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Abstract

The Firefighter problem and a variant of it, known as ResoMiremization for Fire Containment
(RMFC), are natural models for optimal inhibition of harigpreading processes. Despite considerable
progress on several fronts, the approximability of thesblems is still badly understood. This is the
case even when the underlying graph is a tree, which is onkeofmost-studied graph structures in
this context and the focus of this paper. In their simplessiom, a fire spreads from one fixed vertex
step by step from burning to adjacent non-burning vertiaed, at each time steB-many non-burning
vertices can be protected from catching fire. The Firefighteblem asks, for a give®, to maximize
the number of vertices that will not catch fire, whereas RMB@ 4 tree) asks to find the smallg3t
which allows for saving all leaves of the tree. Prior to thisrky the best known approximation ratios
were anO(1)-approximation for the Firefighter problem and @flog* n)-approximation for RMFC,
both being LP-based and matching the integrality gaps ofistaral LP relaxations.

We improve on both approximations by presenting a PTAS feiRinefighter problem and an(1)-
approximation for RMFC, both qualitatively matching theokm hardness results. Our results are ob-
tained through a combination of the LP with several new tepes, which allow for efficiently enumer-
ating subsets of super-constant size of a good solutiordiaceethe integrality gap of the LPs.

1 Introduction

The Firefighter problem was introduced by Hartn2it]las a natural model for optimal inhibition of harmful
spreading phenomena on a graph. Despite considerabledsnhiarthe problem and progress on several
fronts, our understanding of how well this and related peoid can be approximated is still very limited.
Interestingly, this is even true when the underlying gragpd $panning tree, which is one of the most-studied
graph structures in this context and also the focus of thiepa

The Firefighter problem on trees is defined as follows. We arenga graphG = (V, E') which is
a spanning tree and a vertexe V, calledroot. The problem is defined over discretized time steps. At
time 0, a fire starts at and spreads step by step to neighboring vertices. Duringtdae stepl,2,... an
arbitrary non-burning vertex can beprotected which prevents; from burning in all future time steps. In
its original form, the goal is to find a protection strateggttminimizes the number of vertices that will catch
fire. A closely related problem, calldgesource Minimization for Fire Containment (RMF&) trees, was
introduced by Chalermsook and Chuzh@y. [Here the task is to determine the smallest numBef Z-.q
such that if one can proteél vertices at each time step (instead of jijstthen there is a protection strategy
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such that none of the leaves of the tree will catch fire. Indbistext, one typically refers tB as thenumber
of firefighters

Both the Firefighter problem and RMFC—nboth restricted tedras defined above—are known to be
computationally hard problems. More precisely, Finbownd<iMacGillivray and Rizzi 16] showed NP-
hardness for the Firefighter problem on trees with maximugnekethree. For RMFC on trees, it is NP-hard
to decide whether one firefighter, i.&,= 1, is sufficient R5]; thus, unless P= NP, there is no (efficient)
approximation algorithm with an approximation factoratyi better thar.

On the positive side, several approximation algorithmsehasen suggested for the Firefighter prob-
lem and RMFC. Hartnell and Li23] showed that a natural greedy algorithm i%approximation for the
Firefighter problem. This approximation guarantee wag latgroved by Cai, Verbin and Yand] to
1— % using a natural linear programming (LP) relaxation ancedelent randomized rounding. It was later
observed by Anshelevich, Chakrabarty, Hate and Swakhthpt the Firefighter problem on trees can be
interpreted as a monotone submodular function maximiad&d-M) problem subject to a partition matroid
constraint. This leads to alternative ways to obtaifl a- %)—approximation by using a recefit — %)—
approximation for monotone SFM subject to a matroid con#tf&3, 11]. The factorl — é was later only
improved for various restricted tree topologies (s&§)[and hence, for arbitrary trees, this is the best known
approximation factor to date.

For RMFC on trees, Chalermsook and Chuzh8} gresented arO(log* n)-approximation, where
n = |V is the number of vertices. Their algorithm is based on a natural linear program which is
straightforward adaptation of the one useddhtp get a(1 — %)—approximation for the Firefighter problem
on trees.

Whereas there are still considerable gaps between cuimeaidss results and approximation algorithms
for both the Firefighter problem and RMFC on trees, the ctiydrest approximations essentially match the
integrality gaps of the underlying LPs. More precisely, ltfeused for the Firefighter problem on trees has
an integrality gap of — % + o(n) as shown in§]. For RMFC on trees, the integrality gap of the underlying
LP is©(log* n) [8].

It remained open to what extend these integrality gaps nitgctehe approximation hardnesses of the
problems. This question is motivated by two related proklevhose hardnesses of approximation indeed
matches the above-mentioned integrality gaps for the Bhidi problem and RMFC. In particular, many
versions of monotone SFM subject to a matroid constraintiehvive recall was shown inl] to capture
the Firefigther problem on trees as a special case—are happtoximate up to a factor af— 1/e — e for
any constant > 0. This includes the problem of maximizing an explicitly giveoverage function subject
to a single cardinality constraint, as shown by Feitfg.[ Moreover, as highlighted irg], the Asymmetric
k-center problem is similar in nature to RMFC, and has an agpration hardness dd(log* n).

The goal of this paper is to fill the gap between current agpration ratios and hardness results for the
Firefighter problem and RMFC on trees. In particular, we @néspproximation ratios that nearly match
the hardness results, thus showing that both problems capgyeximated to factors that are substantially
better than the integrality gaps of the natural LPs. Ourltesuie based on several new techniques, which
may be of independent interest.

1.1 Ourresults

Our main results show that both the Firefighter problem andFRMdmit strong approximations that essen-
tially match known hardness bounds, thus implying that Ipotiblems can be approximated well below the
integrality gaps of their natural LPs.

In particular, we obtain the following result for RMFC.

1 log* n denotes the minimum numbeérof logs of base two that have to be nested suchlthglog . . . logn < 1.
N——_————
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Theorem 1. There is al2-approximation for RMFC.

Recalling that RMFC is hard to approximate to a factor betian 2, the above result is optimal up
to a constant factor, and improves on the previously BE$bg" n)-approximation of Chalermsook and
Chuzhoy B].

Moreover, our main result for the Firefighter problem is thlofving, which, in view of NP-hardness
of the problem, is essentially best possible in terms of @apration guarantee.

Theorem 2. There is a PTAS for the Firefighter problem on trées.

Notice that the Firefighter problem does not admit an FPlétSess P= NP since the optimal value of
any Firefighter problem on a tree ofvertices is bounded b@(n).* We introduce several new techniques
that allow us to obtain approximation factors below the grtdity gaps, which have been a barrier for
previous approaches. We start by providing an overview egeitechniques.

Despite the fact that we obtain approximation factors bdlmintegrality gaps, the natural LPs plays a
central role in our approaches. We start by introducing gerieansformations that allow for transforming
the Firefighter problem and RMFC into a more compact and ibstttectured form, only losing small factors
in terms of approximability. These transformations by tkelwes do not decrease the integrality gaps.
However, they allow us to identify small substructures,ravkich we can optimize efficiently, and having
an optimal solution to these subproblems we can define auaddid® with small integrality gap.

Similar high-level approaches, like guessing a constiaettsut important subset of an optimal solution
are well-known in various contexts to decrease integrghtys of natural LPs; the best-known example may
be classic PTASs for the knapsack problem, where the inigggap of the natural LP can be decreased
to an arbitrarily small constant by first guessing a constamhber of heaviest elements of an optimal
solution. However, our approach differs substantiallynfrthis standard enumeration idea. Apart from
the above-mentioned transformations which, as we will stater, already lead to new results for both
RMFC and the Firefighter problem, we will introduce new conalborial approaches to gain information
about asuper-constansubset of an optimal solution. In particular, for the RMF@ldem we define a
recursive enumeration algorithm which, despite being gw for enumerating all solutions, can be shown
to reach a good subsolution within a small recursion depdlh ¢hn be reached in polynomial time. For
the Firefighter problem, we use a well-chosen enumerationgolure to identify a polynomial number of
additional constraints to be added to the LP, that decréagaegrality gap down td + .

1.2 Further related results

Iwaikawa, Kamiyama and Matsuk4] showed that the approximation guaranted of % can be improved
for some restricted families of trees. The best approxionagiuarantee the authors proveéig144 for trees
with maximum degred. Anshelevich, Chakrabarty, Hate and Swarhlstudied the approximability of the
Firefighter problem in general graphs, which they prove #&imin' —¢-approximation for any > 0, unless
P=NP. In a different model, where the protection also sprelaasigh the graph (th8preading Mod¢| the
authors show that the problem admits a polynomial- %)-approximation on general graphs. For RMFC
the authors prove the existence @b&,/n)-approximation for general graphs an@8éog n)-approximation
for directed layered graphs. The latter result was obtaimgelpendently by Chalermsook and Chuzh8ly [
Klein, Levcopoulos and Lingaf] introduced a geometric variant of the Firefighter problgmved its

2A polynomial time approximation scheme (PTAS) is an aldwritthat, for any constart > 0, returns in polynomial time a
(1 — €)-approximate solution.

3An FPTAS is a PTAS with running time polynomial in the inpuztes'and%.

4 The nonexistence of FPTASs unless=PNP can often be derived easily from strong NP-hardnesscBlthiat the Firefighter
problem is indeed strongly NP-hard because its input siggis), in which case NP-hardness is equivalent to strong NP-leasin



NP-hardness and provided a constant-factor approximatgorithm. The Firefighter problem and RMFC
are natural special cases of the Maximum Coverage ProbléimGvbup Constraints (MCGCY[ and the
Multiple Set Cover problem (MSC)LB], respectively. The input in MCGC is a set system consistihg
finite setX of elements with nonnegative weights, a collection of stshSe= {5, --- , Sk} of X and an
integerk. The sets inS are partitioned into group&, - - - , G;. The goal is to pick a subséf C S of k
sets fromS whose union covers elements of total weight as large aslpessith the additional constraint
that|H N G;| < 1forall j € [I] .= {1,...,l}. In MSC, instead of the fixed bounds for groups and the
parametek;, the goal is to choose a subgétC S that coversX completely, and the goal is to minimize the
max;cp |H N Gj|. The Firefighter problem and RMFC can naturally be integategts special cases of the
latter problems with a laminar set systeém

The Firefighter problem admits polynomial time algorithmsdme restricted classes of graphs. Finbow,
King, MacGillivray and Rizzi L6] showed that, while the problem is NP-hard in trees with mmaxn degree
three, when the fire starts at a vertex with degree two in athhibtree, the problem is solvable in polynomial
time. Fomin, Heggernes and van Leeuw&#] [presented polynomial algorithms for interval graphsijtspl
graphs, permutation graphs afg-free graphs.

