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We present Bell-type tests of nonclassicality and non-Gaussianity for single-mode fields employing
a generalized quasiprobability function. Our nonclassicality tests are based on the observation that
two orthogonal quadratures in phase space (position and momentum) behave as independent realistic
variables for a coherent state. Taking four (three) points at the vertices of a rectangle (right triangle)
in phase space, our tests detect every pure nonclassical Gaussian state and a range of mixed Gaussian
states. These tests also set an upper bound for all Gaussian states and their mixtures, which thereby
provide criteria for genuine quantum non-Gaussianity. We optimize the non-Gaussianity tests by
employing a squeezing transformation in phase space that converts a rectangle (right triangle) to a
parallelogram (triangle), which enlarges the set of non-Gaussian states detectable in our formulation.
We address fundamental and practical limits of our generalized phase-space tests by looking into their
relation with decoherence under a lossy Gaussian channel and their robustness against finite data
and non-optimal choice of phase-space points. Furthermore, we demonstrate that our parallelogram
test can identify useful resources for nonlocality testing in phase space.

PACS numbers: 03.65.Ta, 42.50.Dv, 42.50.Ar

I. INTRODUCTION

Describing a quantum state in phase space [1] is a very
useful approach to make a comparison between quantum
mechanics and classical mechanics. It provides a valu-
able insight into the phenomenon of quantum-to-classical
transition [2] and a powerful tool to manifest nonclassi-
cal effects in quantum optics [3] and continuous variable
(CV) quantum informatics [4, 5]. One of the remark-
able distinctions between quantum and classical phase-
space distributions is that a negative value is allowed for
a quantum state. Although the negativity in phase space
thus demonstrates nonclassicality immediately, it enables
us to detect only a limited subset of nonclassical states.
There exist nonclassical states with positive-definite dis-
tributions, e.g., Gaussian states with squeezing, which
are readily accessible within current technology and pro-
vide important practical resources for CV quantum infor-
matics [5]. It is fundamentally and practically important
to have a simple test manifesting nonclassicality [6, 7]
beyond the negativity in phase space.
In this respect, there was a seminal work by Banaszek

and Wódkiewicz [8] (BW), who proposed a method to
test the Bell nonlocality directly in phase space. Unlike
the Bell test using homodyne detection, which requires
the transformation of a Gaussian state to a non-Gaussian
state having a nonpositive Wigner function [9, 10], BW
formalism enables us to detect nonclassical correlation
even with a positive-definite Wigner function. It has
been extended to generalized quasiprobability functions
[11] and multipartite systems [12–15]. Recently, we have
theoretically proposed and experimentally demonstrated
a single-mode nonclassicality test using the Wigner func-
tion [16] in analogy with BW formalism.
We here extend this recent work by using generalized

quasiprobability functions. We not only give more details
of the proposal in [16], but we also investigate other rel-
evant aspects, e.g., robustness of our tests against exper-
imental imperfections including photon loss, finite data,
and a nonoptimal choice of phase-space points. Further-
more, we introduce an optimized test of genuine non-
Gaussianity employing three phase-space points, as an
addition to the four-point test in [16]. We also make a
direct connection between our single-mode test and the
BW nonlocality test, particularly showing that the single-
mode nonclassical states detected under our parallelo-
gram test can be a useful resource to make a two-mode
state manifesting nonlocality under the BW test.

Our starting point is the observation that every pair of
orthogonal quadratures in phase space behaves as inde-
pendent realistic variables for a coherent state. Exploit-
ing it, we propose two nonclassicality tests that take four
and three points at the vertices of a rectangle and a right
triangle, respectively. Our tests detect a broad range of
nonclassical Gaussian states, including all pure states.
Identifying the upper bounds for all Gaussian states and
their mixtures, we also propose tests for genuine quan-
tum non-Gaussianity. Non-Gaussian resources are known
to be essential for many quantum informatic tasks, in-
cluding universal CV quantum computation [17], entan-
glement distillation [18], quantum error correction [19],
and CV nonlocality testing [10, 20]. A simple method
to obtain a non-Gaussian state would be to prepare a
finite mixture of Gaussian states. However, we cannot
claim such a state as a genuine non-Gaussian resource.
In dealing with non-Gaussianity in quantum phase space,
it is important to distinguish a genuinely quantum non-
Gaussian state from a mixture of Gaussian states [21, 22].
We further optimize our non-Gaussianity tests by taking
points from a parallelogram (triangle) instead of a rectan-
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gle (right triangle), which essentially realizes a squeezing
operation on a given state without actually implementing
it.
We also discuss the fundamental and the practical lim-

its of our tests. Note that there exists a one-to-one cor-
respondence between a s-parametrized phase-space dis-
tribution and a loss mechanism, i.e., interaction with a
vacuum reservoir [11, 23]. This correspondence might
suggest that the limits of the s-parametrized distribu-
tions are the same as those of the Wigner function (s = 0)
under a lossy Gaussian channel. However, they can yield
different results for a nontrivial test. We show that the
former can detect more states than the latter when a
test sets a bound varying with the parameter s, e.g., the
case of our non-Gaussianity tests. We demonstrate that
our tests are able to detect a nonclassical state reliably
even when the number of data is finite and the measure-
ment setting deviates from the optimal setting. We also
show that our parallelogram test can detect genuine non-
Gaussianity for a range of superposition states with loss
above 50%, at which the Wigner function becomes pos-
itive definite. Finally, we show that our parallelogram
test can identify useful resources for a nonlocality test in
phase space. It may open a direction for future works,
e.g., on a deeper understanding of the relation between
nonclassicality and nonlocality.

II. NONCLASSICALITY TESTS

The s-parametrized quasiprobability function of a
quantum state ρ is defined as [3]

Wρ(q, p; s) =
2

π(1− s)
tr[ρD̂†(α)T̂ (s)D̂(α)], (1)

where D̂(α) = exp(αâ† − α∗â) is the displacement oper-
ator with complex amplitude α = q + ip. The operator
T̂ (s) is given by

T̂ (s) ≡
(
s+ 1

s− 1

)n̂
=

∞∑

n=0

(
s+ 1

s− 1

)n
|n〉〈n|, (2)

which yields, e.g., a parity operator (−1)n̂ and a vac-
uum state |0〉〈0| for s = 0 and −1, corresponding to the
well-known Wigner and Q functions, respectively. As the
eigenvalues of T̂ (s) are ( s+1

s−1 )
n (n: non-negative integers),

the s-parametrized quasiprobability function is bounded
as

s+ 1

s− 1
≤ π(1 − s)

2
Wρ(q, p; s) ≤ 1 for −1 ≤ s ≤ 0,

0 <
π(1 − s)

2
Wρ(q, p; s) ≤ 1 for s < −1. (3)

This shows that the lower bound becomes minimum for
the Wigner function (s = 0) and approaches zero with
s decreasing. The above equation also clearly tells us
that the Q function (s = −1) is non-negative. While

