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Abstract

The Firefighter problem and a variant of it, known as ResourceMinimization for Fire Containment
(RMFC), are natural models for optimal inhibition of harmful spreading processes. Despite considerable
progress on several fronts, the approximability of these problems is still badly understood. This is the
case even when the underlying graph is a tree, which is one of the most-studied graph structures in
this context and the focus of this paper. In their simplest version, a fire spreads from one fixed vertex
step by step from burning to adjacent non-burning vertices,and at each time stepB-many non-burning
vertices can be protected from catching fire. The Firefighterproblem asks, for a givenB, to maximize
the number of vertices that will not catch fire, whereas RMFC (on a tree) asks to find the smallestB
which allows for saving all leaves of the tree. Prior to this work, the best known approximation ratios
were anO(1)-approximation for the Firefighter problem and anO(log∗ n)-approximation for RMFC,
both being LP-based and matching the integrality gaps of twonatural LP relaxations.

We improve on both approximations by presenting a PTAS for the Firefighter problem and anO(1)-
approximation for RMFC, both qualitatively matching the known hardness results. Our results are ob-
tained through a combination of the LP with several new techniques, which allow for efficiently enumer-
ating subsets of super-constant size of a good solution to reduce the integrality gap of the LPs.

1 Introduction

The Firefighter problem was introduced by Hartnell [22] as a natural model for optimal inhibition of harmful
spreading phenomena on a graph. Despite considerable interest in the problem and progress on several
fronts, our understanding of how well this and related problems can be approximated is still very limited.
Interestingly, this is even true when the underlying graph is a spanning tree, which is one of the most-studied
graph structures in this context and also the focus of this paper.

The Firefighter problem on trees is defined as follows. We are given a graphG = (V,E) which is
a spanning tree and a vertexr ∈ V , calledroot. The problem is defined over discretized time steps. At
time 0, a fire starts atr and spreads step by step to neighboring vertices. During each time step1, 2, . . . an
arbitrary non-burning vertexu can beprotected, which preventsu from burning in all future time steps. In
its original form, the goal is to find a protection strategy that minimizes the number of vertices that will catch
fire. A closely related problem, calledResource Minimization for Fire Containment (RMFC)on trees, was
introduced by Chalermsook and Chuzhoy [8]. Here the task is to determine the smallest numberB ∈ Z>0

such that if one can protectB vertices at each time step (instead of just1), then there is a protection strategy
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such that none of the leaves of the tree will catch fire. In thiscontext, one typically refers toB as thenumber
of firefighters.

Both the Firefighter problem and RMFC—both restricted to trees as defined above—are known to be
computationally hard problems. More precisely, Finbow, King, MacGillivray and Rizzi [16] showed NP-
hardness for the Firefighter problem on trees with maximum degree three. For RMFC on trees, it is NP-hard
to decide whether one firefighter, i.e.,B = 1, is sufficient [25]; thus, unless P= NP, there is no (efficient)
approximation algorithm with an approximation factor strictly better than2.

On the positive side, several approximation algorithms have been suggested for the Firefighter prob-
lem and RMFC. Hartnell and Li [23] showed that a natural greedy algorithm is a1

2 -approximation for the
Firefighter problem. This approximation guarantee was later improved by Cai, Verbin and Yang [6] to
1− 1

e
, using a natural linear programming (LP) relaxation and dependent randomized rounding. It was later

observed by Anshelevich, Chakrabarty, Hate and Swamy [1] that the Firefighter problem on trees can be
interpreted as a monotone submodular function maximization (SFM) problem subject to a partition matroid
constraint. This leads to alternative ways to obtain a(1 − 1

e
)-approximation by using a recent(1 − 1

e
)-

approximation for monotone SFM subject to a matroid constraint [33, 11]. The factor1 − 1
e

was later only
improved for various restricted tree topologies (see [24]) and hence, for arbitrary trees, this is the best known
approximation factor to date.

For RMFC on trees, Chalermsook and Chuzhoy [8] presented anO(log∗ n)-approximation, where
n = |V | is the number of vertices.1 Their algorithm is based on a natural linear program which isa
straightforward adaptation of the one used in [6] to get a(1− 1

e
)-approximation for the Firefighter problem

on trees.
Whereas there are still considerable gaps between current hardness results and approximation algorithms

for both the Firefighter problem and RMFC on trees, the currently best approximations essentially match the
integrality gaps of the underlying LPs. More precisely, theLP used for the Firefighter problem on trees has
an integrality gap of1− 1

e
+ o(n) as shown in [6]. For RMFC on trees, the integrality gap of the underlying

LP isΘ(log∗ n) [8].
It remained open to what extend these integrality gaps may reflect the approximation hardnesses of the

problems. This question is motivated by two related problems whose hardnesses of approximation indeed
matches the above-mentioned integrality gaps for the Firefighter problem and RMFC. In particular, many
versions of monotone SFM subject to a matroid constraint—which we recall was shown in [1] to capture
the Firefigther problem on trees as a special case—are hard toapproximate up to a factor of1− 1/e− ǫ for
any constantǫ > 0. This includes the problem of maximizing an explicitly given coverage function subject
to a single cardinality constraint, as shown by Feige [15]. Moreover, as highlighted in [8], the Asymmetric
k-center problem is similar in nature to RMFC, and has an approximation hardness ofΘ(log∗ n).

The goal of this paper is to fill the gap between current approximation ratios and hardness results for the
Firefighter problem and RMFC on trees. In particular, we present approximation ratios that nearly match
the hardness results, thus showing that both problems can beapproximated to factors that are substantially
better than the integrality gaps of the natural LPs. Our results are based on several new techniques, which
may be of independent interest.

1.1 Our results

Our main results show that both the Firefighter problem and RMFC admit strong approximations that essen-
tially match known hardness bounds, thus implying that bothproblems can be approximated well below the
integrality gaps of their natural LPs.

In particular, we obtain the following result for RMFC.

1 log∗ n denotes the minimum numberk of logs of base two that have to be nested such thatlog log . . . log
︸ ︷︷ ︸

k logs

n ≤ 1.
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Theorem 1. There is a12-approximation for RMFC.

Recalling that RMFC is hard to approximate to a factor betterthan2, the above result is optimal up
to a constant factor, and improves on the previously bestO(log∗ n)-approximation of Chalermsook and
Chuzhoy [8].

Moreover, our main result for the Firefighter problem is the following, which, in view of NP-hardness
of the problem, is essentially best possible in terms of approximation guarantee.

Theorem 2. There is a PTAS for the Firefighter problem on trees.2

Notice that the Firefighter problem does not admit an FPTAS3 unless P= NP since the optimal value of
any Firefighter problem on a tree ofn vertices is bounded byO(n).4 We introduce several new techniques
that allow us to obtain approximation factors below the integrality gaps, which have been a barrier for
previous approaches. We start by providing an overview of these techniques.

Despite the fact that we obtain approximation factors belowthe integrality gaps, the natural LPs plays a
central role in our approaches. We start by introducing general transformations that allow for transforming
the Firefighter problem and RMFC into a more compact and better structured form, only losing small factors
in terms of approximability. These transformations by themselves do not decrease the integrality gaps.
However, they allow us to identify small substructures, over which we can optimize efficiently, and having
an optimal solution to these subproblems we can define a residual LP with small integrality gap.

Similar high-level approaches, like guessing a constant-size but important subset of an optimal solution
are well-known in various contexts to decrease integralitygaps of natural LPs; the best-known example may
be classic PTASs for the knapsack problem, where the integrality gap of the natural LP can be decreased
to an arbitrarily small constant by first guessing a constantnumber of heaviest elements of an optimal
solution. However, our approach differs substantially from this standard enumeration idea. Apart from
the above-mentioned transformations which, as we will showlater, already lead to new results for both
RMFC and the Firefighter problem, we will introduce new combinatorial approaches to gain information
about asuper-constantsubset of an optimal solution. In particular, for the RMFC problem we define a
recursive enumeration algorithm which, despite being veryslow for enumerating all solutions, can be shown
to reach a good subsolution within a small recursion depth that can be reached in polynomial time. For
the Firefighter problem, we use a well-chosen enumeration procedure to identify a polynomial number of
additional constraints to be added to the LP, that decrease its integrality gap down to1 + ǫ.

1.2 Further related results

Iwaikawa, Kamiyama and Matsui [24] showed that the approximation guarantee of1 − 1
e

can be improved
for some restricted families of trees. The best approximation guarantee the authors prove is0.7144 for trees
with maximum degree4. Anshelevich, Chakrabarty, Hate and Swamy [1] studied the approximability of the
Firefighter problem in general graphs, which they prove admits non1−ǫ-approximation for anyǫ > 0, unless
P=NP. In a different model, where the protection also spreads through the graph (theSpreading Model), the
authors show that the problem admits a polynomial(1 − 1

e
)-approximation on general graphs. For RMFC

the authors prove the existence of aO(
√
n)-approximation for general graphs and aO(log n)-approximation

for directed layered graphs. The latter result was obtainedindependently by Chalermsook and Chuzhoy [8].
Klein, Levcopoulos and Lingas [26] introduced a geometric variant of the Firefighter problem,proved its

2A polynomial time approximation scheme (PTAS) is an algorithm that, for any constantǫ > 0, returns in polynomial time a
(1− ǫ)-approximate solution.

3An FPTAS is a PTAS with running time polynomial in the input size and1
ǫ
.

4 The nonexistence of FPTASs unless P= NP can often be derived easily from strong NP-hardness. Notice that the Firefighter
problem is indeed strongly NP-hard because its input size isO(n), in which case NP-hardness is equivalent to strong NP-hardness.
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NP-hardness and provided a constant-factor approximationalgorithm. The Firefighter problem and RMFC
are natural special cases of the Maximum Coverage Problem with Group Constraints (MCGC) [9] and the
Multiple Set Cover problem (MSC) [13], respectively. The input in MCGC is a set system consistingof a
finite setX of elements with nonnegative weights, a collection of subsets S = {S1, · · · , Sk} of X and an
integerk. The sets inS are partitioned into groupsG1, · · · , Gl. The goal is to pick a subsetH ⊆ S of k
sets fromS whose union covers elements of total weight as large as possible with the additional constraint
that |H ∩ Gj | ≤ 1 for all j ∈ [l] := {1, . . . , l}. In MSC, instead of the fixed bounds for groups and the
parameterk, the goal is to choose a subsetH ⊆ S that coversX completely, and the goal is to minimize the
maxj∈[l] |H ∩ Gj |. The Firefighter problem and RMFC can naturally be interpreted as special cases of the
latter problems with a laminar set systemS.

The Firefighter problem admits polynomial time algorithms in some restricted classes of graphs. Finbow,
King, MacGillivray and Rizzi [16] showed that, while the problem is NP-hard in trees with maximum degree
three, when the fire starts at a vertex with degree two in a subcubic tree, the problem is solvable in polynomial
time. Fomin, Heggernes and van Leeuwen [19] presented polynomial algorithms for interval graphs, split
graphs, permutation graphs andPk-free graphs.

Several sub-exponential exact algorithms were developed for the Firefighter problem on trees. Cai,
Verbin and Yang [6] presented a2O(

√
n logn)-time algorithm. Floderus, Lingas and Persson [18] presented

a simpler algorithm with a slightly better running time. A sub-exponential algorithm for general graphs in
the spreading model and a constant-factor approximation inplanar graphs for some sets of parameters were
also presented.

Additional directions of research on the Firefighter problem include parameterized complexity (Cai,
Verbin and Yang [6], Bazgan, Chopin and Fellows [3], Cygan, Fomin and van Leeuwen [12] and Bazgan,
Chopin, Cygan, Fellows, Fomin and van Leeuwen [2]), generalizations to the case of many initial fires and
many firefighters (Bazgan, Chopin and Ries [4] and Costa, Dantas, Dourado, Penso and Rautenbach [10]).

Lastly, let us review related work on the closely related problem of computing theSurvivability of a
graph. For a graphG and a parameterk ∈ Z≥0, thek-survivability of G is the average fraction of nodes
that one can save withk firefighters inG, when the fire starts at a random node. Cai and Wang [7] first
introduced this notion and proved that the1-survivability of anyn-node tree is1−o(1). The bound for trees
was subsequently improved by Cai, Cheng, Verbin and Zhou [5], and the result was generalized to bounded
treewidth graphs. Other classes of graphs that were studiedinclude bounded degree graphs (Pralat [29] and
Pralat [30]), planar graphs (Esperet, van den Heuvel, Maffray and Sipma [14] and Gordinowicz [20]) and
directed graphs (Kong, Zhang and Wang [27]).