Several sub-exponential exact algorithms were developedht Firefighter problem on trees. Cai,
Verbin and Yang §] presented 2°(vV71°87)_time algorithm. Floderus, Lingas and Perssif| presented
a simpler algorithm with a slightly better running time. Asexponential algorithm for general graphs in
the spreading model and a constant-factor approximatighaimar graphs for some sets of parameters were
also presented.

Additional directions of research on the Firefighter prablamclude parameterized complexity (Cali,
Verbin and Yang §], Bazgan, Chopin and Fellow8]} Cygan, Fomin and van Leeuwehd and Bazgan,
Chopin, Cygan, Fellows, Fomin and van Leeuwg}),[generalizations to the case of many initial fires and
many firefighters (Bazgan, Chopin and Ridsdnd Costa, Dantas, Dourado, Penso and Rauteniéph [

Lastly, let us review related work on the closely relatedopem of computing theSurvivability of a
graph. For a grapli and a parametek € Zx, the k-survivability of G is the average fraction of nodes
that one can save with firefighters inGG, when the fire starts at a random node. Cai and Wah@rt
introduced this notion and proved that theurvivability of anyn-node tree id — o(1). The bound for trees
was subsequently improved by Cai, Cheng, Verbin and ZEBhwahd the result was generalized to bounded
treewidth graphs. Other classes of graphs that were stintikatle bounded degree graphs (Prat&i pnd
Pralat BQ)), planar graphs (Esperet, van den Heuvel, Maffray and Sifiri] and Gordinowicz 20]) and
directed graphs (Kong, Zhang and Wagg]).

For further references we refer the reader to the surveyridifdw and MacGillivray 17].

1.3 Organization of the paper

We start by introducing the classic linear programmingxatimns for the Firefighter problem and RMFC in
Section2. In Section3 we outline our main techniques and algorithms. For bresiyne of the proofs and
additional discussion are deferred to later sections, ha®ection4, providing details on a compression
technique that is crucial for both our algorithms, Sectigrcontaining proofs for results related to the
Firefighter problem, and Sectidh containing proofs for results related to RMFC.

Finally, AppendixA contains some basic reductions showing how to reduce elifferariations of the
Firefighter problem to each other.



2 Classic LP relaxations and preliminaries

Interestingly, despite the fact that we obtain approxiorafiactors below the integrality gaps, the natural
LPs play a central role in our approaches. We thus start bgdating these LPs together with some basic
notation and terminology.

Let L € Z>( be thedepthof the tree, i.e., the largest distance—in terms of numbedges—between
r and any other vertex iy. Hence, after at most time steps, the fire spreading process will halt. For
e [L]:={1,...,L}, letV, C V be the set of all vertices of distanéé&om r, which we call the/-th level
of the instance. For brevity, we udé, = uizlvk, and we define in the same spitit.;, V., and V5.
Moreover, we denote by C V the set of all leaves of the tree, and for ang V, the setP, C V' \ {r}
denotes the set of all vertices on the unique path except for the roat.

The relaxation for RMFC used ifg] is the following:

min B
z(P,) > 1 VueT
2(Vey) < Bt Ve e (L] (LPRrurc)
e

wherez(U) := 3, cp z(u) foranyU C V' \ {r}. Indeed, if one enforces € {0,1}"\"} andB € Z

in the above relaxation, an exact description of RMFC is iabth wherex: is the characteristic vector of
the vertices to be protected attlis the number of Firefighters: The constraints?,) > 1 foru € T’
enforce that for each leaf, a vertex between andr will be protected, which makes sure thawill not be
reached by the fire; moreover, the constraintt<,) < B - ¢ for ¢ € [L] describe the vertex sets that can
be protected give® firefighters per time step (seg] for more details). Also, as already highlighted #),[
there is an optimal solution to RMFC (and also the Firefigpteblem), that protects with the firefighters
available at time step only vertices inV,. Hence, the above relaxation can be transformed into orfe wit
same optimal objective value by replacing the constrairiié<,) < B - ¢ V¢ € [L] by the constraints
x(Vy) < B Ve [L].

The natural LP relaxation for the Firefighter problem, whiehds to the currently begt — 1/e)-
approximation presented 6]} is obtained analogously. Due to higher generality, arehewore impor-
tantly to obtain more flexibility in reductions to be defineder, we work on a slight generalization of the
Firefighter problem on trees, extending it in two ways:

() Weighted version: vertices € V' \ {r} have weightsav(u) € Z>(, and the goal is to maximize the
total weight of vertices not catching fire. In the classicaéfighter problem all weights are one.
(i) General budgets/firefighters: We allow for having a&lént number of Firefighters at each time step,
say B, € 7~ Firefighters for time step € [L].°
Indeed, the above generalizations are mostly for conveaief presentation, since general budgets can be
reduced to unit budgets (see Appendixor a proof):

Lemma 3. Any weighted Firefighter problem on trees withvertices and general budgets can be trans-
formed efficiently into an equivalent weighted Firefighteatglem with unit-budgets an@(n?) vertices.

We also show in AppendiA that up to an arbitrarily small error in terms of objectivayaveighted
Firefighter instance can be reduced to a unit-weighted onehht follows, we always assume to deal with
a weighted Firefighter instance if not specified otherwisegd®ding the budgets, we will be explicit about
whether we work with unit or general budgets, since somenigales are easier to explain in the unit-budget
case, even though it is equivalent to general budgets by l&eBnm

Swithout loss of generality we excludg, = 0, since a level with zero budget can be eliminated througimalsi contraction
operation. For more details we refer to the proof of Theodamhich, as a sub-step, eliminates zero-budget levels.



An immediate extension of the LP relaxation for the unitgied unit-budget Firefighter problem used
in [6]—which in turn is based on an IP formulation presentedi#{leads to the following LP relaxation
for the weighted Firefighter problem with general budgets. «F¢ V', we denote by}, C V the set of all
vertices in the subtree starting@atand includingu, i.e., all verticesv such that the unigue-v path inG
containsu.

B
S
A

1 Vuel

¢ P
2(Ve) < OB Ve [L] (LPrer)
i=1

A

The budget constraints are identical to RMFC, with the diifee that the budge?, depends on the levél
The constraints(P,) < 1 exclude redundancies, i.e., a verteis forbidden of being protected if another
vertex above it, on the-u path, is already protected. This elimination of redundes@illows for writing
the objective function as shown above.

We recall that the integrality gap @fPryrpc was shown to b&(log* n) [8], and the integrality gap
of LPpr is asymptoticallyl — 1/e (whenn — oo) [6].

Throughout the paper, all logarithms are ba#aot indicated otherwise. When using bigqand related
notations (likeQ?, ©, . ..), we will always be explicit about the dependence on smaliréermse—as used
when talking about1 — ¢)-approximations—and not consider it to be part of the hidctemstant. To make
statements whereis part of the hidden constant, we will use the notatiarand likewisef),, ©., . . ..

3 Overview of techniques and algorithms

In this section, we present our main technical contribiiand outline our algorithms. We start by in-
troducing a compression technique in SectBhthat works for both RMFC and the Firefighter problem
and allows for transforming any instance to one on a tree wiitly logarithmic depth. One key property
we achieve with compression, is that we can later use (haetrumeration techniques with exponential
running time in the depth of the tree. However, compressidtsiown already leads to interesting results.
In particular, it allows us to obtain a QPTAS for the Firefighproblem, and a quasipolynomial tirge
approximation for RMFC. However, it seems highly non-trivial to transform thesesipalynomial time
procedures to efficient ones.

To obtain the claimed results, we develop two (partial) eeration methods to reduce the integrality
gap of the LP together with further techniques. In Sec8dtwe provide an overview of our PTAS for the
Firefighter problem, and Sectiéh3 presents ou€(1)-approximation for RMFC.

3.1 Compression

Compression is a technique that is applicable to both thefigiter problem and RMFC. It allows for
reducing the depth of the input tree at a very small loss irotijective. We start by discussing compression
in the context of the Firefighter problem.

To reduce the depth of the tree, we will first do a sequence aftwie calldown-pushesEach down-
push acts on two level§, /5 € [L] with ¢; < /5 of the tree, and moves the budgst, of level ¢; down

®The running time of an algorithm uasipolynomialf it is of the form 2relee((input) "where(input) is the input size of the
problem. A QPTAS is an algorithm that, for any constant 0, returns g1 — €)-approximation in quasipolynomial time.
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to /5, i.e., the new budget of levé} will be B, + By,, and the new budget of levé] will be 0. Clearly,
down-pushes only restrict our options for protecting wexti However, we can show that one can do a
sequence of down-pushes such that first, the optimal olgeesilue of the new instance is very close to the
one of the original instance, and second, ofljlog L) levels have non-zero budgets. Finally, levels with
0-budget can easily be removed through a simple contracpenation, thus leading to a new instance with
only O(log L) depth.

Theoremd below formalizes our main compression result for the Firg@gproblem, which we state for
unit-budget Firefighter instances for simplicity. Sincerlraa3 implies that every general-budget Firefighter
instance withn vertices can be transformed into a unit-budget Firefigingiaince wittO (n?) vertices—and
thusO(n?) levels—Theorend can also be used to reduce any Firefighter instance wtices to one with
O(1°§") levels, by losing a factor of — § in terms of objective.

Theorem 4. LetZ be a unit-budget Firefighter instance on a tree with depffand letj € (0,1). Then one
can efficiently construct a general budget Firefighter ins&Z with depthL’ = O(1°§L), and such that the
following holds, whereal(OPT(Z)) andval(OPT(Z)) are the optimal values & andZ, respectively.

(i) val(OPT(Z)) > (1 — 4) val(OPT(Z)), and

(i) any solution toZ can be transformed efficiently into a solutionZofvith same objective value.

For RMFC we can use a very similar compression techniquerigad the following.

Theorem 5. Let G = (V, E) be a rooted tree of depth. Then one can construct efficiently a rooted tree
G' = (V', E") with |[V’| < |V| and depthL’ = O(log L), such that:
(i) If the RMFC problem ori has a solution with budge® € Z- ( at each level, then the RMFC problem
on G’ with non-uniform budgets, where level 1 has a budget o3, = 2¢ - B, has a solution.
(i) Any solution to the RMFC problem af’, where level has budgeB, = 2¢ - B, can be transformed
efficiently into an RMFC solution fag with budget2B.

Interestingly, the above compression results alreadyval®to obtain strong quasipolynomial approx-
imation algorithms for the Firefighter problem and RMFC,ngsdynamic programming. Consider for
example the RMFC problem. We can first guess the optimal iubgerhich can be done efficiently since
B € {1,...,n}. Consider now the instana@ claimed by Theorens with budgetsB, = 2B. By Theo-
rem5 this RMFC instance is feasible and any solution to it can beexed to one of the original RMFC
problem with budge2B. Itis not hard to see that, for the fixed budg®ls one can solve the RMFC problem
on G’ in quasipolynomial time using a bottom-up dynamic prograngnapproach. More precisely, starting
with the leaves and moving up to the root, we compute for eactexu € V' the following table. Consider
a subset of the available budgets, which can be represestadiectorg € [B;] x --- x [Br/]. For each
such vector; we want to know whether or not using the sub-budget descthigedallows for disconnecting
u from all leaves below it. Sincé&’ = O(log L) and the size of each budg8y is at most the number of
vertices, the table size is quasipolynomial. Moreover, care check that these tables can be constructed
bottom-up in quasipolynomial time. Hence, this approaelissto a quasipolynomial timkapproximation
for RMFC, which is best possible in terms of approximatiotioranless P= NP as mentioned previously.

