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Abstract

We consider the macroscopic disordered system of free lattice fermions with the
one-body Hamiltonian, which is the Schrödinger operator with ergodic potential. We
assume that the expectation E{|P (x, y)|} of the entries of the Fermi projection P =
{P (x, y)}x,y∈Zd of the Hamiltonian decays exponentially: E{|P (x, y)|} ≤ Ceγ|x−y|, C <

∞, γ > 0 (a typical behavior in the localization regime). We prove that if SΛ is the
entanglement entropy of the cubic block Λ of side length L of the system, then for
any d ≥ 1 E{L−(d−1)SΛ} has a finite limit as L → ∞ and we identify the limit.
We then prove that for d = 1 and under the same assumption on the potential the
entanglement entropy admits a well defined asymptotic form with probability 1, which
is not selfaveraging as L → ∞, i.e., its fluctuations do not vanish as L → ∞ even if the
ergodic potential consists of i.i.d. random variables according to recent numerical results
by Pastur L., Slavin V.: Phys. Rev. Lett. 113 (2014) 150404. On the other hand,
if d ≥ 2 and the ergodic potential consists of i.i.d. random variables with sufficiently
smooth probability distribution, then the variance of L−(d−1)SΛ vanishes as L → ∞,
i.e., in this case the entanglement entropy is selfaveraging.

1 Introduction

Entanglement is a fundamental feature of quantum mechanics manifesting non-local intrin-
sically quantum correlations between separated quantum systems. Having been first used by
Einstein, Rosen and Podolsky in 1935 to demonstrate the incompleteness of quantum descrip-
tion and explicitly introduced by Schrödinger in the same year, entanglement is nowadays
an object of extensive studies ranging from general relativity, cosmology and foundation of
quantum mechanics through quantum optics and quantum statistical mechanics to quantum
information and computation. Among the wide variety of ideas, problems and results there
are those dealing with many-body (macroscopic) systems, common in statistical mechanics
and condensed matter physics. Here one often uses the so called bipartite setting, in which
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a macroscopic quantum systems S being in its pure state is divided in two parts E and B
of characteristic sizes L and L in space and one asks how the parts are correlated in the
asymptotic regime

1 ≪ L≪ L. (1.1)

A widely used measure (a quantifier) of the corresponding correlations is the von Neu-
mann entropy

SB = −trB ρB log2 ρB (1.2)

of the reduced density matrix ρB of the block B, i.e., the density matrix of the (pure) state of
S traced with respect to the degree of freedom of E . One of important problems of the field
is the asymptotic behavior of the entanglement entropy in the regime (1.1). Since the r.h.s.
inequality of (1.1) is usually implemented via the macroscopic limit L → ∞ for S, in which
the entanglement entropy is usually well defined, the problem is to find the asymptotics as
L≫ 1 of the entanglement entropy of a block of size L of an infinite many body system.

It has been found in the last decades that these asymptotics may be unusual if the whole
system is in its ground state, more generally, in a pure state. Namely, it was shown in
several physics works that the entanglement entropy is proportional to the surface area Ld−1

of the block but not to its volume Ld. The latter (extensive) length scaling is standard in
quantum statistical mechanics for non-zero temperature, while the former was found first in
cosmology and quantum field theory and then in other fields and is known as the area law.
Moreover, the area law is not always valid, e.g., at quantum critical points of several one-
dimensional translation invariant quantum spin chains, where the entropy is proportional to
logL, L≫ 1. (recall that the area law in the one-dimensional case is just the boundedness
of the entanglement entropy in L).

More generally, the area law const·Ld−1 is to be valid for quantum systems with finite
range interaction and a spectrum gap, while for gapless systems other asymptotics are pos-
sible, const·Ld−1 logL in particular, which again has to be closely related to the existence
of a quantum phase transition in the corresponding system [5]. This is, however, not sim-
ple to deal with, since the spectrum of many-body interacting quantum systems is rather
complex and is known mostly for certain one dimensional exactly solvable models. On the
other hand, there is a simpler model having the both types of spectrum (i.e, gapless and
gaped) and the both type of asymptotics. These are the quasi-free fermions described by
Hamiltonians quadratic in the creation and annihilation operators. The Hamiltonians arise
in condensed matter theory and statistical physics (e.g., electrons in metals, including super-
conductivity, and other mean field type approximations, exactly solvable spin chains, etc.).
For these Hamiltonians with finite range and translation invariant coefficients the large-L
behavior of the entanglement entropy for any d ≥ 1 and a gapless spectrum was obtained first
via the upper and lower bounds both of order O(Ld−1 logL) and certain conjectures on the
subleading term in the Szegö theorem for Töplitz determinants [13, 15] and then rigorously
[20], by using a rather sophisticated techniques of modern operator theory [29, 30].

