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POWER SERIES IN SEVERAL COMPLEX VARIABLES.

G. P. BALAKUMAR

Abstract. The purpose of this article is to provide an exposition of domains of convergence
of power series of several complex variables without recourse to relatively advanced notions of
convexity.

1. Notations, Preliminaries, Introduction.

A nice exposition of a multidimensional analogue of the Cauchy – Hadamard formula on the
radius of convergence of power series, can be found in the book [6] by B. V. Shabat, which
naturally leads one1 to the conviction that domains of convergence of a power series in several
complex variables constitute precisely, the class of logarithmically convex complete multi-circular
domains. In the present expository essay, we provide an alternative route to this result which
avoids relatively advanced notions of convexity, such as holomorphic convexity – this is natural
in a systematic presentation of the subject of several complex variables, where a first goal lies
in obtaining various characterizations of the collective of all domains of holomorphy, of which
domains of convergence of power series, form a very small (and the simplest) sub-class. We
emphasize that this is an expository essay that has been inspired by Shabat’s treatment [6].
There have been other sources as well; instead of enlisting all the sources here, we shall cite
them at appropriate places.

We show how one might guess the aforementioned result on the characterizing features of do-
mains of convergence of power series in higher dimensions and help develop a feel for this simplest
class of domains of holomorphy. Indeed, we shall show that on any given logarithmically convex
complete multi-circular domain D ⊂ CN , all power series with its domain of convergence coin-
ciding with D, can be seen to arise in one particular fashion. Namely, every power series with
D as its domain of convergence, can be recast as a sum of monomials, indexed by sequences
of rational points on the positive face of the standard simplex in RN , converging to prescribed
points of a countable dense subset of the normalized effective domain of the support function
of the logarithmic image of D! This then leads to a natural way of writing down explicit power
series converging precisely on any such given D, without having to deal with the case of an
unbounded D separately as done in the nice set of lecture notes by H. Boas, available at his
web-page [2]. On the other hand given any power series, we shall see how to not only write
down a defining function for the domain of convergence in CN but also the support function of
the convex domain in RN formed by its logarithmic image, directly in terms of the coefficients
of the given power series. All of this is perhaps folklore matter but our intent here is to provide
a thoroughgoing treatment from an elementary standpoint.

Let us set up the stage for our discussion to begin in the next section. Let N0 = N ∪ {0} and
N ∈ N. For J = (j1, . . . , jN ) ∈ NN

0 , define |J | = |j1| + . . . + |jN | and for z ∈ CN , let zJ

1991 Mathematics Subject Classification. Primary: 32A05; Secondary: 32A07.
The author was supported by the DST INSPIRE Fellowship.
1This is being written with a graduate student in mind or those with no prior knowledge of the matter here.

The remaining footnotes may be ignored on a first reading.

1

http://arxiv.org/abs/1601.00274v1


stand for the monomial zj11 z
j2
2 . . . zjNN . Let (R+)N denote the N -fold Cartesian product of the

multiplicative group of R+ of positive reals; its closure in RN is the monoid (R+)
N with R+ being

the multiplicative monoid 2 of non-negative reals. . For J ∈ NN
0 , define J ! = j1!j2! . . . jN ! with

the understanding that 0! = 1. We are interested here with the case N > 1. Unless explicitly
specified, our indexing set in all countable summations is NN

0 . A connected open subset of CN

is called a domain 3. A viewpoint which has been decisive for the exposition here, is that the
most tangible manner of describing a domain is by supplying sufficient data about its boundary,
the simplest of which is specifying a defining function for the boundary of the domain and when
the domain is convex, the supporting function for it. Two fundamental bounded domains which
will appear often in the sequel are the unit ball with respect to the standard l2-norm on CN

given by

BN = {z ∈ CN : |z1|2 + . . .+ |zN |2 < 1}
and the unit ball with respect to the l∞-norm on CN given by the N -fold Cartesian product of
∆ the unit disc in C, namely

UN := ∆N := {z ∈ CN : |zj | < 1 for all j = 1, 2, . . . , N},
which is called the standard unit polydisc; while balls in the l∞-norm will be called polydiscs,
balls in the l2-norm will simply be referred to as ‘balls’. Further, N -fold Cartesian products of
discs ∆(z0j , rj) of varying radii rj and varying centers z0j for j varying through {1, 2, . . . , N},
called the polydisc with polyradius r = (r1, . . . , rN ) centered at the point z0 in CN , will be
denoted by P (z0, r). To indicate the practice of brevity in notation that will be adopted: the
center of such sets will be dropped out of notation and denoted P or B, when it happens to be
the origin or if they are not important for the discussion at hand; or for instance if the radius
does need to be kept track of, discs in C about the origin with radius r will be denoted ∆r.
Finally, let us mention the one other norm to make an explicit appearance which is, the largest
among all norms on RN which assigns unit length to its standard basis vectors namely, the l1-
norm. Its unit ball is known by various names: co-cube/cross-polytope/orthoplex; the boundary
of this orthoplex is the standard simplex SN and its intersection with the non-negative orthant
is called the probability simplex given by

PSN = {x ∈ RN : x1 + . . .+ xN = 1, and xj ≥ 0 for all j}
which may be noted to be the convex hull of the standard basis of RN .

We summarize several basic facts that will be used tacitly in the sequel. Let I be the unit
interval [0, 1] ⊂ R, which may be noted to be closed under a pair of basic algebraic binary
operations: one, the arithmetic mean and the other, the geometric mean of any two numbers
from [0, 1]; as is apparent, these come from the basic pair of algebraic/arithmetical operations on
the field of reals. Infact, both these operations may be modified to give rise to a one-parameter
family of operations of I on itself: for any pair of numbers a, b their weighted arithmetic mean,
corresponding to any fixed t ∈ I, is given by (1− t)a+ tb while their weighted geometric mean is
given by a1−tbt. For each fixed t, these operations make the set I into a monoid with the identity
elements for these operations being situated at the opposite extremes of I. Furthermore, there is
a relation between this pair of binary operations, given by the order relation, called the Hölder’s
inequality, namely,

a1−tbt ≤ (1− t)a+ tb.

2The definition of ‘monoid’ is obtained by removing precisely the condition on the existence of inverse in the
definition of a ‘group’.

3More generally, we shall refer to any connected open subset of any topological space X as a domain in X.
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Just as the basic algebraic operations on R renders RN the structure of a vector space, so does
the monoid I with either of the above binary operations on certain subsets of RN . Indeed, let V
be any finite dimensional vector space over the reals; there is for each t ∈ [0, 1] a pair of binary
operations Φt,Ψt. While one of them, to be the one denoted Φt in the sequel – Φt corresponds
to the action of forming the straight line joining 4 a pair points – requires only the affine-space
structure of V , the other requires coordinatizing V . Indeed, Φt : V × V → V is given by

Φt(v,w) = (1− t)v + tw.

For the other binary operation, we first make some identification of V with RN for N = dim(V );
it is best defined first in the connected component of the identity of the multiplicative Lie group
(R∗)N , namely (R+)N , as:

Ψt(v,w) =
(

ψt(v1, w1), . . . , ψt(vN , wN )
)

,

for v,w ∈ (R+)N with ψt(a, b) = a1−tbt. The former operation is facilitated by the scalar
multiplication of R on V (henceforth identified with RN ) and the latter 5 by its conjugate
namely, the conjugate of scalar multiplication by the exponential/logarithm:

v → λ−1
(

tλ(v)
)

where λ(v) = (log v1, . . . , log vN ). This logarithmic mapping λ has an obvious extension:
v → (log |v1|, . . . , log |vN |) as a surjective group homomorphism (C∗)N → RN whose kernel is
the torus TN . This map which we continue to denote by λ, may be further viewed to extend as
a monoid morphism from the multiplicative monoid 6 CN onto the additive monoid [−∞,∞)N ;
this actually factors through the monoid morphism τ : (z1, . . . , zN ) → (|z1|, . . . , |zN |) mapping
CN onto the absolute space (R+)

N . The product7 of [−∞,∞)N with TN can be identified via
the mapping A : (x, ω) → (ex1ω1, . . . , e

xNωN ) (here ofcourse it is understood that e−∞ = 0)
with CN . Products of domains in [−∞,∞)N with TN are pushed forward by this mapping A
onto domains which are ‘multi-circular’ (invariant under the natural action of TN on CN ) and

4Straight line formation and convex sets can be defined in any affine space; circular arcs, to be introduced
later, in affine spaces (of dimension at least two) with an origin i.e., vector spaces and logarithmic convexity in
normed vector spaces.

5This binary operation which consists of forming the coordinate-wise geometric mean of the given pair of
points, may be extended to all other cosets of (R+)N in (C∗)N by taking coordinate-wise product with the map
which sends a complex number z to z/|z|, as:

Ψt(v, w) =
(

v1−t
1 wt

1

v1w1

|v1w1|
, . . . , v1−t

N wt
N

vNwN

|vNwN |

)

But we shall not pursue this here. We are more interested in sets closed under these binary operations – which
admit alternative definitions – rather than the operations themselves.

6The multiplicative monoid structure on CN is used in the operation Ψt which plays a central role in this article:
Ψt(v, w) = p

(

λ−1
(

tλ(v)
)

, λ−1
(

(1 − t)λ(w)
))

where p(v, w) = (v1w1, . . . , vNwN ) denotes the monoidal operation
of coordinate-wise product. We remark in passing that the map λ whose components may be thought of as ℜ◦ log
(for a suitable local branch of the complex logarithm) applied to the respective coordinates, is continuous, infact
smooth and (pluri-)harmonic, on all of (C∗)N even though the complex logarithm fails to be continuous on C∗; if
we factor out τ from λ, it is a local diffeomorphism, in particular, an open mapping. These facts are convenient in
assuring ourselves, while imaging Reinhardt domains in the logarithmic space as domains. Finally, let us mention
that its extension to CN is upper semi-continuous; indeed z → log |z| furnishes the simplest upper semicontinuous
subharmonic function whose polar set is non-empty.

7Direct product of the additive monoid [−∞,∞)N with the multiplicative group TN can be identified – via
the mapping A : (x,ω) → (ex1ω1, . . . , e

xNωN) – with CN which is an additive group as well as a multiplicative
monoid.

3



are termed Reinhardt domains 8. Pull-backs of convex domains in RN by λ are called logarith-
mically convex – formulated again precisely in definition (2.10) below. So, sets closed under
Ψt are those whose logarithmic images are closed under the former binary operation Φt. As
Φt requires no coordinatization, it is trivial that sets closed under this binary operation for all
t ∈ I namely the convex sets, remain convex under all affine transformations – convexity is an
affine property. However, it is far more non-trivial that multi-circular logarithmically convex
domains in CN whose logarithmic images are complete/closed under translation by vectors from
(−R+)N , possess a property which remains invariant under all biholomorphic (not just affine!)
transformations. This property known as pseudoconvexity will not be discussed much here (we
refer the novice to Range’s expository articles [4] and [5]). Pseudoconvexity is a subtle property;
however, we hope that the present essay, among other extensive treatises such as [7], convinces
the reader that it is possible to gain a ‘hands-on’ experience with the simplest examples of ‘pseu-
doconvex’ domains namely, domains of convergence of power series in several complex variables.