For further references we refer the reader to the survey of Finbow and MacGillivray [17].

1.3 Organization of the paper

We start by introducing the classic linear programming relaxations for the Firefighter problem and RMFC in
Section2. In Section3 we outline our main techniques and algorithms. For brevity,some of the proofs and
additional discussion are deferred to later sections, namely Section4, providing details on a compression
technique that is crucial for both our algorithms, Section5, containing proofs for results related to the
Firefighter problem, and Section6, containing proofs for results related to RMFC.

Finally, AppendixA contains some basic reductions showing how to reduce different variations of the
Firefighter problem to each other.
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2 Classic LP relaxations and preliminaries

Interestingly, despite the fact that we obtain approximation factors below the integrality gaps, the natural
LPs play a central role in our approaches. We thus start by introducing these LPs together with some basic
notation and terminology.

Let L ∈ Z≥0 be thedepthof the tree, i.e., the largest distance—in terms of number ofedges—between
r and any other vertex inG. Hence, after at mostL time steps, the fire spreading process will halt. For
ℓ ∈ [L] := {1, . . . , L}, letVℓ ⊆ V be the set of all vertices of distanceℓ from r, which we call theℓ-th level
of the instance. For brevity, we useV≤ℓ = ∪ℓ

k=1Vk, and we define in the same spiritV≥ℓ, V<ℓ, andV>ℓ.
Moreover, we denote byΓ ⊆ V the set of all leaves of the tree, and for anyu ∈ V , the setPu ⊆ V \ {r}
denotes the set of all vertices on the uniqueu-r path except for the rootr.

The relaxation for RMFC used in [8] is the following:

min B
x(Pu) ≥ 1 ∀u ∈ Γ
x(V≤ℓ) ≤ B · ℓ ∀ℓ ∈ [L]

x ∈ R
V \{r}
≥0 ,

(LPRMFC)

wherex(U) :=
∑

u∈U x(u) for anyU ⊆ V \ {r}. Indeed, if one enforcesx ∈ {0, 1}V \{r} andB ∈ Z

in the above relaxation, an exact description of RMFC is obtained wherex is the characteristic vector of
the vertices to be protected andB is the number of Firefighters: The constraintsx(Pu) ≥ 1 for u ∈ Γ
enforce that for each leafu, a vertex betweenu andr will be protected, which makes sure thatu will not be
reached by the fire; moreover, the constraintsx(V≤ℓ) ≤ B · ℓ for ℓ ∈ [L] describe the vertex sets that can
be protected givenB firefighters per time step (see [8] for more details). Also, as already highlighted in [8],
there is an optimal solution to RMFC (and also the Firefighterproblem), that protects with the firefighters
available at time stepℓ only vertices inVℓ. Hence, the above relaxation can be transformed into one with
same optimal objective value by replacing the constraintsx(V≤ℓ) ≤ B · ℓ ∀ℓ ∈ [L] by the constraints
x(Vℓ) ≤ B ∀ℓ ∈ [L].

The natural LP relaxation for the Firefighter problem, whichleads to the currently best(1 − 1/e)-
approximation presented in [6], is obtained analogously. Due to higher generality, and even more impor-
tantly to obtain more flexibility in reductions to be defined later, we work on a slight generalization of the
Firefighter problem on trees, extending it in two ways:

(i) Weighted version: verticesu ∈ V \ {r} have weightsw(u) ∈ Z≥0, and the goal is to maximize the
total weight of vertices not catching fire. In the classical Firefighter problem all weights are one.

(ii) General budgets/firefighters: We allow for having a different number of Firefighters at each time step,
sayBℓ ∈ Z>0 Firefighters for time stepℓ ∈ [L].5

Indeed, the above generalizations are mostly for convenience of presentation, since general budgets can be
reduced to unit budgets (see AppendixA for a proof):

Lemma 3. Any weighted Firefighter problem on trees withn vertices and general budgets can be trans-
formed efficiently into an equivalent weighted Firefighter problem with unit-budgets andO(n2) vertices.

We also show in AppendixA that up to an arbitrarily small error in terms of objective, any weighted
Firefighter instance can be reduced to a unit-weighted one. In what follows, we always assume to deal with
a weighted Firefighter instance if not specified otherwise. Regarding the budgets, we will be explicit about
whether we work with unit or general budgets, since some techniques are easier to explain in the unit-budget
case, even though it is equivalent to general budgets by Lemma3.

5Without loss of generality we excludeBℓ = 0, since a level with zero budget can be eliminated through a simple contraction
operation. For more details we refer to the proof of Theorem4 which, as a sub-step, eliminates zero-budget levels.
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An immediate extension of the LP relaxation for the unit-weighted unit-budget Firefighter problem used
in [6]—which in turn is based on an IP formulation presented in [28]—leads to the following LP relaxation
for the weighted Firefighter problem with general budgets. For u ∈ V , we denote byTu ⊆ V the set of all
vertices in the subtree starting atu and includingu, i.e., all verticesv such that the uniquer-v path inG
containsu.

max
∑

u∈V \{r}
xuw(Tu)

x(Pu) ≤ 1 ∀u ∈ Γ

x(V≤ℓ) ≤
ℓ

∑

i=1

Bi ∀ℓ ∈ [L]

x ∈ R
V \{r}
≥0 .

(LPFF)

The budget constraints are identical to RMFC, with the difference that the budgetBℓ depends on the levelℓ.
The constraintsx(Pu) ≤ 1 exclude redundancies, i.e., a vertexu is forbidden of being protected if another
vertex above it, on ther-u path, is already protected. This elimination of redundancies allows for writing
the objective function as shown above.

We recall that the integrality gap ofLPRMFC was shown to beΘ(log∗ n) [8], and the integrality gap
of LPFF is asymptotically1− 1/e (whenn → ∞) [6].

Throughout the paper, all logarithms are base2 if not indicated otherwise. When using big-O and related
notations (likeΩ,Θ, . . .), we will always be explicit about the dependence on small error termsǫ—as used
when talking about(1− ǫ)-approximations—and not consider it to be part of the hiddenconstant. To make
statements whereǫ is part of the hidden constant, we will use the notationOǫ and likewiseΩǫ,Θǫ, . . ..

3 Overview of techniques and algorithms

In this section, we present our main technical contributions and outline our algorithms. We start by in-
troducing a compression technique in Section3.1 that works for both RMFC and the Firefighter problem
and allows for transforming any instance to one on a tree withonly logarithmic depth. One key property
we achieve with compression, is that we can later use (partial) enumeration techniques with exponential
running time in the depth of the tree. However, compression in its own already leads to interesting results.
In particular, it allows us to obtain a QPTAS for the Firefighter problem, and a quasipolynomial time2-
approximation for RMFC.6 However, it seems highly non-trivial to transform these quasipolynomial time
procedures to efficient ones.

To obtain the claimed results, we develop two (partial) enumeration methods to reduce the integrality
gap of the LP together with further techniques. In Section3.2, we provide an overview of our PTAS for the
Firefighter problem, and Section3.3presents ourO(1)-approximation for RMFC.

3.1 Compression

Compression is a technique that is applicable to both the Firefighter problem and RMFC. It allows for
reducing the depth of the input tree at a very small loss in theobjective. We start by discussing compression
in the context of the Firefighter problem.

To reduce the depth of the tree, we will first do a sequence of what we calldown-pushes. Each down-
push acts on two levelsℓ1, ℓ2 ∈ [L] with ℓ1 < ℓ2 of the tree, and moves the budgetBℓ1 of level ℓ1 down

6The running time of an algorithm isquasipolynomialif it is of the form2polylog(〈input〉), where〈input〉 is the input size of the
problem. A QPTAS is an algorithm that, for any constantǫ > 0, returns a(1− ǫ)-approximation in quasipolynomial time.
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to ℓ2, i.e., the new budget of levelℓ2 will be Bℓ1 + Bℓ2 , and the new budget of levelℓ1 will be 0. Clearly,
down-pushes only restrict our options for protecting vertices. However, we can show that one can do a
sequence of down-pushes such that first, the optimal objective value of the new instance is very close to the
one of the original instance, and second, onlyO(logL) levels have non-zero budgets. Finally, levels with
0-budget can easily be removed through a simple contraction operation, thus leading to a new instance with
only O(logL) depth.

Theorem4 below formalizes our main compression result for the Firefighter problem, which we state for
unit-budget Firefighter instances for simplicity. Since Lemma3 implies that every general-budget Firefighter
instance withn vertices can be transformed into a unit-budget Firefighter instance withO(n2) vertices—and
thusO(n2) levels—Theorem4 can also be used to reduce any Firefighter instance onn vertices to one with
O( logn

δ
) levels, by losing a factor of1− δ in terms of objective.

Theorem 4. LetI be a unit-budget Firefighter instance on a tree with depthL, and letδ ∈ (0, 1). Then one
can efficiently construct a general budget Firefighter instanceI with depthL′ = O( logL

δ
), and such that the

following holds, whereval(OPT(I)) andval(OPT(I)) are the optimal values ofI andI, respectively.

(i) val(OPT(I)) ≥ (1− δ) val(OPT(I)), and
(ii) any solution toI can be transformed efficiently into a solution ofI with same objective value.

For RMFC we can use a very similar compression technique leading to the following.

Theorem 5. LetG = (V,E) be a rooted tree of depthL. Then one can construct efficiently a rooted tree
G′ = (V ′, E′) with |V ′| ≤ |V | and depthL′ = O(logL), such that:

(i) If the RMFC problem onG has a solution with budgetB ∈ Z>0 at each level, then the RMFC problem
onG′ with non-uniform budgets, where levelℓ ≥ 1 has a budget ofBℓ = 2ℓ · B, has a solution.

(ii) Any solution to the RMFC problem onG′, where levelℓ has budgetBℓ = 2ℓ · B, can be transformed
efficiently into an RMFC solution forG with budget2B.

Interestingly, the above compression results already allow us to obtain strong quasipolynomial approx-
imation algorithms for the Firefighter problem and RMFC, using dynamic programming. Consider for
example the RMFC problem. We can first guess the optimal budget B, which can be done efficiently since
B ∈ {1, . . . , n}. Consider now the instanceG′ claimed by Theorem5 with budgetsBℓ = 2ℓB. By Theo-
rem5 this RMFC instance is feasible and any solution to it can be converted to one of the original RMFC
problem with budget2B. It is not hard to see that, for the fixed budgetsBℓ, one can solve the RMFC problem
onG′ in quasipolynomial time using a bottom-up dynamic programming approach. More precisely, starting
with the leaves and moving up to the root, we compute for each vertexu ∈ V the following table. Consider
a subset of the available budgets, which can be represented as a vectorq ∈ [B1] × · · · × [BL′ ]. For each
such vectorq we want to know whether or not using the sub-budget describedby q allows for disconnecting
u from all leaves below it. SinceL′ = O(logL) and the size of each budgetBℓ is at most the number of
vertices, the table size is quasipolynomial. Moreover, onecan check that these tables can be constructed
bottom-up in quasipolynomial time. Hence, this approach leads to a quasipolynomial time2-approximation
for RMFC, which is best possible in terms of approximation ratio unless P= NP as mentioned previously.
A similar dynamic programming approach for the Firefighter problem on a compressed instance leads to a
QPTAS.

However, our focus is on efficient algorithms, and it seems non-trivial to transform the above quasipoly-
nomial time dynamic programming approaches into efficient algorithms. To obtain our results, we therefore
combine the above compression techniques with different approaches to be discussed next.
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3.2 Overview of PTAS for Firefighter problem

Despite the fact thatLPFF has a large integrality gap—which can be shown to be the case even after
compression—it is a crucial tool in our PTAS.

We start by observing that for any vertex solution solutionx ∈ RV \{r} to LPFF, there is a small subset
U of vertices of size at most the depth of the tree, such that onecan easily get an integral solution whose
objective value differs from the LP-value ofx by at most the LP-contribution ofU , which is

∑

u∈U w(Tu).
We will then introduce approaches to limit the LP-contribution of vertices inU .

Consider a general-budget Firefighter instance, and letx be a vertex solution toLPFF. We say that a
vertexu ∈ V \{r} isx-loose, or simplyloose, if u ∈ supp(x) := {v ∈ V \{r} | x(v) > 0} andx(Pu) < 1.
Analogously, we call a vertexu ∈ V \ {r} x-tight, or simplytight, if u ∈ supp(x) andx(Pu) = 1. Hence,
supp(x) can be partitioned intosupp(x) = V L ∪ V T , whereV L andV T are the set of all loose and tight
vertices, respectively.

