. Now, taking the above mentioned modification (from Z/p to

G), Theorem 1.8 is deduced from Theorem 1.5 by standard covering

space theory, changing from M to its universal cover H/K. Note, how-

ever, that the formulation of the two theorems is slightly different due
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to the fact that γ ∈ Γ has a fixed point in H/K if and only if it is of

finite order. Also, an automorphism of M = △ \ H/K with a fixed

point can be lifted to an element of finite order in Γ = NH(△).

Theorem 1.7 is essentially equivalent to Corollary 1.6, but one needs

to ensure that when there are countably many proper discontinuous

actions of Γ on H/K, these actions are isolated, i.e., a small perturba-

tion of each such action is conjugate to it. This is indeed the case (in

contrast with the theory of deformations into Lie groups in which case,

if there are infinitely many cocompact discrete representations, then

local rigidity fails and there are continuously many such actions.) The

point is that when the fixed points form a discrete set one does have a

local topological rigidity (and even in dimension 4). This follows from

Edmonds’ Theorem [Ed, Theorem 2.8] in high dimensions. The work

of [FrQ] (see also [FeW]) shows it is true also in dimension 4. The case

of dimension 3 is always covered by either Theorem 1.5 (a) or (c), and

case (b) does not happen. �
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