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Abstract

We study on the tripartite entanglement dynamics when each party is initially entangled with

other parties, but they locally interact with their own non-Markovian environment. First, we con-

sider three GHZ-type initial states, all of which have GHZ symmetry provided that the parameters

are chosen appropriately. However, this symmetry is broken due to the effect of environment. The

corresponding π-tangles, one of the tripartite entanglement measure, are analytically computed at

arbitrary time. The revival phenomenon of entanglement occurs after complete disappearance of

entanglement. We also consider two W-type initial states. The revival phenomenon also occurs

in this case. On the analytical ground the robustness issue against the effect of environment is

examined for both GHZ-type and W-type initial states.
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I. INTRODUCTION

Entanglement[1, 2] is a one of the important concepts from fundamental aspect of quan-

tum mechanics and practical aspect of quantum information processing. As shown for last

two decades it plays a crucial role in quantum teleportation[3], superdense coding[4], quan-

tum cloning[5], and quantum cryptography[6, 7]. It is also quantum entanglement, which

makes the quantum computer1 outperform the classical one[9].

Quantum mechanics is a physics, which is valid for ideally closed system. However, real

physical systems inevitably interact with their surroundings. Thus, it is important to study

how the environment modifies the dynamics of the given physical system. There are two

different tools for describing the evolution of open quantum system: quantum operation

formalism[1] and master equation approach[10]. Both tools have their own merits.

It is known that the entanglement sudden death (ESD) occurs when the entangled multi-

partite quantum system is embedded in Markovian environments[11]. This means that the

entanglement is completely disentangled at finite times. This ESD phenomenon has been

revealed experimentally[12, 13].

It is also examined the dynamics of entanglement when the physical system is embedded

in non-Markovian environment[10, 14]. It has been shown that there is a revival of entangle-

ment after a finite period of time of its complete disappearance. This is mainly due to the

memory effect of the non-Markovian environment. This phenomenon was shown in Ref.[14]

by making use of the two qubit system and concurrence[15] as a bipartite entanglement mea-

sure. Subsequently, many works have been done to quantify the non-Markovianity[16–20].

In this paper we consider the tripartite entanglement dynamics when the qubit system

interacts with the non-Markovian environment. For simplicity, we choose the same physical

setting, i.e. there is no interaction between qubit and each qubit interacts with its own

reservoir. We will compute the entanglement of three-types of initial Greenberger-Horne-

Zeilinger(GHZ) state[21] and two types of initial W-state[22] in the presence of the non-

Markovian environment.

Typical tripartite entanglement measures are residual entanglement[23] and π-tangle[24].

1 The current status of quantum computer technology was reviewed in Ref.[8].
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For three-qubit pure state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉 the residual entanglement τABC becomes

τABC = 4|d1 − 2d2 + 4d3|, (1.1)

where

d1 = a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011, (1.2)

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+a011a100a101a010 + a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100.

Thus, the residual entanglement of any three-qubit pure state can be computed by making

use of Eq. (1.1). Although the residual entanglement can detect the GHZ-type entanglement,

it can not detect the W-type entanglement:

τABC(GHZ) = 1 τABC(W ) = 0, (1.3)

where

|GHZ〉 =
1√
2

(|000〉+ |111〉) |W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) . (1.4)

For mixed states the residual entanglement is defined by a convex-roof method[25, 26] as

follows:

τABC(ρ) = min
∑
i

piτABC(ρi), (1.5)

where the minimum is taken over all possible ensembles of pure states. The pure state

ensemble corresponding to the minimum τABC is called the optimal decomposition. It is

in general difficult to derive the optimal decomposition for arbitrary mixed states. Hence,

the analytic computation of the residual entanglement can be done for rare cases[27]. Fur-

thermore, recently, three-tangle2 τ3 of the whole GHZ-symmetric states[28] was explicitly

computed[29].

The π-tangle defined in Ref.[24] is easier for analytic computation than the residual

entanglement (or three tangle) because it does not rely on the convex-roof method. The

π-tangle is defined in terms of the global negativities [30]. For a three-qubit state ρ they are

given by

NA = ||ρTA|| − 1, NB = ||ρTB || − 1, NC = ||ρTC || − 1, (1.6)

2 In this paper we will call τ3 =
√
τABC three-tangle and τ23 = τABC residual entanglement.
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where ||R|| = Tr
√
RR†, and the superscripts TA, TB, and TC represent the partial transposes

of ρ with respect to the qubits A, B, and C respectively. Then, the π-tangle is defined as

πABC =
1

3
(πA + πB + πC), (1.7)

where

πA = N 2
A(BC)−(N 2

AB+N 2
AC) πB = N 2

B(AC)−(N 2
AB+N 2

BC) πC = N 2
(AB)C−(N 2

AC+N 2
BC).