All the above concerns the translation invariant systems. Following a widely accepted
paradigm of condensed matter physics, it is natural to consider a disordered version of the free
fermion model replacing the translation invariant coefficients of the fermionic Hamiltonian
by random coefficients, which are translation invariant in the mean and have sufficiently fast
decaying spatial correlations, i.e., ergodic.

The analysis of many body quadratic fermionic Hamiltonians reduces to that of certain
one body operators determined by the coefficients of the form. Thus, in the case of random
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coefficients we obtain a problem of the theory of one body disordered systems, the Anderson
localization in particular.

It was rigorously shown in [24] (see also related works [22, 32]) that if S is in the ground
(or even a pure) state of the fermionic quadratic form determined by the Anderson model
(discrete Schrödinger operator with an i.i.d. random potential) and the Fermi energy µ, then
the expectation E{SΛ} of the entanglement entropy SΛ of the d ≥ 1 dimensional cube Λ of
side length L admits the two sided bounds

C−L
d−1 ≤ E{SΛ} ≤ C+L

d−1, 0 < C− ≤ C+ <∞ (1.3)

The result is valid in the both cases, i.e., if the Fermi energy µ lies in a spectral gap of the
Anderson model and if µ lies in the localized (pure point) spectrum of the model. The first
fact (gaped case) is fairly simple and follows from the general principle of spectral theory
while the second (gapless case) is essentially based on the exponential decay of the Fermi
projection of the Anderson model, one of fundamental results of the localization theory.
For d = 1 and L ≫ 1 two sided bounds for the entanglement entropy of the almost all
realizations of disorder were also obtained in [24] and then used to show numerically that
the entanglement entropy of one-dimensional disordered fermions is not selfaveraging, i.e.,
has non vanishing random fluctuations even if L≫ 1

In this paper we first prove that for any d ≥ 1 there exists a "surface macroscopic" limit
of the entanglement entropy per unit of a cubic block

lim
L→∞

L−(d−1)
E{SΛ}, (1.4)

which is non-zero and finite in view of (1.3). In other words, the entanglement entropy of
disordered fermions satisfies the area law in the mean.

We then show that for d ≥ 2 the variance of SΛ vanishes as L → ∞, i.e., that for d ≥ 2
the entanglement entropy of disordered fermions is selfaveraging.

As for d = 1, we show that SΛ has the limit as L→ ∞ with probability 1 (non-zero and
finite with probability 1 in view of (1.3)). According to the numerical results of [24] the limit
is random, i.e., the entanglement entropy of disordered fermions is not selfaveraging in the
one-dimensional case.

Note that the selfaveraging property, i.e., the vanishing of fluctuations of extensive ob-
servables in the macroscopic limit is widely known in condensed matter theory and statistical
mechanics of disordered systems. In the entanglement studies an essentially analogous prop-
erty is known as the entanglement typicality (see e.g. the recent review [10]) and is used
to simplify the problem in hand by considering entanglement characteristics of a pure state,
which is "typical", i.e., random with respect to a certain multivariate probability distribution
provided that the distribution is strongly picked in the number of variables. In the most of
known cases the distribution is related to the Haar measure on the multidimensional unitary
group U(N), which is not always easy to interpret physically in the corresponding context,
in particular, to determine the system physical dimension entering explicitly in large block
asymptotics of the entanglement entropy (see (1.3) and (1.4) and many formulas below). On
the other hand, the random ground state (more generally, pure states) of N free disordered
fermions are just the Slater determinants of N eigenfunctions of the Schrödinger equation
with random (more generally, ergodic) potential in the d-dimensional space.
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This allows one to study in a simple setting of free fermions various depending on d
entanglement properties, in particular, to conclude that the corresponding quantum states
are typical for d ≥ 2 and are not typical for d = 1.

Throughout the paper we will use the symbols C,C1, c, c1, etc. for quantities, which can
be different in different expressions and which value is not essential for the validity of the
expressions.