FIG. 1: (Color online) (a) Nonclassicality test in Eq. (6) takes
four points at the vertices of a rectangle. Neglecting a point
(x0, y0), the remaining three points form a right triangle in
Eq. (9). (b) Optimal choice of rectangle for testing a squeezed
state occurs at θ − φ = π

4
(φ: squeezing axis), that is, when

the axes of the rectangle are oriented midway between the
squeezed and the antisqueezed axes.

the parameter s can have a positive value up to 1 (P
function), we only deal with a nonpositive s throughout

the paper as the eigenvalues of T̂ (s) become unbounded
for s > 0.
Interestingly, the s-parametrized quasiprobability

function of a coherent state |α〉 is factorized as a product
of two Gaussian distributions for every pair of orthogonal
quadratures,

π(1 − s)

2
W|α〉〈α|(x, y; s)

= exp

(
− 2(x− αx)

2

1− s

)
exp

(
− 2(y − αy)

2

1− s

)
, (4)

where (x, y)T = R(θ)(q, p)T is a coordinate system ro-
tated by an angle θ from (q, p) [Fig. 1 (a)], with a rota-
tion matrix

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (5)

and αx = Re[αe−iθ] and αy = Im[αe−iθ]. It is thus possi-
ble to consider the generalized quasiprobability function
of a coherent state as a product of two independent ran-

dom variables a and b, that is, π(1−s)2 W|α〉〈α|(x, y; s) = ab
with 0 < a, b ≤ 1.

A. Rectangle test

We then construct a linear sum of s−parametrized
functions at four phase-space points as

Js[ρ] ≡
π(1− s)

2
{Wρ(x0, y0; s) +Wρ(x1, y0; s)

+Wρ(x0, y1; s)−Wρ(x1, y1; s)}, (6)

where the points constitutes a rectangle oriented at angle
θ in phase space as depicted in Fig. 1. We then obtain
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Js = a0b0+a1b0+a0b1−a1b1 for a coherent state, which
has the same form as the Clauser-Horne-Shimony-Holt
(CHSH) inequality [24]. Using 0 < a, b ≤ 1, we obtain
−1 < Js ≤ 2 for a coherent state as follows. (i) For
a0 < a1, we have−1 < −(a1−a0)b1 < Js < (a0+a1)b0 ≤
2. The minimum is given by, e.g., a0 = b0 = 0 and
a1 = b1 = 1. (ii) For a0 ≥ a1, we have 0 < Js ≤
(a0+a1)+(a0−a1) ≤ 2. The maximum is given by, e.g.,
a0 = b0 = a1 = b1 = 1.
We extend the above result to an arbitrary classi-

cal state, i.e. a mixture of coherent states, ρcl =∫
dλp(λ)|λ〉〈λ|, where |λ〉 is a coherent state. As the

coherent amplitude λ behaves like a hidden variable,

π(1 − s)

2
Wρcl(x, y; s) =

∫
dλp(λ)a(x|λ)b(y|λ), (7)

we obtain a classicality condition as

− 1 < Js[ρcl] ≤ 2. (8)

In other words, the violation of Eq. (8) demonstrates the
nonclassicality of a single-mode state.
At this point, it may be intriguing to ask how many

phase-space points should be considered to come up
with a meaningful nonclassicality test, particularly to
test a positive quasiprobability distribution. Can we
obtain a useful nonclassicality criterion employing less
numbers of points than four in Eq. (6)? Of course,
verifying nonclassicality from an arbitrary set of points
is impossible without specifications on the chosen
points {qj, pj}, like a predetermined position (origin)
with energy constraint in [22] or a designated shape
(rectangle) in our case [16]. For example, if we construct
a test exploiting the values at fully arbitrary N points
without specifying locations, that is, F [v1, ..., vN ] where

vj =
π(1−s)

2 Wρ(qj , pj ; s) with j ∈ {1, ..., N}, every result
from a set of positive values (v1, ..., vN ) is mimicked by
a single vacuum state because the same values can be

found at (q′j , p
′
j) = (0,

√
s−1
2 log vj , s) for j ∈ {1, ..., N}.

In this sense, if we intend to introduce a specified shape
as a constraint, the least number of points is possibly
three with the shape of triangle, whereas the test in
Eq. (6) adopts a rectangle with four points.

B. Right-triangle test

Thus we also introduce a three-points (right triangle)
test as

J ′
s [ρ] ≡

π(1− s)

2
{Ws(x1, y0) +Ws(x0, y1)

−Ws(x1, y1)}, (9)

which excludes one point (x0, y0) from Eq. (6). We then
have a structure J ′

s = a1b0 + a0b1 − a1b1 for a coherent
state. Using 0 < a, b ≤ 1 again, we obtain −1 < J ′

s ≤ 1

as follows: (i) For a0 < a1, we have −1 < −(a1−a0)b1 <
J ′
s < a1b0 ≤ 1. The minimum is achieved by a0 =

b0 = 0 and a1 = b1 = 1. (ii) For a0 ≥ a1, we have
0 < J ′

s < a1 + (a0 − a1) ≤ 1. The maximum is achieved
by a0 = b0 = a1 = b1 = 1.
Therefore, similar to Eq. (7), we obtain another clas-

sicality condition as

− 1 < J ′
s [ρcl] ≤ 1. (10)

We note that, contrary to the rectangle test in Eq. (6), it
has no analogy with a nonlocality test, as a1b0 + a0b1 −
a1b1 is saturated by a hidden variable theory: a0 = b0 =
−a1 = b1 = ±1 yields ±3, which are also the quantum

bounds due to
∣∣∣π(1−s)2 Ws(x, y)

∣∣∣ ≤ 1.

1. Invariance under displacement and phase-rotation

operations

Note that the optimal values of Js[ρ] and J ′
s [ρ] for a

given state ρ are invariant under displacement and ro-
tation. Let us assume that a state ρ has an optimal
value at points {x0, y0, x1, y1}, and then a displaced state

D̂(α)ρD̂†(α) has the same optimum at shifted points
{x0 + αx, y0 + αy, x1 + αx, y1 + αy}. This is because
the displacement operator only translates the center of
the quasiprobability function while preserving its entire
profile. Similarly, if a state has the optimal value at
points {x0, y0, x1, y1} where the coordinate system is ori-

ented at angle θ, a rotated state eiϕâ
†âρe−iϕâ

†â has the
same optimum in the coordinate system now oriented at
angle θ + ϕ, since the phase-rotation also preserves the
profile of the quasiprobability function. These invariance
properties can be useful to simplify the analysis of non-
classicality tests for a given state.

C. Gaussian states

We first demonstrate how our tests Js and J ′
s can

detect a wide range of Gaussian states. A single-mode
Gaussian state σ is fully characterized by its first-order
moments (averages) 〈q̂〉 and 〈p̂〉, and second-order mo-
ments represented by a covariance matrix Γ with ele-
ments

Γjk =
1

2
〈Q̂jQ̂k+ Q̂kQ̂j〉−〈Q̂j〉〈Q̂k〉, (j, k = 1, 2) (11)

where Q̂ ≡ (q̂, p̂)T with q̂ = 1
2 (â+ â

†) and p̂ = 1
2i(â− â†).