Among the most elementary functions of several complex variables are the monomial functions
and their linear combinations.

Definition 1.1. A function of the form p(z) =
∑

|J |≤m cJz
J is called a polynomial. Here, if at

least one of the cJ ’s with |J | = m is non-zero, the total degree of p is defined to be deg(p) = m.
For the zero polynomial, the degree is not defined. A polynomial is called homogeneous of degree
m if the coefficients cJ for |J | < m are all zero. Equivalently, a polynomial p of degree m is
homogeneous if and only if p(λz) = λmp(z) for all λ ∈ C.

Thus polynomials are for us by definition, functions on the coordinate space CN , defined by
expressions from the (coordinate) ring C[z] = C[z1, . . . , zN ]. Such functions are annihilated by
the operators ∂/∂zj for all j = 1, . . . , N and are sometimes referred to as ‘holomorphic polyno-
mials’ to distinguish them from finite linear combinations of monomials in the 2N variables z, z.
Moving further, we may obtain more functions by taking limits of polynomials; but such limits
will often not be well-defined on all of CN and we need to identify the subset on which they
exist. Before we investigate this, we must first be clear about issues of limits and convergence
in several variables, which we review in the following sub-section.

1.1. Series indexed by Lattices. Suppose that for each J ∈ NN
0 , a complex number cJ

is given; we may form the series
∑

cJ and discuss the matter of its convergence. A trouble
immediately arising is: there is no canonical order on NN

0 . So to start with, we make the
following

Definition 1.2. The series of complex numbers
∑

cJ indexed by J ∈ NN
0 is said to be conver-

gent, if there exists at least one bijection φ : N → NN
0 such that

∑∞
i=1 |cφ(i)| < ∞. Then the

number
∞
∑

i=1

cφ(i)

is called the limit of the series. Now note that this notion of convergence is independent of the
choice of the map φ and that it means absolute convergence, thus circumventing the ambiguities
alluded to above; all possible rearranged-summing leads to the same sum.

Example 1.3 (The geometric series of several variables.). Let r = (r1, . . . , rN ) ∈ RN
+ with ri ∈

(0, 1) for all i = 1, . . . , N . Then the number rJ = rj11 r
j2
2 . . . rjNN is again in (0, 1). If I is a finite

8It is helpful to draw (for N ≤ 3) images of Reinhardt domains in the absolute space as well as in the
corresponding logarithmic space and we urge the reader to do so.
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sub-lattice of NN
0 , there is an integer L such that I ⊂ {0, 1, 2, . . . , L}L so that we may write

|
∑

J∈I

rJ | =
∑

J∈I

rJ ≤
N
∏

i=1

L
∑

ki=0

rkii ≤
N
∏

i=1

( 1

1− ri

)

<∞

and conclude that the series is convergent. Replacing r by z ∈ ∆N shows likewise that the
partial sums of the multi-variable geometric series

∑

J z
J is also convergent on ∆N – indeed,

absolutely convergent – with sum being given by
N
∏

i=1

(

1/(1 − zi)
)

.

1.2. Convergence of functions. Let M be an arbitrary subset of CN , {fJ : J ∈ NN
0 } a

family of complex-valued functions on M . Denote by |fJ |M the supremum of |fJ | on M .

Definition 1.4. The series
∑

J fJ is said to normally convergent on M if the series of positive
numbers

∑ |fJ |M is convergent.

Proposition 1.5. Suppose the series
∑

fJ is normally convergent on M . Then it is convergent
for any z ∈ M and for any bijective map φ : N0 → NN

0 , the series
∑∞

i=1 fφ(i) is uniformly
convergent on M .

Set theoretic operations. A possibly not-so-often encountered operation shall arise naturally
in the sequel, namely that of the limit infimum of a countable collection of sets, enumerated as
say {Cn}∞n=1; their limit infimum is given by

lim inf
n∈N

Cn =

∞
⋃

k=1

∞
⋂

j=k

Cj .

Thus, ω ∈ lim infnCn if and only if for some n, ω ∈ Cj for all j ≥ n; in other words, ω ∈
lim infnCn if and only if ω ∈ Cn eventually. A trivial fact that will be useful to keep in mind
for the sequel is that the limit infimum of a countable collection of convex sets in RN is convex.
Rudiments of convex analysis is reviewed in the last section which may be useful as a reference
for our notational practices as well. Indeed it will do well to keep the basics of convex calculus
afresh in mind and the basics for the present essay are summarized in the last section.

1.3. Recap of Convex Analysis and Geometry. Refer to the last section.

Remark 1.6. A final remark about notations: an ambiguous notation to be used is the indexing
of sequences of reals say, as {cn} rather than by a subscript, which may cause confusion with the
notation of the n-th power of a number c. Such a notation will be employed only in connection
with other objects; for instance, the first components of a vector sequence vn = (vn1 , . . . , v

n
N ) ∈

RN is naturally denoted vn1 . We hope such ambiguous notations will be clear from context.

Acknowledgments: The author would like to thank his advisor Kaushal Verma for suggesting
some improvements.

2. Power series in several variables.

Definition 2.1. Let cJ be a sequence of complex numbers indexed by J ∈ NN
0 and z0 ∈ CN .

Then the expression
∑

cJ(z − z0)
J is called a formal power series about z0. Without loss of

generality, we shall assume henceforth that z0 is the origin. If this series converges normally on
a set M to a complex-valued function f then being a uniform limit of continuous functions, we
first note that f is continuous on M .

Definition 2.2. Let f(z) =
∑

cJz
J be a formal power series. Denote by B the set of all points

of CN at which the series S converges; it’s interior B0 is termed the ‘domain’ of convergence of
the power series S.

5



Remark 2.3.

(i) There is a canonical way to sum a power series of several variables, even though the
indexing set in the summation is NN

0 . Namely, one first sums up all monomials of any
given degree and then sums up the homogeneous polynomials of various degrees thus
obtained:

∞
∑

k=1

∑

|J |=k

cJz
J

If we declare a power series to be convergent if the sum of its homogeneous constituents
ordered by degree as above converges, instead of the (tacit) requirement made above
that every rearrangement of the constituting monomials of a power series must lead to a
convergent series with the same sum, then the domain of convergence gets enlarged. As
a power series is thought of more as a sum of the monomials constituting occurring in it,
this practice of summing by homogeneous components alone, is not adopted. It is even
customary to write a power series as a sum of monomials arranged in non-decreasing
order of their degree (i.e., with respect to the partial order on NN

0 by l1-norm) though
our requirement places no emphasis on such an ordering.

(ii) We shall refer to both the formal power series and the (holomorphic) function it defines,
by the same symbol.

(iii) The quotes on the word ‘domain’ in the above definition, can and will be dropped as
soon as we verify that the B0 is connected. This requires the following lemma.

Lemma 2.4 (Abel’s lemma). Let P ′ ⋐ P be a pair of polydiscs about the origin. If the power
series

∑

cJz
J converges at some point of the distinguished boundary of P , then it converges

normally on P ′.

Proof. Let P = ∆1 × ∆2 × . . . × ∆N where ∆j are discs of some radii about the origin and
denote the distinguished boundary of P which is the thin subset ∂∆1 × ∂∆2 × . . . × ∂∆N , of
the boundary of P , by ∂0P . Let w ∈ ∂0P be such that

∑

cJw
J is convergent. Then firstly,

there exists a constant C > 0 such that |cJwJ | ≤ C for all J ∈ NN
0 . Next, compare the modulii

of the coordinates of points in P with that of w i.e., consider the ratios rj(z) = |zj |/|wj | for
j = 1, 2, . . . , N – each of these ratios rj(z) is bounded above by a positive constant say qj,
strictly less than 1, owing to P ′ being compactly contained inside P . Note that the sup-norm
of the monomial-function cJz

J on P ′ is bounded above by the constant CqJ :

|cJzJ | ≤ |cJqJwJ | ≤ CqJ

for every z ∈ P ′. This comparison with the geometric series
∑

qJ – which converges because
we know qj are all strictly less than 1 – finishes the verification that

∑ |cJzJ |P ′ is convergent
and subsequently that

∑

J cJz
J is normally convergent. Finally, since every compact subset of

P is contained in some compact sub-polydisc P ′ of P , we see that our power series converges
uniformly on each compact subset of P . �

Definition 2.5. We say that a power series
∑

J cJz
J converges compactly in a domain D, if it

converges normally on every compact subset of D.

Lemma 2.6. Let P ′ ⋐ P be a pair of polydiscs about the origin. Suppose f(z) =
∑

cJz
J

converges compactly on polydisc P and the multi-radius of P ′ is r = (r1, . . . , rN ). Then the
coefficients of the power series can be recovered from the knowledge of the values of f on the
distinguished boundary of P ′ by the formula:

cK =
1

(2π)N rK

∫

[0,2π]N
f(z)e−i(k1θ1+...+kNθN )dθ1 . . . dθN

6



and consequently, we have the estimate

|cK | ≤ 1

(2π)N
|f |T
rK

Proof. Set zj = rje
iθj for each j = 1, . . . , N to write

f(z) = f(r1e
iθ1 , . . . , rNe

iθN ) =
∑

cJr
Jei(j1θ1+...+jNθN )

and integrate with respect to each of the variables θj on [0, 2π] to get
∫

[0,2π]N
f(z)e−i(k1θ1+...+kNθN )dθ1 . . . dθN

=
∑

cJr
J

∫

[0,2π]N
ei(j1−k1)θ1+...+(jN−kN )θN dθ1 . . . dθN .

where the interchange of integral and summation on the right is justified by the uniform con-
vergence of our power series on the boundary of P ′. The integral appearing on the right in the
last equation is zero except when J = K in which case it is [0, 2π]N . The formulae in assertion
now follow. �

Definition 2.7. Let z0 be any point of CN . The (open) polydisc centered at the origin with
polyradius (|z01 |, |z02 |, . . . , |z0N |) is called the polydisc spanned by the point z0.

We may rephrase Abel’s lemma as follows. Let P be a polydisc and w a point of the distinguished
boundary of P . If the power series

∑

cJz
J converges (unconditionally) at w, then it converges

compactly on P . Stated differently, if f converges at a point w, then it converges compactly on
the polydisc spanned by w. This means that the interior of the set of convergence of the general
power series f which we denoted B0, can be expressed as the union of the (concentric) polydiscs
spanned by points of B and subsequently that B0 must be connected. This finishes the pending
verification that B0 is indeed a domain. In fact, we may note more here: B0 is what is known as
a Reinhardt domain, indeed a ‘complete Reinhardt domain’ as defined below and in particular
therefore, a contractible domain.

