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Abstract. F-theory, as Theory of Everything is compactified on Calabi-Yau

threefolds or fourfolds. Using toric approximation of Batyrev and mirror symmetry of

Calabi-Yau manifolds it is possible to present Calabi-Yau in the form of dual integer

polyhedra. With the help of Gelfand, Zelevinsky, Kapranov algorithm were calculated

the numbers of BPS-states in F-theory, and by application of Tate algorithm were

determined the enhanced symmetries. As the result, any integral dual polyhedron

representing a Calabi-Yau manifold, is characterized by its own set of topological

invariants - the numbers of BPS states, whose central charges are classified by enhanced

symmetries.
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1. Introduction

F-theory or the ”theory of everything” (Theory of everything, abbr. TOE) - hypothetical

combined physical and mathematical theory that describes all known fundamental

interactions. During the twentieth century, It was proposed a lot of ”theoryes of

everything”, but none of them could go through experimental testing. The main problem

of construction the scientific ”theory of everything” is that quantum mechanics and

general Theory of Relativity (GTR) have different areas of their application. Quantum

mechanics is mainly used to describe the microcosm, and general relativity applies to

the macrocosm. Directly the combination of quantum mechanics and special relativity

in single formalism (quantum relativistic field theory) leads to divergence problem - the

lack of final results for experimentally testable variables. To solve this problem was

used the idea of renormalization. For some models renormalization mechanism allows

to build a very good working theory, but the addition of gravity (ie the inclusion of the

theory of general relativity as the limiting case of small fields and large distances) leads

to divergences that still can not be removed. But it does not mean that such a theory

can not be constructed.

Currently, the main candidate for a ”theory of everything” is an F-theory, which

operates with a large number of measurements. The impetus for this has become the

Kaluza Klein theory, which allows us to see that the addition of extra dimension to

general theory of relativity leads to Maxwell’s equations. Thanks to the ideas of Kaluza

and Klein it was possible to create theories that operates with large dimensions. Using

of the extra dimensions proposed the answer to the question of why the action of gravity

is much weaker than other types of interactions. The conventional answer is that gravity

exists in additional dimensions, so its effect as the observable become weaker.

F-theory string twelve-dimensional theory defined on the energy scale of the order

of 10 19 GeV [1]. F-theory compactification leads to a new type of vacuum, so for study

SUSY we must compactify F-theory on Calabi-Yau manifold. Since there are a lot of

Calabi-Yau manifolds, we are dealing with a large number of new models implemented

in low-energy approximation. A singular manifold Calabi-Yau determines the physical

characteristics of the topological solitonic states that are interpreted as particles in

high energy physics. Essential for us is to present threefold Calabi-Yau in the form

of an elliptic fibration with singular layers, that enables to use Kodairas classification

of singularities for elliptic bundles. To the type of singularities correspond the sets of

particles classified by enhanced symmetry, for which it is possible to find BPS states.

Interpretation of these BPS states for the fiber bundles is presented in the paper. The

purpose of the article is the following. It is known that Calabi-Yau manifolds can be

represented as dual reflexive polyhedron with integer vertices. To such manifold, on

the one hand, you can associate a set of topological invariants - BPS states, calculated

by application Gelfand, Zelevinsky, Kapranov algorithm, and on the other hand - the

enhanced symmetry obtained by applying Tate algorithm. Thus, BPS states can be

definitely characterized by a set of enhanced symmetries what is important to further
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searches for new physics at collider experiments in future. As the singularities of elliptic

fibration are classified by enhanced groups and, at the same time, characterized by

the number of BPS states, which are determined by central charges, then with points

on polyhedra of enhanced groups can be associated the central charge in analogy with

the charge grid for electric and magnetic charges in Maxwell’s electrodynamics. Lets

consider in more detail the compactification of F-theory to Calabi-Yau threefols.