A similar dynamic programming approach for the Firefightesjpem on a compressed instance leads to a
QPTAS.

However, our focus is on efficient algorithms, and it seemstnioial to transform the above quasipoly-
nomial time dynamic programming approaches into efficitgar@thms. To obtain our results, we therefore
combine the above compression techniques with differemtcgehes to be discussed next.



3.2 Overview of PTAS for Firefighter problem

Despite the fact thal.Ppr has a large integrality gap—which can be shown to be the came after
compression—it is a crucial tool in our PTAS.

We start by observing that for any vertex solution solutioa RV\{"} to LPpy, there is a small subset
U of vertices of size at most the depth of the tree, such thataneesasily get an integral solution whose
objective value differs from the LP-value ofby at most the LP-contribution @f, which is}_ ., w(T},).
We will then introduce approaches to limit the LP-contribntof vertices inlJ.

Consider a general-budget Firefighter instance, and let a vertex solution tb.Prrp. We say that a
vertexu € V'\ {r} is z-loose or simplyloose if v € supp(z) := {v € V\{r} | (v) > 0} andz(P,) < 1.
Analogously, we call a vertex € V' \ {r} x-tight, or simplytight, if « € supp(z) andz(P,) = 1. Hence,
supp(z) can be partitioned intsupp(z) = VXU V7T, whereV* andV7 are the set of all loose and tight
vertices, respectively.

Lemma 6. Let z be a vertex solution t&.Pryr for a Firefighter problem with general budgets. Then the
number ofr-loose vertices is at modt, the depth of the tree.

We observe next that to obtain a $étwith the above-claimed properties, one can chddse: V~.
Having a vertex solution to LPrr, we can consider a simplified LP obtained fromrg by only allowing
to protect vertices that aretight. A simple yet useful property af-tight vertices is that for any,v € V7
with v # v we haveu ¢ P,. Indeed, ifu € P,, thenz(P,) < z(P,) — z(v) < z(P,) = 1 because
z(v) > 0. Hence, no two tight vertices lie on the same leaf-root pathus, when restricting.Prr to
VT, the path constraints(P,) < 1 for u € T transform into trivial constraints requiring(v) < 1 for
v € V7, and one can easily observe that the resulting constragemsyis totally unimodular because it
describes a laminar matroid constraint given by the budgestcaints (see3R, Volume B] for more details
on matroid optimization). Re-optimizing over this LP we geatintegral solution of objective value at least
> wev\{r} Tuw(Tu) = 3 eve 2w (Ty), because the restriction ofto V7 is still feasible for the new LP.

In particular, ify ", i - z,w(T3,) was at most - val(OPT), whereval(OPT) is the optimal value of
the instance, then this would lead to a PTAS. Clearly, thisoistrue in general, since it would contradict
the (1 — %)—integrality gap ofLPgr. Thus, in the following, we will present techniques to lirtkie impact
of the term}_ .y c z,w(T,). Notice that when we work with a compressed instance, by ifistking

Theorem4, we have|V 4| = O(logeN), whereN is the number of vertices in the original instance. Hence,
a PTAS would be achieved if for all € V*, we hadw(T,) = @(%) - val(OPT). One way to achieve
this in quasipolynomial time is to first guess a subse&)()@) many vertices of an optimal solution with
highest impact, i.e., among all verticese OPT we guess those with largest(7,,). This techniques has
been used in various other settings (see for exan3dle?fl] for further details) and leads to another QPTAS
for the Firefighter problem. Again, it is unclear how this @¥STcould be turned into an efficient procedure.

The above discussion motivates to investigate vertices V' \ {r} with w(T,,) > n for somen =
@(ﬁ) val(OPT). We call such verticebeavy later, we will provide an explicit definition of that does
not depend on the unknowrl(OPT) and is explicit about the hidden constant. [Eet= {u € V' \ {r} |
w(u) > n} be the set of all heavy vertices. Observe ak U {r}]—i.e., the induced subgraph 6f over
the vertices U {r}—is a subtree of7, which we call theheavy tree

Recall that by the above discussion, if we work on a comptesstance withl, = O(logeN) levels, and
if an optimal vertex solution t&.Prr has no loose vertices that are heavy, then an integral aolaéin be
obtained being at most a factor bf- ¢ off the LP value. Hence, if we were able to guess the heavyjcesrt
contained in an optimal solution, the integrality gap of teéuced problem would be small since no heavy
vertices are left in the LP, and can thus not be loose anymore.

Whereas there are too many options to enumerate over albfossibsets of heavy vertices that an
optimal solution may contain, we will do a coarser enumeratMore precisely, we will partition the heavy
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vertices intoO, (log V) subpaths and guess for each subpath whether it containtea weOPT. For this to
work out we need that the heavy tree has a very simple toppiogarticular, it should only hav@, (log V)
leaves. Whereas this does not hold in general, we can entdogea further transformation making sure
thatOPT saves a constant-fraction of V') which—as we will observe next—indeed limits the number of
leaves of the heavy tree @ (log V). Furthermore, this transformation is useful to completed®iinition

of heavy vertices by explicitly defining the threshajd

Lemma 7. LetZ be a general-budget Firefighter instance on a téée= (V, E') with weightsw. Then for
any A € Z>1, one can efficiently construct a new Firefighter instaficen a subtreei’ = (V', E') of G
with same budgets, by starting frafrand applying node deletions and weight reductions, such tha

(i) val(OPT(Z)) > (1 — %) val(OPT(Z)), and

(i) val(OPT(Z)) > +w'(V’), wherew' < w are the vertex weights in instane
The deletion of, € V' corresponds to removing the whole subtree beloirom G, i.e., all vertices inl’,.

Since Lemmé constructs a new instance using only node deletions andiuweiductions, any solution
to the new instance is also a solution to the original in&arfat least the same objective value.

Our PTAS for the Firefighter problem first applies the comgi@s Theorem? with § = ¢/3 and then
Lemma? with A = (%1 to obtain a general budget Firefighter instance on adtee(V, ). We summarize
the properties of this new instanéé= (V, E) below. As before, to avoid confusion, we denote/¥ythe
number of vertices of the original instance.

Property 8.
(i) The depthl of G satisfiesL. = O(*2X),
(i) val(OPT) > [2]7 1w (V) > Lew(V).
(iii) The optimal valueval(OPT) of the new instance is at least(a — %e)-fraction of the optimal value
of the original instance.
(iv) Any solution to the new instance can be transformedefiiy into a solution of the original instance
of at least the same value.

Hence, to obtain a PTAS for the original instance, it suffie®btain, for anye > 0, a (1 — §)-
approximation for an instance satisfying Propedtyin what follows, we assume to work with an instance
satisfying Property and show that this is possible.

Due to the lower bound oral(OPT) provided by Property8, we now define the thresholgd =
O (155w ) val(OPT) in terms ofw (V') by

which implies that we can afford losing times a weight of;, which will sum up to a total loss of at most
Le?w(V) < feval(OPT), where the inequality is due to Propefty

Consider again the heavy trégH U{r}]. Due to Propertgits topology is quite simple. More precisely,
the heavy tree has onty(long) leaves. Indeed, each leafc H of the heavy tree fulfillsv(7,,) > n, and
two different leaves.;, us € H satisfyT,,, N T, = 0; since the total weight of the treeds(V'), the heavy
tree has at most2L/e? = O(*%2~) many leaves.

In the next step, we define a well-chosen small sulsetf heavy vertices whose removal (together
with ) from G will break GG into components of weight at mogt Simultaneously, we choosg such that
removing it together withr from the heavy tree breaks it into paths, over which we wilbicenumeration

later.

Lemma 9. One can efficiently determine a €2tC H satisfying the following.

9



() 1Ql = O(*&™).
(i) @ contains all leaves and all vertices of degree at letast the heavy tree, except for the root
(i) Removing@ U {r} from G leads to a graptG[V \ (Q U {r})] where each connected component has
vertices whose weight sums up to at mpst

For each vertey < Q, let H, C H be all vertices that are visited when traversing the gattrom ¢
to r until (but not including) the next vertex i) U {r}. Hence,H, is a subpath of the heavy tree such that
H, N Q = {q}, which we call for brevity &)-path Moreover the set of ali)-paths partitiond{.

We use an enumeration procedure to determine on wQiglaths to protect a vertex. Sin¢g-paths
are subpaths of leaf-root paths, we can assume that at mesteotex is protected in each-path. Our
algorithm enumerates over &lI?! possible subset§ C Q, whereZ represents thé)-paths on which we
will protect a vertex. Incorporating this guess iitBrr, we get the following linear programPrr(Z2):

max Z ryw(Ty)

ueV\{r}
z(P) < 1 Vuel
l
x(Ver) < ) B Ve e [L] (LPpr(Z))
sy = 1 Vo € 2
z(Hy) = 0 VgeQ\Z

r € Rgs{”.
We start with a simple observation regardinBrr(2).

Lemma 10. The polytope over whichPrr(Z) optimizes is a face of the polytope describing the feasible
region of LPpp. Consequently, any vertex solutionld?rr(7) is a vertex solution of.Pgp.

Proof. The statement immediately follows by observing that for amy Q, the inequalities:(H,) < 1 and
xz(Hy) > 0 are valid inequalities fol.Prr. Notice thatr(H,) < 1 is a valid inequality fol.Prr because
H, is a subpath of a leaf-root path, and the load on any leafpatht is limited tol in LPgp. O

Analogously td.Prr we define loose and tight vertices for a solutiof.iorr(Z). A crucial implication
of Lemmal0is that Lemméb also applies to any vertex solution bPpr (7).

We will show in the following that for the right séf C @, LPrr(Z) has a small integrality gap and we
can easily get a nearly optimal integral solution. A key ota#on in the analysis of our algorithm is that
we can now limit the impact of loose vertices. More precisaty loose vertex outside of the heavy tree has
LP contribution at mosy by definition of the heavy tree. Furthermore, for each loastexw on the heavy
tree, which lies on som@-path H,, its loadz(u) can be redistributed on the tight vertex éf. Such a
redistribution will have low impact due to our choice@f

We are now ready to state odr — £)-approximation for an instance satisfying Prope8tywhich, as
discussed, implies a PTAS for the Firefighter problem. Atpan 1 describes oufl — £)-approximation.