Its s-parametrized distribution is given by a Gaussian
function as

Wσ(q, p; s)

=
2fs

π(1− s)
exp

[
− 1

2
(Q − 〈Q〉)TΓ−1

s (Q− 〈Q〉)
]
, (12)
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FIG. 2: (Color online) (a, b) Maximum Js=0 and J ′
s=0 (test with Wigner function s = 0) for Gaussian states with respect to

squeezing strength κ0 = 2 tanh 2r. (c, d) Maximum values of Js and J ′
s , respectively, among all Gaussian states with respect

to s (generalized quasidistributions). These maximum values become critical bounds to test genuine non-Gaussianity for each
s in Eq. (35). (e, f) Contour plots for optimal Js and J ′

s with respect to s and κ0. Black dashed lines represent the squeezing
strength κ0 that yields the maximal values shown in (c) and (d). (g, h) Contour plots of a critical parameter sc for a Gaussian
state with purity µ and squeezing strength κ0, above which nonclassicality can be detected via rectangle and triangle testing,
respectively. The colored regions thus represent the parameter space of Gaussian states in which there exist s-parametrized
distributions s ∈ [sc, 0] for a successful nonclassicality test.

where Q = (q, p)T , fs =
1−s

4
√
det Γs

and Γs = Γ− s
4 I.

Alternatively, a single-mode Gaussian state σ can be
represented as a displaced squeezed thermal state,

σ = D̂(α)Ŝ(r, φ)σth(n̄)Ŝ
†(r, φ)D̂†(α), (13)

where Ŝ(r, φ) = exp[− r
2 (e

2iφâ†2−e−2iφâ2)] is the squeez-
ing operator (r: squeezing strength, φ: squeezing axis),

and σth(n̄) =
∑∞

n=0
n̄n

(n̄+1)n+1 |n〉〈n| is a thermal state

with mean photon number n̄. For a Gaussian state with
parameters {α, r, φ, n̄}, its first moments are given by
〈q̂〉 = Re[α] and 〈p̂〉 = Im[α], and the covariance matrix
elements by

Γ11 =
1

2

(
n̄+

1

2

)
(cosh 2r − sinh 2r cos 2φ),

Γ22 =
1

2

(
n̄+

1

2

)
(cosh 2r + sinh 2r cos 2φ),

Γ12 = Γ21 = −1

2

(
n̄+

1

2

)
sinh 2r sin 2φ, (14)

which yields

fs =
1− s√

(1 + 2n̄)2 + s2 − 2(1 + 2n̄)s cosh 2r
. (15)

Equation (15) shows that the overall factor of Wσ(q, p; s)
in Eq. (12) is bounded by 0 < fs ≤ 1. Its maximum
fs = 1 is achieved by every pure Gaussian state (n̄ = 0)
for s = 0, as fs=0 = 1

1+2n̄ represents the purity of a

Gaussian state µ ≡ trσ2 = 1
1+2n̄ . On the other hand,

only a vacuum state attains the maximum fs = 1 for
s < 0. In general, with r and s fixed, fs increases with
purity (n̄ decreasing).

Rewriting Eq. (12) using the rotated quadratures Q̃ =
(x, y)T = R(θ)(q, p)T , we obtain

Wσ(x, y; s)

=
2fs

π(1− s)
exp

[
− 1

2
(Q̃ − 〈Q̃〉)T Γ̃−1

s (Q̃− 〈Q̃〉)
]
, (16)

where Γ̃s = R(θ)ΓsR(−θ) is the covariance matrix in a

rotated frame and 〈Q̃〉 = (Re[αe−iθ], Im[αe−iθ ]). From
now on, we set α = 0, as the displacement operation
has no effect on the optimal values (Sec. II B 1). Every
Gaussian function in the form of Eq. (16) can be recast
to

π(1 − s)

2
Wσ(x, y; s) = fs exp[−x̃2 − ỹ2 + ksx̃ỹ], (17)
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by introducing rescaled variables,

(x̃, ỹ) =
2
√
2fs

1− s

(√
Γ̃22 −

s

4
x,

√
Γ̃11 −

s

4
y

)
, (18)

and the parameter

ks =
2Γ̃12√

(Γ̃11 − s
4 )(Γ̃22 − s

4 )

=
2 sinh 2r sin 2(θ − φ)√

( s
1+2n − cosh 2r)2 − sinh2 2r cos2 2(θ − φ)

. (19)

From the rescaled distributions in Eq. (17), we see that
two parameters, i.e. the overall factor fs and the param-
eter ks, determine optimal values Js and J ′

s for a given
Gaussian state. In fact, we can show that these optimal
values monotonically increase with ks as well as fs [16].
We point out that the parameter ks for every Gaussian
state is bounded by −2 ≤ ks ≤ 2. In particular, with s
and n fixed, the parameter ks is bounded by

|ks| ≤
2 sinh 2r

− s
1+2n + cosh 2r

≡ κs, (20)

where the upper bound κs is obtained at the choice of
angle θ − φ = π

4 (see Fig. 1). This optimal choice of
angle intuitively makes sense, as our nonclassicality tests
rely on the nonfactorizability of the quasi-probability
distributions in phase space. In contrast, if we take
θ−φ = 0 or π

2 , the quasiprobability function in Eq. (16)
is factorized to a form Wσ(x, y; s) = W (x)W (y), where
the two quadratures x and y behave as independent
variables, yielding no violation of our nonclassicality
tests.

1. Maximum values of Js and J ′
s for Gaussian states

For s = 0 (Wigner function), the overall factor f0 =
1

1+2n̄ depends only on purity; thus large J0 and J ′
0 oc-

cur for a pure state. On the other hand, the optimal
κs=0 = 2 tanh2r in Eq. (20) depend only on the de-
gree of squeezing. In Figs. 2(a) and 2(b), we show that
the optimal J0 and J ′

0 monotonically increase with κ0
(degree of squeezing). They rise up to the maximum
values J0 = 8

39/8
≈ 2.32 and J ′

0 = 2 for the rectangle
and the right triangle tests, respectively, both achieved
at an infinite squeezing κ0 = 2 (r → ∞). (See Supple-
mental Matrerial of Ref. [16] for rigorous proofs of the
maximal values.) Note that the Gaussian bound 8

39/8
for

the four-points test coincides with the maximal value of
a Gaussian state for two-mode [25] and three-mode [15]
nonlocality tests in phase space.
On the other hand, for s < 0, the overall factor fs and

the ratio κs involve both the purity µ and the squeezing
strength r. With purity and squeezing fixed, both fs and

κs decrease with the parameter s decreasing. We thus
observe that maximum values among all Gaussian states
for rectangle and right triangle tests, respectively, be-
come smaller with the parameter s decreasing in Fig. 2(c)
and 2(d), respectively. In addition, although the optimal
κs in Eq. (20) increases with the thermal photon n̄ for
s < 0, the overall factor fs in Eq. (15) decreases with n̄,
which eventually makes the case of a pure state (n̄ = 0)
optimal for given r and s.