Definition 2.8. A domain D in CN is termed Reinhardt (about the origin) if z ∈ D entails
that (eiθ1z1, . . . , e

iθN zN ) ∈ D for all possible choices of (θ1, . . . , θN ) ∈ RN . Such a domain is also
said to be multi-circular. A domain D in CN is said to be circular if z ∈ D entails (only) that
(eiθz1, . . . , e

iθzN ) ∈ D for all θ ∈ R; it is said to be complete circular if it admits an action by
the disc i.e., z ∈ D entails that (λz1, . . . , λzN ) ∈ D for all λ ∈ ∆; complete circular domains are
sometimes also referred to as complex star-like domains and we note in passing that all complete
circular domains are contractible domains. Likewise a Reinhardt domain is said to be complete
if it is invariant under the action of the closed unit poydisc by coordinate-wise multiplication

i.e., z ∈ D entails that (λ1z1, . . . , λNzN ) ∈ D for all choices of (λ1, . . . , λN ) ∈ ∆
N
.

Proposition 2.9. The domain of convergence B0 is a complete Reinhardt domain and f(z)
converges compactly in B0.

Now we may ask: is every complete Reinhardt domain, the domain of convergence of some power
series? The answer is No. Domains of convergence have some additional properties.

Definition 2.10. Let λ : (C∗)N → RN be the map given by

λ(z) = (log |z1|, log |z2|, . . . , log |zN |).
A set M in CN is termed logarithmically convex if its logarithmic image M∗ = λ(M0), where

M0 = {z ∈M : z1z2 . . . zN 6= 0} =M ∩ (C∗)N

is convex.
7



Remark 2.11. For a logarithmically convex complete Reinhardt domain D, we shall sometimes
write λ(D) for λ(D∗). We may also consider the map λ : D → [−∞,∞)N with the obvious
extension of λ to points in M ∩ D i.e., with some of its coordinates zero. Then suppose z0 ∈
D ∩ (C∗)N . The Jacobian of λ at the point z0 is given by

1

|z01 |
. . .

1

|z0N |
which is evidently non-zero. Consequently by the inverse function theorem, λ is an open map
when restricted to D∗; it is not difficult to check that λ (without restriction) is itself an open
mapping. So if p, q ∈ D∗ then pλ = λ(p), qλ = λ(q) are interior points of the convex domain
G = λ(D∗). Observe that every point of the line segment joining the pair pλ, qλ is an interior
point of G.

Suppose z, w are two different points in the domain of convergence of a given power series
∑

cJz
J . So,

∑

J |cJzJ | and
∑

J |cJwJ | converge to some finite positive numbers. Recall Hölder’s

inequality and write it, as applied to the pair of positive numbers |zJ |, |wJ | and the conjugate
exponents 1/t, 1/(1 − t) where t ∈ (0, 1), as follows:

|zJ |t|wJ |1−t ≤
(

|zJ |t
)1/t

1/t
+

(

|wJ |1−t
)1/(1−t)

1/(1− t)
.

Hence,

|zJ |t|wJ |1−t ≤ t|zJ |+ (1− t)|wJ |
from which it is apparent that the given series converges at the point with real coordinates given
by

(|z1|t|w1|1−t, |z2|t|w2|1−t, . . . , |zN |t|wN |1−t).

Infact, this point lies in the interior of the set of points where the power series converges, namely
D = B0. Indeed to indicate the reasoning here, suppose z, w ∈ D∗ = D ∩ (C∗)N . Let Bz, Bw be
balls centered at the points λ(z), λ(w) of radius some ǫ > 0, such that they are contained within
G = λ(D∗). Then, observe that the logarithmic image of the above point lies in the convex hull
of Bz, Bw, which may be noted to be contained inside G. As λ pulls back open sets to open sets
just by continuity of λ, the following basic result follows.

Proposition 2.12. The domain of convergence B0 is logarithmically convex.

Well, how does one ‘discover’ this? How can one guess other properties, if any, that is possessed
by all those domains which are precise domains of convergence of some power series? Is it
possible to pin down all common features shared by domains of convergence of power series
which characterize them completely? To answer all this, one needs to get to the roots of the
theory of power series: first, the (precise/largest) domain of convergence of any given power
series in a single variable is always a disc whose radius is read off from the coefficients of the
given series, using the following

Theorem 2.13 (Cauchy – Hadamard formula). The radius of convergence of the power series
∑

cjz
j is given by

1

lim supj→∞
j
√

|cj |
It is natural to ask for a constructive method of describing the domain of convergence of a power
series of several variables. Now, the uniformity in the shape of the domain of convergence of
power series in several variables is not as trivial as in the case of one variable, for, as we shall
see, the ball and the polydisc are each, the natural domain of convergence of some power series
but they are not biholomorphically equivalent. All we know at this point, is that domains of
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convergence of power series in several variables are also completely determined by their absolute
profile, so we focus on τ(D); but then τ(D) is not a domain and to avoid this annoyance, we
pass to the logarithmic image λ(D); more importantly, λ(D) has a geometric property namely
convexity, shared by all domains of convergence of power series. Further, they can be expressed
as the union of concentric polydiscs.

Definition 2.14. A polydisc U = U(z0, r) is termed a polydisc of convergence of
∑

cJz
j if

U ⊂ B but in any polydisc U(z0, R) where each Rj ≥ rj for j = 1, 2, . . . , N with at least one of
the inequalities being strict, there are points in U(z0, R) where the series diverges.

Every such polyradii (r1, r2, . . . , rn) of U(z0, r) is called a conjugate polyradii i.e., the radii of
each polydisc of convergence are called conjugate radii of convergence.

If we join the dots formed by the various conjugate radii in the absolute space, what do we get?
The answer to this is facilitated by a higher dimensional analogue of the Cauchy – Hadamard
formula:

Proposition 2.15. The conjugate radii of convergence of the power series
∞
∑

k=1

∑

|J |=k cJz
J sat-

isfy the relation

(2.1) lim sup
|J |→∞

|J|

√

|cJrJ | = 1

Proof. Let r be a conjugate radii of convergence of the given series

(2.2)
∞
∑

k=1

∑

|J |=k

cJz
J

Let ζ ∈ ∆. Then z = ζ · r lies in the polydisc of convergence U , the series converges absolutely
in U and after regrouping the terms, we obtain from (2.2), the following series in the variable ζ:

∞
∑

|J |=1

|cJ |zJ =

∞
∑

|J |=1

|cJ |ζ |J |r|J | =
∞
∑

k=1

(

∑

|J |=k

|cJ |rJ
)

ζ |J |

So we obtain from (2.2) that the series

∞
∑

k=1

(

∑

|J |=k

|cJ |rJ
)

ζ |J |

which is a series in one complex variable ζ known to be convergent for ζ ∈ ∆.
If there exists ζ0 outside the closed unit disc at which this series converges, then it must be
convergent on the disc centered at the origin which will imply that the coefficients satisfy the
following decay estimate:

|cJ |r|J | ≤
M

|ζ0||J |
that is,

|cJ | ≤
M

|(ζ0r)J |
,

which means that the series at (2.2) must converge on the polydisc with polyradii (ζ0r1, ζ0r2, . . . , ζ0rN )
contradicting that U is a (maximal) polydisc of convergence. Thus, the series (2.2) diverges for
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every point ζ with |ζ| > 1. By the Cauchy – Hadamard formula for one variable, we therefore
have

(2.3) lim sup
k→∞

k

√

∑

|J |=k

|cJ |rJ = 1

It only remains to show that this equation is equivalent to the one claimed in the statement of our
proposition. For this, first choose among all the monomials {cJzJ} with |J | = j1 + . . .+ jn = k,
the one for which the maximum in

max
|J |=k

|cJ |rJ

– the maximum of sup-norms of monomials on the polydisc of radius r – is attained. Let
M = (m1,m2, . . . ,mN ) be such that this maximum is attained i.e.,

|cM |rM = max
|J |=k

{|cJ |rJ}.

Then write down the obvious estimate

|cM |rM ≤
∑

|J |=k

|cJ |rJ ≤ (k + 1)N |cM |rM ,

with the last inequality obtained by overestimating the number of terms appearing in the sum
in the middle! Using this and the fact that (k+1)N/K → 1 as K → ∞, we may rewrite (2.3) as
the relation

lim sup
k→∞

k

√

|cM |rM = 1,

from which the asserted relation of the proposition follows. �

Now, note that the relation (2.1) in the proposition above, can be rewritten as the equation

(2.4) ϕ(r1, r2, . . . , rN ) = 0

which ‘ties together’ a relation among the conjugate radii of convergence of the series (2.2). This
equation determines the boundary of the domain τ(B0) which depicts the domain of convergence
B0 in the absolute space. Next, substitute rj = esj in (2.4). This leads to the last equation to
be transformed as

ψ(s1, s2, . . . , sN ) = 0

– the equation for the boundary of λ(B0), the logarithmic image of B0, some convex domain in
RN . Indeed, let us rewrite equation (2.1) after taking logarithms:

lim sup
|J |→∞

(j1 log r1 + j2 log r2 + . . .+ jN log rN
j1 + j2 + . . .+ jN

+ log |cJ |/|J |
)

= 0

So ultimately, in the variables s1, . . . , sN , the relation (2.1) reads:

(2.5) lim sup
|J |→∞

(j1s1 + j2s2 + . . . + jNsN
j1 + j2 + . . .+ jN

+ log |cJ |/|J |
)

= 0

Indeed, the left hand side here is the function which we denoted by ψ(s1, . . . , sN ) earlier; the
above equation expresses ψ as the limsup of a family, infact a sequence, of affine functions. Thus,
ψ must be convex. The domain of convergence D of our given power series corresponds to {s :
ψ(s) ≤ 0}. Let us rewrite this more precisely and record it for now: D = {z ∈ CN : ϕ(z) < 0}
where ϕ is given in terms of the coefficients of our power series

∑

cJz
J by

(2.6) ϕ(z1, . . . , zN ) = lim sup
|J |→∞

|J|

√

|cJzJ | − 1.

Thus, on the one hand, it is possible to read off the equation defining the boundary of its domain
of convergence from its coefficients as in the one-variable case; on the other hand, as we shall
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see next, the possibilities for the boundary is going to be as varied as the whole range of convex
functions.

Before moving on, a bit of notation: let pK denote the point

(
k1

k1 + . . . + kN
, . . . ,

kN
k1 + . . .+ kN

)

for K ∈ NN . Let PSQN be the set of all such points pK which forms a countable dense sub-
set of P . We note that PSQN is precisely the set of all points on PSN with rational coordinates.