The following statement completes the proof of Theozm

Theorem 11. For any general-budget Firefighter instance satisfying gty 8, Algorithm 1 computes
efficiently a feasible set of verticésC V' \ {r} to protect that is &1 — 5)-approximation.

Proof. First observe that the linear program solved in teyll indeed lead to a characteristic vector with
only {0, 1}-components. This is the case since no twtight vertices can lie on the same leaf-root path.
Hence, as discussed previously, the linear progidtay restricted to variables corresponding#d is
totally unimodular; indeed, the leaf-root path constmintP,) < 1 for v € T reduce toz(v) < 1 for

10



Algorithm 1: A (1 §)-approximation for a general-budget Firefighter instaratesfying Property8.

2

1. Determine heavy verticed = {u € V | w(T,) > n}, wheren = L <w(V).
2. Compute) C H using Lemme®.

3. For eachZ C @, obtain an optimal vertex solution iaPrr(2). Let Z* C @ be a set for which
the optimal value of.Prr(Z*) is largest among all subsets@f and letz be an optimal vertex
solution toLPypr(Z*).

4. LetV7 be thez-tight vertices. Obtain an optimal vertex solutionltByr restricted to variables
corresponding to vertices i’ . The solution will be &0, 1}-vector, being the characteristic
vector of a set/ C V7 which we return.

v € V7T, and the remaining LP corresponds to a linear program ovamankr matroid, reflecting the
budget constraints. Moreover, the g&ts clearly budget-feasible since the budget constrai®aforced
by LPpr. Also, Algorithm 1 runs in polynomial time becaus®| = O(*%~) by Lemma9 and hence, the

number of subsets @ is bounded bWO(e%).

It remains to show that’ is a(1 — §)-approximation. LeOPT be an optimal solution to the considered
Firefighter instance with valueal(OPT). Observe first that the value* of LPrr(Z*) satisfiesy* >
val(OPT), because one of the séfsC () corresponds tOPT, namelyZ = {q € Q | H,NOPT # 0}, and
for this Z the characteristic vectoy®"T € {0,1}V\"} of OPT is feasible for.Prr(Z). We complete the
proof of Theoreni 1 by showing that the valueal(U) of U satisfiesval(U) > (1 — 5)v*. For this we show
how to transform an optimal solutian of LPryr(Z*) into a solutiony to LPrr(Z*) with supp(y) € V7
and such that the objective valuel(y) of y satisfiesval(y) > (1 — §)v*.

Let V£ C supp(z) be the set ofr-loose vertices, and lgif be all heavy vertices, as usual. To obtain
y, we start withy = = and first sety(u) = 0 for eachu € V*\ H. Moreover, for each. € V* N H we
do the following. Being part of the heavy vertices and fulfdl z(u) > 0, the vertexu lies on some)-path
H,, for somegq, € Z*. Becauser(H,,) = 1, there is a tight vertex € H,,. We move they-value from
vertexu to vertexv, i.e.,y(v) = y(v) + y(u) andy(u) = 0. This finishes the construction ¢f Notice that
y is feasible forl.Prr(Z*), because it was obtained frarmby reducing values and moving values to lower
levels.

To upper bound the reduction of the LP-value when transfogmiinto ¢, we show that the modification
done for each loose vertex € V% decreased the LP-value by at mastClearly, for eachy, € V* \ H,
sinceu is not heavy we have(T,,) < n; thus settingy(u) = 0 will have an impact of at most on the LP
value. Similarly, foru € VX N H, moving they-value ofu to ¢, decreases the LP objective value by

y(u) - (w(Ty) —w(Ty,)) < w(Ty) —w(Ty,) = w(Ty \Ty,) <n,

where the last inequality follows by observing that\ 7}, are vertices in the same connected component
of G[V '\ (Q U {r})], and thus have a total weight of at mgsty Lemma9.

Hence,val(z) — val(y) < |V¥|-n < L -n, where the second inequality follows by PropestyThis
completes the proof by observing that*| < L by Lemmas, and thus

val(y) = val(x) + (val(y) — val(z)) > val(OPT) 4 val(y) — val(xz) > val(OPT) — L - ¢

— val(OPT) — 1—1262 (V) > <1 - %) val(OPT),
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where the last inequality is due to Propesty

3.3 Overview ofO(1)-approximation for RMFC

Also our O(1)-approximation for RMFC uses the natural LP, i&r\rc, as a crucial tool to guide the
algorithm. Throughout this section we will work on a compeginstancé&’ = (V, E) of RMFC, obtained
through Theorend. Hence, the number of levels Is = O(log N), whereN is the number of vertices of
the original instance. Furthermore, the budget on lével [L] is given by B, = 2B. The advantage of
working with a compressed instance for RMFC is twofold. tivee will again apply sparsity reasonings
to limit in certain settings the number of loose (badly stnoed) vertices by the number of levels of the
instance. Second, the fact that low levels—i.e., levelseay from the root—have high budget, will allow
us to protect a large number of loose vertices by only inéngaB8 by a constant.

For simplicity, we work with a slight variation diPr\rc, where we replace, fof € [L], the budget
constraintse(V<y) < S°_, B; by 2(V;) < By. For brevity, we define

Py = {x eRY  a(vi) < B-2f wre [L]} .

As previously mentioned (and shown i8l), the resulting LP is equivalent toPryrc. Furthermore, since
the budgetB for a feasible RMFC solution has to be chosen integral, weire@ > 1. Hence, the resulting
linear relaxation asks to find the minimuBh> 1 such that the following polytope is non-empty:

Py :PBm{xeRgg{” ‘ 2(P) > 1 vuer}.

We start by discussing approaches to partially round aifraat pointz € Pg, for some fixed budget
B > 1. First, we can assume thatP,) = 1 for u € I'. Indeed, whenevet(P,) > 1, then one can reduce
the z-values toward the bottom of the paf?) to obtainz(P,) = 1 and maintaining: € Pg. Hence, any
leafu € T is fractionally cut off from the root through the-values onP,. A crucial property we derive
and exploit is that leaves that are cut off frenon mostly low levels, i.e., most of thevalue onP, comes
from vertices far away from the root, can be cut off from thetnda a set of vertices to be protected that are
budget-feasible when increasifjonly by a constant.

To exemplify the above statement, consider the lével |log L] as a threshold to define top levéls
as those with indiceé < h and bottom levels whet> h. For any leafu € T", we patrtition the pattP, into
its top partP, N V<, and its bottom parf>, N V5,;,. Consider all leaves that are mostly cut off in bottom
levels: W = {u € I | x(P, N V~;) > 0.5}. We will show that there is a subset of verticesC V- on
bottom levels to be protected that is feasible for budget 2B + 1 < 3B and cuts off all leaves ifl/
from the root. We provide a brief sketch why this result holisd present a formal proof later. If we set
all entries ofx on top levelsV<, to zero, we get a vectay with supp(y) C V5, such thaty(P,) > 0.5 for
u € W. Hence,2y fractionally cuts off all vertices i/ from the root and is feasible for budgeB. To
increase sparsity, we can replaggeby a vertexz of the polytope

Q= {z e RO | 2(V) <2B -2 Ve [L],2(Vap) = 0,2(P) 2 1 Vu e W} ,

which describes possible ways to cut Bfffrom » only using leveld/s;, and@ is non-empty sincéy € Q.
Exhibiting a sparsity reasoning analogous to the one usethéoFirefighter problem, we can show that
has no more tha. many z-loose vertices. Thus, we can first include alloose vertices in the s&t of
vertices to be protected by increasing the budget of eaa few h by at mostL < 2/+1 < 2, The
remaining vertices isupp(z) are well structures (no two of them lie on the same leaf-r@h) and an
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integral solution can be obtained easily. The new budgetevilB = 2B + 1, where the %1 term pays
for the loose vertices.

The following theorem formalizes the above reasoning ameiggizes it in two ways. First, for a leaf
u € I' to be part ofii/, we required it to have a totatvalue of at leasd.5 within the bottom levels; we will
allow for replacing0.5 by an arbitrary thresholg € (0, 1]. Second, the level defining what is top and
bottom can be chosen to be of the fohm= |log'?) L | for ¢ € Z>o, wherelog? L == loglog . ..log L is
the value obtained by takingmany logs ofL, and by convention we Siiig(o) L := L. The generalization
in terms ofh can be thought of as iterating the above procedure on the Rik§t@nce restricted to,.

Theorem 12. Let B € Rxq, i € (0,1], ¢ € Z>o, andh = [log? L]. Letz € Py with supp(z) C Vo,
and we defindV = {u € T" | (P,) > p}. Then one can efficiently compute a 8eC V-, such that

() RNP,#0 YueW,and
(i) x™ € Pp, whereB' = 1B + 1 andx" € {0, 11V \{r} is the characteristic vector dR.

Theorem12 has several interesting consequences. It immediatelyiesgin LP-based (log* N)-
approximation for RMFC, thus matching the currently begpragimation result by Chalermsook and
Chuzhoy BJ: It suffices to start with an optimal LP solutioB > 1 andz € Py and invoke the above
theorem withy = 1, ¢ = 1 + log™ L. Notice that by definition ofog* we havelog™ L = min{a € Z>¢ |
log® L < 1}; henceh = UongOg*L L] = 0, implying that all levels are bottom levels. Since the in&kg
ity gap of the LP is2(log* N) = Q(log* L), Theorem12 captures the limits of what can be achieved by
techniques based on the standard LP.

Interestingly, Theorem?2 also implies that thé€)(log* L) integrality gap is only due to the top levels of
the instance. More precisely, if, for agy= O(1) andh = |log'? L], one would know what vertices an
optimal solution?* protects within the level¥<;,, then a constant-factor approximation for RMFC follows
easily by solving an LP on the bottom levéls; and using Theorerhi2 with ;» = 1 to round the obtained
solution.

Also, using Theoremi2 it is not hard to find constant-factor approximation alduris for RMFC if
the optimal budgeBopT is large enough, sa > log L.” The main idea is to solve the LP and define
h = |log L|. Leaves that are primarily cut off byon bottom levels can be handled using Theof&mFor
the remaining leaves, which are cut-off mostly on top lewstscan resolve an LP only on the top levéls,
to cut them off. This LP solution is sparse and contains atmas B loose nodes. Hence, all loose vertices
can be selected by increasing the budget by at most B, leading to a well-structured residual problem
for which one can easily find an integral solution. The follogvtheorem summarizes this discussion. A
formal proof for Theoreni3 can be found in Sectio.

Theorem 13. There is an efficient algorithm that computes a feasibletgmiuo a (compressed) instance
of RMFC with budgeB < 3 - max{log L, BopT}.

In what follows, we therefore assunt®pt < log L and present an efficient way to partially enumerate
vertices to be protected on top levels, leading to the cldi®@ )-approximation.