(1.8)

The remarkable property of the π-tangle is that it can detect not only the GHZ-type entan-

glement but also the W-type entanglement:

πABC(GHZ) = 1 πABC(W ) =
4

9
(
√

5− 1) ∼ 0.55. (1.9)

As commented earlier we will examine the tripartite entanglement dynamics of the three-

qubit states in the presence of the non-Markovian environment. We will adopt the π-tangle

as a entanglement measure for analytic computation as much as possible. In section II

we consider how the three-qubit initial state is evolved when each qubit interacts with their

own non-Markovian environment[14]. In section III we explore the entanglement dynamics of

three GHZ-type initial states. The initial states are local unitary(LU) with each other. Thus,

their entanglement are the same initially. Furthermore, if the parameters are appropriately

chosen, they all have GHZ-symmetry, i.e. they are invariant under (i) qubit permutation (ii)

simultaneous three-qubit flips (iii) qubit rotations about the z-axis. However, this symmetry

is broken due to the non-Markovian effect. As a result, their entanglement dynamics are

different with each other. In section IV we examine the entanglement dynamics of two

W-type initial states. They are also LU with each other. However, the dynamics is also

different with each other. In section V a brief conclusion is given.

II. GENERAL FEATURES

We consider three-qubit system, each of which interacts only and independently with its

local environment. We assume that the dynamics of single qubit is governed by Hamiltonian

H = H0 +HI (2.1)
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where

H0 = ω0σ+σ− +
∑
k

ωkb
†
kbk (2.2)

HI = σ+ ⊗B + σ− ⊗B† with B =
∑
k

gkbk.

In Eq. (2.2) ω0 is a transition frequency of the two-level system (qubit), and σ± are the

raising and lowering operators. The index k labels the different field modes of the reservoir

with frequencies ωk, creation and annihilation operators b†k, bk, and coupling constants gk.

In the interaction picture the dynamics is governed by the Schrödinger equation

d

dt
ψ(t) = −iHI(t)ψ(t) (2.3)

where

HI(t) ≡ eiH0tHIe
−iH0t = σ+(t)⊗B(t) + σ−(t)⊗B†(t)

σ±(t) ≡ eiH0tσ±e
−iH0t = σ±e

±iω0t (2.4)

B(t) ≡ eiH0tBe−iH0t =
∑
k

gkbke
−iωkt.

The Hamiltonian (2.1) represents one of few exactly solvable model[31]. This means that

the Schrödinger equation (2.3) can be formally solved if ψ(0) is given. Then, the reduced

state of the single qubit ρ̂S(t) ≡ Trenv|ψ(t)〉〈ψ(t)| is given by[10, 32]

ρ̂S(t) =

 ρS00(0) + ρS11(0) (1− |Pt|2) ρS01(0)Pt

ρS10(0)P ∗t ρS11(0)|Pt|2

 (2.5)

where ρ̂S(0) = Trenv|ψ(0)〉〈ψ(0)| and Trenv denotes the partial trace over the environment.

The function Pt satisfies the differential equation

d

dt
Pt = −

∫ t

0

dt1f(t− t1)Pt1 (2.6)

and the correlation function f(t− t1) is related to the spectral density J(ω) of the reservoir

by

f(t− t1) =

∫
J(ω)exp[i(ω0 − ω)(t− t1)]. (2.7)

We choose J(ω) as a effective spectral density of the damped Jaynes-Cummings model[10]

J(ω) =
1

2π

γ0λ
2

(ω0 − ω)2 + λ2
(2.8)

5



where the parameter λ defines the spectral width of the coupling, which is connected to the

reservoir correlation time τB by the relation τB = 1/λ and the relaxation time scale τR on

which the state of the system changes is related to γ0 by τR = 1/γ0.

By making use of the Residue theorem in complex plane the correlation function can be

easily computed in a form

f(t− t1) =
γ0λ

2
e−λ|t−t1|. (2.9)

Inserting Eq. (2.9) into Eq. (2.6) and making use of Laplace transform one can compute Pt

explicitly. While in a weak coupling (or Markovian) regime τR > 2τB Pt becomes

Pt = e−
λ
2
t

[
cosh

(
d̄

2
t

)
+
λ

d̄
sinh

(
d̄

2
t

)]
(2.10)

with d̄ =
√
λ2 − 2γ0λ, in a strong coupling (or non-Markovian) regime τR < 2τB Pt reduces

to

Pt = e−
λ
2
t

[
cos

(
d

2
t

)
+
λ

d
sin

(
d

2
t

)]
(2.11)

with d =
√

2γ0λ− λ2. Since, in the Markovian regime λ > 2γ0, Pt in Eq. (2.10) ex-

hibits an exponential decay in time, it seems to make a ESD phenomenon. However, in

the non-Markovian regime λ < 2γ0, Pt in Eq. (2.11) exhibits an oscillatory behavior in

time with decreasing amplitude. It seems to be responsible for the revival phenomenon of

entanglement[14], after a finite period of time of its complete disappearance.