2 Main Results

In this section we formulate and prove our main results (see Theorems 2.2, 2.4, 2.6 and 2.8).
Various technical results are given in the next section

2.1 Generalities

We consider the system of spinless lattice fermions confined to a finite domain D ⊂ Zd and
described by the quadratic Hamiltonian

HD =
∑

x,y∈D

A(x, y)c+x cy, (2.1)

where c+x , cx, x ∈ D are the Fermi creation and annihilation operators, AD = {A(x, y)}x,y∈D
is a N × N hermitian matrix, the restriction to D ⊂Zd of a bounded hermitian operator
A = {A(x, y)}x,y∈Zd acting in l2(Zd). We will choose

AD = (HD − µ), (2.2)

where µ is a parameter (Fermi energy) to be chosen below and HD is the restriction to D of
the discrete Schrödinger operator

H = −∆+ V (2.3)

in Zd, where ∆ is the d-dimensional discrete Laplacian

(∆ψ)(x) =
∑

|x−y|=1

ψ(y), x ∈ Z
d (2.4)

and
(V ψ)(x) = V (x)ψ(x), x ∈ Z

d. (2.5)

is the potential.
It follows from a quite standard second quantization calculation (see e.g. [9, 25, 32]) that

the entanglement entropy of a cube Λ ∈ D is

SD
Λ = Tr h(PD

Λ ), (2.6)

where
h(x) = −x log2 x− (1− x) log2(1− x), (2.7)

is a binary Shannon entropy, PD
Λ is the restriction to Λ of the spectral projection measure

EHD
of HD (2.3), corresponding to the interval (−∞, µ] ([µ0, µ], where µ0 > −∞ is the finite

lower edge of the spectrum of H , if we assume that V is bounded):

PD
Λ = PD

∣∣
Λ
, PD := EHD

((−∞, µ]). (2.8)
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It is easy to show that HD converges strongly to H as D ր Z
d, say in the van Hove sense

[27], hence PD converges strongly to

P = EH((−∞, µ)) (2.9)

and since Λ is finite, SD
Λ of (2.6) converges to

SΛ = Tr h(PΛ) (2.10)

We will assume in this paper that the potential (2.5) is an ergodic field in Zd. Recall that
the field is defined by a measurable function v on a probability space (Ω,F , P ) endowed
with a measure preserving and ergodic group of transformations {Ta}a∈Zd :

V (x, ω) = v(Txω), (2.11)

or
V (x, Taω) = V (x+ a, w), v(ω) = V (0, ω). (2.12)

As a result, the whole operator H = {H(x, y;ω)}x,y∈Zd is an ergodic operator (see [23]), i.e.,
satisfies with probability 1 the relation

H(x, y;Taω) = H(x+ a, y + a;ω), ∀a, x, y ∈ Z
d. (2.13)

More generally, an operator A = {A(x, y)}x,y∈Zd in l2(Zd) is called ergodic if it satisfies
(2.13).

It follows then (see [23], Theorem 2.7) that P of (2.9) is an ergodic orthogonal projection,
i.e., P is selfadjoint, P 2 = P and

P = {P (x, y, ω)}x,y∈Zd, P (x, y, Taω) = P (x+ a, y + a, ω). (2.14)

In particular, for any collection {(xi, yi)}kj=1 of pairs of points of Zd the expectations

E

{ k∏

i=1

P (xi, yi)
}
= E

{ k∏

i=1

P (xi + a, yi + a)
}
, ∀a ∈ Z

d. (2.15)

are translation invariant.
One of the main results of spectral theory of the Schrödinger operator with ergodic

potential, which we will use extensively below, is the bound

E{|P (x, y)|} ≤ C0e
−γ|x−y|, C0 <∞, γ > 0, |x− y| =

d∑

j=1

|xj − yj|. (2.16)

The bound is a manifestation of the exponential localization for the Schrödinger operator
(pure point spectrum and the exponential decay of eigenfunctions). It is generically valid for
random i.i.d. potential with sufficiently regular probability distribution (see (3.35)) and for
certain classes of quasiperiodic potentials for any µ in the spectrum if the amplitude of the
potential is large enough and for µ belonging to a certain neighborhood of spectrum edges
if the amplitude of the potential is fixed. In the one dimensional case and i.i.d. potential
with regular probability distribution the bound is valid for any µ in the specrum and any
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amplitude of potential. We refer the reader to the works [1, 3, 12, 17, 21, 31] and references
therein, where the validity of the bound is proved and discussed.

However, it is worth mentioning that the proofs of a considerable amount of our results,
in particular, those of Section 2 do not use that P is the spectral projection of an ergodic
Schroedinger operator (see (2.8)). In other words, the results are valid for any ergodic
orthogonal projection (2.14) – (2.16) satisfying (2.16) and even having a sufficiently fast
power law decay.