Partial enumeration algorithm

Throughout our algorithm, we set
h = |log® L]

to be the threshold level defining top verticés,, and bottom verticed~ ;. Within our enumeration pro-
cedure we will solve LPs where we explicitly include sometereisetA C V<, to be part of the protected

"Actually, the argument we present in the following works &my B = log*) L. However, we later only need it for
B > log L and thus focus on this case.
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vertices, and also exclude some $&tC V<;, from being protected. Our enumeration works by modi-
fying the sets4 and D throughout the algorithm. We thus define the following LP tfio disjoint sets
A, DC Vgh:

min B
xr € PB
B > 1 (LP(A, D))
z(u) = 1 Yue A
z(u) = 0 Yue D .

Notice thatLP(A,D) is indeed an LP even though the definition i depends onB (but it does so
linearly). Before formally stating our enumeration progex] we briefly discuss the main idea behind it.
Let OPT C V \ {r} be an optimal solution to our (compressed) RMFC instanceesponding to some
budgetBopt € Z>;. We assume without loss of generality ti@aRT does not contain redundancies, i.e.,
there is precisely one vertex OPT on each leaf-root path. Assume that we already guessed sentes v
setA C V., to be protected and a vertex g8t C V<, not to be protected, and that these guesses are
compatible withOPT, i.e.,A C OPT andD N OPT = (.

Let (B, z) be an optimal solution thP(A, D). Because we assume that the sétndD do not conflict
with OPT, we haveB < Bopt becausé Bopt, x°F ") is feasible fol.P(A, D). We define

Wx:{uef

2

to be the set of leaves primarily, i.e., withload at leas. = % cut off from the root within bottom levels.
Foreachu € I'\W,, let f,, € V<, be the vertex closest to the root among all verticeB,im V<, Nsupp(z),
and we define

Fo={fuluel \Ws}\A 1)

Notice that by definition, no two vertices d@f, lie on the same leaf-root path. Furthermore, every leaf
u € W, is part of the subtre&'; for precisely onef € F,. The main motivation for considering is that
to guess vertices in top levels, we only need to focus onoasriiying below some vertex iR, i.e., vertices
in the set(),, = Vgh N (UferTf).

To exemplify this, we first consider the special c&¥eT N Q, = 0, which will also play a central
role later in the analysis of our algorithm. We show that fos tcase we can get an(1)-approximation
to RMFC, even though we may only have guessed a proper sdbseOPT N V<, of the OPT-vertices
within the top levels.

Lemma 14. Let A € OPT N V<, D C Vg, \ OPT be two disjoint sets, and be an optimal so-
lution to LP(A, D), and assume thaDPT N Q, = 0. Moreover, let(y, B) be an optimal solution to
LP(A, V<, \ A). ThenB < 2Bopr.

Furthermore, by applying Theorefi® to y A x">" with u = 1, a set of vertice C V-, is obtained

such thatR U A is a feasible solution to RMFC with respect to the budbeBopt.2

Proof. Notice thatOPT N @, = 0 implies that for each: € T'\ W,, the setOPT contains a vertex
on P, N Vsp. Hence,z = 2(x A x">0) + (xOFT A x">#) satisfiesz(P,) > 1foru € T'andz €
Ps g e, because: A x> € Pgandx®FT € Pg,,,. This implies thatz, 3B + Bopr) is feasible for
LP(A, V<, \ A), and thusB < 2B + Boprt < 5 Bopr, as claimed.

The second part of the lemma follows in a straightforward Wwasn Theoreml2. Observe first that for
each leafu € T, the solutiony either cuts offu from the root only using top levels or only using bottom

8For two vectorsy, b € R™ we denote by: A b € R™ the component-wise minimum afandb.
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levels becausg is a{0, 1}-solution on the top level¥-}, since on top levels it was fixed to*. Hence,
Theoreml2 can indeed be applied gowith . = 1 leading to a seR C V<, that is feasible with respect to
the budgebBopT +1 < 6BopT. FurthermoreA is feasible for budgeBopt because itis a subset OPT.
SinceA C V<, andR C V5, are on disjoint levels, the sé&t U A is feasible for the budgétBop. O

Our final algorithm is based on a recursive enumeration piuresthat computes a polynomial collection
of pairs of disjoint set§A, D) with A C V<, andD C V<, such that there is one pdid, D) in the
collection with a corresponding LP solutianof LP(A, D) satisfying that the triplé A, D, x) fulfills the
conditions of Lemmad4, and thus leading to a constant-factor approximation. @urmneeration algorithm
Enum(A, D, ~) is described below. It contains a parametet Zx( that bounds the recursion depth of the
enumerations.

Enum(A, D,~) : Enumerating triple$A, D, x) to find one satisfying the conditions of Lemrh4
1. Compute optimal solutiofr, B) to LP(A, D).

2. If B > log L: stop. Otherwise, continue with step
3. Add (A, D, z) to the family of triples to be considered.

4. Ifv#£0: /lrecursion depth not yet reached
For u € F,: /l'F, is defined as in (1)

Recursive call t&Enum(A U {u}, D,y — 1).
Recursive call t&Enum (A4, D U P,y — 1).

We can show that only a small recursion deptts needed for the enumeration algorithm to explore a
good triple(A, D, x), which satisfies the conditions of Lemrha

Lemma 15. Lety = 2(log L)2log'® L. The enumeration procedut&num(,?,7) runs in polynomial
time. Furthermore, ifBopt < log L, thenEnum((), ), 5) will encounter a triple(A, D, x) satisfying the
conditions of Lemma4, i.e.,
() ACOPTNVy,
(i) D C V<, \ OPT, and
(i) OPTNQ, =10.

Hence, combining Lemma5 and Lemmal4 completes our enumeration procedure and implies the
following result.

Corollary 16. LetZ be an RMFC instance oh levels on a graphG' = (V, E) with budgetsB, = 2¢ - B.
Then there is a procedure with running time polynomialin returning a solution(Q, B) for Z, where
Q C V\ {r} is a set of vertices to protect that is feasible for budfetsatisfying the following: If the
optimal budgetBopT for Z satisfiesBopt < log L thenB < 6BopT.

Proof. It suffices to runEnum((), (), 7) to first efficiently obtain a family of tripleg A;, D;, z;);, where
A;, D; are disjoint subsets df<;,, andz is an optimal solution td.P(A;, D;). By Lemmal5, one of these
triples satisfies the conditions of Lemrhd (Notice that these conditions cannot be checked sinceutdvo
require knowledge oDPT.) For each tripld A;, D;, x;) we obtain a corresponding solution foffollowing
the construction described in Lemrid. More precisely, we first compute an optimal solutign, B;) to
LP(A;, V<p, \ Aj). Then, by applying Theorerh2 to y; A xV># with . = 1, a set of vertices?; C V-, is
obtained such thaR; U A; is feasible forZ for some budgeB3;. Among all such set®; U A;, we return
the one with minimumB;. Because Lemma5 guarantees that one of the tripled;, D;, x;) satisfies the
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conditions of Lemmad4, we have by Lemma4 that the best protection s@t= R; U A; among allR; U A;
has a budgeB; satisfyingB; < 6 Bopr. O

Summary of our O(1)-approximation for RMFC

Starting with an RMFC instancg&°'& on a tree withIV vertices, we first apply our compression result,
Theoremb, to obtain an RMFC instancg on a graphG = (V, E) with depthL = O(log N'), and non-
uniform budgetsB, = 2¢B for ¢ € [L]. Let Bopt € Z>1 be the optimal budget—i.e., value Bf—for the
instanceZ, and letBJ% be the optimal budget fa**¢. By Theorens, we haveBopr < B3, and any
solution toZ using budgefB can efficiently be transformed into onezglli%r of budget2B.

We now invoke Theoreri3and Corollaryl6. Both guarantee that a solutionZavith certain properties
can be computed efficiently. Among the two solutions derifreth Theorem13 and Corollary16, we
consider the onéQ, B) with lower budgetB, where@) C V' \ {r} is a set of vertices to protect, feasible
for budgetB. If B < log L, then Theoreml3 implies B < 3Bopt, Otherwise Corollaryl6 implies
B < 6Bopt. Hence, in any case we havesapproximation forZ. As mentioned before, Theoreh
implies that the solutioid) can efficiently be transformed into a solution for the oradimstanceZ°"'s that
is feasible with respect to the bud@d® < 12Bopt < 12BJp%, thus implying Theoren.

4 Details on compression results

In this section, we present the proofs for our compressisenli® Theorend and Theorend. We start by
proving Theorenl. The same ideas are used with a slight adaptation in the pfddieoremb.

We call an instanc& obtained from an instanc&by a sequence of down-push operatiorgiah-down
of Z. We prove Theorerd by proving the following result, of which Theoreis an immediate conse-
guence, as we will soon show. Informally, the following thero states that one can efficiently construct a

push-dowrZ with almost no loss in the objective and with om]Mb%L) levels with non-zero budgets.

Theorem 17. LetZ be a unit-budget Firefighter instance with degthand let§ € (0,1). Then one can
efficiently construct a push-dovihof Z such that

(i) val(OPT(Z)) > (1 — 4) val(OPT(Z)), and

(i) Z has nonzero budget on onfy(%2%) levels.
3

Before we prove Theorerh? let us explain how it implies Theoresh Concretely, we will show how
levels of zero budget can be removed through the follovgimgtraction operation Let ¢ € [L] be a level
whose budget is zero. For each vertex V,_; we contract all edges fromto its children and increase the
weightw(u) of v by the sum of the weights of all of its children. Formallyyihas childrervy, ... v, € V,,
the verticesu, vy, . . ., uy are replaced by a single vertexwith weightw(z) = w(u) + Zf’;l w(v;), andz
is adjacent to the parent afand to all children of, . .., v;. One can easily observe that this is an “exact”
transformation in the sense that any solution before thér&ction remains one after contraction and vice
versa (when identifying the vertexin the contracted version with); moreover, solutions before and after
contraction have the same value.

Now, by first applying Theoreml7 and then repeating the latter contraction operations fdeatls
with zero budget, we obtain an equivalent instance with #srdd depth, thus satisfying the conditions of
Theoremd. It remains to prove Theoredy.

Proof of Theoremi7. Consider a unit-budget Firefighter instance on a &ree (V, E) with depthL. The
push-dowriZ that we construct will have nonzero budgets precisely oridh@wing levels£ C [L]:

c:{[(lw)ﬂ ‘je{O,...,{%J}}U{L}.
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For simplicity, let£ = {¢1,..., 6} with 1 < fo < --- < {4 Hencek = O(5.%455) = O(*%E). The
push-dowrZ is obtained by pushing any budget on a level nafidown to the next level irC. Formally,
for i € [k], the budgetB,, at level?; is given byBy, = ¢; — ¢;_, where we sef, = 0. Moreover,B; = 0
for ¢ € [L]\ L. Clearly, the instanc& can be constructed efficiently. Furthermore, the numbee\wsls
with nonzero budget is equal to= O(%) as desired. It remains to show pof{ijtof Theorem17.