We plot the optimal values of Js [Fig. 2 (e)] and J ′
s

[Fig. 2 (f)] with respect to parameter s and squeezing
strength κ0 = 2 tanh2r. In these contour plots, we show
how the optimal squeezing κ0 for each maximum changes
with s (black dashed lines). Interestingly, we note that
the optimal violation for a nonzero s < 0 occurs at a finite
squeezing, similar to the case of a two-mode nonlocality
test [11]. With the parameter s decreasing, the maximum
values and the corresponding squeezing strength become
smaller. At s = −1 and s = −2, there is no Gaussian
state violating the rectangle test and the triangle test,
respectively, which suggests that the right-triangle test
is more useful practically for detecting Gaussian states.

In Figs. 2(g) and 2(h), we also identify the range
of mixed Gaussian states (colored region) that can be
detected under our nonclassicality tests. Specifically, we
plot the critical parameter sc for each Gaussian state
with purity µ and squeezing κ0, above which its nonclas-
sicality can successfully be detected, i.e., in the range
s ∈ [sc, 0]. As the purity µ decreases, we see that the
squeezing level κ0 required for a successful test becomes
higher. In addition, the two contour plots (g) and (h)
in comparison show that right triangle test detects more
Gaussian states than the rectangle test. The range of
successful detection may be attributed to the ratio of
maximum Gaussian bound to classical bound in each
test. The rectangle test gives the ratio

(
8

39/8

)
/2 ≈ 1.16,

whereas the right-triangle test gives 2/1 = 2, which may
account for the resilience of the latter test compared to
the former. For instance, violating J0 ≥ 2 and J ′

0 ≥ 1
becomes impossible if the purity falls below the inverse

of the raios, 39/8

4 ≈ 0.86 and 1
2 , respectively, which has

been numerically confirmed.

2. s-parametrized functions and loss mechanism

In addition, Fig. 2 shows that Wigner function (s = 0)
is optimal among all s-parametrized distributions for
both tests, which makes sense as the s-parametrized
quasiprobability function is closely related to loss dy-
namics under a Gaussian reservoir. The s-parametrized
quasiprobability functions of a quantum state ρ with two
different parameters s1 and s2 (s2 < s1) are related by a
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Gaussian convolution [3],

Wρ(α; s2)

=
2

π(s1 − s2)

∫
d2βWρ(β, s1)e

− 2
s1−s2

|α−β|2 . (21)

Equation (21) is similar to the action of a loss channel L
on a state ρ,

WL[ρ](α; 0)

=
2

π(1 − η)

∫
d2βWρ(β; 0)e

− 2
1−η |α−√

ηβ|2 , (22)

where the loss channel L is modeled by mixing the in-
put state ρ and a vacuum at a beam splitter with trans-
mittance η. It provides a direct connection between the
generalized quasiprobability function and loss dynamics
as [11, 23]

WL[ρ](α; s) =
1

η
Wρ

(
α√
η
; 1− 1− s

η

)
. (23)

Inverting Eq. (23) by setting s = 0 and s′ = 1 − 1
η , we

obtain

π(1− s′)

2
Wρ(

√
1− s′α; s′) =

π

2
WL[ρ](α; 0), (24)

which reveals that Js and J ′
s in Eqs. (6) and (9)

correspond to loss dynamics of J0 and J ′
0, respectively,

with η = 1
1−s′ . The results in Fig. 2 thus identify the

ultimate limit of our tests for Gaussian states under a
lossy channel. That is, as the rectangle and the triangle
tests for Gaussian states have critical values sc = −1
and sc = −2, respectively, we have 3 dB (ηc =

1
1−sc = 1

2 )

and 4.77 dB (ηc =
1
3 ) loss limits, below which there exist

some Gaussian states detectable using our tests. The
different limits 3 dB and 4.77 dB manifest a practical
superiority of the triangle test to the rectangle test.

3. finite data and nonoptimal phase-space points

Now let us further investigate to what extent our tests
can be useful under practical conditions. First, the num-
ber N of data to construct an average value is always fi-
nite, incurring an error of order O( 1√

N
). We thus require

that the degree of violation is large enough to overcome
the statistical error as

〈J 〉 > Bc +
∆J√
N
, (25)

where 〈J k〉 = 1
N

∑N
i=1 J k

i (k = 1, 2) and ∆2J =

〈Ĵ 2〉 − 〈Ĵ 〉2 with the classicality bound Bc = 2 and 1
for the rectangle and the right-triangle test, respectively.
Moreover, although we have previously obtained the op-
timal choice of angle θ−φ = π

4 as shown in Fig. 1, it is of

practical interest to identify the angle tolerance ∆, i.e., a
successful detection in the range of angles |θ−φ− π

4 | ≤ ∆
2 .

This is a particularly important issue when there is no
information on the phase (squeezing angle φ) of the state.
In this case, our choice of angle θ for a rectangle (trian-
gle) in Fig. 1 becomes completely random. A worst case
would be the choice of θ− φ = 0 or π

2 at which no viola-
tion occurs due to the factorizability of the phase-space
function, as explained below Eq. (20).

For given purity µ and squeezing κ0, we may take
a fixed dimension of rectangle (triangle), like the one
used for an optimal test with known phase, but con-
sider the angle θ randomly distributed over the whole
range of π

2 . We can then measure a success probabil-
ity as Ps = ∆/(π2 ). In Fig. 3, we show how faithfully
our Wigner-function tests Js=0 in (a,c,e,g) and J ′

s=0 in
(b,d,f,h) detect Gaussian states with unknown phase by
evaluating Ps for a data number N = 103 (a,b), N = 104

(c,d), N = 105 (e,f), and N = 106 (g,h). We see that our
tests can confidently detect a range of mixed squeezed
states with a practical number N = 103 ∼ 106. In gen-
eral, the angle tolerance ∆, and thus the success proba-
bility Ps, becomes large by increasing the data number
N as well as the purity µ and squeezing strength κ. As
already identified in Fig. 2(g) and 2(h), the theoreti-
cal limits of purity for a successful test of J and J ′ are
µ ≈ 0.83 and µ = 0.5, respectively, which are achievable
with N growing. In Fig. 3, we already have similar lev-
els of critical purity µ = 0.867 (e) and 0.516 (f) with a
finite data N = 105. For the rectangle test, a high level
Ps ∼ 0.8 means that our test can be successful unless
the randomly chosen angle is too close to the one for the
factorized Wigner function, θ − φ = 0 or π

2 . For the tri-
angle test, the success probability Ps is smaller, however,
the range of mixed states detectable is larger than that
of the rectangle test.

In Fig. 4, we also show the results for a triangle test
J ′
−1 based on theQ function (s = −1). Note that we have

excluded the rectangle test J−1, since no violation occurs
as shown in Fig. 2. Quite naturally (see Sec. II C 2),
both the detectable range of mixed Gaussian states and
the success probability significantly shrink compared to
the case of Wigner-function tests.