2. Compactification on Calabi-Yau threefolds and toric representation of

threefolds

Twelve-dimensional space, describing space-time and internal degrees of freedom is

represented as following:

R6 ×X6 ,

where R6 - six-dimensional space-time, on which acts conformal group SO(4, 2) nd X6 -

compact threefold, three-dimensional complex manifold Calabi-Yau. Let’s consider the

weighted projective space defined as follows:

P 4
ω1,...,ω5

= P 4/Zω1 × . . .× Zω5 ,

where P 4 - fourdimensional projective space, Zωi
- cyclic group of order ωi. On

a weighted projective space P 4
ω1,...,ω5

is determined quasihomogeneous polynomial

W (ϕ1, . . . , ϕ5), called superpotential, which satisfies the homogeneity condition

W (xω1ϕ1, . . . , x
ω5ϕ5) = xdW (ϕ1, . . . , ϕ5) ,

where d =
∑

i

ωi, ϕ1, . . . , ϕ5 ∈ P 4
ω1,...,ω5

. The set of points p ∈ P 4
ω1,...,ω5

, satisfying

W (p) = 0 forms Calabi-Yau threefold Xd(ω1, . . . , ω5) [2].

2.1. Toric manifolds as an extensions of weighted projective spaces

The simplest examples of toric varieties are projective spaces P 2 and P (2,3,1), where P 2

is defined as follows

P 2 =
C3\0

C\0
,

where division into C\0 means the identification of points in complex space C, connected

by equivalence relation

(x, y, z) ∼ (λx, λy, λz)

λ ∈ C\0,

x, y, z are called homogeneous coordinates. Elliptic curve in P 2 is described by the

Weierstrass equation

y2z = x3 + axz2 + bz3.
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Table 1. Kodaira’s classification of singularities of elliptic fibrations

ord(∆) Fiber type Singularity type

0 smooth no

n In An−1

2 II no

3 III A1

4 IV A2

n+6 I∗n Dn+4

8 IV ∗ E6

9 III∗ E7

10 II∗ E8

A similar description can be given for P (2,3,1), which in contrast to P 2 is represented by

the following equivalence relation:

(x, y, z) ∼ (λ2x, λ3y, λz)

λ ∈ C\0,

and Weierstrass equation has the form

y2 = x3 + axz4 + bz6.

The elliptic Calabi-Yau manifold can be described by Weierstrass form

y2 = x3 + xf(z) + g(z),

which describes an elliptical fibration (parameterized by (y, x)) over the base, where

f(z), g(z) - functions on the basis [1]. 24 parameters on P 1 associated with the functions

f(z), g(z) are specified by zeros of the discriminant. Then in some divisors Di the layer

is degenerated. Such divisors are the zeros of the discriminant

∆ = 4f 3 + 27g2.

Singularities of Calabi-Yau manifold - are singularities of its elliptic fibration. These

singularities are encoded in the polynomials f, g and their type determines the gauge

group and matter content of the compactified F-theory. Classification of singularities of

elliptic fibrations was given by Kodaira and presented in table 1.

Classification of the fibers of an elliptic fibrations is presented in figure 1.

P 2 and P (2,3,1) may be represented by diagrams with vectors vx, vy, vz in some

lattice, such that

qxvx + qyvy + qzvz = 0 ,

where qx, qy, qz are exponents.

Since the possible singular sets of Calabi-Yau manifold may be the points, which

are singularities of type C3/ZNs
or curves - singularities of type C2/ZNs

, both types
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Figure 1. Classification of elliptic fibers.

of singularities and their blow-up can be described by methods of toric geometry. To

describe toric variety P 4
ω1,...,ω5

, lets consider integer polyhedron ∆ ∈ Rn. In this case,

we can determine a simplicial reflexive polyhedron

∆(~ω) :=

{

(x1, . . . , xn+1) ∈ Rn+1|

n+1
∑

i=1

ωixi = 0, xi ≥ −1

}

Complex d-dimensional toric variety is defined by combinatorial data ∆, called fan. A

finite non-empty set ∆, called a fan, is determined by a combination of convex rational

polyhedral cones σ in Rn+1

σ = R≥ ~n1 + . . .+R≥ ~nr .

If

1) each face of a cone in ∆ belongs to ∆ and

2) the intersection of any two cones in ∆ is a face of each.