Lemma 6. Let x be a vertex solution toLPFF for a Firefighter problem with general budgets. Then the
number ofx-loose vertices is at mostL, the depth of the tree.

We observe next that to obtain a setU with the above-claimed properties, one can chooseU = V L.
Having a vertex solutionx toLPFF, we can consider a simplified LP obtained fromLPFF by only allowing
to protect vertices that arex-tight. A simple yet useful property ofx-tight vertices is that for anyu, v ∈ V T

with u 6= v we haveu 6∈ Pv. Indeed, ifu ∈ Pv, thenx(Pu) ≤ x(Pv) − x(v) < x(Pv) = 1 because
x(v) > 0. Hence, no two tight vertices lie on the same leaf-root path.Thus, when restrictingLPFF to
V T , the path constraintsx(Pu) ≤ 1 for u ∈ Γ transform into trivial constraints requiringx(v) ≤ 1 for
v ∈ V T , and one can easily observe that the resulting constraint system is totally unimodular because it
describes a laminar matroid constraint given by the budget constraints (see [32, Volume B] for more details
on matroid optimization). Re-optimizing over this LP we getan integral solution of objective value at least
∑

u∈V \{r} xuw(Tu)−
∑

u∈V L xuw(Tu), because the restriction ofx to V T is still feasible for the new LP.
In particular, if

∑

u∈V L xuw(Tu) was at mostǫ · val(OPT), whereval(OPT) is the optimal value of
the instance, then this would lead to a PTAS. Clearly, this isnot true in general, since it would contradict
the(1 − 1

e
)-integrality gap ofLPFF. Thus, in the following, we will present techniques to limitthe impact

of the term
∑

u∈V L xuw(Tu). Notice that when we work with a compressed instance, by firstinvoking
Theorem4, we have|V L| = O( logN

ǫ
), whereN is the number of vertices in the original instance. Hence,

a PTAS would be achieved if for allu ∈ V L, we hadw(Tu) = Θ( ǫ2

logN ) · val(OPT). One way to achieve

this in quasipolynomial time is to first guess a subset ofΘ( logN
ǫ2

) many vertices of an optimal solution with
highest impact, i.e., among all verticesu ∈ OPT we guess those with largestw(Tu). This techniques has
been used in various other settings (see for example [31, 21] for further details) and leads to another QPTAS
for the Firefighter problem. Again, it is unclear how this QPTAS could be turned into an efficient procedure.

The above discussion motivates to investigate verticesu ∈ V \ {r} with w(Tu) ≥ η for someη =

Θ( ǫ2

logN ) val(OPT). We call such verticesheavy; later, we will provide an explicit definition ofη that does
not depend on the unknownval(OPT) and is explicit about the hidden constant. LetH = {u ∈ V \ {r} |
w(u) ≥ η} be the set of all heavy vertices. Observe thatG[H ∪ {r}]—i.e., the induced subgraph ofG over
the verticesH ∪ {r}—is a subtree ofG, which we call theheavy tree.

Recall that by the above discussion, if we work on a compressed instance withL = O( logN
ǫ

) levels, and
if an optimal vertex solution toLPFF has no loose vertices that are heavy, then an integral solution can be
obtained being at most a factor of1− ǫ off the LP value. Hence, if we were able to guess the heavy vertices
contained in an optimal solution, the integrality gap of thereduced problem would be small since no heavy
vertices are left in the LP, and can thus not be loose anymore.

Whereas there are too many options to enumerate over all possible subsets of heavy vertices that an
optimal solution may contain, we will do a coarser enumeration. More precisely, we will partition the heavy
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vertices intoOǫ(logN) subpaths and guess for each subpath whether it contains a vertex ofOPT. For this to
work out we need that the heavy tree has a very simple topology; in particular, it should only haveOǫ(logN)
leaves. Whereas this does not hold in general, we can enforceit by a further transformation making sure
thatOPT saves a constant-fraction ofw(V ) which—as we will observe next—indeed limits the number of
leaves of the heavy tree toOǫ(logN). Furthermore, this transformation is useful to complete our definition
of heavy vertices by explicitly defining the thresholdη.

Lemma 7. LetI be a general-budget Firefighter instance on a treeG = (V,E) with weightsw. Then for
anyλ ∈ Z≥1, one can efficiently construct a new Firefighter instanceI on a subtreeG′ = (V ′, E′) of G
with same budgets, by starting fromI and applying node deletions and weight reductions, such that

(i) val(OPT(I)) ≥
(

1− 1
λ

)

val(OPT(I)), and
(ii) val(OPT(I)) ≥ 1

λ
w′(V ′), wherew′ ≤ w are the vertex weights in instanceI.

The deletion ofu ∈ V corresponds to removing the whole subtree belowu fromG, i.e., all vertices inTu.

Since Lemma7 constructs a new instance using only node deletions and weight reductions, any solution
to the new instance is also a solution to the original instance of at least the same objective value.

Our PTAS for the Firefighter problem first applies the compression Theorem4 with δ = ǫ/3 and then
Lemma7 with λ = ⌈3

ǫ
⌉ to obtain a general budget Firefighter instance on a treeG = (V,E). We summarize

the properties of this new instanceG = (V,E) below. As before, to avoid confusion, we denote byN the
number of vertices of the original instance.

Property 8.
(i) The depthL ofG satisfiesL = O( logN

ǫ
).

(ii) val(OPT) ≥ ⌈3
ǫ
⌉−1w(V ) ≥ 1

4ǫw(V ).
(iii) The optimal valueval(OPT) of the new instance is at least a(1 − 2

3ǫ)-fraction of the optimal value
of the original instance.

(iv) Any solution to the new instance can be transformed efficiently into a solution of the original instance
of at least the same value.

Hence, to obtain a PTAS for the original instance, it sufficesto obtain, for anyǫ > 0, a (1 − ǫ
3)-

approximation for an instance satisfying Property8. In what follows, we assume to work with an instance
satisfying Property8 and show that this is possible.

Due to the lower bound onval(OPT) provided by Property8, we now define the thresholdη =
Θ( ǫ

logN ) val(OPT) in terms ofw(V ) by

η =
1

12

ǫ2

L
w(V ),

which implies that we can afford losingL times a weight ofη, which will sum up to a total loss of at most
1
12ǫ

2w(V ) ≤ 1
3ǫ val(OPT), where the inequality is due to Property8.

Consider again the heavy treeG[H∪{r}]. Due to Property8 its topology is quite simple. More precisely,
the heavy tree has onlyO( logN

ǫ3
) leaves. Indeed, each leafu ∈ H of the heavy tree fulfillsw(Tu) ≥ η, and

two different leavesu1, u2 ∈ H satisfyTu1 ∩ Tu2 = ∅; since the total weight of the tree isw(V ), the heavy
tree has at most12L/ǫ2 = O( logN

ǫ3
) many leaves.

In the next step, we define a well-chosen small subsetQ of heavy vertices whose removal (together
with r) from G will breakG into components of weight at mostη. Simultaneously, we chooseQ such that
removing it together withr from the heavy tree breaks it into paths, over which we will doan enumeration
later.

Lemma 9. One can efficiently determine a setQ ⊆ H satisfying the following.
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(i) |Q| = O( logN
ǫ3

).
(ii) Q contains all leaves and all vertices of degree at least3 of the heavy tree, except for the rootr.

(iii) RemovingQ ∪ {r} fromG leads to a graphG[V \ (Q ∪ {r})] where each connected component has
vertices whose weight sums up to at mostη.

For each vertexq ∈ Q, let Hq ⊆ H be all vertices that are visited when traversing the pathPq from q
to r until (but not including) the next vertex inQ ∪ {r}. Hence,Hq is a subpath of the heavy tree such that
Hq ∩Q = {q}, which we call for brevity aQ-path. Moreover the set of allQ-paths partitionsH.

We use an enumeration procedure to determine on whichQ-paths to protect a vertex. SinceQ-paths
are subpaths of leaf-root paths, we can assume that at most one vertex is protected in eachQ-path. Our
algorithm enumerates over all2|Q| possible subsetsZ ⊆ Q, whereZ represents theQ-paths on which we
will protect a vertex. Incorporating this guess intoLPFF, we get the following linear programLPFF(Z):

max
∑

u∈V \{r}
xuw(Tu)

x(Pu) ≤ 1 ∀u ∈ Γ

x(V≤ℓ) ≤
ℓ

∑

i=1

Bi ∀ℓ ∈ [L]

x(Hq) = 1 ∀q ∈ Z
x(Hq) = 0 ∀q ∈ Q \ Z

x ∈ R
V \{r}
≥0 .

(LPFF(Z))

We start with a simple observation regardingLPFF(Z).

Lemma 10. The polytope over whichLPFF(Z) optimizes is a face of the polytope describing the feasible
region ofLPFF. Consequently, any vertex solution ofLPFF(Z) is a vertex solution ofLPFF.

Proof. The statement immediately follows by observing that for anyq ∈ Q, the inequalitiesx(Hq) ≤ 1 and
x(Hq) ≥ 0 are valid inequalities forLPFF. Notice thatx(Hq) ≤ 1 is a valid inequality forLPFF because
Hq is a subpath of a leaf-root path, and the load on any leaf-rootpath is limited to1 in LPFF.

Analogously toLPFF we define loose and tight vertices for a solution toLPFF(Z). A crucial implication
of Lemma10 is that Lemma6 also applies to any vertex solution ofLPFF(Z).

We will show in the following that for the right setZ ⊆ Q, LPFF(Z) has a small integrality gap and we
can easily get a nearly optimal integral solution. A key observation in the analysis of our algorithm is that
we can now limit the impact of loose vertices. More precisely, any loose vertex outside of the heavy tree has
LP contribution at mostη by definition of the heavy tree. Furthermore, for each loose vertexu on the heavy
tree, which lies on someQ-pathHq, its loadx(u) can be redistributed on the tight vertex onHq. Such a
redistribution will have low impact due to our choice ofQ.

We are now ready to state our(1 − ǫ
3 )-approximation for an instance satisfying Property8, which, as

discussed, implies a PTAS for the Firefighter problem. Algorithm 1 describes our(1− ǫ
3 )-approximation.

The following statement completes the proof of Theorem2.

Theorem 11. For any general-budget Firefighter instance satisfying Property 8, Algorithm 1 computes
efficiently a feasible set of verticesU ⊆ V \ {r} to protect that is a(1− ǫ

3)-approximation.

Proof. First observe that the linear program solved in step4 will indeed lead to a characteristic vector with
only {0, 1}-components. This is the case since no twox-tight vertices can lie on the same leaf-root path.
Hence, as discussed previously, the linear programLPFF restricted to variables corresponding toV T is
totally unimodular; indeed, the leaf-root path constraints x(Pu) ≤ 1 for u ∈ Γ reduce tox(v) ≤ 1 for

10



Algorithm 1: A (1− ǫ
3)-approximation for a general-budget Firefighter instance satisfying Property8.

1. Determine heavy verticesH = {u ∈ V | w(Tu) ≥ η}, whereη = 1
12

ǫ2

L
w(V ).

2. ComputeQ ⊆ H using Lemma9.

3. For eachZ ⊆ Q, obtain an optimal vertex solution toLPFF(Z). LetZ∗ ⊆ Q be a set for which
the optimal value ofLPFF(Z

∗) is largest among all subsets ofQ, and letx be an optimal vertex
solution toLPFF(Z

∗).