To show (i), consider an optimal redundancy-free solutish C V' of Z; hence,val(OPT(Z)) =
> ues- w(T,) and no two vertices o™ lie on the same leaf-root path. We will show that there is aifda
solution.S to Z such thatS C S* and the value of is at least(1 — §) val(OPT(Z)). Notice that since5™*
is redundancy-free, any subset%fis also redundancy-free. Hence, the value of theSgetconstruct will

be equal ty | g w(T,). The setS* being (budget-)feasible faf implies
|S* NV <€ Vle[L] 2

Analogously, a se$ C V is feasible forZ if and only if

l
SNVl <> B Veell]. (3)
=1

Hence, we want to show that there is a Sesatisfying the above system and such that s w(Tu) >
(1 —6)val(OPT(Z)). Notice that in 8), the constraint for any € [L — 1] such thatB;; = 0 is redundant
due to the constraint for levél+ 1 which has the same right-hand side but a larger left-hanel Sithus,
system B) is equivalent to the following system

|Sﬂ V§5i+1_1| <Y Vie [k‘ — 1],

4
1SAV| < L. @)

To show that there is a good sub$e€ S* that satisfies4) we use a polyhedral approach. Observe tBpi(
the constraint system of a laminar matroid (s&& Molume B] for more information on matroids). Hence,
the convex hull of all characteristic vectoxs € {0,1}" of setsS C S* satisfying @) is given by the
following polytope

w(VSgi+1_1) </Y; Vie [k — 1],
P=<{zc0,1)" (V)< L,
x(V\S*)=0
Alternatively, to see thaP’ indeed describes the correct polytope, without relying atraids, one can
observe that its constraint matrix is totally unimodulacdngse it has the consecutive-ones property with

respect to the columns.
Thus there exists a s8tC S* with }°, s w(T,,) > (1 — ) val(OPT(Z)) if and only if

max{ Z z(u) - w(Ty)

ueS*

z € P} > (1 - 6)val(OPT(Z)). (5)

To show ), and thus complete the proof, we show that 115x°" € P. This will indeed imply 6) since
the objective value of satisfies

> wlw) () = - i < val(OPT(T)) > (1 - ) val(OPT(T).

ueS*
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To see thay € P, notice thaty(V \ §*) = 0 andy(V) = 15/5*| < 1L < L, where the first
inequality follows byS* satisfying @) for ¢ = L. Finally, fori € [k — 1], we have

1

1 *
y(VS&-H—l) = 1—_|_5|5 N Vgéi+1—1| < 158

T 5(€z’+1 - 1),

where the first inequality follows fromy* satisfying @) for £ = ¢,,; — 1. It remains to show;;; — 1 <
(14 0)¢; to provey € P. This clearly holds ;11 = ¢; + 1. Thus assumé;,; > ¢; + 2. By our definition
of the levels inC, we havel; ;1 = [(1 + §)] for somea € Zso. Hencel; = [(1 + §)*~1], because for
otherwise (if[(1 + 6)*~1] = [(1 + 6)®]) we would have/; = ;1 — 1, which contradictd; ;1 > ¢; + 2.
We thus obtain

li1—1<(A+0)*<(1+0)[Q+6) ] =1+,

as desired.

We conclude with the proof of Theoreh

Proof of Theoren®. We start by describing the construction@f = (V’, E’). As is the case in the proof
of Theorem4, we first change the budget assignment of the instance ancctheract all levels with zero
budgets. Notice that, for a given budggtper layer, we can consider an RMFC instance as a Firefighter
instance, where each leafe T" has weightw(u) = 1, and all other weights are zero. Since our goal is to
save all leaves, we want to save vertices of total weDht

For simplicity of presentation we assume tlias a power of2. This assumption does not compromise
generality, as one can always augment the original treeami¢hpath starting from the root and going down
to level 2/los L1,

The set of levels in which the transformed instance will haeezero budget is

L={2—1|je{1,...,logL}}.

However, instead of down-pushes we will dp-pushesvere budget is moved upwards. More precisely, the
budget of any levef € [L]\ £ will be assigned to the first level ifi that is abovée, i.e., has a smaller index
than/. As for the Firefighter case, we now remove @&budget levels using contraction, which will lead
to a new weight functions’ on the vertices. Since our goal is to save the weight of thelevinee, we can
remove for each vertex with w’(u) > 0, the subtree below. This does not change the problem since we
have to saves, and thus will anyway also save its subtree. This finishesonstruction o’ = (V', E’),
and the task is again to remove all leaves:6f Notice thatG’ hasL’ < |£| = log L many levels, and level

¢ € [L'] has a budget 0f32¢ as desired. Analogous to the discussion for compressidmeicdntext of the
Firefighter problem we have that if the original problem iadible, then so is the RMFC problem 6
with budgetsB2°¢. Indeed, before performing the contraction operationsdiwto not change the problem),
the original RMFC problem was a push-down of the one we coatsd.

Similarly, one can observe that before contraction, théamse we obtained is itself a push-down of
the original instance with budge®s3 on each level. Hence, analogously to the compression resutie
Firefighter case, any solution to the RMFC problem@rcan efficiently be transformed into a solution to
the original RMFC problem o7 with budget2B on each level.

O

5 Missing details for Firefighter PTAS

In this section we present the missing proofs for our PTASHerFirefighter problem.
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We start by proving Lemm&, showing that any vertex solutianto LPrr has fewz-loose vertices.
More precisely, the proof below shows that the numbes-tfose vertices is upper bounded by the number
of tight budget constraints. The precise same reasonirgjingbe proof of Lemma can also be applied in
further contexts, in particular for the RMFC problem.

Proof of Lemma 6

Let z be a vertex of the polytope defining the feasible seLLBkr. Hence,z is uniquely defined by
|V'\ {r}|-many linearly independent and tight constraints of thiytope. Notice that the tight constraints
can be partitioned into three groups:
(i) Tight nonnegativity constraints, one for each vertein= {u € V \ {r} | z(u) = 0}.

(i) Tight budget constraints, one for each levelia = {¢ € [L] | (V<) = Zle B;}.

(iii) Tight leaf constraints, one for each vertexfy = {u € T | z(P,) = 1}.
Due to potential degeneracies of the polytope describiegfeisible set of.Prr there may be several
options to describe: as the unique solution to a full-rank linear subsystem ofdbestraints described
by F1 U F» U F3. We consider a system that contains all tight nonnegatsatystraints, i.e., constraints
corresponding toF;, and complement these constraints with arbitrary subBgts. 7, and 75 C F3 of
budget and leaf constraints that lead to a full rank lineatesy corresponding to the constraifftgJ F,UF.
Hence

|Fil + [ F| + [ F| = V] - 1. (6)

Let V£ C supp(z) andV7 C supp(z) be thez-loose and:-tight vertices, respectively. We first show
|F4| < |[VT|. For each leaf, € F3, let f, € V7 be the first vertex on the uniqueroot path that is part
of supp(x). In particular, ifu € supp(z) then f, = u. Clearly, f, must be anc-tight vertex because
the path constraint with respect tois tight. Notice that for any distinct vertices;, us € Fj, we must
have f,, # f.,- Assume by sake of contradiction that, = f.,. However, this implieg¢«1 — w2 €
span({x" | v € F1}), sinceP,,AP,, := (Py,, \ Py,) U (Py, \ P,,) € F1, and leads to a contradiction
because we exhibited a linear dependence among the catsteairresponding téF; and F;. Hence,
fuy # fu, Which implies that the map — f,, from F} to VT is injective and thus

75 < V7. (7)
We thus obtain

|supp(z)| = |V| —1—|Fi| (supp(z) consists of alk € V' \ {r} with z(u) # 0, i.e.,u & F1)
= |Fo| + | 73] (by (6)
<RI+ by @),

which leads to the desired result since

VE| = [supp(2)| — V7| < |F| < L.

Proof of Lemma7

Within this proof we focus on protection sets where the btidgailable for any level is spent on the same
level (and not a later one). As discussed, there is alwayptimal protection set with this property.

Let B, € Z> be the budget available at lewek [L] and leth\, = A\B,. We construct the tre€” using
the following greedy procedure. Process the level&/dfom the first one to the last one. At every level
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¢ € [L], pick \, verticesu, - - - ,uﬁl at the/-th level of G greedily, i.e., pick each next vertex such that the
subtree corresponding to that vertex has largest weighhgratbremaining vertices in the level. After each
selection of a vertex the greedy procedure can no longectsaig vertex in the corresponding subtree in
subsequent iteratiorfs.

Now, the tree’ is constructed by deleting froi¥ any vertex that is both not contained in any subtree
T, ., and not contained in any paff, for ¢ € [L] and: € [)\/]. In other words, ifU C V' is the set of all
leaves of(; that were disconnected from the root by the greedy algorithen we consider the subtree of
G induced by the vertices, < P,. Finally, the weights of vertices on the patRs \ {u!} for ¢ € [L] and
i € [\¢] are reduced to zero. This concludes the constructia#’ ef (V/, E’) and the new weight function
w'. Denote byD, = {uf,--- ,uﬁé} the set of vertices chosen by the greedy procedure in lev@bserve
that by construction we have

Z >

UGD(

The latter immediately implies the second clalm, as

val(OPT(Z Z max Zw T)) > w(V)

(L] |S\<Bg ucs

and since no two vertices selected by the greedy proceduom lthe same path to the root. In other words,
the vertices with non-zero weight in the new ti@ecan be partitioned inta disjoint Firefighter solutions
by construction, hence an optimal solution to the Firefigpteblem onG’ covers at least é-fraction of
the total weight of".

It remains to prove that the first claim holds. L&t = S} U --- U S} be the vertices protected in some
optimal solution inG, whereS; C V; are the vertices protected in leve(and hencgsS;| < By). For
distinct verticesu, v € V we say thaw coversv if v € T, \ {u}.

Forl € [L]letl, = S;ND, be the set of vertices protected by the optimal solutionatealso chosen by
the greedy algorithm in levél Furthermore, lef, C S; be the set of vertices of the optimal solution that are
covered by vertices chosen by the greedy algorithm in eatdigations, i.e.J, = 57 N U,ep,u..up,_, Tu-
Finally, let K, = S} \ (I, U Jy) be all other optimal vertices in levél Clearly,S; = I, U J, U K, is a
partition of 7.

Consider a vertex € K, for somef € [L]. From the guarantee of the greedy algorithm it holds that for
every vertexo € D, we havew'(T,) = w(T,) > w(T,). The same does not necessarily hold for covered
vertices. On the other hand, covered vertices are contaméd with their original weights. We exploit
these two properties to prove the existence of a soluti@r iof almost the same weight &5.