We now proceed towards showing the existence for any given logarithmically convex complete
multi-circular domain D in CN , a power series whose domain of convergence is precisely D; we
shall actually describe a method for writing down one explicitly. As the key property of D is
the convexity of the domain G := λ(D), we first study the link between the domain G and
the basic functions which constitute any power series namely, the monomial functions. Notice
first that monomial functions on CN correspond to linear functionals on its logarithmic image.
More precisely, the monomial function zJ = zj1 . . . zjN transforms into the linear functional
s → j1s1 + . . . jNsN on RN whose kernel is therefore HJ = {s ∈ RN : j1s1 + . . . jNsN = 0}.
To spell out the result that we are after in brief, if an appropriate translate of HJ is a support-
ing hyperplane for G, then the (exponential of the) amount of translation required essentially
renders the sought for coefficient of zJ in our candidate power series provided, the norm of the
gradient vector (j1, . . . , jN ) is one – we shall come to the appropriate choice of the norm in which
we shall measure the amount of translation done, later. To ensure this condition on the norm of
the gradient is easy: we just need to divide out the defining equation for HJ by |J |. But then
notice that zJ = zj1 . . . zjN with J = (j1, . . . , jN ) = m(k1, . . . , kN ) = mK gives rise to the same
J/|J | as does zK = zk1 . . . zkN . Our goal here, is to ‘discover’ the above-mentioned result.

Recall our observation around equation (2.5), that the logarithmic image Gg of the domain of
convergence of a given power series g =

∑

cJz
J is the convex domain given by

{

s ∈ RN : lim sup
|J |→∞

(j1s1 + j2s2 + . . .+ jNsN
j1 + j2 + . . .+ jN

+
log |cJ |
|J |

)

< 0
}

Observe that this is essentially equivalent to the statement that the logarithmic image of the
domain of convergence of every power series is the liminf of a sequence of half-spaces whose
gradient vectors belong to PSQN . Indeed,

(2.7) Gg = lim inf
J∈NN

{HJ}

with HJ denotes the half-space {s : 〈J/|J |〉 + log |cJ |1/|J | < 0}.

The fact that the gradients of the bounding/supporting hyperplanes for Gg is ‘positive’, is con-
tained within the conditions imposed on our D. Indeed, continuing our study of the logarithmic
image G, notice by the convexity of G that any point q ∈ ∂G has (possibly many) a supporting
hyperplane for G in RN passing through it; let Hq denote one such and be defined by say,

Aq(x) := 〈m,x〉+ c

where m ∈ Rn \ {0}. So Aq(q) = 0 and Aq(x) is of the same sign throughout G. As usual,
multiplying Aq by −1 if necessary, we may assume Aq is negative-valued throughout G. Just
by the fact that D has a neighbourhood of the origin contained in it, G has a neighbourhood of
(−∞, . . . ,−∞) inside it; indeed, note that there is a positive numberM such that all points with
its coordinates all less than −M must be contained in G giving an infinite box-neighbourhood of
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(−∞, . . . ,−∞) which is contained inside G in its ‘left-bottom’. Further, the complete circularity
of D translates into the following condition about G: if s0 ∈ G then all points s with sj ≤ s0j for

all j, must also be contained in G – this again gives an infinite box in the form of an orthant
bounded by hyperplanes with gradients parallel to the axes, all passing through the point s0.
These features of G force all the components mj of the gradient vector of Aq to be negative; for
if mj were negative for some j, then pick any s0 ∈ G and consider points of the form

p(s) = (s01, . . . , s
0
j−1, s, s

0
j+1, . . . , s

0
n)

with s, a negative number to be chosen soon. Then, on the one hand p(s) ∈ G will imply

Aq(p(s)) = m1s
0
1 + . . .+mj−1s

0
j−1 +mjs+mj+1s

0
j+1 + . . .+mns

0
n < 0,

which we rewrite as

mjs < −
(

m1s
0
1 + . . .+mj−1s

0
j−1 +mj+1s

0
j+1 + . . .+mns

0
n

)

.

On the other hand, we can use the freedom to take p(s) to be points in G – indeed, within the
aforementioned infinite box-neighbourhood of (−∞, . . . ,−∞) – with s negative and of modulus
as large as we please; in particular, to contradict the above inequality whose right side is a
constant. This shows that every component mj of the normal vector m of every supporting
hyperplane for G must be non-negative. Hence, every supporting hyperplane for G, is given by
an equation of the form {s ∈ RN : Aq(s) = 0} where

Aq(s) := m1s1 + . . .+mNsn + dq

for some positive real numbers mj, which needless to say, depend on q. Actually, we may divide
out the defining equation of this hyperplane by |m1| + . . . + |mN | to assume that mj ’s are all
numbers in [0, 1] with |m1| + . . . + |mN | = 1 and we shall suppose so, in the sequel; this also
results in a change in the constant dq but we shall continue to denote it by dq. In other words
m lies in the non-negative face, denoted earlier by PSN , of the standard simplex. This will be
important in the sequel; so, let us spell this out explicitly here: the defining function for every
supporting hyperplane for G can be (and shall always be) written in a form such that its gradient
vector belongs to PSN . With this normalization made, dq in modulus, gives the distance of the
hyperplane Hq from the origin, as measured in the l∞-metric. Indeed, note first that

|m1s1 + . . .+mNsN | ≤ |m|l1 |s|l∞ = |s|l∞ .
But then for s ∈ Hq, the left hand side is equal to |dq|, which means that |dq| ≤ |s|l∞ for all
s ∈ Hq; noting that the point sq := (−dq, . . . ,−dq) satisfies Aq(s

q) = 0 i.e., lies on Hq and has
|sq|l∞ = |dq|, we get that the foregoing lower bound for the l∞-distance of points on Hq from
the origin is actually attained at the point sq and that this minimum distance is |dq|. Let us
keep these observations on record.

To discern the relationship between the coefficients defining a power series and the domain of
convergence in more tangible terms, we now rephrase such relationships, (2.7) being one such for
instance, in terms of the support function rather than the defining function; while the defining
function is general tool to describe domains, the support function is a more convenient function
specially adapted for convex domains. Let g be some general power series

∑

cJz
J with the

logarithmic image of its domain of convergence Gg. Then, as we know Gg = {s ∈ RN : ψ(s) <
0} with the defining function ψ being given by

(2.8) ψ(s) = lim sup
|J |→∞

{

〈 J|J | , s〉+
1

|J | log |cJ |
}

.
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Given any α ∈ PSN pick any sequence Rn = Jn/|Jn| ∈ PSQN for some sequence {Jn} ⊂ NN ,
such that Rn → α as n→ ∞. Then

ψ(s) ≥ 〈α, s〉+ lim sup
n→∞

log |cJn |
|Jn| .

Now, for all s ∈ Gg, ψ(s) ≤ 0, so we must have

sup
s∈Gg

〈α, s〉 ≤ − lim sup
n→∞

{ log |cJn |
|Jn|

}

= lim inf
n→∞

{− log |cJn |1/|Jn|}.

This leads to the upper estimate for the support function h := hGg of the convex domain Gg,
given by

(2.9) h(α) ≤ − lim sup
n→∞

log |cJn |
|Jn|

with this being valid for all α ∈ PSN and any sequence {Jn} ⊂ NN with Jn/|Jn| converging to
α as n → ∞. Stated differently, for every sequence {Jn} ⊂ NN with Jn/|Jn| being convergent
to say α ∈ PSN , we have:

(2.10) − h(α) ≥ lim sup
n→∞

log |cJn |
|Jn| .

After passing to a subsequence to replace the limsup on the right by a limit, we may write

−h(α) ≥ lim
n→∞

log |cJn |
|Jn| .

This means that every value assumed by −h dominates some subsequential limit of log |cJ |/|J |
leading us to the conclusion

(2.11) inf
α∈PSN

{−h(α)} ≥ lim inf
|J |→∞

log |cJ |/|J |.

Next suppose {Kn} ⊂ NN is a sequence which achieves the limit supremum for the sequence
log |cJ |/|J | i.e., log |cKn |/|Kn| is a convergent sequence with limit lim sup(log |cJ |/|J |). Then
after passing to a subsequence of {Kn} to assume Kn/|Kn| → γ for some γ ∈ PSN and
subsequently using (2.10), we get

(2.12) lim sup
|J |→∞

log |cJ |/|J | ≤ −h(γ) ≤ sup
α∈PSN

{−h(α)}.

On the other hand a lower bound may be obtained as follows. Pick any point s0 ∈ Gg, recall
(2.8) and write

lim sup
|J |→∞

〈 J|J | , s
0〉+ lim sup

|J |→∞

log |cJ |
|J | ≥ ψ(s0).

As every subsequential limit of the countable collection of numbers {〈 J
|J | , s

0〉 : J ∈ NN} is of

the form 〈α, s0〉 for some α ∈ PSN , it follows that the left most term in the above, must be of
the form 〈β, s0〉 as well, for some β ∈ PSN , so that we may write

h(β) ≥ ψ(s0)− lim sup
|J |→∞

log |cJ |
|J | .

As s0 ∈ Gg was arbitrarily chosen, we may as well we might as well take s0 to be on the boundary
∂Gg, to get the lower bound

h(β) ≥ − lim sup
|J |→∞

log |cJ |
|J | .

13



Now, rewrite this as:

(2.13) lim sup
|J |→∞

log |cJ |
|J | ≥ −h(β)

to subsequently derive from this, the lower bound:

(2.14) lim sup
|J |→∞

log |cJ |
|J | ≥ inf

α∈PSN

{−h(α)}.

Now, (2.10) and (2.13) together indicate the possibility that every value in the range of −h can

be realized as a subsequential limit of the sequence log |cJ |1/|J |. Indeed this is true: to this end,
begin with the following rephrased version of (2.7):

Gg =
⋂

α∈PSN

{

〈α, s〉 + lim sup
{Jn}∈Sα

log |cJn |
|Jn| < 0

}

where Sα is the set of all sequences {Jn} in NN with Jn/|Jn| → α. On the other hand, if h is
the support function of the convex domain Gg, we may write

Gg =
⋂

α∈PSN

{

〈α, s〉 − h(α)
}

.

Comparing the foregoing pair of representations of Gg, using the basic fact that for any convex
domain, there can be at most one supporting hyperplane with a given gradient, we conclude
that: for every α ∈ PSN ,

(2.15) h(α) = − lim sup
{Jn}∈Sα

log |cJn |
|Jn| .

Thus, just as we have a formula connecting the coefficients of a power series g and the defining
function of the logarithmic image Gg of its domain of convergence, we have a similar one linking
it to the support function of Gg, as well. By picking a suitable sequence {Jn} ⊂ NN then, we
may write

(2.16) h(α) = lim
n→∞

{

− log |cJn |1/|Jn|
}

where we are interested mainly in those α which lie in PSh = {α : h(α) is finite}. In short,

h(α) is a subsequential limit of − log |cJ |1/|J |, allowing us to finally conclude that the range of
h in R is contained in the set of all finite subsequential limits of the countable set of numbers:

{

− log |cJ |1/|J | : J ∈ NN
}

.