4. LetV T be thex-tight vertices. Obtain an optimal vertex solution toLPFF restricted to variables
corresponding to vertices inV T . The solution will be a{0, 1}-vector, being the characteristic
vector of a setU ⊆ V T which we return.

v ∈ V T , and the remaining LP corresponds to a linear program over a laminar matroid, reflecting the
budget constraints. Moreover, the setU is clearly budget-feasible since the budget constraints are enforced
by LPFF. Also, Algorithm1 runs in polynomial time because|Q| = O( logN

ǫ3
) by Lemma9 and hence, the

number of subsets ofQ is bounded byNO( 1
ǫ3

).
It remains to show thatU is a(1− ǫ

3 )-approximation. LetOPT be an optimal solution to the considered
Firefighter instance with valueval(OPT). Observe first that the valueν∗ of LPFF(Z

∗) satisfiesν∗ ≥
val(OPT), because one of the setsZ ⊆ Q corresponds toOPT, namelyZ = {q ∈ Q | Hq∩OPT 6= ∅}, and
for thisZ the characteristic vectorχOPT ∈ {0, 1}V \{r} of OPT is feasible forLPFF(Z). We complete the
proof of Theorem11by showing that the valueval(U) of U satisfiesval(U) ≥ (1− ǫ

3)ν
∗. For this we show

how to transform an optimal solutionx of LPFF(Z
∗) into a solutiony to LPFF(Z

∗) with supp(y) ⊆ V T

and such that the objective valueval(y) of y satisfiesval(y) ≥ (1− ǫ
3)ν

∗.
Let V L ⊆ supp(x) be the set ofx-loose vertices, and letH be all heavy vertices, as usual. To obtain

y, we start withy = x and first sety(u) = 0 for eachu ∈ V L \H. Moreover, for eachu ∈ V L ∩H we
do the following. Being part of the heavy vertices and fulfilling x(u) > 0, the vertexu lies on someQ-path
Hqu for somequ ∈ Z∗. Becausex(Hqu) = 1, there is a tight vertexv ∈ Hqu. We move they-value from
vertexu to vertexv, i.e.,y(v) = y(v) + y(u) andy(u) = 0. This finishes the construction ofy. Notice that
y is feasible forLPFF(Z

∗), because it was obtained fromx by reducing values and moving values to lower
levels.

To upper bound the reduction of the LP-value when transformingx into y, we show that the modification
done for each loose vertexu ∈ V L decreased the LP-value by at mostη. Clearly, for eachu ∈ V L \ H,
sinceu is not heavy we havew(Tu) ≤ η; thus settingy(u) = 0 will have an impact of at mostη on the LP
value. Similarly, foru ∈ V L ∩H, moving they-value ofu to qu decreases the LP objective value by

y(u) · (w(Tu)− w(Tqu)) ≤ w(Tu)− w(Tqu) = w(Tu \ Tqu) ≤ η,

where the last inequality follows by observing thatTu \ Tqu are vertices in the same connected component
of G[V \ (Q ∪ {r})], and thus have a total weight of at mostη by Lemma9.

Hence,val(x) − val(y) ≤ |V L| · η ≤ L · η, where the second inequality follows by Property8. This
completes the proof by observing that|V L| ≤ L by Lemma6, and thus

val(y) = val(x) + (val(y)− val(x)) ≥ val(OPT) + val(y)− val(x) ≥ val(OPT)− L · η

= val(OPT)− 1

12
ǫ2w(V ) ≥

(

1− 1

3
ǫ

)

val(OPT),

11



where the last inequality is due to Property8.

3.3 Overview ofO(1)-approximation for RMFC

Also ourO(1)-approximation for RMFC uses the natural LP, i.e,LPRMFC, as a crucial tool to guide the
algorithm. Throughout this section we will work on a compressed instanceG = (V,E) of RMFC, obtained
through Theorem5. Hence, the number of levels isL = O(logN), whereN is the number of vertices of
the original instance. Furthermore, the budget on levelℓ ∈ [L] is given byBℓ = 2ℓB. The advantage of
working with a compressed instance for RMFC is twofold. First, we will again apply sparsity reasonings
to limit in certain settings the number of loose (badly structured) vertices by the number of levels of the
instance. Second, the fact that low levels—i.e., levels faraway from the root—have high budget, will allow
us to protect a large number of loose vertices by only increasing B by a constant.

For simplicity, we work with a slight variation ofLPRMFC, where we replace, forℓ ∈ [L], the budget
constraintsx(V≤ℓ) ≤

∑ℓ
i=1 Bi by x(Vℓ) ≤ Bℓ. For brevity, we define

PB =
{

x ∈ R
V \{r}
≥0

∣

∣

∣
x(Vℓ) ≤ B · 2ℓ ∀ℓ ∈ [L]

}

.

As previously mentioned (and shown in [8]), the resulting LP is equivalent toLPRMFC. Furthermore, since
the budgetB for a feasible RMFC solution has to be chosen integral, we requireB ≥ 1. Hence, the resulting
linear relaxation asks to find the minimumB ≥ 1 such that the following polytope is non-empty:

P̄B = PB ∩
{

x ∈ R
V \{r}
≥0

∣

∣

∣
x(Pu) ≥ 1 ∀u ∈ Γ

}

.

We start by discussing approaches to partially round a fractional pointx ∈ P̄B , for some fixed budget
B ≥ 1. First, we can assume thatx(Pu) = 1 for u ∈ Γ. Indeed, wheneverx(Pu) > 1, then one can reduce
thex-values toward the bottom of the pathPu to obtainx(Pu) = 1 and maintainingx ∈ P̄B . Hence, any
leaf u ∈ Γ is fractionally cut off from the root through thex-values onPu. A crucial property we derive
and exploit is that leaves that are cut off fromr on mostly low levels, i.e., most of thex-value onPu comes
from vertices far away from the root, can be cut off from the root via a set of vertices to be protected that are
budget-feasible when increasingB only by a constant.

To exemplify the above statement, consider the levelh = ⌊logL⌋ as a threshold to define top levelsVℓ

as those with indicesℓ ≤ h and bottom levels whenℓ > h. For any leafu ∈ Γ, we partition the pathPu into
its top partPu ∩ V≤h and its bottom partPu ∩ V>h. Consider all leaves that are mostly cut off in bottom
levels:W = {u ∈ Γ | x(Pu ∩ V>h) ≥ 0.5}. We will show that there is a subset of verticesR ⊆ V>h on
bottom levels to be protected that is feasible for budgetB̄ = 2B + 1 ≤ 3B and cuts off all leaves inW
from the root. We provide a brief sketch why this result holds, and present a formal proof later. If we set
all entries ofx on top levelsV≤h to zero, we get a vectory with supp(y) ⊆ V>h such thaty(Pu) ≥ 0.5 for
u ∈ W . Hence,2y fractionally cuts off all vertices inW from the root and is feasible for budget2B. To
increase sparsity, we can replace2y by a vertexz̄ of the polytope

Q =
{

z ∈ R
V \{r}
≥0

∣

∣

∣
z(Vℓ) ≤ 2B · 2ℓ ∀ℓ ∈ [L], z(V<h) = 0, z(Pu) ≥ 1 ∀u ∈ W

}

,

which describes possible ways to cut offW from r only using levelsV≥h, andQ is non-empty since2y ∈ Q.
Exhibiting a sparsity reasoning analogous to the one used for the Firefighter problem, we can show thatz
has no more thanL manyz-loose vertices. Thus, we can first include allz-loose vertices in the setR of
vertices to be protected by increasing the budget of each level ℓ > h by at mostL ≤ 2h+1 ≤ 2ℓ. The
remaining vertices insupp(z) are well structures (no two of them lie on the same leaf-root path), and an
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integral solution can be obtained easily. The new budget value isB̄ = 2B + 1, where the “+1” term pays
for the loose vertices.

The following theorem formalizes the above reasoning and generalizes it in two ways. First, for a leaf
u ∈ Γ to be part ofW , we required it to have a totalx-value of at least0.5 within the bottom levels; we will
allow for replacing0.5 by an arbitrary thresholdµ ∈ (0, 1]. Second, the levelh defining what is top and
bottom can be chosen to be of the formh = ⌊log(q) L⌋ for q ∈ Z≥0, wherelog(q) L := log log . . . logL is
the value obtained by takingq many logs ofL, and by convention we setlog(0) L := L. The generalization
in terms ofh can be thought of as iterating the above procedure on the RMFCinstance restricted toV≤h.

Theorem 12. LetB ∈ R≥0, µ ∈ (0, 1], q ∈ Z≥0, andh = ⌊log(q) L⌋. Letx ∈ PB with supp(x) ⊆ V>h,
and we defineW = {u ∈ Γ | x(Pu) ≥ µ}. Then one can efficiently compute a setR ⊆ V>h such that

(i) R ∩ Pu 6= ∅ ∀u ∈ W , and
(ii) χR ∈ PB′ , whereB′ = q

µ
B + 1 andχR ∈ {0, 1}V \{r} is the characteristic vector ofR.

Theorem12 has several interesting consequences. It immediately implies an LP-basedO(log∗N)-
approximation for RMFC, thus matching the currently best approximation result by Chalermsook and
Chuzhoy [8]: It suffices to start with an optimal LP solutionB ≥ 1 andx ∈ P̄B and invoke the above
theorem withµ = 1, q = 1 + log∗ L. Notice that by definition oflog∗ we havelog∗ L = min{α ∈ Z≥0 |
logα L ≤ 1}; henceh = ⌊log1+log∗ L L⌋ = 0, implying that all levels are bottom levels. Since the integral-
ity gap of the LP isΩ(log∗ N) = Ω(log∗ L), Theorem12 captures the limits of what can be achieved by
techniques based on the standard LP.

Interestingly, Theorem12 also implies that theΩ(log∗ L) integrality gap is only due to the top levels of
the instance. More precisely, if, for anyq = O(1) andh = ⌊log(q) L⌋, one would know what vertices an
optimal solutionR∗ protects within the levelsV≤h, then a constant-factor approximation for RMFC follows
easily by solving an LP on the bottom levelsV>h and using Theorem12 with µ = 1 to round the obtained
solution.

Also, using Theorem12 it is not hard to find constant-factor approximation algorithms for RMFC if
the optimal budgetBOPT is large enough, sayB ≥ logL.7 The main idea is to solve the LP and define
h = ⌊logL⌋. Leaves that are primarily cut off byx on bottom levels can be handled using Theorem12. For
the remaining leaves, which are cut-off mostly on top levels, we can resolve an LP only on the top levelsV≤h

to cut them off. This LP solution is sparse and contains at most h ≤ B loose nodes. Hence, all loose vertices
can be selected by increasing the budget by at mosth ≤ B, leading to a well-structured residual problem
for which one can easily find an integral solution. The following theorem summarizes this discussion. A
formal proof for Theorem13 can be found in Section6.

Theorem 13. There is an efficient algorithm that computes a feasible solution to a (compressed) instance
of RMFC with budgetB ≤ 3 ·max{log L,BOPT}.

In what follows, we therefore assumeBOPT < logL and present an efficient way to partially enumerate
vertices to be protected on top levels, leading to the claimed O(1)-approximation.

Partial enumeration algorithm

Throughout our algorithm, we set
h = ⌊log(2) L⌋

to be the threshold level defining top verticesV≤h and bottom verticesV>h. Within our enumeration pro-
cedure we will solve LPs where we explicitly include some vertex setA ⊆ V≤h to be part of the protected

7Actually, the argument we present in the following works forany B = log(Ω(1)) L. However, we later only need it for
B ≥ logL and thus focus on this case.
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vertices, and also exclude some setD ⊆ V≤h from being protected. Our enumeration works by modi-
fying the setsA andD throughout the algorithm. We thus define the following LP fortwo disjoint sets
A,D ⊆ V≤h:

min B
x ∈ P̄B

B ≥ 1
x(u) = 1 ∀u ∈ A
x(u) = 0 ∀u ∈ D .

(LP(A,D))

Notice thatLP(A,D) is indeed an LP even though the definition ofP̄B depends onB (but it does so
linearly). Before formally stating our enumeration procedure, we briefly discuss the main idea behind it.
Let OPT ⊆ V \ {r} be an optimal solution to our (compressed) RMFC instance corresponding to some
budgetBOPT ∈ Z≥1. We assume without loss of generality thatOPT does not contain redundancies, i.e.,
there is precisely one vertex ofOPT on each leaf-root path. Assume that we already guessed some vertex
setA ⊆ V≤h to be protected and a vertex setD ⊆ V≤h not to be protected, and that these guesses are
compatible withOPT, i.e.,A ⊆ OPT andD ∩ OPT = ∅.

Let (B,x) be an optimal solution toLP(A,D). Because we assume that the setsA andD do not conflict
with OPT, we haveB ≤ BOPT because(BOPT, χ

OPT) is feasible forLP(A,D). We define

Wx =

{

u ∈ Γ

∣

∣

∣

∣

x(Pu ∩ V>h) ≥
2

3

}

to be the set of leaves primarily, i.e., withx-load at leastµ = 2
3 , cut off from the root within bottom levels.