D. Quantum bound beyond Gaussian states

We now go beyond the Gaussian regime and investi-
gate a maximal possible value of J among all quantum
states beyond Gaussian states. To find out the maximum
and the minimum values, we solve eigenvalue equations
H|ψ〉 = λ|ψ〉 for Hermitian operators Hs and H′

s that
correspond to rectangle and right triangle tests, respec-
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FIG. 3: (Color online) Success probability Ps = ∆/(π
2
) for a

rectangle test Js=0 [(a), (c), (e), and (g)] and a triangle test
J ′

s=0 [(b), (d), (f), and (h)] to detect the nonclassicality of a
Gaussian state with purity µ and squeezing strength κ when
the phase is unknown. We have used the number of data N
in Eq. (25) as N = 103 (a, b), N = 104 (c, d), N = 105 (e, f),
and N = 106 (g, h).

FIG. 4: (Color online) Success probability Ps = ∆/(π
2
) for a

triangle test J ′
s=−1 to detect the nonclassicality of a Gaussian

state with purity µ and squeezing strength κ when the phase
is unknown. We have used the number of data N in Eq. (25)
as N = 104 (a), N = 105 (b), N = 106 (c), and N = 107 (d).

tively. These Hermitian operators are given by

Hs ≡ D̂(q0 + ip0)T̂ (s)D̂
†(q0 + ip0)

+ D̂(q0 + ip1)T̂ (s)D̂
†(q0 + ip1)

+ D̂(q1 + ip0)T̂ (s)D̂
†(q1 + ip0)

− D̂(q1 + ip1)T̂ (s)D̂
†(q1 + ip1), (26)

and

H′
s ≡ D̂(q0 + ip1)T̂ (s)D̂

†(q0 + ip1)

+ D̂(q1 + ip0)T̂ (s)D̂
†(q1 + ip0)

− D̂(q1 + ip1)T̂ (s)D̂
†(q1 + ip1). (27)

From now on, without loss of generality, we set
{q0, p0, q1, p1} = {0, 0, dq, dp} since the optimal values in
our tests are invariant under displacement as mentioned
in Sec. II B 1.
For the case of the Wigner function (s = 0), we can

solve the eigenvalue problem on the basis of coherent
states. We first construct a trial solution as

|ψ〉 =
∞∑

n=−∞

∞∑

m=−∞
Cn,m|2dqn+ 2idpm〉, (28)

where the coherent states |2dqn + 2idpm〉 with integers
n and m form a two-dimensional lattice with points
spaced by 2dq and 2dp along the q and p axes, re-

spectively. Exploiting an identity D̂(α)T̂ (0)D̂†(α)|γ〉 =
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FIG. 5: (Color online) (a) Maximum positive (red filled circle)
and minimum negative (black open circle) eigenvalues λN of
H0 in Eq. (26) that are obtained by truncating n and m up
to N in the recurrence relation of Eq. (29). (b) Expectation
values µN = 〈H0〉 of a truncated superposition of (2N +1)×
(2N+1) coherent states in Eq. (30) compared with λN in (a).
As an example, we plot (c) the Wigner function and (d) its
contour plot for a superposition of 5× 5 coherent states with

dq = dp =
√

π
2
, which achieves a value of J0[ρ] ≈ 3.70.

e−αγ
∗+α∗γ |2α− γ〉, we derive a recurrence relation

λCn,m = C−n,−m + e−4id2mC−n+1,−m + e4id
2nC−n,−m+1

− e−4id2(m−n)C−n+1,−m+1, (29)

where d2 ≡ dqdp refers to the area of unit cell in the
lattice. In Fig. 5, we show the maximum and minimum
eigenvalues attainable by taking a truncation number N
in the recurrence relations with d2 = Rπ

2 + π
4 (R: in-

teger). It shows that the simple algebraic bounds ±4
for a rectangle test are asymptotically obtained by in-
creasing N . As a double check, we compare λN and
µN ≡ 〈ψN |H0|ψN 〉/〈ψN |ψN 〉 with d2q = d2p =

π
4 , where

|ψN 〉 =
N∑

n=−N

N∑

m=−N
Cn,m|2dqn+ 2idpm〉 (30)

is given by plugging the coefficients Cn,m obtained from
the recurrence relations. That is, we construct a state
with certain numeric coefficients and caluclate its actual
average value µN of Hs=0. Figure 5 confirms that the

FIG. 6: (Color online) (a, b) Maximal Js (J ′
s) and (c, d) min-

imal Js (J ′
s) among all quantum states against the param-

eter s (orange solid line), compared to the algebraic (black
dotted lines) and Gaussian bounds (brown dashed lines), re-
spectively. The quantum bounds reach the algebraic upper
bounds at s = 0 for each case. In (a) and (b), the gap be-
tween quantum and classical bounds disappears at s = −1
and s = −2 for Js and J ′

s , respectively.

algebraic bounds are actually obtained by the states in
Eq. (30). In addition, those states also achieve the alge-
braic bounds ±3 for a right triangle test (Fig. 6).
On the other hand, for a generalized distribution s < 0,

we solve the eigenvalue problems in the basis of Fock
states. To this aim, we first express D̂(α)T̂ (s)D̂†(α) as

D̂(α)T̂ (s)D̂†(α) =
∞∑

n=0

∞∑

m=0

Tn,m|n〉〈m|, (31)

where Tn,m(α) ≡ Tr[|m〉〈n|D̂(α)T̂ (s)D̂†(α)] for n ≥ m is
given by

Tn,m(α) =

√
m!

n!

(
s+ 1

s− 1

)m
exp

(
− 2|α|2

1− s

)

×
(

2α

1− s

)n−m
L(n−m)
m

(
4|α|2
1− s2

)
, (32)

and Tn,m for n < m is obtained by T ∗
m,n. Using Eq. (32),

we construct a density matrix for Hs and H′
s, and have

obtained the maximum and minimum eigenvalues for
each generalized quasiprobability function by extensive
numerical optimizations. In Fig. 6, the maximal Js and
J ′
s for quantum states approach classical bounds as s

decreases, which implies that the whole set of quantum
states detectable under our tests shrinks with s decreas-
ing.
For comparison, we also plot the Gaussian bounds ob-

tained in the previous sections and the algebraic bounds
obtainable from Eq. (3). The algebraically possible
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FIG. 7: (Color online) (a, b) Optimal Js=1− 1
η

and J ′
s=1− 1

η

for an even cat state |ψγ〉 = (2 + 2e−2|γ|2 )−1/2(|γ〉 + | − γ〉)
with γ = 2 (blue solid line), which are equivalent to J0 and J ′

0

for a decohered state L[|ψγ〉〈ψγ |] with loss parameter 1 − η
[Eq. (24)], respectively. On the other hand, black dashed
lines denote the Gaussian bounds in Eq. (35) [the same as
Fig. 2(c) and 2(d)] for each s = 1 − 1