Integer polyhedron ∆ is called reflexive polyhedron [3] if the corresponding dual

polyhedron ▽

▽ =

{

(y1, . . . , yn+1)|

n+1
∑

i=1

xiyi ≥ −1, (x1, . . . , xn+1) ∈ ∆

}

is also integer. This property of polyhedra is connected with mirror symmetry of Calabi-

Yau manifolds [4]. The vertices of a simplicial reflexive polyhedron ∆(ωi) are determined

by the weights of P 4(ωi), since the degree d of Calabi-Yau threefold Xd(ω1, . . . , ω5)

satisfies the condition d =
∑

i

ωi. Examples of construction of reflexive polyhedra

through the Calabi-Yau weights are given in [5].
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Lets consider the holomorphic three-form Ω(ψ) of threefold Calabi-Yau X as a

function of ψi - coordinates on the complex Calabi-Yau space. Their derivatives are

elements of group H3(X). After the integration of elements in H3(X), we get linear

differential equations for the periods Π, the Picard-Fuchs equations, which allows us to

calculate the Yukawa couplings. In terms of Mori generators l(θ), satisfying
∑

i

liωi = 0

and according to Gelfand, Kapranov and Zelevinsky algorithm [6], thanks to mirror

symmetry between Kahler and complex Calabi-Yau manifols, we can write Picard-Fuchs

equation with periods Π(x) as [4]:
{

Π
l
(k)
j >0

(

Π
l
(k)
j −1

i=0 (θj − i)

)

− Π
|l
(k)
0 |

i=1 (i− |l
(k)
0 | − θ0)Πl

(k)
j <0,j 6=0

(

Π
|l
(k)
j |−1

i=0 (θj + l
(k)
j − i)

)

xk

}

Π̃(x) = 0 ,

where θi = xid/dxi, xi - are algebraic coordinates on the moduli space of the complex

structure of Calabi-Yau manifold.

The principal parts of the Picard-Fuchs operators could have, in particular, the

form [7]:

L1 = 3θ21 − θ1θ2 + θ22,

L2 = θ22,

L3 = θ23,

L4 = θ22 + 4θ2θ3 + 4θ23 − 3θ2θ4 − 6θ3θ4 + 9θ24 .

Yukawa couplings are:

Kt̃i t̃j t̃k
(t̃) =

1

ω0(x(t̃))2

∑

l,m,m

∂xl

∂t̃i

∂xm

∂t̃j

∂xn

∂t̃k
Kxlxmxn

(x(t̃))

and could be overwritten by a variable qi = et̃i :

Kt̃i t̃j t̃k
(t̃) = K0

ijk +
∑

ni

N(ni)ninjnk

1−
∏

l

qnl

l

∏

l

qnl

l ,

where t̃i - Kahler space coordinates xi - coordinates of complex mirror manifold. Here

ni =
∫

C

hi is an integer and not necessarily positive, in particular, for singular varieties.

That is, the solution of the Picard-Fuchs equations makes it possible to calculate the

Yukawa coupling constants, which are expressed in terms of the numbers ni. n1 - is the

number of rational curves of degree 1, n2 - the number of rational curves of degree 2 etc.

In general, ni- numbers of BPS-states through which is determined the central charge

and the mass of the solitonic objects. Thus, knowing Mori generators we can find the

principal part of the Picard-Fuchs operators, through which are calculated numbers of

BPS-states.

In summary, it must be stressed that toric presentation of Calabi-Yau manifolds

makes it possible to calculate the topological invariants - BPS-states.
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3. Enhanced symmetry in F-theory

F-theory allows geometrical and physical interpretation of solitonic states in terms of

geometrical singularities and enhanced symmetry [8]. Tate et al. proposed algorithm

which allows to extract the enhanced symmetry from toric description of elliptic Calabi-

Yau manifold. This algorithm allows to read off the Dynkin diagram from the dual

polyhedron ▽ that realizes toric description of elliptic Calabi-Yau manifold according

to toric Batyrevs approximation [3]. Using the technique of [8], dual polyhedron 3▽,

representing Calabi-Yau is divided by triangle 2▽ on the top and bottom

▽ = ▽H
bot ∪▽k=1

top ,

where ▽H
bot depends on enhanced gauge group H and ▽k=1

top depends on k. For fourfolds

of type

X18k+18(1, 1, 1, 3k, 6k + 6, 9k + 9)

the gauge groups are written in the following way [9]:

H × SU(1) for k = 1 ,

H × SO(8) for k = 2 ,

H × E6 for k = 3 ,

H × E7 for k = 4 ,

H × E8 for k = 5 ,

H × E8 for k = 6 .