For eachu ∈ Γ\Wx, letfu ∈ V≤h be the vertex closest to the root among all vertices inPu∩V≤h∩supp(x),
and we define

Fx = {fu | u ∈ Γ \Wx} \ A. (1)

Notice that by definition, no two vertices ofFx lie on the same leaf-root path. Furthermore, every leaf
u ∈ Wx is part of the subtreeTf for precisely onef ∈ Fx. The main motivation for consideringFx is that
to guess vertices in top levels, we only need to focus on vertices lying below some vertex inFx, i.e., vertices
in the setQx = V≤h ∩ (∪f∈Fx

Tf ).
To exemplify this, we first consider the special caseOPT ∩ Qx = ∅, which will also play a central

role later in the analysis of our algorithm. We show that for this case we can get anO(1)-approximation
to RMFC, even though we may only have guessed a proper subsetA ( OPT ∩ V≤h of theOPT-vertices
within the top levels.

Lemma 14. Let A ⊆ OPT ∩ V≤h, D ⊆ V≤h \ OPT be two disjoint sets, andx be an optimal so-
lution to LP(A,D), and assume thatOPT ∩ Qx = ∅. Moreover, let(y, B̄) be an optimal solution to
LP(A,V≤h \ A). ThenB̄ ≤ 5

2BOPT.
Furthermore, by applying Theorem12 to y ∧ χV>h with µ = 1, a set of verticesR ⊆ V>h is obtained

such thatR ∪A is a feasible solution to RMFC with respect to the budget6 ·BOPT.8

Proof. Notice thatOPT ∩ Qx = ∅ implies that for eachu ∈ Γ \ Wx, the setOPT contains a vertex
on Pu ∩ V>h. Hence,z = 3

2(x ∧ χV>h) + (χOPT ∧ χV>h) satisfiesz(Pu) ≥ 1 for u ∈ Γ and z ∈
P 3

2
B+BOPT

becausex ∧ χV>h ∈ PB andχOPT ∈ PBOPT
. This implies that(z, 32B + BOPT) is feasible for

LP(A,V≤h \ A), and thusB̄ ≤ 3
2B +BOPT ≤ 5

2BOPT, as claimed.
The second part of the lemma follows in a straightforward wayfrom Theorem12. Observe first that for

each leafu ∈ Γ, the solutiony either cuts offu from the root only using top levels or only using bottom

8For two vectorsa, b ∈ Rn we denote bya ∧ b ∈ Rn the component-wise minimum ofa andb.
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levels becausey is a{0, 1}-solution on the top levelsV≤h, since on top levels it was fixed toχA. Hence,
Theorem12 can indeed be applied toy with µ = 1 leading to a setR ⊆ V>h that is feasible with respect to
the budget5BOPT+1 ≤ 6BOPT. Furthermore,A is feasible for budgetBOPT because it is a subset ofOPT.
SinceA ⊆ V≤h andR ⊆ V>h are on disjoint levels, the setR ∪A is feasible for the budget6BOPT.

Our final algorithm is based on a recursive enumeration procedure that computes a polynomial collection
of pairs of disjoint sets(A,D) with A ⊆ V≤h andD ⊆ V≤h, such that there is one pair(A,D) in the
collection with a corresponding LP solutionx of LP(A,D) satisfying that the triple(A,D, x) fulfills the
conditions of Lemma14, and thus leading to a constant-factor approximation. Our enumeration algorithm
Enum(A,D, γ) is described below. It contains a parameterγ ∈ Z≥0 that bounds the recursion depth of the
enumerations.

Enum(A,D,γ) : Enumerating triples(A,D, x) to find one satisfying the conditions of Lemma14.

1. Compute optimal solution(x,B) to LP(A,D).

2. If B > logL: stop. Otherwise, continue with step3.

3. Add (A,D, x) to the family of triples to be considered.

4. I f γ 6= 0 : //recursion depth not yet reached

For u ∈ Fx: //Fx is defined as in (1)

Recursive call toEnum(A ∪ {u},D, γ − 1).
Recursive call toEnum(A,D ∪ Pu, γ − 1).

We can show that only a small recursion depthγ is needed for the enumeration algorithm to explore a
good triple(A,D, x), which satisfies the conditions of Lemma14.

Lemma 15. Let γ̄ = 2(logL)2 log(2) L. The enumeration procedureEnum(∅, ∅, γ̄) runs in polynomial
time. Furthermore, ifBOPT ≤ logL, thenEnum(∅, ∅, γ̄) will encounter a triple(A,D, x) satisfying the
conditions of Lemma14, i.e.,

(i) A ⊆ OPT ∩ V≤h,
(ii) D ⊆ V≤h \ OPT, and

(iii) OPT ∩Qx = ∅.

Hence, combining Lemma15 and Lemma14 completes our enumeration procedure and implies the
following result.

Corollary 16. LetI be an RMFC instance onL levels on a graphG = (V,E) with budgetsBℓ = 2ℓ · B.
Then there is a procedure with running time polynomial in2L, returning a solution(Q,B) for I, where
Q ⊆ V \ {r} is a set of vertices to protect that is feasible for budgetB, satisfying the following: If the
optimal budgetBOPT for I satisfiesBOPT ≤ logL thenB ≤ 6BOPT.

Proof. It suffices to runEnum(∅, ∅, γ̄) to first efficiently obtain a family of triples(Ai,Di, xi)i, where
Ai,Di are disjoint subsets ofV≤h, andx is an optimal solution toLP(Ai,Di). By Lemma15, one of these
triples satisfies the conditions of Lemma14. (Notice that these conditions cannot be checked since it would
require knowledge ofOPT.) For each triple(Ai,Di, xi) we obtain a corresponding solution forI following
the construction described in Lemma14. More precisely, we first compute an optimal solution(yi, B̄i) to
LP(Ai,V≤h \ Ai). Then, by applying Theorem12 to yi ∧ χV>h with µ = 1, a set of verticesRi ⊆ V>h is
obtained such thatRi ∪ Ai is feasible forI for some budgetBi. Among all such setsRi ∪ Ai, we return
the one with minimumBi. Because Lemma15 guarantees that one of the triples(Ai,Di, xi) satisfies the
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conditions of Lemma14, we have by Lemma14that the best protection setQ = Rj ∪Aj among allRi∪Ai

has a budgetBj satisfyingBj ≤ 6BOPT.

Summary of our O(1)-approximation for RMFC

Starting with an RMFC instanceIorig on a tree withN vertices, we first apply our compression result,
Theorem5, to obtain an RMFC instanceI on a graphG = (V,E) with depthL = O(logN), and non-
uniform budgetsBℓ = 2ℓB for ℓ ∈ [L]. LetBOPT ∈ Z≥1 be the optimal budget—i.e., value ofB—for the
instanceI, and letBorig

OPT
be the optimal budget forIorig. By Theorem5, we haveBOPT ≤ Borig

OPT
, and any

solution toI using budgetB can efficiently be transformed into one ofIorig
OPT

of budget2B.
We now invoke Theorem13and Corollary16. Both guarantee that a solution toI with certain properties

can be computed efficiently. Among the two solutions derivedfrom Theorem13 and Corollary16, we
consider the one(Q,B) with lower budgetB, whereQ ⊆ V \ {r} is a set of vertices to protect, feasible
for budgetB. If B ≤ logL, then Theorem13 implies B ≤ 3BOPT, otherwise Corollary16 implies
B ≤ 6BOPT. Hence, in any case we have a6-approximation forI. As mentioned before, Theorem5
implies that the solutionQ can efficiently be transformed into a solution for the original instanceIorig that
is feasible with respect to the budget2B ≤ 12BOPT ≤ 12Borig

OPT
, thus implying Theorem1.

4 Details on compression results

In this section, we present the proofs for our compression results, Theorem4 and Theorem5. We start by
proving Theorem4. The same ideas are used with a slight adaptation in the proofof Theorem5.

We call an instanceI obtained from an instanceI by a sequence of down-push operations apush-down
of I. We prove Theorem4 by proving the following result, of which Theorem4 is an immediate conse-
quence, as we will soon show. Informally, the following theorem states that one can efficiently construct a
push-downI with almost no loss in the objective and with onlyO( logL

δ
) levels with non-zero budgets.

Theorem 17. Let I be a unit-budget Firefighter instance with depthL, and letδ ∈ (0, 1). Then one can
efficiently construct a push-downI of I such that

(i) val(OPT(I)) ≥ (1− δ) val(OPT(I)), and
(ii) I has nonzero budget on onlyO( logL

δ
) levels.

Before we prove Theorem17 let us explain how it implies Theorem4. Concretely, we will show how
levels of zero budget can be removed through the followingcontraction operation. Let ℓ ∈ [L] be a level
whose budget is zero. For each vertexu ∈ Vℓ−1 we contract all edges fromu to its children and increase the
weightw(u) of u by the sum of the weights of all of its children. Formally, ifu has childrenv1, . . . , vk ∈ Vℓ,
the verticesu, v1, . . . , uk are replaced by a single vertexz with weightw(z) = w(u) +

∑k
i=1w(vi), andz

is adjacent to the parent ofu and to all children ofv1, . . . , vk. One can easily observe that this is an “exact”
transformation in the sense that any solution before the contraction remains one after contraction and vice
versa (when identifying the vertexz in the contracted version withv); moreover, solutions before and after
contraction have the same value.

Now, by first applying Theorem17 and then repeating the latter contraction operations for all levels
with zero budget, we obtain an equivalent instance with the desired depth, thus satisfying the conditions of
Theorem4. It remains to prove Theorem17.

Proof of Theorem17. Consider a unit-budget Firefighter instance on a treeG = (V,E) with depthL. The
push-downI that we construct will have nonzero budgets precisely on thefollowing levelsL ⊆ [L]:

L =

{

⌈

(1 + δ)j
⌉

∣

∣

∣

∣

j ∈
{

0, . . . ,

⌊

logL

log(1 + δ)

⌋}}

∪ {L}.
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For simplicity, letL = {ℓ1, . . . , ℓk} with ℓ1 < ℓ2 < · · · < ℓk. Hence,k = O( logL
log(1+δ) ) = O( logL

δ
). The

push-downI is obtained by pushing any budget on a level not inL down to the next level inL. Formally,
for i ∈ [k], the budgetBℓi at levelℓi is given byBℓi = ℓi − ℓi−1, where we setℓ0 = 0. Moreover,Bℓ = 0
for ℓ ∈ [L] \ L. Clearly, the instanceI can be constructed efficiently. Furthermore, the number of levels
with nonzero budget is equal tok = O( logL

δ
) as desired. It remains to show point(i) of Theorem17.

To show(i), consider an optimal redundancy-free solutionS∗ ⊆ V of I; hence,val(OPT(I)) =
∑

u∈S∗ w(Tu) and no two vertices ofS∗ lie on the same leaf-root path. We will show that there is a feasible
solutionS to I such thatS ⊆ S∗ and the value ofS is at least(1 − δ) val(OPT(I)). Notice that sinceS∗

is redundancy-free, any subset ofS∗ is also redundancy-free. Hence, the value of the setS to construct will
be equal to

∑

u∈S w(Tu). The setS∗ being (budget-)feasible forI implies

|S∗ ∩ V≤ℓ| ≤ ℓ ∀ℓ ∈ [L]. (2)

Analogously, a setS ⊆ V is feasible forI if and only if

|S ∩ V≤ℓ| ≤
ℓ

∑

i=1

Bi ∀ℓ ∈ [L]. (3)

Hence, we want to show that there is a setS satisfying the above system and such that
∑

u∈S w(Tu) ≥
(1− δ) val(OPT(I)). Notice that in (3), the constraint for anyℓ ∈ [L− 1] such thatBl+1 = 0 is redundant
due to the constraint for levelℓ + 1 which has the same right-hand side but a larger left-hand side. Thus,
system (3) is equivalent to the following system

|S ∩ V≤ℓi+1−1| ≤ ℓi ∀i ∈ [k − 1],

|S ∩ V | ≤ L.
(4)

To show that there is a good subsetS ⊆ S∗ that satisfies (4) we use a polyhedral approach. Observe that (3) is
the constraint system of a laminar matroid (see [32, Volume B] for more information on matroids). Hence,
the convex hull of all characteristic vectorsχS ∈ {0, 1}V of setsS ⊆ S∗ satisfying (4) is given by the
following polytope

P =











x ∈ [0, 1]V

∣

∣

∣

∣

∣

∣

∣

x(V≤ℓi+1−1) ≤ ℓi ∀i ∈ [k − 1],

x(V ) ≤ L,

x(V \ S∗) = 0











.

