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Abstract. We present an algorithm capable of detecting diffuse, dim sources of
any size in an astronomical image. These sources often defeat traditional methods for
source finding, which expand regions around points of high intensity. Extended sources
often have no bright points and are only detectable when viewed as a whole, so a more
sophisticated approach is required. Our algorithm operates at all scales simultaneously
by considering a tree of nested candidate bounding boxes, and inverts a hierarchical
Bayesian generative model to obtain the probability of sources existing at given loca-
tions and sizes. This model naturally accommodates the detection of nested sources,
and no prior knowledge of the distribution of a source, or even the background, is re-
quired. The algorithm scales nearly linear with the number of pixels making it feasible
to run on large images, and requires minimal parameter tweaking to be effective. We
demonstrate the algorithm on several types of astronomicaland artificial images.

1. Introduction

With a number of new telescope facilities currently in the construction or design phases,
such as the Square Kilometre Array which is expected to produce exabytes of data,
there is a pressing need to develop statistically robust detection and classification al-
gorithms which can detect all astronomical sources of interest, including faint and ex-
tended emission. Detection and characterisation of objects in astronomical images has
been examined extensively for unresolved point sources (e.g. Hopkins et al. (2015) and
references therein) and bright extended sources which lie above a threshold (Whiting
2012; Hancock et al. 2012), but few algorithms have been deployed which are capable
of detecting extended regions of low surface brightness. Detection of faint interesting
sources, such as the lobes of radio galaxies, has largely been an citizen science ex-
ercise (Banfield et al. 2015), though some novel work has recently started (Hollitt &
Johnston-Hollitt 2012; Frean et al. 2014).

We introduce Oddity, a detection algorithm that outputs boxes around sources.
Oddity is based on a tree-based generative model of an image in which box-shaped
regions of the sky have intensity distributions (after discretization) that areanomalous
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relative to their surroundings. The algorithm finds sources via a tractable Bayesian
inversion of this model. The background distribution is obtained as a by-product.

2. A tree of boxes: Source-finding by inversion of a simple generative model

Each source is modelled by a Dirichlet Compound Multinomial(DCM) distribution
as follows. First, a single categorical~h is drawn from a Dirichlet distribution having
hyperparameters~α. Then, the intensity value of each pixel belonging to that source is
drawn i.i.d from the categorical (see Friedlander (2014); Frean et al. (2014)), leading to
bin counts~x. The DCM allows observations to be modelled as drawn from anunknown
multinomial distribution. We set the hyperparameters~α to ~1 in all cases here, which
corresponds to assumingno prior knowledge about the intensity profile of any source or
the background. The DCM is unusual among compound distributions in that the like-
lihood PDCM(~x | ~α) is readily evaluated. For simplicity we take the regions ofinterest
to be simple bounding boxes. This is a generally recognised format by which a source
location can be returned to an astronomer, and convenientlyaffords rapid computation
of the relevant bin counts~x via a technique borrowed from computer graphics (Crow
(1984)). The image is initially modelled by a 4-ary tree of nodes, with the root node
being the whole image. Children correspond to the parent’s box split evenly into 4, and
this tree continues down as far as needed. Each nodeS i can be in two states, eitherac-
tive or inactive. If S i is active, it is a source, and the pixelsx(i) in its box are generated
by a DCM specific toS i. However if some nodeS j in S i’s subtree is also active, then
the pixels inS j’s box are taken to be generated fromS j, not S i, and so active nodes
take precedence over their active parents. Under this model, the ‘background’ of the
image is simply a source at the root of the tree andS 0 is defined to always be active.
For a given assignment of states, the log likelihood for the whole image is simply the
sum ofPDCM(~x(i) | ~α) for all active nodes.

Given a generative model, source finding becomes the task of inverting that model
to infer plausible joint states~S . We achieve this in two stages. First, Gibbs Sampling
is used to exhibit configurations that describe the data well. The sampler visits all
nodes multiple times and switchesS i to be active/inactive with probability given by
a straightforward Gibbs update rule derived from the log likelihood. We initialise the
state of all nodes to be inactive, except the root which is always active. A modest
number of burn-in iterations are performed to allow the Markov chain to mix before
drawing samples (with a gap of a few iterations between samples). We found 20, 10
and 2 for these numbers is sufficient, indicating that the chain has a short mixing time
in most cases. Any box that was active in more than some proportion T of the samples
so obtained can now be accepted as a possible source, and a second stage of refinement
begins in which the severe constraints imposed on the model for tractability are relaxed.
The second stage is an optimization rather than a sampler: it“fine-tunes” the positions
of sources, merges them, or removes them altogether. The quantity being optimized is
exactly the same as that used in the first stage, namely the loglikelihood of the entire
image under the tree-based DCM generative model. The structure now becomes a
general tree and the box positions are no longer constrained, apart from the requirement
that they remain entirely enclosed by their parent box. The latter is a condition that
appears important in order for the algorithm to scale to large images.
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(a) Raw image (b) Oddity stage 1 (c) Oddity final

(d) Exponential (e) SExtractor (f) Oddity

(g) Nested sources (h) SExtractor (i) Oddity

Figure 1. Top row: a constructed image, with pixel intensities that are Gaussian.
(b) shows the result of the first stage, and (c) after the second. Second row: Output
of SExtractor (middle) and Oddity (right) on an image (left)having an exponential
distribution for pixel intensities.Third row: Outputs for an image with complex
nested sources.Bottom row: Detecting a faint radio galaxy in the ATLBS survey
(see text).



4 T. Butler-Yeoman et al.

3. Performance

Figure 1 shows several examples, illustrating the algorithm’s robustness to various as-
pects of image statistics. We first discretize each image, bysetting thresholds such
that bins achieve approximately equal occupancy. The output of SExtractor (Bertin &
Arnouts 1996) (Source Extractor) is shown for comparison. While SExtractor is pri-
marily used to find high surface brightness objects, it has parameter settings designed
to be applicable to low surface brightness (LSB) objects. A recent and comprehen-
sive study by Hopkins et al. (2015) has shown that it remains competitive with newer
techniques on both point and extended source extraction problems.

Figure 1(g) is a rough simulation of the ‘galactic plane’ (the large, dim band across
the image). Oddity successfully separates this out, as wellas the three large but dim
sources. The top-most large source is detected as two separate boxes because it partially
overlaps the galactic plane, consistent with the restrictions made. Six of the eight point
sources are detected, while the other two are not. This is nota particular concern as
they are not the target of the algorithm, but performance could be improved on these
types of sources by using a more sophisticated binning scheme.

The last row in the figure shows an example on real data from theAustralia Tele-
scope Low-Brightness Survey (ATLBS) (Subrahmanyan et al. 2010). ATLBS was a
survey of two regions of the sky that produced very high resolution images with almost
no imaging artefacts. These images are considered good models of the eventual output
of the SKA and its precursors, and were created in part to be a test for new source
detection techniques. Note the correct identification of the nested source in this image.

Our algorithm has a worst case cost that isO(n logn) in the number of pixels and
quadratic in the number of active nodes. Our current implementation typically runs in
under 1 second forn = 106 pixels and exhibits near-linear scaling withn, unless the
density of sources is very high.
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