Thus, solitonic states, characterized by BPS-states, as singularities of Calabi-Yau

manifolds may be classified by enhanced symmetry as to each type of Calabi-Yau,

presented in the form of dual polyhedron, corresponds its enhanced symmetry.

4. Conclusion

We have given the definition of Calabi-Yau hypersurfaces in weighted projective spaces

through their weights and presented Kodairas classification of singularities of elliptic

fibrations. Application of Batyrevs toric approach, and Gelfand, Kapranov, Zelevinsky

algorithm made it possible to calculate the number of BPS states characterizing the

solitonic objects in the F-theory. Consideration of Calabi-Yau using Tates algorithm

enables to associate solitonic states with enhanced symmetries of F-theory. Thus, toric

presentation of Calabi-Yau through Batyrevs toric approximation enables, on the one

hand, to calculate BPS-states, and on the other, to calculate the enhanced symmetry

of the polyhedron, describing massless solitonic states in F-theory. The main result of

the article is reduced to the conclusion that we get an adequate treatment of central

charges of the BPS-states as elements on the polyhedron connected whith the enhanced

symmetries.



F-theory compactifications and central charges of BPS-states 8

References

[1] Vafa C., Evidence for F-theory, arXiv: hep-th/9602022;

Morrison D. R. and Vafa C. 1996 Compactifications of F-theory on Calabi-Yau threefolds (I)

Nucl. Phys. B 473 74-92;

Morrison D. R. and Vafa C. 1996 Compactifications of F-theory on Calabi-Yau threefolds (II)

Nucl. Phys. B 476 437-69.

[2] Klemm A. and Schimmrigk R. Landau-Ginzburg string vacua, hep-th/9204060.

[3] Batyrev V. V. 1993 Variations of the Mixed Hodge Structure of Affine Hypersurfaces in Algebraic

Tori, Duke Math. J. 69 349-409.

[4] Hosono S. , Klemm A. , Theisen S. and Yau S.-T. 1995 Mirror symmetry, mirror map and

applications to complete intersection Calabi-Yau spaces Nucl. Phys. B 433 501-54.

[5] Hosono S. , Klemm A. , Theisen S. and Yau S.-T. 1995 Mirror Symmetry, Mirror Map and

Applications to Calabi-Yau Hypersurfaces Commun. Math. Phys. 167 301-50.

[6] Gelfand I. M., Zelevinsky A. V. and Kapranov M. M. 1990 Generalized Euler integrals and A-

hypergeometric functions Adv. Math. 84 255-71.

[7] Malyuta Yu. and Obikhod T. 2002 BPS-States in F-Theory Ukr. Math. J. 54 Issue 9 pp 1550-1555.

[8] Bershadsky M., Intriligator K., Kachru S., Morrison D. R., Sadov V. and Vafa C., Geometric

Singularities and Enhanced Gauge Symmetries, hep-th/9605200;

Candelas P. and Font A., Duality Between the Webs of Heterotic and Type II Vacua,

hep-th/9603170;

Perevalov E. and Skarke H., Enhanced Gauge Symmetry in Type II and F-Theory

Compactifications: Dynkin Diagrams From Polyhedra, hep-th/9704129;

Katz S., Morrison D. R., Schfer-Nameki S. and Sully J., Tate’s algorithm and F-theory, arXiv:

1106.3854 [hep-th].

[9] Malyuta Yu. and Obikhod T., Compactifications of F-Theory on Calabi-Yau Fourfolds,

arXiv:hep-th/9803241.

http://arxiv.org/abs/hep-th/9602022
http://arxiv.org/abs/hep-th/9204060
http://arxiv.org/abs/hep-th/9605200
http://arxiv.org/abs/hep-th/9603170
http://arxiv.org/abs/hep-th/9704129
http://arxiv.org/abs/hep-th/9803241

	1 Introduction
	2 Compactification on Calabi-Yau threefolds and toric representation of threefolds 
	2.1 Toric manifolds as an extensions of weighted projective spaces 

	3 Enhanced symmetry in F-theory
	4 Conclusion