Alternatively, to see thatP indeed describes the correct polytope, without relying on matroids, one can
observe that its constraint matrix is totally unimodular because it has the consecutive-ones property with
respect to the columns.

Thus there exists a setS ⊆ S∗ with
∑

u∈S w(Tu) ≥ (1− δ) val(OPT(I)) if and only if

max

{

∑

u∈S∗

x(u) · w(Tu)

∣

∣

∣

∣

∣

x ∈ P

}

≥ (1− δ) val(OPT(I)). (5)

To show (5), and thus complete the proof, we show thaty = 1
1+δ

χS∗ ∈ P . This will indeed imply (5) since
the objective value ofy satisfies

∑

u∈S∗

y(u) · w(Tu) =
1

1 + δ
val(OPT(I)) ≥ (1− δ) val(OPT(I)).
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To see thaty ∈ P , notice thaty(V \ S∗) = 0 andy(V ) = 1
1+δ

|S∗| ≤ 1
1+δ

L ≤ L, where the first
inequality follows byS∗ satisfying (2) for ℓ = L. Finally, for i ∈ [k − 1], we have

y(V≤ℓi+1−1) =
1

1 + δ
|S∗ ∩ V≤ℓi+1−1| ≤

1

1 + δ
(ℓi+1 − 1),

where the first inequality follows fromS∗ satisfying (2) for ℓ = ℓi+1 − 1. It remains to showℓi+1 − 1 ≤
(1 + δ)ℓi to provey ∈ P . This clearly holds ifℓi+1 = ℓi +1. Thus assumeℓi+1 ≥ ℓi +2. By our definition
of the levels inL, we haveℓi+1 = ⌈(1 + δ)α⌉ for someα ∈ Z≥0. Henceℓi = ⌈(1 + δ)α−1⌉, because for
otherwise (if⌈(1 + δ)α−1⌉ = ⌈(1 + δ)α⌉) we would haveℓi = ℓi+1 − 1, which contradictsℓi+1 ≥ ℓi + 2.
We thus obtain

ℓi+1 − 1 ≤ (1 + δ)α ≤ (1 + δ)
⌈

(1 + δ)α−1
⌉

= (1 + δ)ℓi,

as desired.

We conclude with the proof of Theorem5.

Proof of Theorem5. We start by describing the construction ofG′ = (V ′, E′). As is the case in the proof
of Theorem4, we first change the budget assignment of the instance and then contract all levels with zero
budgets. Notice that, for a given budgetB per layer, we can consider an RMFC instance as a Firefighter
instance, where each leafu ∈ Γ has weightw(u) = 1, and all other weights are zero. Since our goal is to
save all leaves, we want to save vertices of total weight|Γ|.

For simplicity of presentation we assume thatL is a power of2. This assumption does not compromise
generality, as one can always augment the original tree withone path starting from the root and going down
to level2⌈logL⌉.

The set of levels in which the transformed instance will havenonzero budget is

L =
{

2j − 1
∣

∣ j ∈ {1, . . . , logL}
}

.

However, instead of down-pushes we will doup-pusheswere budget is moved upwards. More precisely, the
budget of any levelℓ ∈ [L] \L will be assigned to the first level inL that is aboveℓ, i.e., has a smaller index
thanℓ. As for the Firefighter case, we now remove all0-budget levels using contraction, which will lead
to a new weight functionw′ on the vertices. Since our goal is to save the weight of the whole tree, we can
remove for each vertexu with w′(u) > 0, the subtree belowu. This does not change the problem since we
have to saveu, and thus will anyway also save its subtree. This finishes ourconstruction ofG′ = (V ′, E′),
and the task is again to remove all leaves ofG′. Notice thatG′ hasL′ ≤ |L| = logL many levels, and level
ℓ ∈ [L′] has a budget ofB2ℓ as desired. Analogous to the discussion for compression in the context of the
Firefighter problem we have that if the original problem is feasible, then so is the RMFC problem onG′

with budgetsB2ℓ. Indeed, before performing the contraction operations (which do not change the problem),
the original RMFC problem was a push-down of the one we constructed.

Similarly, one can observe that before contraction, the instance we obtained is itself a push-down of
the original instance with budgets2B on each level. Hence, analogously to the compression resultfor the
Firefighter case, any solution to the RMFC problem onG′ can efficiently be transformed into a solution to
the original RMFC problem onG with budgets2B on each level.

5 Missing details for Firefighter PTAS

In this section we present the missing proofs for our PTAS forthe Firefighter problem.
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We start by proving Lemma6, showing that any vertex solutionx to LPFF has fewx-loose vertices.
More precisely, the proof below shows that the number ofx-loose vertices is upper bounded by the number
of tight budget constraints. The precise same reasoning used in the proof of Lemma6 can also be applied in
further contexts, in particular for the RMFC problem.

Proof of Lemma 6

Let x be a vertex of the polytope defining the feasible set ofLPFF. Hence,x is uniquely defined by
|V \ {r}|-many linearly independent and tight constraints of this polytope. Notice that the tight constraints
can be partitioned into three groups:

(i) Tight nonnegativity constraints, one for each vertex inF1 = {u ∈ V \ {r} | x(u) = 0}.
(ii) Tight budget constraints, one for each level inF2 = {ℓ ∈ [L] | x(V≤ℓ) =

∑ℓ
i=1 Bi}.

(iii) Tight leaf constraints, one for each vertex inF3 = {u ∈ Γ | x(Pu) = 1}.
Due to potential degeneracies of the polytope describing the feasible set ofLPFF there may be several
options to describex as the unique solution to a full-rank linear subsystem of theconstraints described
by F1 ∪ F2 ∪ F3. We consider a system that contains all tight nonnegativityconstraints, i.e., constraints
corresponding toF1, and complement these constraints with arbitrary subsetsF ′

2 ⊆ F2 andF ′
3 ⊆ F3 of

budget and leaf constraints that lead to a full rank linear system corresponding to the constraintsF1∪F ′
2∪F ′

3.
Hence

|F1|+ |F ′
2|+ |F ′

3| = |V | − 1. (6)

Let V L ⊆ supp(x) andV T ⊆ supp(x) be thex-loose andx-tight vertices, respectively. We first show
|F ′

3| ≤ |V T |. For each leafu ∈ F ′
3, let fu ∈ V T be the first vertex on the uniqueu-root path that is part

of supp(x). In particular, ifu ∈ supp(x) thenfu = u. Clearly, fu must be anx-tight vertex because
the path constraint with respect tou is tight. Notice that for any distinct verticesu1, u2 ∈ F ′

3, we must
havefu1 6= fu2. Assume by sake of contradiction thatfu1 = fu2 . However, this impliesχPu1 − χPu2 ∈
span({χv | v ∈ F1}), sincePu1∆Pu2 := (Pu1 \ Pu2) ∪ (Pu2 \ Pu1) ⊆ F1, and leads to a contradiction
because we exhibited a linear dependence among the constraints corresponding toF ′

3 andF1. Hence,
fu1 6= fu2 which implies that the mapu 7→ fu from F ′

3 to V T is injective and thus

|F ′
3| ≤ |V T |. (7)

We thus obtain

| supp(x)| = |V | − 1− |F1| (supp(x) consists of allu ∈ V \ {r} with x(u) 6= 0, i.e.,u 6∈ F1)

= |F ′
2|+ |F ′

3| (by (6))

≤ |F ′
2|+ |V T | (by (7)),

which leads to the desired result since

|V L| = | supp(x)| − |V T | ≤ |F ′
2| ≤ L.

Proof of Lemma 7

Within this proof we focus on protection sets where the budget available for any level is spent on the same
level (and not a later one). As discussed, there is always an optimal protection set with this property.

LetBℓ ∈ Z≥0 be the budget available at levelℓ ∈ [L] and letλℓ = λBℓ. We construct the treeG′ using
the following greedy procedure. Process the levels ofG from the first one to the last one. At every level
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ℓ ∈ [L], pick λℓ verticesuℓ1, · · · , uℓλℓ
at theℓ-th level ofG greedily, i.e., pick each next vertex such that the

subtree corresponding to that vertex has largest weight among all remaining vertices in the level. After each
selection of a vertex the greedy procedure can no longer select any vertex in the corresponding subtree in
subsequent iterations.9

Now, the treeG′ is constructed by deleting fromG any vertex that is both not contained in any subtree
Tuℓ

i
, and not contained in any pathPuℓ

i
for ℓ ∈ [L] andi ∈ [λℓ]. In other words, ifU ⊆ V is the set of all

leaves ofG that were disconnected from the root by the greedy algorithm, then we consider the subtree of
G induced by the vertices∪u∈UPu. Finally, the weights of vertices on the pathsPuℓ

i
\ {uℓi} for ℓ ∈ [L] and

i ∈ [λℓ] are reduced to zero. This concludes the construction ofG′ = (V ′, E′) and the new weight function
w′. Denote byDℓ = {uℓ1, · · · , uℓλℓ

} the set of vertices chosen by the greedy procedure in levelℓ. Observe
that by construction we have

w′(V ′) =
∑

ℓ∈[L]

∑

u∈Dℓ

w′(T ′
u).

The latter immediately implies the second claim, as

val(OPT(I)) ≥
∑

ℓ∈[L]
max
S⊆Dℓ

|S|≤Bℓ

∑

u∈S
w′(T ′

u) ≥
1

λ
w′(V ′),

and since no two vertices selected by the greedy procedure lie on the same path to the root. In other words,
the vertices with non-zero weight in the new treeG′ can be partitioned intoλ disjoint Firefighter solutions
by construction, hence an optimal solution to the Firefighter problem onG′ covers at least a1

λ
-fraction of

the total weight ofG′.
It remains to prove that the first claim holds. LetS∗ = S∗

1 ∪ · · · ∪ S∗
L be the vertices protected in some

optimal solution inG, whereS∗
ℓ ⊆ Vℓ are the vertices protected in levelℓ (and hence|S∗

ℓ | ≤ Bℓ). For
distinct verticesu, v ∈ V we say thatu coversv if v ∈ Tu \ {u}.

Forℓ ∈ [L] let Iℓ = S∗
l ∩Dℓ be the set of vertices protected by the optimal solution thatare also chosen by

the greedy algorithm in levelℓ. Furthermore, letJℓ ⊆ S∗
ℓ be the set of vertices of the optimal solution that are

covered by vertices chosen by the greedy algorithm in earlier iterations, i.e.,Jℓ = S∗
ℓ ∩

⋃

u∈D1∪···∪Dℓ−1
Tu.

Finally, letKℓ = S∗
ℓ \ (Iℓ ∪ Jℓ) be all other optimal vertices in levelℓ. Clearly,S∗

ℓ = Iℓ ∪ Jℓ ∪ Kℓ is a
partition ofS∗

ℓ .
Consider a vertexu ∈ Kℓ for someℓ ∈ [L]. From the guarantee of the greedy algorithm it holds that for

every vertexv ∈ Dℓ we havew′(Tv) = w(Tv) ≥ w(Tu). The same does not necessarily hold for covered
vertices. On the other hand, covered vertices are containedin G′ with their original weights. We exploit
these two properties to prove the existence of a solution inG′ of almost the same weight asS∗.

To prove the existence of a good solution we construct a solution A = A1 ∪ · · · ∪ AL with Aℓ ⊆ Vℓ

and |Aℓ| ≤ Bℓ randomly, and prove a bound on its expected quality. We process the levels of the treeG′

top-down to constructA step by step. This clearly does not compromise generality. Recall that we only
need to prove the existence of a good solution, and not compute it efficiently. We can hence assume the
knowledge ofS∗ in the construction ofA. To this end assume that all levelsℓ′ < ℓ were already processed,
and the corresponding setsAℓ′ were constructed. The setAℓ is constructed as follows:

1. Include inAℓ all vertices inIℓ.

2. Include inAℓ all vertices inJℓ that are not covered by vertices inA1 ∪ · · · ∪ Aℓ−1 (vertices selected
so far).

9 For λ = 1 this procedure produces a set of vertices, which comprise a1
2
-approximation for the Firefighter problem, as it

coincides with the greedy algorithm of Hartnell and Li [23].
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3. Include inAℓ auniformly random subsetof |Kℓ| vertices fromDℓ \ Iℓ.