As every convex domain is characterized completely by its support function, it follows from
(2.15) that: for any given convex domain G with support function h, the coefficients of every
power series

∑

cJz
J which converges precisely on the domain λ−1(G), must satisfy (2.15) or

equivalently the following analogue of the Cauchy – Hadamard formula for the radius of (the
polydiscs of) convergence:

(2.17) eh(α) =
1

lim sup
{Jn}∈Sα

{

|cJn |1/|Jn|
} ,

for each α ∈ PSh (in fact, for all α ∈ PSN ). Indeed, this formula gives the radius of convergence
for any of the α-constituents of our power series, where by an α-constituent (or α-strand or α-
section) of our generic power series

∑

cJz
J we mean any of its sub-series given by

∞
∑

n=1

cJnz
Jn
1

1 . . . z
Jn
N

N
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with {Jn} ⊂ NN satisfying Jn/|Jn| → α.

As logarithm is an increasing (=order-preserving) function, (2.17) now leads to the result that
the support function of the logarithmic image of the domain of convergence of any power series,
can at least in principle be completely determined from the coefficients through the formula:

−h(α) = lim sup
{Jn}∈Sα

{ log |cJn |
|Jn|

}

.

As this holds for all α ∈ PSN ,

lim sup
|J |→∞

log |cJ |
|J | ≤ sup

α∈PSN

{−h(α)}

Getting back now to (2.14), we see that we have

inf
α∈PSN

{−h(α)} ≤ lim sup
|J |→∞

log |cJ |
|J | ≤ sup

α∈PSN

{−h(α)}

Combining this with (2.11), we may therefore write

(2.18) lim inf
|J |→∞

log |cJ |
|J | ≤ inf

α∈PSN

{−h(α)} ≤ lim sup
|J |→∞

log |cJ |
|J | ≤ sup

α∈PSN

{−h(α)}.

Now, recall our observation at (2.16) that, every member in the range of −h is actually a
subsequential limit of log |cJ |/|J |; this gives

sup
α∈PSN

{−h(α)} ≤ lim sup
|J |→∞

log |cJ |
|J | and

inf
α∈PSN

{−h(α)} ≥ lim inf
|J |→∞

log |cJ |
|J |

While the second inequality here is one that we already know, the former when combined with
(2.18), gives in conclusion:

lim sup
|J |→∞

log |cJ |1/|J | = sup
α∈PSN

{−h(α)}.

As h is a convex function, its range is an interval of the extended real line R. In conclusion, we
therefore have that the subsequential limits − log |cJ |/|J | do not shoot above the range of the
support function: [infα∈PSN

{h(α)}, supα∈PSN
{h(α)}] while the set of all such limits contains

this interval. We remark in passing that since the range of h may well be an infinite interval
despite G not being the whole space, it is (2.17) which will be more useful in practice.

Before proceeding to construct a power series which converges precisely on any given logarith-
mically convex multicircular domain D, let us take a look at two special cases: one when D is
the unit polydisc and another when D is the pull-back of a half space under the map λ. For
the former, the geometric series

∑

zJ which involves every monomial, converges precisely on
the open unit polydisc (even though it can be analytically continued to a larger domain) whose
support function is finite throughout PSN . For the latter on the other hand, we may consider
the power series

∑

ckz
kJ for some fixed J ∈ NN whose domain of convergence has its logarithmic
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image GJ , determined as the limit infimum of half-spaces given by:

(2.19) lim inf
k→∞

{

s :
kj1s1 + . . . + kjNsN
k(j1 + . . . + jN )

+
log |ck|

k(j1 + . . .+ jN )
< 0

}

= lim inf
k→∞

{

s :
j1s1 + . . .+ jNsN

|J | +
1

|J | log |ck| < 0
}

=
{

s ∈ RN : 〈J, s〉+ lim sup
k→∞

log |ck| < 0
}

which is a single half-space obtained by translating the ortho-complement of J , by a distance
lim sup
k→∞

log |ck| in the direction opposite to J , unless the limsup in the above is infinite, in which

case it is the whole space RN . The support function of a half-space is finite precisely at a single
point of PSN and for the above one, at J/|J |.

Now, we may wish to write any general power series
∑

cJz
J as a sum of series of the type just

mentioned:

g(z) =
∑

J∈P

(

∞
∑

k=0

ckJz
kJ
)

where P is the set of all N -tuples J of positive integers whose greatest common divisor is one.
This representation is supported by the absolute convergence of the power series on its domain
of convergence D. Let Gg = λ(D) denote the logarithmic image of D. As noted above, for

each J ∈ P fixed, the logarithmic image Hg
J , of the domain of convergence of

∑∞
k=0 ckJz

kJ , is a
half-space or the whole space. In fact, it may very well happen that every Hg

J is the whole space

RN , while Gg is far from being so; this can be reconciled with the possibility that the set of
points where the support function is finite avoids all of the rational points of PSN . To address
the question: how is the domain of convergence of g related to these half-spaces Hg

J? briefly,
suppose λ(z) ∈ Gg; then for all J ∈ P we have that λ(z) lies in the logarithmic image of the
domain of convergence of of fJ , where

fJ =
∞
∑

k=0

ckJz
kJ .

Thus, λ(z) belongs to ∩Hg
J or in other words,

Gg ⊂
⋂

R∈PSQN

Hg
R.

with Hg
R = {s ∈ RN : 〈R, s〉+ lim sup log |cJ |1/|J | < 0} where R ∈ PSQN is expressed as J/|J |.

We wish ofcourse to know whether this inclusion can be improved to a better estimate, first of
all an equality. The foregoing set-theoretic upper bound on Gg, may be totally useless because

this inclusion may be far from equality, for instance when Hg
J = RN for all J , as mentioned

above – it is not difficult to conjure up examples when this takes place and in the forthcoming,
we will see methods to do so; consider for instance the possibility of the domain of convergence
of a power series g of two complex variables, being such that its logarithmic image in R2 is a
half-space whose boundary is line of ‘irrational slope’ i. e., with gradient vector the (1, α) with
α an irrational real number. On the one hand, we have the foregone equality

Gg =
⋂

α∈PSN

Hg
α

where Hα = {s ∈ RN : 〈α, s〉 − h(α) < 0} with h being the support function of Gg. On the
other hand, this equality does not immediately serve our purpose, as the intersection here is not
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countable; we shall redress this problem next – what we are seeking here, is a procedure to cast
any given power series g as a sum of sub-series each with its logarithmic image of its domain
of convergence being a half-space and such that the intersection of these half-spaces yields Gg.
Actually, it is enough if we can recover Gg from the knowledge of these half-spaces by some
tangible set-theoretic operation, not necessarily an intersection; infact, the operation of limit
infimum for sets, is the one which comes up in this context. The key point here is that while the
indexing set for our half-spaces must be a countable (dense) collection of vectors from PSN , it
need not be PSQN . Subsequently therefore, we shall shift our considerations a bit, to starting
with arbitrary countable dense subsets of PSN .

Let G be any convex domain in RN with support function h = hG. The effective domain of h
is the subset of those points of the domain of h where the support function is finite. We shall
refer to the subset of the effective domain h, given by

PSh = {α ∈ SN : h(α) is finite},
as the normalized domain (or normalized effective domain) of h, which is actually contained
in PSN , owing to the completeness of the given multicircular domain D, as noted earlier. Let
C = {αn} be an arbitrary countable dense subset of PSN . Pick a sequence {J1k} ⊂ NN with

( J1k
1

|J1k| , . . . ,
J1k
N

|J1k|
)

→ (α1
1, . . . , α

1
N ),

as k → ∞ – it is trivial to see that such a sequence exists. Next, pick a sequence {J2k} this
time in NN \ {J1k} such that

( J2k
1

|J2k| , . . . ,
J2k
N

|J2k|
)

→ (α2
1, . . . , α

2
N ).

Such a sequence exits, as π
(

NN \ {J1k}
)

is dense in PSN \ {α1}, where π(z) = z/|z|l1 . After l

steps, we would have sequences {J lk : k ∈ NN} such that for any m ≤ l, we have

{Jmk} ⊂ NN \
m−1
⋃

i=1

{J ik : k ∈ N}

and Jmk/|Jmk| → αm as k → ∞. Set Rn
k = Jnk/|Jnk|.

Keeping the notations as in the foregoing para, let g(z) =
∑

cJz
J be a power series with its

domain of convergence D and λ(D) = G with support function h. We shall re-express the
series g as a sum indexed essentially by any chosen countable dense subset C drawn out of the
normalized effective domain PSh of the support function. On the one hand, PSh may fail to
have any rational points i.e., the support function may fail to be finite on integral points; on
the other hand, the standard indexing of power series is through the standard positive integral
lattice. In order to pass to the desired rearranged sum, we first set up approximating sequences
for our chosen C drawn from PSQN as in the foregoing para. We may pick out a strand (=sub-
series) of terms interspersed in g, corresponding to each such subsequence. Thereafter, look
upon the series g, as an interlaced sum of such strands. More simply put, re-express g in the
following form

(2.20)
∑

n

∑

k

cknz
lknR

n
k1

1 z
lknR

n
k2

2 . . . z
lknR

n
kN

N + the remaining terms of g

with lkn = |Jnk| and ckn := cJnk ; the ordering of the ‘remaining terms’ in the above, can be
ignored by the absolute convergence of g on D. Infact, the ‘remaining terms’ may be ignored
altogether, because the values of the support function on the subset PSh (of PSN ) where it
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is finite, gets determined as follows: firstly, on the chosen countable dense subset C by the
asymptotic behaviour of the coefficients of g via the formula (2.17):

h(αn) = − lim sup
k→∞

log |ckn|1/|J
nk |,

which subsequently, determines by continuity, the values of h on all points of the relative interior
of PSh. As these values suffice to determine the convex domain G, this explains why we may
ignore the ‘remaining terms’, mentioned above. We have recast the power series g as in (2.20)
to peel-off information from various strands 9 of coefficients of g about the support function h
of its domain of convergence: (2.20) regroups g a sum of its αn-constituents/sections and it is
this organization of its terms, which splits up neatly to make apparent the links between the
coefficients occurring in the various sections of the series g and the geometry of its domain of
convergence. In conclusion, we thus observe here, how all power series arise ‘essentially’ in the
same manner: the ‘essential’ limits being determined by a convex domain in RN through its
support function and a countable dense subset of the normalized domain of the support function.