η
, above which gen-

uine non-Gaussianity is detected. For a non-Gaussianity test,
the detectable range of η = 1

1−s
based on an s-parametrzied

function for the original pure cat state (red shaded region) is
larger than the range of η based on the Wigner function for
the decohered state under loss (brown shaded region). See
main text.

ranges of Js and J ′
s are given by

2s+ 4

s− 1
≤ Js ≤

2s− 4

s− 1
for −1 ≤ s ≤ 0,

−1 < Js < 3 for s < −1, (33)

and

s+ 3

s− 1
≤ J ′

s ≤
s− 3

s− 1
for −1 ≤ s ≤ 0,

−1 < J ′
s < 2 for s < −1. (34)

While the maximum and the minimum algebraic bounds
are saturated by quantum states for s = 0, there are gaps
between algebraic and quantum bounds for a nonzero
s < 0. As for the lower bounds of Js and J ′

s , the van-
ishing gap between algebraic and classical bounds clearly
indicate that there is no quantum violation below s = −1.
On the other hand, as for the upper bounds, we observe
that the loss limits of Js and J ′

s for the whole set of
quantum states are identical to the loss limits for Gaus-
sian states, 3 dB (s = −1) for Js and 4.77 dB (s = −2)
for J ′

s , respectively. That is, below those limits, there
exist some quantum states, both Gaussian (Sec. II C 2)
and non-Gaussian, violating the classical bounds 2 and
1, respectively.

III. TESTING GENUINE NON-GAUSSIANITY

As our tests are linear with respect to a convex mixture
of quantum states, i.e., Js[

∑
i piρi] =

∑
i piJs[ρi], the

gaps between the quantum and Gaussian bounds enable
us to detect quantum non-Gaussianity. That is, if a given

state is a mixture of Gaussian states, it must satisfy

−1 <Js[ρMG =
∑

i

piσi] ≤ max
σ

Js,

−1 <J ′
s [ρMG =

∑

i

piσi] ≤ max
σ

J ′
s , (35)

where σi is an arbitrary Gaussian state and the maximum
values, maxσ Js and maxσ J ′

s , are shown in Figs. 2(c)
and 2(d), respectively. In particular, the case of s = 0
gives

−1 <J0[ρMG] ≤
8

39/8
,

−1 <J ′
0[ρMG] ≤ 2. (36)

In Fig. 7, as an example, we plot the violation of in-
equalities (35) and (36) for an even cat state |ψγ〉 =

(2 + 2e−2|γ|2)−1/2(|γ〉 + | − γ〉) under a lossy channel,
which is represented by a Wigner function,

WL[|ψγ〉〈ψγ |](q, p; s = 0)

=
2

π

1

1 + e−2γ2
e−2q2−2p2{e−2ηγ2

cosh(4
√
ηγq)

+ e−2(1−η)γ2

cos(4
√
ηγp)}, (37)

with γ real. We particularly compare (i) the Wigner-
function-based tests Js=0 and J ′

s=0 of the decohered
state L[|ψγ〉〈ψγ |] and (ii) the s-parametrized-function-
based Js and J ′

s of the original pure state |ψγ〉 with
s = 1 − 1

η , respectively. In Sec. II C 2, we have

shown the equivalence of two nonclassicality tests—the
Wigner-function test for the decohered state and the
s-parametrized function test for the original state. In
contrast, there exists inequivalence for non-Gaussianity
tests—the latter detects non-Gaussianity in a broader
parameter regime than the former. It is due to the
fact that quantum non-Gaussianity bounds, maxσ Js and
maxσ J ′

s , vary with the parameter s, whereas the non-
classicality bounds are the same regardless of s. On a
practical side, it implies that the non-Gaussianity test for
a decohered state under a lossy channel can be harder
than expected from the analysis only based on the s-
parametrized function of the original state.

A. Optimizing non-Gaussianity tests

The test of genuine non-Gaussianity in Eq. (35) can

be further enhanced by applying squeezing Ŝ on a given
state. Note that a mixture of Gaussian state remains to
be a Gaussian mixture under Gaussian operations. Thus,
if the state under squeezing shows violation of Gaus-
sian bounds, the original state must be genuinely non-
Gaussian. For example, we show the case of the mixed
state f |0〉〈0|+(1− f)|2〉〈2| in Figs. 8(a) and 8(b), which
shows that the squeezing operation on the state enhances
the detected region.
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FIG. 8: (Color online) (a, b) J0 and J ′
0 optimized over the

points of a rectangle (right triangle) for Ŝ{f |0〉〈0| + (1 −

f)|2〉〈2|}Ŝ† as functions of the vacuum fraction f . Blue solid,
purple dotted, and red dashed lines denote the case of squeez-
ing applied to a given state, with squeezing r = {0, 0.5, 1} (a)
and r = {0, 1, 2} (b), respectively. We find no violation of
Eq. (36) for an initial state (r = 0), while a state with a suffi-
ciently large squeezing violates Eq. (36) (blue colored region)
even when its Wigner function is positive (f > 1

2
). (c, d)

Ns and N ′
s optimized over the points of a parallelogram (tri-

angle) in Eqs. (41) and (42) for f |0〉〈0| + (1 − f)|2〉〈2| with
respect to f . Black solid, orange dotted, brown dashed lines
represent s = {0,−0.01,−0.02} (c) and s = {0,−0.02,−0.04}
(d), respectively. The Wigner function s = 0 shows the best
performance to demonstrate quantum non-Gaussianity.

For the case of a Wigner function, we may address the
problem by using its interesting property [3]

WŜρŜ†(α; 0) =Wρ(S[α]; 0), (38)

where S[α] = α cosh r + α∗e2iφ sinh r is the transforma-
tion of phase-space points due to the squeezing operation
Ŝ. As we illustrate in Fig. 9, under the squeezing trans-
formation S[α], a parallelogram in an unsqueezed profile
corresponds to a rectangle in a squeezed profile. Impor-
tantly, it means that we do not need to implement a
squeezing operation on a given state in order to have an
enhanced test. Instead, we may simply choose the four
points at the vertices of the parallelogram corresponding
to the squeezing operation and do our tests for the given
initial state.