It is easy to verify that the latter algorithm returns a redundancy-free solution, as no two chosen vertices
in A lie on the same path to the root. Next, we show that the expected weight of vertices saved byA is
at least(1 − 1

λ
) val(OPT(I)), which will prove our claim, since then at least one solutionhas the desired

quality.
Since we only need a bound on the expectation we can focus on a single levelℓ ∈ [L] and show that

the contribution of vertices inAℓ is in expectation at least1 − 1
λ

times the contribution of the vertices in
S∗
ℓ . Observe that the vertices inIℓ are contained both inS∗

ℓ and inAℓ, hence it suffices to show that the
contribution ofAℓ\Iℓ is at least1− 1

λ
times the contribution ofS∗

ℓ \Iℓ, in expectation. Also, recall that every
vertex inDℓ contributes at least as much as any vertex inKℓ, by the greedy selection rule. It follows that the
|Kℓ| randomly selected vertices inAℓ have at least as much contribution as the vertices inKℓ. Consequently,
to prove the claim is suffices to bound the expected contribution of vertices inAℓ ∩ Jℓ with respect to the
contribution ofJℓ. SinceAℓ ∩ Jℓ ⊆ Jℓ it suffices to show that every vertexu ∈ Jℓ is also present inAℓ with
probability at least1− 1

λ
.

To bound the latter probability we make use of the random choices in the construction ofA as follows.
Let ℓ′ < ℓ be the level at which for somew ∈ Dℓ′ it holds thatu ∈ Tw. In other words,ℓ′ is the level that
contains the ancestor ofu that was chosen by the greedy construction ofG′. Now, sinceS∗ is an efficient
solution, and by the way thatA is constructed it holds that ifu 6∈ Aℓ thenw ∈ Aℓ′ , namely ifu is covered,
it can only be covered by the unique ancestorw of u that was chosen in the greedy construction ofG′.
Furthermore, in such a case the vertexw was selected randomly in the third step of theℓ′-th iteration. Put
differently, the probability that the vertexu is covered is exactly the probability that its ancestorw is chosen
randomly to be part ofAℓ′ . Since these vertices are chosen to be a random subset of|Kℓ′ | vertices from the
setDℓ′ \ Iℓ′ , this probability is at most

|Kℓ′ |
|Dℓ′ | − |Iℓ′ |

=
|Kℓ′ |

λBℓ′ − |Iℓ′ |
≤ 1

λ
,

where the last inequality follows from|Kℓ′ | + |Iℓ′ | ≤ Bℓ′ . This implies thatu ∈ Aℓ with probability of at
least1− 1

λ
, as required and concludes the proof of the lemma.

Proof of Lemma 9

We construct the setQ in two phases as follows. First we construct a setQ ⊆ H of vertices fulfilling the
first and the third properties, i.e., it will satisfy|Q| = O( logN

ǫ3
), as well as the property thatG[V \Q ∪ {r}]

has connected components each of weight at mostη. Then, we add toQ all vertices ofH of degree at least
three to arrive at the final setQ.

It will be convenient to define heavy vertices and heavy tree with respect to any subtreeG′ = (V ′, E′)
of G which contains the rootr. Concretely, we defineHG′ = {u ∈ V ′ \ {r} | w(T ′

u) ≥ η} to be the set of
G′-heavy vertices. TheG′-heavy tree is the subtreeG′[HG′ ∪ {r}] of G′. Observe thatH = HG and that
HG′ ⊆ H for every subtreeG′ of G.

To constructQ we process the treeG in a bottom-up fashion starting withQ = ∅. We will also remove
parts of the tree in the end of every iteration. The first iteration starts withG′ = G. In every iteration that
starts with treeG′, include inQ an arbitrary leafu ∈ HG′ of the heavy tree and removeu and all vertices in
its subtree fromG′. The procedure ends whenr is the only remaining vertex in the heavy tree.

Let us verify that the claimed properties indeed hold. The fact that|Q| = O( logN
ǫ3

) follows from the fact
that at each iteration we remove aG′-heavy vertex including all its subtree from the current treeG′. This
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implies that the total weight of the treeG′ decreases by at leastη in every iteration. Since we only include
one vertex in every iteration we have|Q| ≤ w(V )

η
= O( logN

ǫ3
).

The third property follows from the fact that we always remove a leaf of theG′-heavy tree. Observe
that the connected components ofG[V \ (Q ∪ {r})] are contained in the subtrees we disconnect in every
iteration in the construction ofQ. By definition ofG′-heavy leaves, in any such iteration where aG′-heavy
leafu is removed from the tree, these parts have weight at leastη, but any subtree rooted at any descendant
of u has weight strictly smaller thanη (otherwise this descendant would beG′-heavy as well, contradicting
the assumption that it has aG′-heavy leafu as an ancestor). Now, sinceu is included inQ, the connected
components are exactly these subtrees, so the property indeed holds.

To constructQ and conclude the proof it remains to include inQ all remaining nodes of degree at least
three in the heavy tree. The fact that also all leaves of the heavy tree are included inQ is readily implied
by the construction ofQ, so the second property holds forQ. Clearly, by removing more vertices from the
heavy tree, the sizes of connected components only get smaller, soQ also satisfies the third condition, since
Q already did. Finally, the number of vertices of degree at least three in the heavy tree is strictly less than
the number of its leaves, which isO( logN

ǫ3
); for otherwise a contradiction would occur since the tree would

have an average degree of at least2. This implies that, in total,|Q| = O(logN), so the first property also
holds.

To conclude the proof of the lemma it remains to note that the latter construction can be easily imple-
mented in polynomial time.

6 Missing details forO(1)-approximation for RMFC

This section contains the missing proofs for our12-approximation for RMFC.

Proof of Theorem 12

To prove Theorem12we first show the following result, based on which Theorem12follows quite directly.

Lemma 18. LetB ∈ R≥0, η ∈ (0, 1], k ∈ Z≥1, andℓ1 = ⌊log(k) L⌋, ℓ2 = ⌊log(k−1) L⌋. Letx ∈ PB with
supp(x) ⊆ V(ℓ1,ℓ2] := V>ℓ1 ∩ V≤ℓ2 , and we defineY = {u ∈ Γ | x(Pu) ≥ η}. Then one can efficiently
compute a setR ⊆ V(ℓ1,ℓ2] such that

(i) R ∩ Pu 6= ∅ ∀u ∈ Y , and
(ii) χR ∈ PB′ , whereB̄ = 1

η
B + 1.

We first observe that Lemma18 indeed implies Theorem12.

Proof of Theorem12. Fork = 1, . . . , q, let ℓk1 = ⌊log(k) L⌋ andℓk2 = ⌊log(k−1) L⌋, and we definexk ∈ PB

by xk = x ∧ χ
V
(ℓk

1
,ℓk
2
] . Hence,x =

∑k
k=1 x

k. For eachk ∈ [q], we apply Lemma18 to xk with η = µ
q

to

obtain a setRk ⊆ V(ℓk1 ,ℓ
k
2 ]

satisfying

(i) Rk ∩ Pu 6= ∅ ∀u ∈ Y k = {u ∈ Γ | xk(Pu) ≥ η}, and
(ii) χRk ∈ PB′ , whereB′ := q

µ
B + 1 = 1

η
B + 1 =: B̄.

We claim thatR = ∪q
k=1R

k is a set satisfying the conditions of Theorem12. The setR clearly satisfies

χR ∈ PB′ sinceχRk ∈ PB′ for k ∈ [q] and the setsRk are on disjoint levels. Furthermore, for each
u ∈ W = {v ∈ Γ | x(Pv) ≥ µ} we indeed havePu ∩R 6= ∅ due to the following. Sincex =

∑q
k=1 x

k and
x(Pu) ≥ µ there exists an indexj ∈ [q] such thatxj(Pu) ≥ η = µ

q
, and hencePu ∩R ⊇ Pu ∩Rj 6= ∅.
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Thus, it remains to prove Lemma18.

Proof of Lemma18.
Let B̃ = 1

η
B. We start by determining an optimal vertex solutiony to the linear programmin{z(V \

{r}) | z ∈ Q}, where

Q = {z ∈ PB̃ | z(u) = 0 ∀u ∈ V \ (V(ℓ1,ℓ2] ∪ {r}), z(Pu) ≥ 1 ∀u ∈ Y }.

Notice thatQ 6= ∅ since 1
η
x ∈ Q; hence, the above LP is feasible. Furthermore, notice thaty(Pu) ≤ 1 for

u ∈ Γ; for otherwise, there is a vertexv ∈ supp(y) such thaty(Pv) > 1, and hencey − ǫχ{v} ∈ Q for a
small enoughǫ > 0, violating thaty is anoptimalvertex solution.

Let V L be ally-loose vertices. We will show that the set

R = V L ∪ {u ∈ V \ {r} | y(u) = 1}

fulfills the properties claimed by the lemma. Clearly,R ⊆ V(ℓ1,ℓ2] sincesupp(y) ⊆ V(ℓ1,ℓ2].
To see that condition(i) holds, letu ∈ Y , and notice that we havey(Pu) = 1. Either|Pu ∩ supp(y)| =

1, in which case the single vertexv in Pu ∩ supp(y) satisfiesy(u) = 1 and is thus contained inR; or
|Pu ∩ supp(y)| > 1, in which casePu ∩ V L 6= ∅ which again impliesR ∩ Pu 6= ∅.

To show thatR satisfies(ii) , we have to show thatR does not exceed the budgetB′ · 2ℓ = ( 1
η
B + 1)2ℓ

of any levelℓ ∈ {ℓ1 + 1, . . . , ℓ2}. We have

|R ∩ Vℓ| ≤ y(Vℓ) + |V L| ≤ B̃2ℓ + |V L| = 1

η
B2ℓ + |V L|,

where the second inequality follows fromy ∈ Q. To complete the proof it suffices to show|V L| ≤ 2ℓ.
This follows by a sparsity reasoning analogous to Lemma6 implying that the number ofy-loose vertices is
bounded by the number of tight budget constraints, and thus

|V L| ≤ ℓ2 − ℓ1 ≤ ℓ2 = ⌊log(k−1) L⌋. (8)

Furthermore,

2ℓ ≥ 2ℓ1+1 = 2⌊log
(k) L⌋+1 ≥ 2log

(k) L = log(k−1) L,

which, together with (8), implies|V L| ≤ 2ℓ and thus completes the proof.

Proof of Theorem 13

Let (y,B) be an optimal solution to the RMFC relaxationmin{B | x ∈ P̄B} and leth = ⌊logL⌋. Hence,
B ≤ BOPT. We invoke Theorem12 with respect to the vectory ∧ χV>h andµ = 0.5 to obtain a set
R1 ⊆ V>h satisfying

(i) R1 ∩ Pu 6= ∅ ∀u ∈ W , and
(ii) χR1 ∈ P2B+1,

whereW = {u ∈ Γ | y(Pu ∩ V>h) ≥ 0.5}. Hence,R1 cuts off all leaves inW from the root by only
protecting vertices on levelsV>h and using budget bounded by2B + 1 ≤ 3B ≤ 3max{logL,BOPT}.

We now focus on the leavesΓ \W , which we will cut off from the root by protecting a vertex setR2 ⊆
V≤h feasible for budget3max{logL,BOPT}. Let (z, B̄) be an optimal vertex solution to the following
linear program

min
{

B̄
∣

∣ x ∈ PB̄ , x(Pu) = 1 ∀u ∈ Γ \W
}

. (9)
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First, notice that (9) is feasible forB̄ ≤ 2B. This follows by observing that the vectorq = 2(y ∩ χV≤h)
satisfiesq ∈ P2B sincey ∈ PB . Moreover, foru ∈ Γ \W , we have

q(Pu) = 2y(Pu ∩ V≤h) = 2(1− y(Pu ∩ V>h)) > 1,

where the last inequality follows fromy(Pu ∩ V>h) < 0.5 becauseu ∈ Γ \W . Finally, there exists a vector
q′ < q such thatq′(Pu) = 1 for u ∈ Γ \W . The vectorq′ can be obtained fromq by successively reducing
values on verticesv ∈ supp(q) satisfyingq(Pv) > 1. This shows that(q′, 2B) is a feasible solution to (9)
and hencēB ≤ 2B.

Consider the set of allz-loose verticesV L = {u ∈ supp(z) | z(Pu) < 1}. We define

R2 = V L ∪ {u ∈ supp(z) | z(u) = 1}.
Notice that for eachu ∈ Γ \W , the setR2 contains a vertex on the path fromu to the root. Indeed, either
| supp(z)∩Pu| = 1 in which case there is a vertexv ∈ Pu with z(v) = 1, which is thus contained inR2, or
| supp(z)∩Pu| > 1 in which case the vertexv ∈ supp(z)∩Pu that is closest to the root among all vertices
in supp(z)∩Pu is az-loose vertex. Hence, the setR = R1∪R2 cuts off all leaves from the root. It remains
to show that it is feasible for budget3max{logL,BOPT}.