The state ρ̂T (t) at time t of whole three-qubit system, each of which interacts only and

independently with its own environment, can be derived by the Kraus operators[33]. Intro-

ducing, for simplicity, {|0〉 ≡ |000〉, |1〉 ≡ |001〉, |2〉 ≡ |010〉, |3〉 ≡ |011〉, |4〉 ≡ |100〉, |5〉 ≡

|101〉, |6〉 ≡ |110〉, |7〉 ≡ |111〉}, the diagonal parts of ρ̂T (t) are

ρ̂T11(t) = P 2
t

[
ρ̂T11(0) +

{
ρ̂T33(0) + ρ̂T55(0)

}
(1− P 2

t ) + ρ̂T77(0)(1− P 2
t )2
]

ρ̂T22(t) = P 2
t

[
ρ̂T22(0) +

{
ρ̂T33(0) + ρ̂T66(0)

}
(1− P 2

t ) + ρ̂T77(0)(1− P 2
t )2
]

ρ̂T33(t) = P 4
t

[
ρ̂T33(0) + ρ̂T77(0)(1− P 2

t )
]

(2.12)

ρ̂T44(t) = P 2
t

[
ρ̂T44(0) +

{
ρ̂T55(0) + ρ̂T66(0)

}
(1− P 2

t ) + ρ̂T77(0)(1− P 2
t )2
]

ρ̂T55(t) = P 4
t

[
ρ̂T55(0) + ρ̂T77(0)(1− P 2

t )
]

ρ̂T66(t) = P 4
t

[
ρ̂T66(0) + ρ̂T77(0)(1− P 2

t )
]

ρ̂T00(t) = 1−
7∑
i=1

ρ̂Tii(t)

6



and the non-diagonal parts are

ρ̂T01(t) = Pt
[
ρ̂T01(0) +

{
ρ̂T23(0) + ρ̂T45(0)

}
(1− P 2

t ) + ρ̂T67(0)(1− P 2
t )2
]

ρ̂T02(t) = Pt
[
ρ̂T02(0) +

{
ρ̂T13(0) + ρ̂T46(0)

}
(1− P 2

t ) + ρ̂T57(0)(1− P 2
t )2
]

ρ̂T04(t) = Pt
[
ρ̂T04(0) +

{
ρ̂T15(0) + ρ̂T26(0)

}
(1− P 2

t ) + ρ̂T37(0)(1− P 2
t )2
]

ρ̂T03(t) = P 2
t

[
ρ̂T03(0) + ρ̂T47(0)(1− P 2

t )
]

ρ̂T05(t) = P 2
t

[
ρ̂T05(0) + ρ̂T27(0)(1− P 2

t )
]

ρ̂T06(t) = P 2
t

[
ρ̂T06(0) + ρ̂T17(0)(1− P 2

t )
]

ρ̂T12(t) = P 2
t

[
ρ̂T12(0) + ρ̂T56(0)(1− P 2

t )
]

ρ̂T13(t) = P 3
t

[
ρ̂T13(0) + ρ̂T57(0)(1− P 2

t )
]

ρ̂T14(t) = P 2
t

[
ρ̂T14(0) + ρ̂T36(0)(1− P 2

t )
]

ρ̂T15(t) = P 3
t

[
ρ̂T15(0) + ρ̂T37(0)(1− P 2

t )
]

ρ̂T23(t) = P 3
t

[
ρ̂T23(0) + ρ̂T67(0)(1− P 2

t )
]

(2.13)

ρ̂T24(t) = P 2
t

[
ρ̂T24(0) + ρ̂T35(0)(1− P 2

t )
]

ρ̂T26(t) = P 3
t

[
ρ̂T26(0) + ρ̂T37(0)(1− P 2

t )
]

ρ̂T45(t) = P 3
t

[
ρ̂T45(0) + ρ̂T67(0)(1− P 2

t )
]

ρ̂T46(t) = P 3
t

[
ρ̂T46(0) + ρ̂T57(0)(1− P 2

t )
]

ρ̂T07(t) = ρ̂T07(0)P 3
t ρ̂T16(t) = ρ̂T16(0)P 3

t ρ̂T17(t) = ρ̂T17(0)P 4
t ρ̂T25(t) = ρ̂T25(0)P 3

t

ρ̂T27(t) = ρ̂T27(0)P 4
t ρ̂T34(t) = ρ̂T34(0)P 3

t ρ̂T35(t) = ρ̂T35(0)P 4
t ρ̂T36(t) = ρ̂T36(0)P 4

t

ρ̂T37(t) = ρ̂T37(0)P 5
t ρ̂T47(t) = ρ̂T47(0)P 4

t ρ̂T56(t) = ρ̂T56(0)P 4
t

ρ̂T57(t) = ρ̂T57(0)P 5
t ρ̂T67(t) = ρ̂T67(0)P 5

t

with ρ̂Tij(t) = ρ̂T∗ji (t). Now, we are ready to explore the tripartite entanglement dynamics in

the presence of the non-Markovian environment.