On the other hand, for a nonzero s < 0, the above
argument is not directly applicable. This is because
the s-parametrized function of a state after squeezing
is not simply obtained by reshaping of the original s-
parametrized function (squeezing of the profile). Instead,
we find the following identity (with its proof in the Ap-

FIG. 9: (Color online) A squeezing transformation converts
(a) a parallelogram to (b) a rectangle while it squeezes the
entire profile of Wigner function.

pendix):

π(1 − s)

2
Wρ(S[α]; s) =

π

2
WL′[ŜρŜ†]

(
α√
1− s

; 0

)
, (39)

where L′[ρ] represents a beam-splitter interaction with
transmittance η = 1

1−s between a quantum state ρ

and a squeezed vacuum Ŝ|0〉〈0|Ŝ†. Therefore, all s-
parametrized functions taken at the vertices of a par-
alleogram can be understood as the Wigner function
taken at the vertices of a rectangle for the decohered
state L′[ŜρŜ†]. As the whole process L′[ŜρŜ†] is Gaus-
sian, it does not create non-Gaussianity. We then use
the Gaussian bounds obtained for s = 0 in order to de-
tect genuine non-Gaussianity under the s-parametrized
functions.
We thus propose enhanced non-Gaussianity tests for

an arbitrary s as

−1 <Ns[ρMG] ≤
8

39/8
,

−1 <N ′
s[ρMG] ≤ 2, (40)

with

Ns[ρ] =
π(1 − s)

2
{Wρ(S[q0 + ip0]; s) +Wρ(S[q1 + ip0]; s)

+Wρ(S[q0 + ip1]; s)−Wρ(S[q1 + ip1]; s)}, (41)

and

N ′
s[ρ] =

π(1 − s)

2
{Wρ(S[q1 + ip0]; s) +Wρ(S[q0 + ip1]; s)

−Wρ(S[q1 + ip1]; s)}, (42)

which take into account the vertices of parallelogram and
triangle, respectively, with S[α] = α cosh r+α∗e2iφ sinh r.
Note that any values of r and φ for the squeezing trans-
formation S[α] can be used in Eqs. (41) and (42), as
squeezing does not create non-Gaussianity. As an illus-
tration, we show the case of the state f |0〉〈0|+(1−f)|2〉〈2|
in Figs. 8(c) and 8(d) using the above tests.
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B. Testing noisy non-Gaussian states

We here investigate our test of genuine non-
Gaussianity for noisy non-Gaussian states. In particu-
lar, when a single-mode state undergoes a lossy Gaus-
sian channel, the correspondingWigner function becomes
positive definite if its transmission rate η is below 50%. It
is then interesting to know whether our non-Gaussianity
test can detect noisy non-Gaussian states for η < 0.5.
For this purpose, we consider a class of superposition

states |ΨN〉 =
∑N
n=0 Cn|n〉 (N : truncation number) [26]

as an input to a lossy channel. We then test the genuine
non-Gaussianity for the output decohered states using
the Wigner function (s = 0) or the Q function (s = −1)
in Eqs. (41) and (42).
In Fig. 10 (a), we plot Ns=0 (parallelogram test) for

the superposition states
∑N
n=0 Cn|n〉 with varying trun-

cation number N = 1 (blue solid), N = 2 (red dashed),
and N = 3 (black dotted). For each η, we optimize
the coefficients Cn to show a maximal N0 in the figures.
We see that N0 is above the Gaussian bound 8

39/8
even

below η = 0.5 (magnified view in the inset), demonstrat-
ing a successful detection of non-Gaussianity for posi-
tive Wigner functions. The plots indicate that there
exist some superposition states for each N whose non-
Gaussianity can be detected under transmission below
50%. We have numerically found that N0 >

8
39/8

appears
at a very low η. If we take into account the violation of
size ∼ 0.001, the critical η turns out to be ηc = 0.590
(N = 1), ηc = 0.238 (N = 2), and ηc = 0.221 (N = 3),
respectively.
On the other hand, under the triangle test N ′

0, the de-
tection becomes less effective as shown in Fig. 10 (b). In
particular, the critical η does not go below 0.5 in con-
trast to the rectangle test N0 in Fig. 10 (a). Moving on
to the Q-function tests (s = −1), they are naturally less
powerful than the Wigner-function test (s = 0). How-
ever, they can also manifest genuine non-Gaussianity be-
low η = 0.5 under the paralleogram test as shown in
Fig. 10 (c), with critical values ηc = 0.476 (N = 2) and
ηc = 0.442 (N = 3) at the violation of size 0.001 (no
violation for N = 1). We do not show the case of trian-
gle test N ′

s=−1, which does not detect non-Gaussianity.
Thus, for the class of noisy non-Gaussian states consid-
ered here, we find that the parallelogram test with four
phase-space points is more powerful than the triangle test
with three phase-space points.

IV. CONNECTION BETWEEN SINGLE-MODE

AND TWO-MODE TESTS

Finally, we address the connection between our single-
mode nonclassicality test and the BW two-mode nonlo-
cality test more directly. We start our discussion with a
single-mode state ρ that satisfies a condition

N [ρ] > 2e
1
2
max[|Da|,|Db|]2 , (43)

FIG. 10: (Color online) (a) Ns=0 (parallelogram test), (b)
N ′

s=0 (triangle test), and (c) Ns=−1 (parallelogram test), re-

spectively, optimized over a superposition state
∑N

n=0 Cn|n〉
for each η (transmission rate) under a loss channel. The
curves from top to bottom represent the case of truncation
number N = 3 (black dotted), N = 2 (red dashed) and N = 1
(blue solid). Ns >

8

39/8
≈ 2.324 and N ′

s > 2, respectively,
represent genuine non-Gaussianity of the noisy non-Gaussian
states.

where N [ρ] is the quantity defined in Eq. (41) (s = 0),
and Da = S[q1 + ip1] − S[q0 + ip0] and Db = S[q1 +
ip0]−S[q0 + ip1] correspond to the diagonal lengths of a
parallelogram with the transformation S[α] = α cosh r +
α∗e2iφ sinh r. For the case of taking r = 0, the four points
simply form a rectangle; then N [ρ] has a classical bound
2. In other words, Eq. (43) becomes a nonclassicality test
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FIG. 11: (Color online) (a, b) Optimal P ≡ N [ρ] −

2e
1
2
max[|Da|,|Db|]2 and B for squeezed states as functions of

squeezing strength r. (c, d) Optimal P and B for states
f |0〉〈0| + (1 − f)|2〉〈2| as functions of the vacuum fraction
f . Every P > 0 in our single-mode test is monotonically con-
nected to the violation of the nonlocality test B > 2 in phase
space.

and the quantity 2e
1
2
max[|Da|,|Db|]2 > 2 represents a de-

gree of nonclassicality. On the other hand, for the case of
taking r > 0, Eq. (43) may not be immediately regarded
as a nonclassicality test, since a squeezing operation can
create nonclassicality to the input state. Nevertheless,
we show below that if a state ρ satisfies the condition in
Eq. (43) for any values of r and φ, it manifests nonlocality
under the BW test

B[ρAB] ≡
π2

4
{WρAB (α0, β0) +WρAB (α1, β0)

+WρAB (α0, β1)−WρAB (α1, β1)} > 2, (44)

by mixing it with a vacuum at a 50:50 beam splitter.