A simple choice for getting a concrete/explicit power series converging precisely on a given
log-convex Reinhardt D, now presents itself: take ckn such that |ckn|1/lkn = e−h(αn). To sub-
stantiate a bit more explicitly why this surmise may work, we first observe that the problem of
constructing a power series which converges precisely on the prescribed domain D, is equivalent
to the geometric problem of expressing its logarithmic image G = λ(D) as the limit infimum of
a sequence of half-spaces whose bounding hyperplanes have their gradient vectors from PSQN

and converge to a ‘dense’ collection of supporting hyperplanes for the convex domain G. The
gradient vectors of the supporting hyperplanes need not belong to PSQN at all; the foregoing
prelude-para was to address this issue. So now, we choose a countable ‘dense’ collection of
supporting hyperplanes for the logarithmic image G of our given domain, with the property
that their (affine) defining functions all have gradient vectors whose components are all rational
(and in PSN ); indeed, to be more carefully and correct, make the choice such that the gradient
vectors of the aforementioned half-spaces, are in the above notation, of the form Jnk/lkn where
lkn = |Jnk| – in particular therefore vectors from PSQN . In view of the experience gathered
beginning from (2.7), we may surmise that: the constant terms in the defining functions of
the above collection of supporting hyperplanes to G = λ(D), would conceivably – a rigorous
presentation is forthcoming – yield the coefficients of a power series convergent on D. As these
constant terms ought to be the values of the support function h for G on a countable dense sub-
set of PSN , we may move higher in the ladder of precision. Keeping choices simple, the upshot
is that we are led to consider the coefficients determined by the aforementioned prescription:

take the coefficient of the monomial zJ
nk

to be ckn = e−lknh(α
n) with αn being as in foregoing

para. The resulting power series ought to work by the following geometric reasoning: as h(αn) is
the distance in the l∞-metric from the origin to the supporting hyperplane for G with gradient
αn (this was recorded elaborately much earlier as well), it ought to follow that the half-spaces
defined by affine functions with gradients Jnk/lkn and with constant terms ckn, being close to
the supporting half-spaces, must yield the domain G upon passing to a (suitable) limit; that
this indeed does follow is what is demonstrated next.

To work out the aforementioned strategy rigorously, pick a countable dense subset out of the
set of all supporting hyperplanes for G. Indeed, this may be done by considering hyperplanes
defined by affine functions of the form

An(s) := 〈αn, s〉 − h(αn)

9A strand here means an infinite subset of the collection of coefficients; more precisely herein, one out of the
infinitely many disjoint infinite subsets of the coefficients, each indexed by one of the sequences {Jnk : k ∈ N}.
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where h is the support function of the convex set G and {αn} is any countable dense subset of
PSh. Let us mention in passing that it may well happen that PSh is just a singleton; indeed,
it will be instructive to keep the following example in mind: any complete multicircular domain
in C2 the boundary of whose logarithmic image is a line. Next, the convexity of G and hence of
the support function h (and subsequently the continuity of its restriction to PSh), forces G to
equal the countable intersection of the half spaces {s ∈ RN : An(s) < 0}. Next, for each αn,
choose a sequence Rn

j from PSQN which, as j → ∞, converges to (αn
1 , . . . , α

n
N ) . Then, consider

the power series

(2.21) f(z) =
∑

j,n∈N

cjnz
kjnR

n
j1

1 z
kjnR

n
j2

2 . . . z
kjnR

n
jN

N

where cjn = e−kjnh(αn) with kjn being the least common multiple of the (+ve) denominators
occurring in the reduced representation of the rational numbers {Rn

j1, . . . , R
n
jN}. Now, the

logarithmic image of the domain of convergence of the power series f , which we will denote by
Gf , can be written using (2.7) as:

{

s ∈ RN : lim sup
j,n∈N

(kjn〈Rn
j , s〉+ log |e−kjnh(α

n)|
kjn

)

< 0
}

= lim inf
j,n∈N

{s ∈ RN : 〈Rn
j , s〉 − h(αn) < 0}

Thus Gf is the limit infimum of half spaces Hn
j defined by Bn

j (s) = 〈Rn
j , s〉−h(αn). We wish to

compare this representation of Gf with the representation of G as the intersection of half-spaces
given by

(2.22) G =
⋂

n∈N

{s ∈ RN : An(s) < 0}

Indeed, to establish the claim that the domain of convergence of f is precisely G or in other
words, to show the equality of domains: Gf = G, we proceed as follows. Pick any s0 ∈ G. So
s0 belongs to every of the half-spaces appearing on the right of (2.22); so 〈αn, s0〉 − h(αn) is
negative. We need to look at

Bn
j (s

0) = 〈Rn
j , s

0〉 − h(αn) = 〈Rn
j − αn, s0〉+

(

〈αn, s0〉 − h(αn)
)

Depending on s0 and n, choose j(n, s0) ∈ N large enough for Rn
j to be so close to αn that the

second term at the right-most, is bigger in magnitude than its preceding term; more precisely,
the ‘close’-ness and the choice of j(n, s0) may be made by the following estimation:

|〈Rn
j − αn, s0〉| ≤ |Rn

j − αn||s0| < |〈αn, s0〉 − h(αn)|
which holds for all j > j(n, s0). This ensures that 〈Rn

j , s
0〉 − h(αn) is negative whenever j >

j(n, s0). However, we cannot immediately claim that s0 lies in all but finitely many of the half-
spaces Hn

j so as to conclude that s0 belongs to their limit infimum, Gf . This will follow if we

can remove the dependence of j(n, s0) on n. Indeed, it suffices to verify that |〈αn, s0〉 − h(αn)|
can be bounded below by a positive constant independent of n, for we may always choose the
rate of convergence of Rn

j → αn, to be independent of n – for instance, we may choose Rn
j so

that |Rn
j − αn| < 1/j. To achieve the desired lower bound, notice first that 〈αn, s0〉 − h(αn)

has a geometric meaning: it is the distance from s0 to the supporting hyperplane Hα for G of
gradient α, upto a factor of the length of α. To be precise and to proceed further, let s1 denote
the point where the perpendicular from s0 on the supporting hyperplane Hα cuts the boundary
∂G – both the existence and uniqueness of such a point s1 follows from the convexity of G;
for instance, Hα is contained in the complement of G while both s0 and ∂G are contained in
the same one of the (closed) half spaces determined by Hα. An illustrative figure convinces us
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that the distance between Hα and the hyperplane of gradient α passing through s0, satisfies the
following lower bound:

〈αn, s0〉 − h(αn) ≥ 1

|αn|l2
dist(s0, s1).

Recalling that αn ∈ PSN and that | · |l2 ≤ | · |l1 , renders the desired independence of n in the
lower bound:

〈αn, s0〉 − h(αn) ≥ dist(s0, ∂G).

As noted before this enables us to drop the dependence of j(n, s0) in the above, which we shall
now write as j(s0). This ensures that for all n, 〈Rn

j , s
0〉 − h(αn) is negative except possibly

when j ≤ j(s0). Thus, s0 lies in all but finitely many of the halfspaces Hn
j whose limit infi-

mum isGf . This is exactly the requirement for s0 to belong to this limit infimum. Thus, Gf ⊂ G.

To obtain the reverse inclusion start again with a point s0, this time in Gf . Then, for all but
finitely many values of the indices (j, n), we must have

〈Rn
j , s

0〉 − h(αn) < 0.

Let

R = RG = {Rn
j : 〈Rn

j , s
0〉 − h(αn) is negative},

which differs from the set of all Rn
j ’s, only by a finite set. Then {αn : n ∈ N} is contained in

the closure of R. For each n, the continuous function

〈·, s0〉 − h(αn)

is (finite and) negative on R and therefore non-positive on R. Therefore for every n ∈ N,
〈αn, s0〉 − h(αn) must be non-positive. This means that s0 ∈ G and subsequently that Gf ⊂ G.
As Gf contains G and is open in Cn, it follows that Gf = G.

Logarithmic convexity may not be a property as intuitive as standard geometric convexity; nev-
ertheless, let us not be amiss to note certain easy consequential visible properties common to all
domains of convergence of power series; for instance: all of them are topologically trivial i.e., are
contractible domains. However, this does not mean that they are holomorphically equivalent,
even if we restrict ourselves to bounded domains. Indeed, two of the simplest logarithmically
convex complete Reinhardt domains namely, the polydisc UN and the ball BN are holomorphi-
cally inequivalent. Or take the unbounded domain {z ∈ CN : |z1 . . . zN | < 1} obtained as the
inverse image of a half-space under the logarithmic map λ; this is not biholomorphic to BN or
UN . One way to see this inequivalence is via a theorem due to H. Cartan about biholomorphic
mappings between circular domains, in conjunction with the fact that the automorphism group
of BN or UN act transitively on their respective domains. We mention in passing, as a matter
of (a non-trivial!) fact that any pair of such domains (domain of convergence of some power
series) will generically fail to be biholomorphically equivalent. Now, while what we have shown
in the foregoing paras, means for instance, that there is a power series convergent precisely on
BN , we have not shown that every holomorphic function on BN can be represented by a single
convergent power series, as in dimension one. In fact, we have thus far, not really dealt with
‘holomorphicity’.

Definition 2.16. Let D ⊂ CN be a domain. A function f : D → C is said to be holomorphic if it
admits a local representation by convergent power series i.e., every point p ∈ D has corresponding
to it a countable set of complex numbers {cJ (p) : J ∈ NN

0 } and a neighbourhood Up such that

the power series about p,
∑

cJ(p)(z − p)J converges for all z ∈ Up to f(z).
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We shall not digress into complex analysis of several variables here; in particular not even pause
to discuss the uniqueness of the numbers cJ (p) in the possibility of multiple local representa-
tion by power series in the definition above. We refer the reader to standard references (such
as [9] or [6]) or wherein familiar basic properties such as the (local) Cauchy integral formula,
maximum modulus principle, open mapping theorem, theorems of Weierstrass and Montel etc.,
are established for holomorphic functions of several variables; alternative definitions for holo-
morphic functions are provided and the equivalences established therein as well. Concerning
the representation of holomorphic functions by a single power series on discs in dimension 1,
we must remark here that: it should not be concluded from the foregoing considerations it is
only on logarithmically convex complete Reinhardt domains that every holomorphic function
has a representation by a single power series. Infact, such a representation is valid on any com-
plete Reinhardt domain – logarithmic convexity is inessential here. Infact, we may expand any
holomorphic function on any complete circular domain, into a series of homogeneous polynomi-
als compactly convergent on such a domain. All this and much more can be found in the text [7].

Among the first fundamental and strikingly new phenomenon in complex dimensions N greater
than one, is the Hartogs phenomenon: every holomorphic function on the punctured ball BN \{0}
extends to the origin to be holomorphic on BN (so that in particular, there are no isolated singu-
larities for holomorphic functions in dimensions N > 1). It is then natural to single out domains
maximal with respect to this phenomenon of simultaneous extension of holomorphic functions
i.e., domains D for which there exists at least one holomorphic function which does not extend
holomorphically across the boundary near any point in ∂D; it turns out that this property is
equivalent to the seemingly weaker property that for each boundary point p ∈ ∂D, there is a
function fp holomorphic on D resisting holomorphic continuation to any neighbourhood of p. A
domains possessing this property is called a domain of holomorphy. A celebrated problem going
by the name of the Levi problem and taking several decades for its complete resolution, was
to obtain a geometric characterization of domains of holomorphy. This is best left for another
essay; suffice it to say here that the answer lies in a subtle convexity property and we refer the
reader again to [4], [5] and other texts of the subject. Our next goal here will be to show that
domains of convergence of power series are indeed domains of holomorphy.