III. ENTANGLEMENT DYNAMICS OF GHZ-TYPE INITIAL STATES

In this section we examine the tripartite entanglement dynamics when the initial states

are GHZ-type states. All initial states have GHZ-symmetry[28] if the parameters are appro-

priately chosen. However, this symmetry is broken due to the effects of environment.

A. Type I

Let us choose the initial state in a form

ρ̂TI (0) = |ψI〉〈ψI | (3.1)

where |ψI〉 = a|0〉+beiδ|7〉 with a2+b2 = 1. As commented before |ψI〉 has a GHZ-symmetry

when a2 = b2 = 1/2 and δ = 0. Then the spectral decomposition of ρ̂TI (t) can be read directly

7



from Eqs. (2.12) and (2.13) as a form:

ρ̂TI (t) = Λ+|ψ1〉〈ψ1|+Λ−|ψ2〉〈ψ2|+b2P 2
t (1− P 2

t )2 {|1〉〈1|+|2〉〈2|+|4〉〈4|} (3.2)

+b2P 4
t (1− P 2

t ) {|3〉〈3|+|5〉〈5|+|6〉〈6|}

where

Λ± =
1

2

[{
1− 3b2P 2

t (1− P 2
t )
}
±
√

[1− 3b2P 2
t (1− P 2

t )]
2 − 4b4P 6

t (1− P 2
t )2
]

(3.3)

and

|ψ1〉 =
1

NI

(
x|0〉+ yeiδ|7〉

)
|ψ2〉 =

1

NI

(
y|0〉 − xeiδ|7〉

)
(3.4)

with

x = 1− b2P 2
t (3− 3P 2

t + 2P 4
t ) +

√
[1− 3b2P 2

t (1− P 2
t )]

2 − 4b4P 6
t (1− P 2

t )2

y = 2abP 2
t (3.5)

and NI =
√
x2 + y2 is a normalization constant.

Since ρ̂TI (t) is a full rank, it seems to be highly difficult to compute the residual entan-

glement (or three-tangle) analytically. However, from Eq. (3.2) one can realize the upper

bound of τABC as

τABC ≤
[
1− 3b2P 2

t (1− P 2
t )
] 4x2y2

(x2 + y2)2
. (3.6)

It is worthwhile noting that ρ̂TI (t) does not have the GHZ-symmetry even at a2 = b2 = 1/2

and δ = 0. Thus, the symmetry which ρ̂TI (0) has is broken due to the effect of environment.

In order to explore the tripartite entanglement dynamics on the analytical ground, we

compute the π-tangle of ρ̂TI (t). Using Eq. (1.6) it is straightforward to compute the induced

bipartite entanglement quantities NA(BC), NB(AC), and N(AB)C . One can show that they are

all the same with

NA(BC) = NB(AC) = N(AB)C (3.7)

= max

[√
b4P 4

t (1− P 2
t )2(1− 2P 2

t )2 + 4a2b2P 6
t − b2P 2

t (1− P 2
t ), 0

]
.

One can also show the two-tangles completely vanish, i.e. NAB = NAC = NBC = 0, easily.

Thus the π-tangle of ρ̂TI (t) is

πIGHZ(t) = N 2
A(BC). (3.8)
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Since Pt=0 = 1, the π-tangle is maximal initially. It reduces to zero with increasing t because

Pt=∞ = 0. Furthermore, in the non-Markovian regime Pt exhibits an oscillatory behavior

and becomes zero at tn = 2[nπ − tan−1(d/λ)/d]. Thus, complete disentanglement occurs at

t = tn (n = 1, 2, · · · ).

B. Type II

Let us choose the initial state in a form

ρ̂TII(0) = |ψII〉〈ψII | (3.9)

where |ψII〉 = a|1〉 + beiδ|6〉 with a2 + b2 = 1. Since |ψI〉 = 11 ⊗ 11 ⊗ σx|ψII〉, (11 ⊗ 11 ⊗

σx)ρ̂
T
II(0)(11⊗ 11⊗ σx)† has a GHZ-symmetry provided that a2 = b2 = 1/2 and δ = 0.

Using Eqs. (2.12) and (2.13) one can show that the spectral decomposition of ρ̂TII(t)

becomes

ρ̂TII(t) = λ2|φII〉〈φII |+(1−P 2
t )
[
a2 + b2(1− P 2

t )
]
|0〉〈0|+b2P 2

t (1−P 2
t ) (|2〉〈2|+|4〉〈4|) (3.10)

where

λ2 = P 2
t (a2 + b2P 2

t ) (3.11)

|φII〉 =
1√

a2 + b2P 2
t

(
a|1〉+ bPte

iδ|6〉
)
.