Using an analogous sparsity reasoning as in Lemma6, we obtain that|V L| is bounded by the number of
tight budget constraints, which is at mosth = ⌊logL⌋ ≤ logL. Hence, for any levelℓ ∈ [h], we have

|R2 ∩ Vℓ| ≤ |V L|+ z(Vℓ)

≤ logL+ 2ℓB̄ ((z, B̄) feasible for (9))

≤ logL+ 2ℓ · (2B) (B̄ ≤ 2B)

≤ 2ℓ · (3max{logL,BOPT}). (B ≤ BOPT)

Thus, bothR1 andR2 are budget-feasible for budget3max{logL,BOPT}, and since they contain vertices
on disjoint levels,R = R1 ∪R2 is feasible for the same budget.

Proof of Lemma 15

To show that the running time ofEnum(∅, ∅, γ̄) is polynomial, we show that there is only a polynomial
number of recursive calls toEnum(A,D, γ). Notice that the number of recursive calls done in one execution
of step4 of the algorithm is equal to2|Fx|. We thus start by upper bounding|Fx| for any solution(x,B) to
LP(A,D) with B < logL. Consider a vertexfu ∈ Fx, whereu ∈ Γ \Wx. Sinceu is a leaf not inWx, we
havex(Pu ∩ V≤h) >

1
3 , and thus

x(Tfu ∩ V≤h) >
1

3
∀fu ∈ Fx.

Because no two vertices ofFx lie on the same leaf-root path the setsTfu ∩ V≤h are all disjoint for different
fu ∈ Fx and hence

1

3
|Fx| <

∑

f∈Fx

x(Tf ∩ V≤h)

≤ x(V≤h) (disjointness of setsTf ∩ V≤h for differentf ∈ Fx)

≤
h
∑

ℓ=1

2ℓB (x satisfies budget constraints ofLP(A,D) )

< 2h+1B

< 2(logL)2. (h = ⌊log(2) L⌋ andB < logL)
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Since the recursion depth is̄γ = 2(logL)2 log(2) L, the number of recursive calls is bounded by

O
(

(2|Fx|)γ̄
)

= (logL)O((logL)2 log(2) L) = 2o(L) = o(N),

thus showing thatEnum(∅, ∅, γ̄) runs in polynomial time.
It remains to show thatEnum(∅, ∅, γ̄) finds a triple satisfying the conditions of Lemma14. For this

we identify a particular execution path of the recursive procedureEnum(∅, ∅, γ̄) that, at any point in the
algorithm, will maintain two disjoint setsA,D ⊆ V≤h that are compatible withOPT, i.e., A ⊆ OPT

andD ∩ OPT = ∅. At the beginning of the algorithm we clearly have compatibility with OPT since
A = D = ∅. To identify the execution path we are interested in, we highlight which recursive call we
want to follow given that we are on the execution path. Hence,consider two disjoint setsA,D ⊆ V≤h that
are compatible withOPT and assume we are within the execution ofEnum(A,D, γ). Let (x,B) be an
optimal solution toLP(A,D). Notice thatB ≤ BOPT ≤ logL, because(A,D) is compatible withOPT.
If OPT ∩ Qx = ∅, then(A,D, x) fulfills the conditions of Lemma14 and we are done. Hence, assume
OPT∩Qx 6= ∅, and letf ∈ Fx be such thatOPT∩Tf ∩V≤h 6= ∅. If f ∈ OPT, then consider the execution
path continuing with the call ofEnum(A ∪ {f},D, γ − 1); otherwise, iff 6∈ OPT, we focus on the call of
Enum(A,D ∪ Pf , γ − 1). Notice that compatibility withOPT is maintained in both cases.

To show that the thus identified execution path ofEnum(∅, ∅, γ̄) indeed leads to a triple satisfying
the conditions of Lemma14, we measure progress as follows. For any pairA,D ⊆ V≤h of disjoint sets
compatible withOPT, we define a potential functionΦ(A,D) ∈ Z≥0 as follows. For eachu ∈ OPT∩V≤h,
let du ∈ Z≥0 be the distance ofu to the first vertex inA ∪ D ∪ {r} when following the uniqueu-r path.
We defineΦ(A,D) =

∑

u∈OPT∩V≤h
du. Notice that as long as we have a triple(A,D, x) on our execution

path that does not satisfy the conditions of Lemma14, then the next triple(A′,D′, x′) on our execution path
satisfiesΦ(A′,D′) < Φ(A,D). Clearly, latest when having a triple(A,D, x) compatible withOPT and
Φ(A,D) = 0, thenOPT∩V≤h = A and we thus correctly guessed all vertices ofOPT∩V≤h implying that
the conditions of Lemma14 are satisfied for the triple(A,D, x). SinceΦ(A,D) ≥ 0 for any compatible
setsA andD, this implies that a triple satisfying the conditions of Lemma 14 will be encountered if the
recursion depth̄γ is at leastΦ(∅, ∅). To evaluateΦ(∅, ∅) we have to compute the sum of the distances of all
verticesu ∈ OPT ∩ V≤h to the root. The distance ofu to the root is at mosth sinceu ∈ V≤h. Moreover,
|OPT ∩ V≤h| < 2h+1BOPT due to the budget constraints. Hence,

Φ(∅, ∅) < h · 2h+1 ·BOPT

≤ 2 log(2) L · (logL)2 (h = ⌊log(2) L⌋ andBOPT ≤ logL)

= γ̄,

implying that a triple fulfilling the conditions of Lemma14 is encountered byEnum(∅, ∅, γ̄).
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A Basic transformations for the Firefighter problem

In this section we provide some basic transformations showing how different natural variations of the Fire-
fighter problem can be reduced to each other. We start by proving Lemma3.

Proof of Lemma3. Consider an instance of the weighted Firefighter problem with general budgets consist-
ing of a treeG = (V,E) of depthL rooted at the vertexr ∈ V , weightsw(u) ∈ Z≥0 for all u ∈ V \{r} and
budgetsBℓ ∈ Z>0 for all ℓ ∈ [L]. We transform the instance into an equivalent instance withunit budgets
by performing the following simple steps for all levelsVℓ for ℓ ∈ [L]:
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• For everyu ∈ Vℓ, subdivide the edge connectingu to its ancestor inG into a path withBℓ edges, by
introducingBℓ − 1 new vertices. Denote the nodes on this path, excluding the ancestor ofu in G, by
Yu.

• Set the weight of all new vertices to zero, while maintainingthe weightw(u) for the original vertex
u.

Denote the resulting tree byG′ = (V ′, E′). To conclude the construction it remains to allow one unit
of budget in every level of the transformed tree. It is easy toverify that feasible solutions to the Firefighter
problem for the two instances are in correspondence. A feasible solution forG is transformed to a solution in
G′ by replacing theBℓ verticesSℓ protected in any levelVℓ of G with anyBℓ vertices on the corresponding
paths{Yu | u ∈ Sℓ} in G′, one in each of theBℓ distinct levels ofG′ that are in correspondence withVℓ.
The opposite transformation selects for every protected vertexu ∈ V ′ in a feasible solution forG′ the vertex
u ∈ V such thatu′ ∈ Yu. It is straightforward to verify that in both transformations the obtained solutions
are feasible and that they have weights identical to the original solutions.

Finally, sinceBℓ ≤ n can be assumed for everyℓ ∈ [L], each one of then− 1 edges inG is subdivided
into a path of length at mostn, thus the number of vertices inG′ is at mostO(n2).

We remark that a construction analogous to the one used in theproof of Lemma3 can be used to show
that RMFC with non-uniform budgets can be reduced to the uniform budget case. In an RMFC instance
with non-uniform budgets, the budget on levelℓ is equal toB · λℓ, whereλℓ ∈ Z>0 for ℓ ∈ [L] are given as
input, and the goal is still to find the minimumB to protect vertices that cut off all leaves from the root and
fulfill the budget constraints.

Next, we show how a weighted instance of the Firefighter problem can be transformed into a unit-weight
one with only an arbitrarily small loss in term of the objective function.

Lemma 19. Let δ > 0 andα ∈ (0, 1]. Any weighted unit-budget Firefighter problem on a treeG = (V,E)
and weightsw(u) ∈ Z≥0 for u ∈ V \ {r} can be transformed efficiently into a polynomial-size unit-weight
unit-budget Firefighter problem on a treeG′ = (V ′, E′) such that anyα-approximate feasible solution for
G′ can be efficiently transformed into a(1− δ)α-approximate solution forG.

Proof. For simplicity we present the transformation in two steps, each losing an arbitrarily small constant
in the objective. First we use a standard scaling and rounding technique to obtain a new weight function
that is bounded by a polynomial in the size of the tree. Concretely, we construct weightsw′(u) ∈ Z≥0 for
u ∈ V \ {r} and an integerD ∈ Z>0 such thatw′(u) = O(n

δ
) for everyu ∈ V and such that for every

S ⊆ V \ {r}:
Dw′(S) ≤ w(S) ≤ Dw′(S) + δ val(OPT),

whereval(OPT) is the optimal solution value inG. We then we use the obtained instance to construct a
unit-weight instance with the desired property.

Let wmax = maxu∈V \{r} w(u) be the maximum weight of any vertex inG. DefineD = δwmax/n
and for everyu ∈ V \ {r} setw′(u) = ⌊w(u)/D⌋. Observe thatval(OPT) ≥ wmax, and hencenD =
δwmax ≤ δ val(OPT). The latter scaling indeed fulfills the desired properties,asw′(u) ≤ n/δ, and for
everyS ⊆ V \ {r} we have

Dw′(S) ≤ w(S) ≤ Dw′(S) +D|S| ≤ Dw′(S) + δ val(OPT).

We show next that the latter transformation looses at most aδ-fraction in the objective function. LetS ⊆
V \ {r} be the vertices saved from the fire in anα-approximate solution forG′. We show thatS is a
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(1 − δ)α-approximate solution forG. Let S∗ ⊆ V \ {r} be the vertices saved in an optimal solution for
G. ThenDw′(S∗) + δ val(OPT) ≥ w(S∗) = val(OPT), implying thatDw′(S∗) ≥ (1− δ) val(OPT). We
conclude:

(1− δ) val(OPT) ≤ Dw′(S∗) ≤ 1

α
Dw′(S) ≤ 1

α
w(S),

which yieldsw(S) ≥ (1− δ)α val(OPT), as desired.
Next we present the second transformation, which, given a weighted Firefighter problem with treeG =

(V,E) and integer weightsw(u) ∈ Z≥0 bounded byO(n), transforms it into a unit-weight instance on a
new treeG′ = (V ′, E′) by losing an arbitrarily small factorδ > 0 in terms of the weight.

The treeG′ is obtained fromG by taking a copy ofG and attaching2n
αδ
w(u) new leaves to every vertex

u ∈ V \ {r}. For a set of verticesS ⊆ V \ {r} let sv(S) ∈ Z≥0 andsv′(S) ∈ Z≥0 denote the total weight
of vertices saved by protecting the vertices ofS in G andG′, respectively. Recall that the weight of vertices
in G is measured with respect to the functionw, and hencesv(S) = w(∪u∈S Tu), whereas the weight inG′

corresponds to the number of saved vertices, and hencesv′(S) = | ∪u∈S T ′
u|.

Consider a solution that protects a setS ⊆ V ′ \ {r} of vertices inG′. Observe thatV ∩ S is a feasible
set of vertices to protect inG. We can now write

αδ

2n
· sv′(S)− αδ ≤ sv(S ∩ V ) ≤ αδ

2n
· sv′(S),

where the first inequality follows from

sv′(S) = |S \ V |+
∑

u∈V ∩S

2n

αδ
w(Tu) +

∑

u∈V ∩S
|Tu| ≤ 2n+

∑

u∈V ∩S

2n

αδ
w(Tu) = 2n+

2n

αδ
sv(S ∩ V ).

Using the trivial lower boundOPT ≥ 1 on the optimal solution forG one can now conclude the proof
analogously to the first transformation.

Finally, both transformations can be implemented in polynomial time. For the first transformation this
is trivial, while for the second transformation one uses thefact that the input weights are polynomially
bounded, and henceG′ has polynomial size.
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