The question to be dealt with now is: given a domain D which is the domain of convergence
of some power series (equivalently, a logarithmically convex complete Reinhardt domain D) in
CN and an arbitrary point p of its boundary ∂D, is it possible to construct (another) power
series fp(z) which converges on D and whose limit supremum as z → p is ∞? Note that this
question does not get trivially settled with the knowledge of the existence of a power series
converging precisely on D, owing to the possibility of the existence some (tiny) piece of ∂D
across which all such power series can somehow be continued holomorphically. As already seen
at (2.21), while constructing power series with certain desired properties, it is best to use the
freedom in expressing them as a sum of monomials in any order that we wish – in a manner that
is telling about the desired properties. With this flexibility, let us demonstrate that domains
of convergence of power series are (what are known as ‘weak’-) domains of holomorphy by
constructing the function fp in question. We cannot help but narrate here the concise but clear
treatment in Ohsawa’s little text [11]. First, note that given any point p in the exterior of D
(i.e., p ∈ CN \D), there exists a monomial mp(z) such that

(2.23) sup
z∈D

|mp(z)| < mp(p) = 1.

Indeed, this follows by passing to the logarithmic image G = λ(D), applying to it a standard
separation theorem to the convex domain G and then exponentiating back. Among other things,
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what (2.23) means is that we may arrange for the supremum on D appearing therein to be
arbitrarily small, by taking powers of the monomial mp, while maintaining the value at p to be
at unity; in symbols, mp(z)

nk for a suitable nk ∈ N, will satisfy

sup
z∈D

|
(

mp(z)
)nk | < 1/2k.

The sum of such monomials gives a power series uniformly convergent on D; actually, we only
need compact convergence – it suffices if the supremums on compact subdomains satisfy a bound
as above. Moreover, we need to modify this series to make it take arbitrarily large values along
some sequence approaching p. Thus on the one hand, we need the supremums on compact
subdomains of the monomials constituting our power series to decrease exponentially and on
the other hand we need its values along some sequence approaching the boundary to blow
up. In order to have these requirements met, it is natural to exhaust the given domain D by
a sequence of relatively compact subdomains expanding out to the boundary and then apply
(2.23) to each member of this sequence. Before proceeding to work this out rigorously, note that
we may further multiply the monomial mp as above, by a constant C independent of k to get
a monomial, denoted again by mp, which assumes the value C at p and satisfies an exponential
decay rate in k:

sup
z∈D

|
(

mp(z)
)nk | < C/2k.

Now, let Dj = λ−1(Gj) where

Gj = {s ∈ RN : dist(s, ∂G) > 1/j}.
Recall that asD is a complete Reinhardt domain, the infinite box-neighbourhood of (−∞, . . . ,−∞)
(at the ‘left-bottom’) arising as the logarithmic image of the polydisc spanned by any point is
contained in G and consequently in all the Gj ’s as well owing to the concavity of the function
dist(·, ∂G) on G; this ensures that all the Dj ’s are complete Reinhardt domains as well. If z, w
are a pair of points in G whose distance from ∂G are at least δ, then concavity of the function
dist(·, ∂G) on G, ensures that the minimum distance of every point of the line segment joining
z, w in G lies at a distance at least δ from ∂G. This fact ensures that all the domains Gj ’s are
convex and thereby the logarithmic convexity of the Dj’s. Thus, the Dj ’s form an (increasing)
exhaustion of D by logarithmically convex complete Reinhardt domains. By intersecting them
with balls centered at the origin of radii increasing to infinity, we may further suppose that
these Dj’s are bounded as well. To construct an fp with lim sup

z→p
|fp(z)| = ∞, what could be

more simple than to arrange for a function whose values at some sequence pj of points in D
approaching p, is at least as big as j? In trying to arrange for such a function fp, we must not
loose sight of the requirement that fp is to be given by a power series which converges on all of
D. Recall the availability of a characterizing test to determine whether or not a point belongs
to the domain of convergence of any given power series:

Proposition 2.17. A point p belongs to the domain of convergence of a power series
∑

cJz
J

if and only if there exits a neighbourhood U of p and positive constants M and r < 1 such that

|cJzj11 zj22 . . . zjNN | ≤Mrj1+...+jN

for all J = (j1, . . . , jN ) ∈ NN and z ∈ U .

This is essentially contained in our discussion of Abel’s lemma in Section 1. Put in words,
according to this proposition, a point is within the domain of convergence of a power series if
the sequence of complex numbers obtained by evaluating the monomials constituting the power
series (in the standard partial ordering by degree) at that point, decays to zero at at least an
exponential rate; stated differently, faster than a geometric progression (of ratio < 1). The last
statement holds with the word ‘point’ replaced by ‘any point from the set of all points whose
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distance to the boundary of the domain of convergence is bounded below by a positive constant’.
We choose the standard geometric progression namely {1/2k} for measuring/controlling the rate
in what follows. First, let pj be sequence in D which converges to p; indeed, choose the sequence
so that (it escapes out of the Dj’s linearly as:) pj ∈ Dj+1\Dj and converges to p. Corresponding
to each such pj, by (2.23) choose a monomial mpj whose value at pj exceeds the supremum of
its values on Dj . We wish to arrange our series fp in such a way that the value of the n-th term
of the series, at pn, exceeds n – the amount by which it exceeds, is arranged to cancel out the
possible negative contributions of the remaining terms, so as to ensure (fp(n) > n−1) ultimately
that fp(p

n) → ∞. For instance, we may take the n-th term to be cnmpn(z) with cn > n, whose
value at pn is cn. The major part of the ‘negative contributions’ to possibly pull down the value
of fp at pn, will conceivably due to the terms preceding the n-th term, as the remaining tail
of the series fp (assuming convergence) will be small. Put together with the aforementioned
convergence criterion, we are then led to seek for sequences nk ∈ N and real numbers ck such
that

ck = k +
∣

∣

∣

k−1
∑

j=1

cj
(

mpj(pk)
)nj

∣

∣

∣

together with the requirement

sup
z∈Dk

∣

∣ck(mpk(z))
nk
∣

∣ < 1/2k.

It is easy to construct the sequences ck and nk inductively, satisfying the above conditions at
each stage. Then the series

∞
∑

j=1

cj
(

mpj(z)
)nj

is compactly convergent (recall Dj ’s are relatively compact) on D and thus defines a holomor-
phic function fp(z) on D. As fp(p

n) > n − 1, we must have lim sup
z→p

fp(z) = ∞, with which we

have attained our goal of checking out that domains of convergence of power series are indeed
domains of holomorphy.

Remark 2.18. The series just constructed may converge on a domain larger than D; so, there is
no guarantee that it is also a power series which converges ‘precisely’ on the given logarithmically
convex complete Reinhardt domain D.

It is almost a foregone conclusion now, that all considerations of this essay on power series, can
be modified to yield analogous results for Laurent series. We leave the details to the reader who
may also want to check out for a concrete power series for the ball:

Example 2.19. Show that the domain of convergence in C2 of the power series of two complex
variables z, w given by

∑

j,k∈N

f(j)f(k)

f(j + k)
zjwk

where f(t) =
√
tt, is the unit ball B2.

Remark 2.20. The fact that the subject of power series is fundamental and elementary does not
mean that all basic questions about them have more or less been settled. Among many recent
works concerning power series, we call attention to the semi-expository article [3] concerning
the Bohr phenomenon arising out of functions defined by power series on logarithmically convex
complete Reinhardt domains; associated to such domains are certain curious numbers called the
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‘Bohr radius’. For an exposition of this as well as for open problems, the ambitious reader may
consult [3].

Now, we know that given any power series, we may read off the equation defining the boundary
of its domain of convergence from its coefficients; it is given precisely by (2.6). Conversely, we
have been discussing methods to explicitly write down power series which converge on any given
logarithmically convex multicircular domain. Now, when we say, we are ‘given a domain’, what
could this mean in practice? The most tangible meaning would be that we are given (the knowl-
edge of all connected components of) the boundary of the domain as the zero set of a defining
function. How does one plot points of the boundary, given the defining function ̺, say? Well,
the immediate answer would be write down solutions to the equation ̺ = 0. But then, such an
equation is in general is never going to be linear and very likely, difficult to solve. One way out
of this problem, while dealing with convex domains and thereby for our problem of constructing
power series, is to express everything in terms of the support function (as we have already done)
and then seek a link between the support function and the defining function, which is the matter
that we take up next.

Suppose G ⊂ RN is a convex domain with support function h. Then G can be written as the
intersection of open half-spaces

G =
⋂

α∈RN

{x ∈ RN : 〈α, x〉 − h(α) < 0}

However, we cannot claim from this that G equals {x : supα∈RN {〈α, x〉 − h(α)} < 0} nor that
it equals {x : supα∈RN {〈α, x〉−h(α)} ≤ 0}. On the other hand, we may restrict the parameter
α to vary over the compact set SN , the standard simplex, and still write

G =
⋂

α∈SN

{x ∈ RN : 〈α, x〉 − h(α)}

That is, G equals the set of all those points x which satisfy 〈α, x〉 − h(α) < 0 for all α ∈ SN .
So, for each fixed p ∈ G, the function 〈α, p〉−h(α) is an upper-semicontinuous concave function
which is strictly negative on SN and therefore attains its supremum on SN at some point therein
and consequently this supremum must be strictly negative. This proves that

G = {p : sup
α∈SN

{〈α, p〉 − h(α)} < 0},

a claim that cannot be made if α were allowed to vary over all of RN in the above. In other
words, this is saying that G is precisely the domain defined by the Legendre transform (also called
Fenchel – Legendre transform or convex conjugate) of the restriction of the support function
of G to SN . On the other hand, given a defining function ψ for a convex domain G in RN ,
it is straightforward to write down the value of the support function for the normal vector at
boundary points p ∈ ∂G, as:

h(▽ψ(p)) = 〈p,▽ψ(p)〉
which agrees with the Legendre transform of ψ for normal vectors at all points of the boundary.
If we normalize the normal vectors at all points of ∂G, so as to be unit vectors in the l1-norm,
we obtain a convex subset of SN , by virtue of the convexity of G. We may then extend h by
the general property of positive homogeneity of the support function to obtain its values on a
convex cone and subsequently thereafter, take the lower semicontinuous regularization, to com-
pletely obtain the support function h : RN → (−∞,+∞] from a given defining function ψ for G.
The Legendre transform, among other notions of duality, is of fundamental importance in the
subject of convex analysis which we shall only briefly review in the next and last section, and end.
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Appendix – Basics of Convex Analysis and Geometry

The reader is assumed to have some familiarity with convexity. So instead of saying that a
convex set is a subset some of RN of closed under the geometric operation of formation of
straight line segments joining any pair of its points, we are going to say: that a convex set is a
subset C of some RN , which is closed under the one-parameter family of algebraic operations
given by the weighted arithmetic mean (p, q) → (1− t)p+ tq for t ∈ I and p, q ∈ C. Our purpose
here is to gather together results in convex analysis to serve as a convenient reference for the
main text. Proofs therefore, are omitted. They can be found in the systematic treatment in [8]
or in many good expository texts such as [12]. Henceforth V shall denote a real vector space of
finite dimension. Given an arbitrary subset E of V , the intersection ah(E) of all affine subspaces
containing E is an affine subspace called the affine hull of E, which has the following analytic
expression

ah(E) = {
n
∑

j=1

λjxj :

n
∑

j=1

λj, xj ∈ E, n = 1, 2 . . .},

If the λj’s in the above are further required to be positive, we obtain what is called the convex
hull of E, denoted ch(E). Let C ⊂ RN be convex. A point x is said to be in the relative interior
of C if x has a neighbourhood U open in RN such that U ∩ aff(C) ⊂ C. Note that the relative
interior of a convex set is always a (non-empty) convex set and the closure of the relative interior
of C is the closure of C.