Unlike the case of type I ρ̂TII(t) is rank four tensor. From Eq. (3.10) one can derive the

upper bound of τABC for ρ̂TII(t), which is

τABC ≤
4a2b2P 4

t

a2 + b2P 2
t

. (3.12)

The negativities NA(BC), NB(AC), and N(AB)C of ρ̂TII(t) can be computed by making use

of Eq. (1.6). The final expressions are

NA(BC) = NB(AC) =
√
b4P 4

t (1− P 2
t )2 + 4a2b2P 6

t − b2P 2
t (1− P 2

t ) (3.13)

N(AB)C =

√
(1− P 2

t )2 [a2 + b2(1− P 2
t )]

2
+ 4a2b2P 6

t − (1− P 2
t )
[
a2 + b2(1− P 2

t )
]
.

It is also easy to show NAB = NAC = NBC = 0. Thus the π-tangle of ρ̂TII(t) is

πIIGHZ(t) =
1

3

[
2N 2

A(BC) +N 2
(AB)C

]
. (3.14)

When t = 0, πIIGHZ(0) becomes 4a2b2 and it reduces to zero as t → ∞. Of course, the

entanglement of ρ̂TII(t) is completely disentangled at t = tn (n = 1, 2, · · · ).
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C. Type III

Let us choose the initial state in a form

ρ̂TIII(0) = |ψIII〉〈ψIII | (3.15)

where |ψIII〉 = a|3〉 + beiδ|4〉 with a2 + b2 = 1. Since |ψI〉 = 11 ⊗ σx ⊗ σx|ψIII〉, (11 ⊗ σx ⊗

σx)ρ̂
T
III(0)(11⊗ σx ⊗ σx)† has a GHZ-symmetry provided that a2 = b2 = 1/2 and δ = 0.

Using Eqs. (2.12) and (2.13) one can show that the spectral decomposition of ρ̂TIII(t)

becomes

ρ̂TIII(t) = λ3|φIII〉〈φIII |+(1− P 2
t )
[
a2(1− P 2

t ) + b2
]
|0〉〈0|+a2P 2

t (1− P 2
t ) (|1〉〈1|+|2〉〈2|)

(3.16)

where

λ3 = P 2
t (a2P 2

t + b2) (3.17)

|φIII〉 =
1√

a2P 2
t + b2

(
aPt|3〉+ beiδ|4〉

)
.

Unlike the case of type I ρ̂TIII(t) is rank four tensor. From Eq. (3.16) one can derive the

upper bound of τABC for ρ̂TIII(t), which is

τABC ≤
4a2b2P 4

t

a2P 2
t + b2

. (3.18)

The negativities NA(BC), NB(AC), and N(AB)C of ρ̂TIII(t) can be computed by making use

of Eq. (1.6), whose explicit expressions are

NA(BC) =

√
(1− P 2

t )2 [a2(1− P 2
t ) + b2]

2
+ 4a2b2P 6

t − (1− P 2
t )
[
a2(1− P 2

t ) + b2
]

NB(AC) = N(AB)C =
√
a4P 4

t (1− P 2
t )2 + 4a2b2P 6

t − a2P 2
t (1− P 2

t ). (3.19)

It is of interest to note that NA(BC) and NB(AC) of type III is the same with N(AB)C and

NA(BC) of type II with a↔ b respectively. It is easy to show NAB = NAC = NBC = 0. Thus

the π-tangle of ρ̂TIII(t) is

πIIIGHZ(t) =
1

3

[
N 2
A(BC) + 2N 2

B(AC)

]
. (3.20)

One can also consider different types of initial GHZ-type states. For example, one can

consider ρ̂TIV (0) = |ψIV 〉〈ψIV |, where |ψIV 〉 = a|2〉+ beiδ|5〉. Although, in this case, ρ̂TIV (t) is
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FIG. 1: (Color online) The π-tangle for the initial states (a) a|000〉+beiδ|111〉, (b) a|001〉+beiδ|110〉,

and (c) a|011〉+ beiδ|100〉 as a function of the parameters γ0t and a2. We choose λ as a λ = 0.01γ0.

different from ρ̂TII(t), one can show that its π-tangle is exactly the same with that of type

II. Thus, this case is not discussed in detail.

The π-tangle for each type is plotted in Fig. 1 as a function of dimensionless parameter

γ0t and a2. We choose λ as a λ = 0.01γ0. The white region in Fig. 1(a) corresponds

to
√
b4P 4

t (1− P 2
t )2(1− 2P 2

t )2 + 4a2b2P 6
t ≤ b2P 2

t (1 − P 2
t ). Thus, Eq. (3.7) guarantees

πIGHZ(t) = 0. As expected the tripartite entanglement reduces to zero with increasing

time with oscillatory behavior.

The π-tangles πIGHZ(t) , πIIGHZ(t) , and πIIIGHZ(t) are compared in Fig. 2 when λ/γ0 = 0.001.

They are represented by red solid, black dashed, and blue dotted lines respectively. Fig.