It has been known that a single-mode nonclassical state
can be turned into an entangled state using a beam-
splitter setting [27–31]. By mixing a single-mode state
ρ with a vacuum at a 50:50 beam splitter, we obtain a
two-mode Wigner function as

Wρ′AB
(α, β) =Wρ

(
α+ β√

2

)
W|0〉〈0|

(−α+ β√
2

)
, (45)

where W|0〉〈0|(γ) ≡ 2
π e

−2|γ|2 is the Wigner function of a
vacuum state. Let us assume that Eq. (43) is satisfied for
the state ρ. Using a short-hand notation S[qi+ipj] ≡ Sij ,

we choose the phase-space points for the BW test as

α0 =
1

2
√
2
(2S00 − S10 + S01),

α1 =
1

2
√
2
(2S11 + S10 − S01),

β0 =
1

2
√
2
(2S00 + S10 − S01),

β1 =
1

2
√
2
(2S11 − S10 + S01), (46)

and obtain

B[ρ′AB] =
π

2
{Wρ(S00; 0)−Wρ(S11; 0)}e−

1
2
|Db|2

+
π

2
{Wρ(S10; 0) +Wρ(S01; 0)}e−

1
2
|Da|2

≥ N [ρ]e−
1
2
max[|Da|,|Db|]2

> 2, (47)

with the identity S00 + S11 = S10 + S01. We have
above used thatWρ(S00; 0)−Wρ(S11; 0) andWρ(S10; 0)+
Wρ(S01; 0) are both positive if N [ρ] > 2; if the for-
mer is negative, then N [ρ] < 2 due to the constraint
π
2 {Wρ(S10; 0) +Wρ(S01; 0)} ≤ 2.
As a by-product, we now confirm that Eq. (43) rep-

resents a nonclassicality test for any values of r and φ.
This is because nonclassicality is a necessary condition
to make a nonlocal resource in the beam-splitter setting.
As an illustration, in Fig. 11 we plot the optimal value of

P ≡ N [ρ]− 2e
1
2
max[|Da|,|Db|]2 and the corresponding BW

quantity B for squeezed states and noisy Fock states, re-
spectively, which clearly manifests that our single-mode
test can represent a nonlocal resource in phase space.

V. CONCLUSIONS AND REMARKS

We have proposed Bell-type tests of non-classicality
and non-Gaussianity using generalized phase-space dis-
tributions. Our rectangle and right-triangle tests are ca-
pable of detecting a wide range of nonclassical states
including mixed Gaussian squeezed states and non-
Gaussian states that possess even positive-definite dis-
tributions in phase space. For nonclassicality tests, we
have identified the ultimate limits of 3-dB (transmit-
tance η = 1

2 ) and 4.77-dB (η = 1
3 ) under a loss channel

with our approach employing four and three phase-space
points, respectively. Furthermore, we have shown that
our test can be robust against experimental imperfec-
tions, including finite data acquisition and nonoptimal
choice of phase-space points.
As our nonclassicality tests set bounds for all Gaussian

states and their mixtures, they can be further used as cri-
teria to detect genuine quantum non-Gaussianity, which
is known to be a crucial resource for numerous quantum
tasks. We have obtained the Gaussian bounds for all tests
using the s-parametrized distributions. Remarkably, we
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have shown how the rectangle and the right-triangle tests
can be generalized to the parallelogram and the triangle
tests, respectively, which is essentially equivalent to a
squeezing operation on a given state, thereby enhancing
the successful detection of genuine non-Gaussianity. Im-
portantly from a practical point of view, the optimized
parallelogram and triangle tests do not require an ac-
tual realization of squeezing operation, as the choice of
appropriate phase-space points serves the purpose.
Employing four and three phase-space point tests have

their own advantages in our tests. For instance, we have
found that three-point tests are more advantageous in de-
tecting the nonclassicality of mixed Gaussian states. On
the other hand, four-point tests are more powerful in de-
tecting genuine non-Gaussianity of non-Gaussian states
under a loss channel even below η = 1

2 .
Detecting nonclassicality and quantum non-

Gaussianity using positive valued points in phase
space requires a certain constraint, e.g., predetermined
position (origin) with energy constraint [22] and a

designated shape (tetragon or triangle) in our tests [16].
It may be possible to enhance our tests by exploiting
more constraints such as the input-state energy, the
length of vertices, the area of a polygon, etc. In this
respect, we have addressed an example that the diagonal
lengths in the parallelogram test can be used as valuable
information to connect our single-mode test and the
BW nonlocality test in phase space. As nonlocality
tests have evolved from simple to more complex tests
[32], we hope our work can further stimulate efforts for
more elaborate tests to detect nonclassical states and
find useful resources for genuine multi-mode nonlocality
tests.
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Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod.
Phys. 84, 621 (2012).

[6] Th. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601
(2002).

[7] A. Mari, K. Kieling, B. M. Nielsen, E. S. Polzik, and J.
Eisert, Phys. Rev. Lett. 106, 010403 (2011).

[8] K. Banaszek and K. Wódkiewicz, Phys. Rev. Lett. 82,
2009 (1999).

[9] J. S. Bell, Speakable and Unspeakable in Quantum Me-

chanics (Cambridge University Press) (1988).
[10] H. Nha and H. J. Carmichael, Phys. Rev. Lett. 93,

020401 (2004); R. Garcia-Patron, J. Fiurášek, N. J. Cerf,
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Appendix A. Proof of Eq. (39)

Applying a linear transformation in Eq. (21), we first have

Wρ(α cosh r + α∗e2iφ sinh r; s) =
2

π(−s)

∫
d2βWρ(β; 0) exp

(
− 2|α cosh r + α∗e2iφ sinh r − β|2

(−s)

)
. (A1)

Changing the variable β to β′ cosh r+β′e2iφ sinh r and using the propertyWρ(α cosh r+α∗e2iφ sinh r; 0) =WŜρŜ†(α; 0),
we obtain

Wρ(α cosh r + α∗e2iφ sinh r; s)

=
2

π(−s)

∫
d2β′Wρ(β

′ cosh r + β′∗e2iφ sinh r; 0) exp

(
− 2|(α− β) cosh r + (α− β)∗e2iφ sinh r|2

(−s)

)

=
2

π(−s)

∫
d2β′WŜρŜ†(β

′, 0) exp

(
− 2|(α− β) cosh r + (α − β)∗e2iφ sinh r|2

(−s)

)
. (A2)

As the interaction between a quantum state ρ and a reservoir σ is expressed by a beam-splitter with transmittance
η, we have

WL′[ρ](α; 0) =

∫
d2βWρ(

√
ηα−

√
1− ηβ; 0)Wσ(

√
1− ηα+

√
ηβ; 0)

=
1

1− η

∫
d2β′Wρ(β

′; 0)Wσ

[√
η

1− η

(
α√
η
− β′

)
; 0

]
. (A3)

Comparing Eqs. (A2) and (A3), we see that the reshaping (squeezing) of a profile in phase space is related to a

beam-splitter interaction between a squeezed quantum state ŜρŜ† and a squeezed vacuum reservoir Ŝ|0〉〈0|Ŝ† with
transmittance η = 1

1−s ,

Wρ(α cosh r + α∗e2iφ sinh r; s) =
1

1− s
WL′[ŜρŜ†]

(
α√
1− s

; 0

)
. (A4)