Trivially, every affine subspace of V is convex. An affine subspace of codimension 1 is termed
a hyperplane, which divides V into two connected components; each of these connected compo-
nents of the complement of a hyperplane is an open half-space. Each half-space is convex and
is denoted generally by H overloaded by some subscript or superscript when it is desirable to
specific about its gradient or a point through which it passes. The closure of a half-space – often
denoted by H again – is convex, as is more generally the closure of any convex set. Another
fundamental example of convex set is provided by the class of convex cones: a cone is any set
set A which is invariant under homotheties i.e., x ∈ A⇒ αx ∈ A for all α ≥ 0; therefore, convex
cones are those cones which are convex sets. Among basic examples of bounded convex sets are
balls with respect to any norm. Of course all norms on the finite dimensional V are equivalent;
but they are far from being affinely equivalent – note that convexity is preserved by invertible
affine maps of V . We next pass onto the notion of convex functions.

Definition 2.21. Let X be a convex set. A function f : X → (−∞,+∞] is termed convex if

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2)

for all pairs of positive numbers λ1, λ2 with λ1+λ2 = 1 and x1, x2 ∈ X. Equivalently, a function
is convex iff its epigraph

{(x, t) ∈ V ⊕ R : x ∈ X, t ≥ f(x)}
is a convex set.

Theorem 2.22. If f is a convex function on V , then

X = {x ∈ V : f(x) <∞}
is a convex set and f is continuous in the relative interior of X i.e, in the interior of X in
ah(X).

Remark 2.23. It is not always possible to redefine f at boundary points of X in ah(X), so as to
have f become continuous with values in (−∞,+∞].

This problem is redressed by taking the lower-semicontinuous regularization.
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Proposition 2.24. Let f be a convex function on V . Define for all x ∈ V :

f1(x) = lim inf
y→x

f(y)

Then f1 is convex and f1(x) ≤ f(x) for all x, with equality if x lies in the interior of X = {x ∈
V : f(x) <∞} in ah(X) or interior in V \X. The function f1 is lower semi-continuous and is
termed the lower semi-continuous regularization of f .

If f is not given to be defined on all of V but given on a convex set X, we first extend by
setting its values equal to +∞ at all points where it is not apriori given i.e., on V \ X; the
above proposition then applies to furnish its lower semicontinuous regularization. The role of
lower semi-continuity here is explained as follows. While the epigraph of a function f is convex
iff its epigraph is convex, the epigraph is a closed iff f is lower semi-continuous. This will be
important in the subsection on the Legendre transform.

Definition 2.25. Let E ⊂ V . The indicator function IE is the function whose value at points of
E is set equal to 0 and equal to +∞ at all points outside E. Such a function is convex precisely
when E is convex.

Separation theorems. The following four results go by the name of Hahn – Banach theorems.

Theorem 2.26. Let D be a convex domain in V . If x0 6∈ D, there is an affine hyperplane H
such that x0 ∈ H but H ∩D = ∅. Thus there is an affine function f on V with f(x0) = 0 > f(x)
for all x ∈ D.

Corollary 2.27. Let X be a closed convex subset of V . If x0 6∈ X, there is an affine hyperplane
containing x0 which does not intersect X i.e., there is an affine function f with f(x) ≤ 0 < f(x0)
for all x ∈ X.

Corollary 2.28. If X is a closed convex subset of V and if y is on the boundary of X, then one
can find a non-constant affine function f such that f(x) ≤ 0 = f(y) for all x ∈ X. The affine
hyperplane {x ∈ V : f(x) = 0} is called a supporting hyperplane of X.

Corollary 2.29. An open (closed) convex set K in a finite dimensional vector space is the
intersection of the (open) closed half-spaces containing it.

As a closed convex set is the intersection of its supporting half-spaces, such a set can alternatively
be described by specifying the position of its supporting hyperplanes, given their gradient vectors.

Definition 2.30. Let C ⊂ RN be a closed convex set. The support function h = hC : RN →
(−∞,+∞] of C is defined by

h(u) = sup{〈x, u〉 : x ∈ C}.
The set of all u ∈ RN , for which h(u) is finite is called the effective domain of h and we call its
subset consisting unit vectors thereof, as the normalized effective domain of h.

The geometric meaning of the support function is: for a unit vector u with h(u) finite, the number
h(u) is the signed distance of the supporting hyperplane to C with normal vector u, from the
origin; the distance is negative if and only if u points into the open half-space containing the
origin. From the definition, it is straight-forward to check that hC(·) = 〈z, ·〉 is a linear functional
iff C is a singleton. More importantly, h is positively homogeneous: h(λu) = λh(u) for all λ ≥ 0
and is sub-additive:

h(u+ v) ≤ h(u) + h(v).

These conditions constitute what is sometimes referred to as sub-linearity, from which it follows
in particular that h is a convex function. If x ∈ RN \C, a separation theorem yields the existence
of a vector u0 with 〈x, u0〉 > h(u0). The support function of a convex set C may also be defined
as the Legendre transform of its indicator function IC ; the Legendre transform being defined in
the following subsection.

26



The Legendre transform.

Definition 2.31. Let f : RN → R any function. The Legendre transform (= Fenchel – Legendre
transform), also called the convex conjugate, of f , is defined by

f∗(y) = sup
x
{〈x, y〉 − f(x)}.

We restrict attention to taking convex conjugates only of convex functions as in this case we
have the the following key result: The convex conjugate of the convex conjugate of any given
convex function is the given function itself. This is only recorded differently, in theorem 2.32
below. We have been silent about the domain of f∗; we shall allow +∞ to be in the range of f∗.
Actually it is convenient here to have functions defined on all of our vector space and in order
to do this, we extend them by setting them equal to +∞ outside the convex hull of the set of all
points where it’s value is specified. Let f be a convex function such that the set X of all points
where it is finite, has non-empty interior which we denote by X0. Then it is possible to argue
that X0 must be a convex domain (the basic idea can be found in lemma 2.2 of [1]) and f must
be continuous herein. Next and further, by taking a liminf of f at points on the boundary of
X0 we may redefine f at these points, so that it becomes a lower semi-continuous function on
the whole. This will pave the way for using the above definition of the Legendre transform for
functions not apriori given to be defined on all of RN and more importantly take the domain of
f∗ to be all of RN .

Theorem 2.32. The Legendre transform is an involution on the space of all lower semi-
continuous convex functions on RN .

Thus,

(2.24) f(x) = sup
m

{Am(x)}

where Am(x) = 〈m,x〉 − f∗(m).

As a corollary to the foregoing theorem, one may derive another fundamental fact: every ‘sub-
linear’ function on a finite dimensional real vector space V arises essentially as the support
function of a closed convex set.

Theorem 2.33. If C ⊂ RN is a closed convex set, then its support function is lower semicon-
tinuous, convex and positively homogeneous.
Conversely, every lower semicontinuous function h on RN , which is positively homogeneous and
convex (equivalently, positively homogeneous and subadditive) is the supporting function of one
and only one closed convex set C, given by

C =
{

x ∈ RN : h(v) ≥ 〈v, x〉 for all v ∈ RN
}

.

We remark in passing to the next sub-section that, if ̺ is a defining function for a convex domain
G, the support function of G is given by the Legendre transform of IR− ◦ ̺, where IR− is the
indicator function of R−, the ray of non-positive reals; while this remark may not be useful, the
concept of defining function surely is, which we review next.

Defining functions for convex domains.

Theorem 2.34. Let D ⊂ RN be a convex domain. There exists a convex function which is
negative on D, vanishes precisely on ∂D and is positive on the complement of D.

Proof. Let p be an arbitrary point of ∂D. The convexity of D guarantees the existence of a
supporting hyperplane for D at p i.e., an affine subspace L of RN of codimension 1 through p
with D contained entirely in one, out of the 2 connected components of RN \ L. Now, if we let
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ap(x) denote the affine function which defines L, then after a change of sign if necessary we may
– and will! – assume that ap is negative throughout D. Needless to say, ap(p) = 0. Now denote
by F the family of all such affine functions ap as p varies through ∂D. Let

A(x) = sup
F

{ap(x)}.

Clearly, A(x) is a convex function which is non-negative on D which vanishes precisely on ∂D.
Further, by invoking a suitable separation theorem, we may assure ourselves that A is actually
positive on all of RN \D. �

We shall refer to the function guaranteed by the above theorem as a defining function. With
some regularity assumptions about the boundary of the domain, it is natural to impose further
conditions on the defining function so that it encodes the additional regularity features. A
customary definition for defining functions for smoothly bounded domains – not necessarily
convex – is as follows:

Definition 2.35. Let D be a domain in RN . Then D is said to have smooth boundary, if there
there exists a smooth function ̺ : RN → R such that ̺ is positive on the complement of D,

D = {x ∈ RN : ̺(x) < 0},
̺ vanishes precisely on ∂D and its gradient vector is non-zero at all points of ∂D. The function
̺ is said to be a (global) smooth defining function.

It is not necessary to have ̺ defined on all of RN , a tubular neighbourhood of ∂D will suffice;
there is also the notion of a local defining function and how one may obtain a global defining
function by patching together local defining functions via standard partition-of-unity techniques
and other results about the relationships between any two defining functions. These matters
can be found in standard texts; a reference relevant for the present subsection is [10]. We shall
only state the condition of convexity for smoothly bounded domains formulated via the defining
function as:

Theorem 2.36. Let D be a domain in RN with C2-smooth boundary. Let ̺ be a C2-defining
function for D near p ∈ ∂D. Then there is an open ball U centered at p such that U ∩ D is
convex if and only if the Hessian of ̺ satisfies the condition:

N
∑

j,k=1

∂2̺

∂xj∂xk
vjvk ≥ 0

for all p ∈ ∂D and v ∈ Tp(∂D).

Thus at least for domains whose boundaries are C2-smooth, there is a local characterization of
convexity and their convexity is determined by their boundaries.
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