To prove the existence of a good solution we construct aisolut = A; U--- U Ap with A, C V,
and|A,| < B, randomly, and prove a bound on its expected quality. We gotee levels of the tre@’
top-down to constructd step by step. This clearly does not compromise generaligcaRthat we only
need to prove the existence of a good solution, and not caripefficiently. We can hence assume the
knowledge ofS* in the construction ofl. To this end assume that all levéls< ¢ were already processed,
and the corresponding setls: were constructed. The sdy is constructed as follows:

1. Include in4;, all vertices ini,.

2. Include inAy all vertices inJ, that are not covered by verticesih U --- U A,_ (vertices selected
so far).

® For A = 1 this procedure produces a set of vertices, which compri§eapproximation for the Firefighter problem, as it
coincides with the greedy algorithm of Hartnell and 28[.
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3. Include in4, auniformly random subsetdf | K| vertices fromD, \ I,.

It is easy to verify that the latter algorithm returns a redlmcy-free solution, as no two chosen vertices
in A lie on the same path to the root. Next, we show that the exgeeteght of vertices saved hy is
at least(1 — 1) val(OPT(Z)), which will prove our claim, since then at least one soluti@s the desired
quality.

Since we only need a bound on the expectation we can focus iigla tevel? € [L] and show that
the contribution of vertices i, is in expectation at leadt — % times the contribution of the vertices in
S;. Observe that the vertices i are contained both i and in A,, hence it suffices to show that the
contribution ofA,\ I, is at leastl — % times the contribution af \ 1, in expectation. Also, recall that every
vertex inD, contributes at least as much as any verteKjnby the greedy selection rule. It follows that the
| K,| randomly selected vertices ity have at least as much contribution as the verticds,inConsequently,
to prove the claim is suffices to bound the expected contabuif vertices in4, N J, with respect to the
contribution ofJ,. SinceA, N J, C J, it suffices to show that every vertexc .J, is also present ial, with
probability at least — 1.

To bound the latter probability we make use of the randomagsoin the construction o as follows.
Let ¢ < ¢ be the level at which for some € D, it holds thatu € T,,. In other words/’ is the level that
contains the ancestor afthat was chosen by the greedy constructiorizaf Now, sinceS* is an efficient
solution, and by the way that is constructed it holds thatif ¢ A, thenw € Ay, namely ifu is covered,
it can only be covered by the unique ancestoof u that was chosen in the greedy constructionGbf
Furthermore, in such a case the vertexvas selected randomly in the third step of t¢h iteration. Put
differently, the probability that the vertaxis covered is exactly the probability that its ancestds chosen
randomly to be part ofi,,. Since these vertices are chosen to be a random subd€} pfertices from the
setDy \ Iy, this probability is at most

Kol Ky
|Degr| = |1p|  ABy — |Ip|

1
< N
A
where the last inequality follows frond<y| + |I,r| < By. This implies that, € A, with probability of at

leastl — % as required and concludes the proof of the lemma.
O

Proof of Lemma9

We construct the s&p in two phases as follows. First we construct a@e€ H of vertices fulfilling the
first and the third properties, i.e., it will satisf@| = O(loeg;,N), as well as the property that[V \ Q U {r}]
has connected components each of weight at mo§hen, we add td) all vertices ofH of degree at least
three to arrive at the final sél.

It will be convenient to define heavy vertices and heavy tritk mespect to any subtreg’ = (V', E)
of G which contains the roaot. Concretely, we definélo: = {u € V' \ {r} | w(T)) > n} to be the set of
G'-heavy vertices. Thé&'-heavy tree is the subtre® [H U {r}] of G’. Observe that/ = H; and that
Hq C H for every subtreé&y’ of G.

To constructy) we process the tre@ in a bottom-up fashion starting wit) = (). We will also remove
parts of the tree in the end of every iteration. The first tterastarts withG’ = G. In every iteration that
starts with tree’, include inQ an arbitrary leaf, ¢ H of the heavy tree and remoweand all vertices in
its subtree fronG’. The procedure ends wheris the only remaining vertex in the heavy tree.

Let us verify that the claimed properties indeed hold. Theteat|Q| = O(long) follows from the fact
that at each iteration we removeGé-heavy vertex including all its subtree from the currenett&. This
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implies that the total weight of the tré&’ decreases by at leagin every iteration. Since we only include
one vertex in every iteration we ha{@| < # =08,

The third property follows from the fact that we always remavleaf of theG’-heavy tree. Observe
that the connected components®@fl” \ (Q U {r})] are contained in the subtrees we disconnect in every
iteration in the construction a@. By definition of G’-heavy leaves, in any such iteration wher@’aheavy
leafu is removed from the tree, these parts have weight at fgdmit any subtree rooted at any descendant
of u has weight strictly smaller thap (otherwise this descendant would @&heavy as well, contradicting
the assumption that it has@-heavy leafu as an ancestor). Now, sineeis included in@, the connected
components are exactly these subtrees, so the propergdimidds.

To construct) and conclude the proof it remains to includeQrall remaining nodes of degree at least
three in the heavy tree. The fact that also all leaves of tla@h&ree are included iy is readily implied
by the construction of), so the second property holds 1@t Clearly, by removing more vertices from the
heavy tree, the sizes of connected components only getesnsil) also satisfies the third condition, since
Q already did. Finally, the number of vertices of degree adtléiaree in the heavy tree is strictly less than
the number of its leaves, which 3( logN) for otherwise a contradiction would occur since the treelhdo
have an average degree of at leasthis implies that, in total|@Q| = O(log N), so the first property also
holds.

To conclude the proof of the lemma it remains to note thatdtted construction can be easily imple-
mented in polynomial time.

O

6 Missing details for O(1)-approximation for RMFC

This section contains the missing proofs for @Rfapproximation for RMFC.

Proof of Theorem 12

To prove Theorem 2 we first show the following result, based on which TheorEnfiollows quite directly.

Lemma 18. Let B € Rxg, i € (0,1], k € Z>1, andé; = [log®) L], £y = |log®* =V L. Letz € Py with
supp(x) € Vg, 4] = Vo, N V<y,, and we defing” = {u € T | ( ) > n}. Then one can efficiently
compute a sek C V,, 4,) such that

() RNP,#0 YueY,and

(i) x" € Pp, whereB = 1B+ 1.

We first observe that LemniBindeed implies Theorerh2.

Proof of Theoremi2. Fork =1,...,q, let?¥ = [log® L| andf§ = |log*~Y L |, and we define:* € Pg
by 2 — 2 A x “5 %) Hences — S k_, ¥, For eachk € [¢], we apply Lemmad.8to z* with n = £ to
obtain a seR* C V(s ) satisfying

() RFRNP,#0 YueYF={ueT|zF¢P,) >n}, and

@iy x®* € Py, whereB’ .= IB+1= 717B +1=:B.
We claim thatR = Uzle’f is a set satisfying the conditions of Theordrd The setR clearly satisfies

XB € Pg sincex®' € Py fork e [¢] and the sets?* are on disjoint levels. Furthermore, for each
ueW ={vel |xz(P,) > u}weindeed havé’, N R # () due to the following. Since = Y"7_, z* and
x(P,) > pthere exists an index € [¢] such that’/(P,) > n = £, and hence®?, N R 2 P, N RJ # 0.
O
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Thus, it remains to prove Lemnis.

Proof of Lemmdl.8.
Let B = 1B. We start by determining an optimal vertex solutigto the linear progranmin{z(V \
{r}) | z € Q}, where

Q={2€Pzlzu)=0VueV\ (Vg pnUir}), 2(P)>1VueY}

Notice that) # @since%x € @; hence, the above LP is feasible. Furthermore, noticeutf¥at) < 1 for

u € T; for otherwise, there is a vertexe supp(y) such thaty(P,) > 1, and hence — ex{"} € Q for a
small enougt > 0, violating thaty is anoptimalvertex solution.
Let V£ be ally-loose vertices. We will show that the set

R=V*:U{ueV\{r}|yu) =1}

fulfills the properties claimed by the lemma. Clea®yC V/y, ,, sincesupp(y) C Vig, ¢,)-

To see that conditioi) holds, letu € Y, and notice that we hawg P,) = 1. Either|P, N supp(y)| =
1, in which case the single vertexin P, N supp(y) satisfiesy(u) = 1 and is thus contained i®; or
| P, Nsupp(y)| > 1, in which caseP, N V* # () which again implies? N P, # (.

To show thatR satisfies(ii), we have to show thak does not exceed the budget - 2¢ = (%B +1)2¢
ofany levell € {¢; +1,...,¢,}. We have

- 1
IRNVy| < y(Vi) + |[VE| < B2t 4 |[VE| = 5325 + VX,

where the second inequality follows frome @Q. To complete the proof it suffices to shqW*| < 2¢.
This follows by a sparsity reasoning analogous to Lendmaplying that the number of-loose vertices is
bounded by the number of tight budget constraints, and thus

[VE| < by —t; <ty = [log® VL. (8)
Furthermore,

ol > 9hitl — 2uog<k> LI+1 > olog™ L _ log(k—l) I

)

which, together with&), implies|V*| < 2¢ and thus completes the proof.

Proof of Theorem 13

Let (y, B) be an optimal solution to the RMFC relaxatiarin{B | z € Pg} and leth = |log L|. Hence,
B < Bopt. We invoke Theoreni2 with respect to the vectay A x">» andp = 0.5 to obtain a set
Ry C V4, satisfying

(i) RiNP,#0 YueW,and

(i) x™ € Popy,
whereW = {u € T' | y(P, N V~p) > 0.5}. Hence,R; cuts off all leaves iV from the root by only
protecting vertices on levelg. ;, and using budget bounded By + 1 < 3B < 3max{log L, BopT}-

We now focus on the leavds\ W, which we will cut off from the root by protecting a vertex det C
V<, feasible for budge8 max{log L, Bopt}. Let (2, B) be an optimal vertex solution to the following
linear program

min {B |z € Pz, (P,) =1Vue T \W}. 9)
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First, notice that) is feasible forB < 2B. This follows by observing that the vecter= 2(y N y"<»)
satisfiesy € P,p sincey € Pg. Moreover, foru € T'\ W, we have

Q(Pu) = 2y(Pu N Vgh) = 2(1 - y(Pu N V>h)) > 1,

where the last inequality follows from(P, N V) < 0.5 because: € I' \ V. Finally, there exists a vector
¢ < gsuchthay/(P,) = 1foru € T'\ W. The vectorg’ can be obtained from by successively reducing
values on vertices € supp(q) satisfyingq(P,) > 1. This shows thafq’, 2B) is a feasible solution td9)
and hence3 < 2B.

Consider the set of ali-loose verticed’* = {u € supp(z) | z(P,) < 1}. We define

Ry = VX U {u € supp(2) | z(u) = 1}.