2(a) and Fig. 2(b) correspond to a2 = 0.1 and a2 = 0.9. Both figures clearly show the revival

of the tripartite entanglement, after a finite period of time of complete disappearance. The

revival phenomenon seems to be mainly due to the memory effect of the non-Markovian

environment. It is of interest to note that while πIIIGHZ(t) ≥ πIIGHZ(t) ≥ πIGHZ(t) when

a2 = 0.1, the order is changed as πIGHZ(t) ≥ πIIGHZ(t) ≥ πIIIGHZ(t) when a2 = 0.9.
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FIG. 2: (Color online) The γ0t dependence of πIGHZ(t) (red solid), πIIGHZ(t) (black dashed), and

πIIIGHZ(t) (blue dotted) when (a) a2 = 0.1 and (b) a2 = 0.9. We choose λ as a λ = 0.001γ0.

IV. ENTANGLEMENT DYNAMICS OF W-TYPE INITIAL STATES

In this section we examine the tripartite entanglement dynamics when the initial states

are two W-type states. Both initial states are LU to each other. However, their entanglement

dynamics are different due to Eqs. (2.12) and (2.13).

A. Type I

In this subsection we choose the initial state as

ρ̂WI (0) = |W1〉〈W1| (4.1)

where |W1〉 = a|1〉 + beiδ1|2〉 + ceiδ2|4〉 with a2 + b2 + c2 = 1. Then, it is straightforward to

show that the spectral decomposition of ρ̂WI (t) is

ρ̂WI (t) = (1− P 2
t )|0〉〈0|+P 2

t |W1〉〈W1|. (4.2)

Eq. (4.2) guarantees that the residual entanglement and three-tangle of ρ̂WI (t) are zero

because the spectral decomposition exactly coincides with the optimal decomposition.

By making use of Eq. (1.6) one can compute the induced bipartite entanglement quan-

12



tities NA(BC), NB(AC), and N(AB)C of ρ̂WI (t) directly, whose expressions are

NA(BC) =
√

(1− P 2
t )2 + 4c2(a2 + b2)P 4

t − (1− P 2
t )

NB(AC) =
√

(1− P 2
t )2 + 4b2(a2 + c2)P 4

t − (1− P 2
t ) (4.3)

N(AB)C =
√

(1− P 2
t )2 + 4a2(b2 + c2)P 4

t − (1− P 2
t ).

Also, the two tangles NAB, NAC , and NBC become

NAB =

√
[(1− P 2

t ) + a2P 2
t ]

2
+ 4b2c2P 4

t −
[
(1− P 2

t ) + a2P 2
t

]
NAC =

√
[(1− P 2

t ) + b2P 2
t ]

2
+ 4a2c2P 4

t −
[
(1− P 2

t ) + b2P 2
t

]
(4.4)

NBC =

√
[(1− P 2

t ) + c2P 2
t ]

2
+ 4a2b2P 4

t −
[
(1− P 2

t ) + c2P 2
t

]
.

Thus, using Eqs. (1.7) and (1.8) one can compute the π-tangle of ρ̂WI (t), whose explicit

expression is

πIW (t) =
2

3

[
2
[
(1− P 2

t ) + a2P 2
t

]√
[(1− P 2

t ) + a2P 2
t ]

2
+ 4b2c2P 4

t

+2
[
(1− P 2

t ) + b2P 2
t

]√
[(1− P 2

t ) + b2P 2
t ]

2
+ 4a2c2P 4

t

+2
[
(1− P 2

t ) + c2P 2
t

]√
[(1− P 2

t ) + c2P 2
t ]

2
+ 4a2b2P 4

t (4.5)

−(1− P 2
t )

{√
(1− P 2

t )2 + 4a2(b2 + c2)P 4
t

+
√

(1− P 2
t )2 + 4b2(a2 + c2)P 4

t +
√

(1− P 2
t )2 + 4c2(a2 + b2)P 4

t

}
−2(a4 + b4 + c4)P 4

t − (1− P 2
t )(3 + P 2

t )

]
.

When t = 0, Eq. (4.5) reduces to

πIW (0) =
4

3

[
a2
√
a4 + 4b2c2 + b2

√
b4 + 4a2c2 + c2

√
c4 + 4a2b2 − (a4 + b4 + c4)

]
, (4.6)

which exactly coincides with a result of Ref.[24]. Of course, when t = tn(n = 1, 2, · · · ) and

t =∞, the entanglement of ρ̂WI (t) is completely disentangled.

B. Type II

In this subsection we choose the initial state as

ρ̂WII (0) = |W2〉〈W2| (4.7)
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where |W2〉 = a|6〉+ beiδ1|5〉+ ceiδ2|3〉 with a2 + b2 + c2 = 1. This initial state is LU to |W1〉

because of |W2〉 = (σx ⊗ σx ⊗ σx)|W1〉. Then, by making use of Eqs. (2.12) and (2.13) it is

straightforward to show that ρ̂WII (t) is

ρ̂WII (t) = (1− P 2
t )2|0〉〈0|+P 4

t |W2〉〈W2|+2P 2
t (1− P 2

t )σII(t) (4.8)

where

σII(t) =
1

2

[
(b2 + c2)|1〉〈1|+(a2 + c2)|2〉〈2|+(a2 + b2)|4〉〈4|

+ab
(
eiδ1|1〉〈2|+e−iδ1|2〉〈1|

)
+ ac

(
eiδ2|1〉〈4|+e−iδ2|4〉〈1|

)
(4.9)

+bc
(
e−i(δ1−δ2)|2〉〈4|+ei(δ1−δ2)|4〉〈2|

) ]
.

The spectral decomposition of σII(t) cannot be derived analytically. Also, analytic compu-

tation of π-tangle for ρ̂WII (t) is impossible. Thus, we have to reply on the numerical approach

for computation of π-tangle.

However, some special cases allow the analytic computation. In this paper we consider

a special case a2 = b2 = c2 = 1/3. In this case the spectral decomposition of σII(t) can be

derived as

σII(t) =
2

3
|α1〉〈α1|+

1

6
|α2〉〈α2|+

1

6
|α3〉〈α3| (4.10)

where

|α1〉 =
1√
3

(
|1〉+ e−iδ1|2〉+ e−iδ2 |4〉

)
|α2〉 =

1√
2

(
|1〉 − e−iδ2|4〉

)
(4.11)

|α3〉 =
1√
6

(
|1〉 − 2e−iδ1|2〉+ e−iδ2|4〉

)
.

Thus, Eqs. (4.8) and (4.10) imply that ρ̂WII (t) with a2 = b2 = c2 = 1/3 is rank-5 tensor,

three of them are W-states and the remaining ones are fully-separable and bi-separable

states. Thus, its residual entanglement and three-tangles are zero.

Using Eq. (1.6) one can show that NA(BC), NB(AC), and N(AB)C are all identical as

NA(BC) = NB(AC) = N(AB)C =
1

3
P 2
t

[√
9− 18P 2

t + 17P 4
t − 3(1− P 2

t )
]
. (4.12)

Also NAB, NAC , and NBC are all identical as

NAB = NAC = NBC =


√

9−24P 2
t +20P 4

t +2P 2
t (2−P 2

t )

3
− 1 P 2

t ≥ 2−
√

2

0 P 2
t ≤ 2−

√
2.

(4.13)
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Thus, the π-tangle for ρ̂WII (t) with a2 = b2 = c2 = 1/3 is given by πIIW = N 2
A(BC) − 2N 2

AB.

FIG. 3: (Color online) (a) The a2 and γ0t dependence of πWI (t) when c2 = 1/3. We choose

λ = 0.01γ0. (b) The γ0t dependence of πWI (t) (solid line) and πWII (t) (dashed line) when a2 =

b2 = c2 = 1/3. We choose λ = 0.001γ0. This figure implies that ρ̂WI (t) is more robust against the

environment than ρ̂WII (t).

In fig. 3(a) we plot πWI (t) as a function of a2 and γ0t. We choose c2 = 1/3 and λ/γ0 = 0.01.

As expected the π-tangle reduces to zero as t→∞. To compare πWI (t) with πWII (t) we plot

both π-tangles as a function of γ0t in Fig. 3(b). In this figure we choose a2 = b2 = c2 = 1/3

and λ/γ0 = 0.001. The π-tangles πWI (t) and πWII (t) are plotted as solid and dashed lines

respectively. In this case as in the other cases the revival of entanglement occurs after

complete disappearance. It is interesting to note that ρ̂WI (t) is more robust than ρ̂WII (t)

against non-Markovian environment.

V. CONCLUSIONS

In this paper we examine the tripartite entanglement dynamics when each party is en-

tangled with other parties initially, but they locally interact with their own non-Markovian

environment. First, we consider three GHZ-type initial states |ψI〉 = a|000〉 + beiδ|111〉,

|ψII〉 = a|001〉 + beiδ|110〉, and |ψIII〉 = a|011〉 + beiδ|100〉. All states are LU to each

other. They all have a GHZ-symmetry, i.e. they are invariant under (i) qubit permuta-

tion (ii) simultaneous three-qubit flips (iii) qubit-rotation about the z-axis, provided that

a2 = b2 = 1/2, δ = 0, and an appropriate LU is applied. It turns out that this symmetry is
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broken due to the effect of environment. We compute the corresponding π-tangles analyti-

cally at arbitrary time t in Eqs. (3.8), (3.14), and (3.20). The π-tangles completely vanish

when tn = 2[nπ− tan−1(d/λ)/d] (n = 1, 2, · · · ) and t→∞. As shown in Fig. 2 the revival

phenomenon of entanglement occurs after complete disappearance of entanglement. This is

mainly due to the memory effect of non-Markovian environment. It is shown that while the

robustness order against the effect of reservoir is |ψI〉, |ψII〉, |ψIII〉 for large a2 region, this

order is reversed for small a2 region.