Notice that for eachu € T' \ W, the setR, contains a vertex on the path fromto the root. Indeed, either
| supp(z) N P,| = 1 in which case there is a vertexc P, with z(v) = 1, which is thus contained iR, or
| supp(z) N P,| > 1 in which case the vertex € supp(z) N P, that is closest to the root among all vertices
in supp(z) N P, is az-loose vertex. Hence, the sRt= R; U R, cuts off all leaves from the root. It remains
to show that it is feasible for budgginax{log L, Bopt}.

Using an analogous sparsity reasoning as in Lerymae obtain thatl’“| is bounded by the number of
tight budget constraints, which is at maést |log L| < log L. Hence, for any level € [h], we have

|Ro N Vi| < [VE| + 2(Vp)

<logL+2‘B ((z, B) feasible for 9))
<logL+2°(2B) (B < 2B)
< 2. (3max{log L, Bopr}). (B < BopT)

Thus, bothR; and R, are budget-feasible for budgetnax{log L, BopT}, and since they contain vertices
on disjoint levels,R = R; U R is feasible for the same budget.
O

Proof of Lemma 15

To show that the running time dinum((, (),7) is polynomial, we show that there is only a polynomial
number of recursive calls #6num(A, D, ). Notice that the number of recursive calls done in one ei@tut
of step4 of the algorithm is equal t@| F.|. We thus start by upper bounding| for any solution(z, B) to
LP(A,D) with B < log L. Consider a vertex, € F,, whereu € "\ W,. Sinceu is a leaf not inlW,,, we
havez(P, N V<) > 1, and thus

1
;L'(Tfu N Vgh) > 5 \V/fu c F,.
Because no two vertices &f, lie on the same leaf-root path the séls N V<, are all disjoint for different

fu € F, and hence

1
g’Fx‘ < Z w(Tf ﬂVSh)

feF,
< z(V<p) (disjointness of set$; N V<, for different f € F,)
h
<> 2'B (x satisfies budget constraintsoP (A, D) )
=1
< 2h+lB
< 2(log L)2. (h = [log® L| andB < log L)
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Since the recursion depthis= 2(log L)? log(2) L, the number of recursive calls is bounded by
1) ((2|Fx|)"y) _ (log L)O((logL)2log(2) L) _ 20(L) _ O(N),

thus showing thaEnum((), §, 4) runs in polynomial time.

It remains to show thaEnum((), 0, ¥) finds a triple satisfying the conditions of Lemrid. For this
we identify a particular execution path of the recursivecpaureEnum((), (, 4) that, at any point in the
algorithm, will maintain two disjoint setsl, D C V., that are compatible witlOPT, i.e., A C OPT
and D N OPT = (). At the beginning of the algorithm we clearly have compditipiwith OPT since
A = D = (. To identify the execution path we are interested in, we Iiggh which recursive call we
want to follow given that we are on the execution path. Henoasider two disjoint setd, D C V<, that
are compatible wittOPT and assume we are within the executionEofum(A, D,~). Let (z, B) be an
optimal solution toLP(A, D). Notice thatB < Bopt < log L, becaus€ A, D) is compatible withOPT.

If OPT N Q. = 0, then(A, D, ) fulfills the conditions of Lemmd4 and we are done. Hence, assume
OPTNQ, # 0, and letf € F, be such thaOPTNTy NV, # 0. If f € OPT, then consider the execution
path continuing with the call dEnum(A U {f}, D,~v — 1); otherwise, iff ¢ OPT, we focus on the call of
Enum(A, D U Py,~ — 1). Notice that compatibility wittOPT is maintained in both cases.

To show that the thus identified execution pathFafum((),?,7) indeed leads to a triple satisfying
the conditions of Lemma4, we measure progress as follows. For any phiD C V., of disjoint sets
compatible withOPT, we define a potential functioh(A, D) € Zx as follows. For each € OPT NV,
let d,, € Z>( be the distance of to the first vertex inA U D U {r} when following the unique:-r path.
We define®(A, D) = >, coptry., du- Notice that as long as we have a triglé, D, z) on our execution
path that does not satisfy the conditions of Lenfi¥athen the next triplg A’, D’, ') on our execution path
satisfiesd(A’, D’) < ®(A, D). Clearly, latest when having a tripled, D, 2) compatible withOPT and
®(A, D) = 0, thenOPT NV, = A and we thus correctly guessed all vertice©&T N V<, implying that
the conditions of Lemma4 are satisfied for the tripleA, D, x). Since®(A, D) > 0 for any compatible
setsA and D, this implies that a triple satisfying the conditions of Liaa14 will be encountered if the
recursion depthy is at least®((), 0). To evaluated((), )) we have to compute the sum of the distances of all
verticesu € OPT N V<, to the root. The distance afto the root is at mosk sinceu € V<;,. Moreover,
|OPT NVy| < 2"+1 Bopr due to the budget constraints. Hence,

@(@7 @) <h- oh+1. BopT
< 2log® L - (log L)? (h = [log® L| andBopt < log L)
=7,

implying that a triple fulfilling the conditions of Lemnii is encountered b¥num(0, §, 7).
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A Basic transformations for the Firefighter problem

In this section we provide some basic transformations sigWwow different natural variations of the Fire-
fighter problem can be reduced to each other. We start bymgdwvemma3.

Proof of Lemm&. Consider an instance of the weighted Firefighter problerh géneral budgets consist-
ing of atreeG = (V, E) of depthL rooted at the vertex € V', weightsw(u) € Z> forallu € V'\ {r} and
budgetsB, € Z~ for all ¢ € [L]. We transform the instance into an equivalent instance withbudgets
by performing the following simple steps for all levéfgfor ¢ € [L]:
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e For everyu € V,, subdivide the edge connectingo its ancestor iz into a path withB, edges, by
introducing B, — 1 new vertices. Denote the nodes on this path, excluding tbestor ofu in G, by
Ya.

e Set the weight of all new vertices to zero, while maintaining weightw(«) for the original vertex
U.

Denote the resulting tree by’ = (V’, E’). To conclude the construction it remains to allow one unit
of budget in every level of the transformed tree. It is easyaidfy that feasible solutions to the Firefighter
problem for the two instances are in correspondence. AlfEesolution forG is transformed to a solution in
G’ by replacing theB, verticesS, protected in any level; of G with any B, vertices on the corresponding
paths{Y, | u € S¢} in G’, one in each of thé3, distinct levels ofG’ that are in correspondence with.
The opposite transformation selects for every protectegxe € V' in a feasible solution fo€;’ the vertex
u € V such that € Y,,. Itis straightforward to verify that in both transformat®the obtained solutions
are feasible and that they have weights identical to theraigolutions.

Finally, sinceB, < n can be assumed for evefyc [L], each one of the — 1 edges inG is subdivided
into a path of length at most, thus the number of vertices @& is at mostO(n?).

O

We remark that a construction analogous to the one used iorttod of Lemma3 can be used to show
that RMFC with non-uniform budgets can be reduced to theoumifbudget case. In an RMFC instance
with non-uniform budgets, the budget on levés equal toB - A\, where), € Z~ for ¢ € [L] are given as
input, and the goal is still to find the minimu# to protect vertices that cut off all leaves from the root and
fulfill the budget constraints.

Next, we show how a weighted instance of the Firefighter gmoldan be transformed into a unit-weight
one with only an arbitrarily small loss in term of the objgetiunction.

Lemma 19. Letd > 0 anda € (0, 1]. Any weighted unit-budget Firefighter problem on a tfee- (V, E)
and weightsu(u) € Z>( for u € V' \ {r} can be transformed efficiently into a polynomial-size weight
unit-budget Firefighter problem on a treé&’ = (V’, E’) such that anyv-approximate feasible solution for
G’ can be efficiently transformed into(a — §)«-approximate solution fo€.

Proof. For simplicity we present the transformation in two ste@sshelosing an arbitrarily small constant
in the objective. First we use a standard scaling and rognidichnique to obtain a new weight function
that is bounded by a polynomial in the size of the tree. Cdalyrewe construct weights’ (u) € Z> for
u € V\ {r} and an integeD < Z-, such thatw'(u) = O(%) for everyu € V and such that for every
SCV\{rk

Dw'(S) < w(S) < Dw'(S) + 6 val(OPT),

whereval(OPT) is the optimal solution value its. We then we use the obtained instance to construct a
unit-weight instance with the desired property.

Let wmax = max,ey ¢} w(u) be the maximum weight of any vertex @. DefineD = dwpax/n
and for everyu € V' \ {r} setw'(u) = |w(u)/D]. Observe thatal(OPT) > wyax, and hencesD =
dwmax < dval(OPT). The latter scaling indeed fulfills the desired propertesy’(u) < n/d, and for

everyS C V' \ {r} we have
Dw'(S) < w(S) < Dw'(S) + D|S| < Dw/(S) + 6 val(OPT).

We show next that the latter transformation looses at mésfraction in the objective function. Lef C
V' \ {r} be the vertices saved from the fire in arapproximate solution fotz’. We show thatS is a
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(1 — 0)a-approximate solution fo€. Let S* C V' \ {r} be the vertices saved in an optimal solution for
G. ThenDw'(S*) + § val(OPT) > w(S*) = val(OPT), implying thatDw’(S*) > (1 — ) val(OPT). We
conclude:

(1 —6)val(OPT) < Dw'(5*) < éDw’(S) < éw(S),
which yieldsw(S) > (1 — 0)a val(OPT), as desired.

Next we present the second transformation, which, givenighted Firefighter problem with tre@ =
(V, E) and integer weights(u) € Z>( bounded byO(n), transforms it into a unit-weight instance on a
new treeG’ = (V', E’) by losing an arbitrarily small factar > 0 in terms of the weight.

The treeG’ is obtained fromG by taking a copy of7 and attachini%w(u) new leaves to every vertex
u e V\ {r}. Forasetof vertice§ C V' \ {r} letsv(S) € Z>( andsv’(S) € Z>(, denote the total weight
of vertices saved by protecting the verticesSah G andG’, respectively. Recall that the weight of vertices
in G is measured with respect to the functienand hencev(S) = w(U,ecs Ty,), whereas the weight i6”
corresponds to the number of saved vertices, and hefcg) = | Uucs T}

Consider a solution that protects a se€ V' \ {r} of vertices inG’. Observe that’ N S is a feasible
set of vertices to protect i¥. We can now write

ad ad
= —ad < < .
5 SV (S)—ad <sv(SNV) < 5, SV (9),

where the first inequality follows from

, 2n 2n 2n
v = 1% E - E < E - = sv(S N V).
svi(S)=|S\V]|+ 5w(Tu) + |Tu| < 2n+ 5w(Tu) 2n + 5S (S )

uceVns ueVns uceVns

Using the trivial lower boundDPT > 1 on the optimal solution fotz one can now conclude the proof
analogously to the first transformation.

Finally, both transformations can be implemented in poigia time. For the first transformation this
is trivial, while for the second transformation one uses i that the input weights are polynomially
bounded, and hene& has polynomial size.

O
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