We also examine the tripartite entanglement dynamics for two W-type initial states

|W1〉 = a|001〉 + beiδ1|010〉 + ceiδ2|100〉 and |W2〉 = a|110〉 + beiδ1|101〉 + ceiδ2|011〉 with

a2 + b2 + c2 = 1. Like GHZ-type initial states they are LU to each other. For initial |W1〉

state the π-tangle is analytically computed in Eq. (4.5). Since, however, |W2〉 propagates to

higher-rank states with the lapse of time, the analytic computation is impossible except few

special cases. Thus, we compute the π-tangle analytically for special case a2 = b2 = c2 = 1/3.

It is of interest to study the effect of non-Markovian environment when the initial state

is a rank-2 mixture

ρ(p) = p|GHZ〉〈GHZ|+(1− p)|W〉〈W| (5.1)

where |GHZ〉 = (|000〉 + |111〉)/
√

2 and |W〉 = (|001〉 + |010〉 + |100〉)/
√

3. The residual

entanglement of ρ(p) is known as

τ(p) =


0 0 ≤ p ≤ p0

gI(p) p0 ≤ p ≤ p1

gII(p) p1 ≤ p ≤ 1

(5.2)

where

p0 =
4 3
√

2

3 + 4 3
√

2
= 0.626851 · · · p1 =

1

2
+

3
√

465

310
= 0.70868 · · · (5.3)

gI(p) = p2 − 8
√

6

9

√
p(1− p)3 gII(p) = 1− (1− p)

(
3

2
+

1

18

√
465

)
.

It is interesting, at least for us, how the non-Markovian environment modifies Coffman-

Kundu-Wootters inequality 4 min[det(ρA)] ≥ C(ρAB)2 + C(ρAC)2 in this model.

Acknowledgement: This research was supported by the Basic Science Research Pro-

gram through the National Research Foundation of Korea(NRF) funded by the Ministry of

16



Education, Science and Technology(2011-0011971).

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cam-

bridge University Press, Cambridge, England, 2000).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum Entanglement, Rev.

Mod. Phys. 81 (2009) 865 [quant-ph/0702225] and references therein.

[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, Teleport-

ing an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channles,

Phys.Rev. Lett. 70 (1993) 1895.

[4] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992) 2881.

[5] V. Scarani, S. Lblisdir, N. Gisin and A. Acin, Quantum cloning, Rev. Mod. Phys. 77 (2005)

1225 [quant-ph/0511088] and references therein.

[6] A. K. Ekert , Quantum Cryptography Based on Bells Theorem, Phys. Rev. Lett. 67 (1991)

661.

[7] C. Kollmitzer and M. Pivk, Applied Quantum Cryptography (Springer, Heidelberg, Germany,

2010).

[8] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum

Computers, Nature, 464 (2010) 45 [arXiv:1009.2267 (quant-ph)].

[9] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev.

Lett. 91 (2003) 147902 [quant-ph/0301063].

[10] H. -P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University

Press, Oxford, New York, 2002).

[11] T. Yu and J. H. Eberly, Finite-Time Disentanglement Via Spontaneous Emission, Phys. Rev.

Lett. 93 (2004) 140404 [quant-ph/0404161].

[12] M.P. Almeida et al, Environment-induced Sudden Death of Entanglement, Science 316 (2007)

579 [quant-ph/0701184].

[13] J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, Heralded Entanglement

between Atomic Ensembles: Preparation, Decoherence, and Scaling, Physics. Rev. Lett. 99

(2007) 180504 [arXiv:0706.0528 (quant-ph)].

17

http://arxiv.org/abs/quant-ph/0702225
http://arxiv.org/abs/quant-ph/0511088
http://arxiv.org/abs/1009.2267
http://arxiv.org/abs/quant-ph/0301063
http://arxiv.org/abs/quant-ph/0404161
http://arxiv.org/abs/quant-ph/0701184
http://arxiv.org/abs/0706.0528


[14] B. Bellomo, R. Lo Franco, and G. Compagno, Non-Markovian Effects on the Dynamics of

Entanglement, Phys. Rev. Lett. 99 (2007) 160502 [arXiv:0804.2377 (quant-ph)].

[15] S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78

(1997) 5022 [quant-ph/9703041; W. K. Wootters, Entanglement of Formation of an Arbitrary

State of Two Qubits, Phys. Rev. Lett. 80 (1998) 2245 [quant-ph/9709029].

[16] H. -P. Breuer, E. -M. Laine, and J. Piilo, Measure for the Degree of Non-Markovian Behavior

of Quantum Processes in Open Systems, Phys. Rev. Lett. 103 (2009) 210401 [arXiv:0908.0238

(quant-ph)].

[17] B. Vacchini, A. Smirne, E. -M. Laine, J. Piilo, and H. -P. Breuer, Markovian and non-

Markovian dynamics in quantum and classical systems, New J. Phys. 13 (2011) 093004

[arXiv:1106.0138 (quant-ph)].
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