Given the domains C1 ⊂ Z
d and C2 ⊂ Z

d, consider the selfadjoint operator acting in
l2(C1) (see Lemma 3.4 for its properties)

ΠC1,C2 = {ΠC1,C2(x, y)}x,y∈C1, ΠC1,C2(x, y) =
∑

z∈C2

P (x, z)P (z, y). (2.17)

The operator can also be viewed as acting in the whole l2(Zd), if we continue by zero its
matrix for x, y outside C1, i.e.,

ΠC1,C2(x, y) =
∑

z∈C2

P (x, z)P (z, y)1x∈C11y∈C1 , (2.18)

or, alternatively, as the restriction ΠC
′
1,C2

|C1of the operator ΠC
′
1,C2

corresponding to any C ′

1 ⊂
Zd.

We will confine ourselves to the case where Λ in (2.6) – (2.10)) is

Λ = [−M,M ]d ⊂ Z
d, |Λ| = Ld, L = 2M + 1. (2.19)

We will also use the change of variables for the function h of (2.7):

h(x)0 = h(x(1 − x)), x ∈ [0, 1]. (2.20)

It is easy to check that h0 is monotone increasing, convex and h0(0) = 0 (see Lemma 3.1).
It follows then from (2.10), (2.7), (2.17) with C1 = Λ and C2 = Zd \ Λ that

PΛ(1Λ − PΛ) = ΠΛ,Zd\Λ (2.21)

and
SΛ = Trh0(ΠΛ,Zd\Λ). (2.22)

We will prove now a simple general result, manifesting already that the large block behavior
of the entanglement entropy is different from that of the thermodynamic entropy, which is
extensive, i.e., asymptotically proportional to the volume Ld of the box Λ. The theorem also
shows the advantage to use formula (2.22) rather than (2.10), since (2.22) takes explicitly
into account the fact that the main contribution into SΛ is from a neighborhood of the surface
of Λ. This is because the matrix of the operator ΠC1,C2 of (2.17) is essentially concentrated
on the boundary between C1 and C2, the fact, which is systematically used below, especially
in view of the exponential bound (2.16). Here we will use only the general and quite weak
decay of P (x, y) given by its property

∑

y∈Zd

|P (x, y)|2 = P (x, x) ≤ 1. (2.23)
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Theorem 2.1 Let P be an ergodic orthogonal projection (2.14) – (2.15) and SΛ be defined
by (2.10), (2.20) and (2.22). Then

lim
L→∞

L−d
E{SΛ} = 0. (2.24)

Proof. We have according to (2.22):

L−d
E{SΛ} = L−d

E{Tr h0(ΠΛ,Zd\Λ)}
= L−d

∑

x∈Λ

E{(h0(ΠΛ,Zd\Λ))(x, x)},

where {(h0(ΠΛ,Z\Λ)(x, y)}x,y∈Λ is the matrix of h0(ΠΛ,Z\Λ). We will use twice the convexity
of h0 of (2.20), see Lemma 3.1. First, we use (3.22) for f = h0 yielding

(h0(ΠΛ,Z\Λ))(x, x) ≤ h0(ΠΛ,Z\Λ(x, x)).

Then, treating the operation L−d
∑

x∈Λ E{...} as a generalized "averaging" and using the
Jensen inequality, we obtain

L−d
E{SΛ} ≤ h0

(
L−d

∑

x∈Λ

E{ΠΛ,Z\Λ(x, x)}
)
.

Now, using (2.17) and denoting

Q(x− y) := E{|P (x, y)|2}, (2.25)

we get
L−d

E{SΛ} ≤ h0(QΛ), (2.26)

where
QΛ = L−d

∑

x∈Λ

∑

y∈Zd\Λ

Q(x− y).

Let us show that QΛ = o(1), L→ ∞, since then (2.26) implies (2.24) in view of the equality
h0(0) = 0.

We write
QΛ = L−d

∑

x∈Λ

∑

y∈Zd

Q(x− y)− L−d
∑

x∈Λ

∑

y∈Λ

Q(x− y).

Since P is an orthogonal projection, it follows from (2.23) and (2.25) that {Q(x}x∈Z ∈ l1(Z).
Hence, the first term on the right is

Q̂ :=
∑

x∈Zd

Q(x) <∞.

On the other hand, the second term on the right can be written as

2M∑

x=(x1,...,xd)=−2M

Q(x)
d∏

j=1

(1− |xj |/L) ,
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thus its limit as L→ ∞ is also Q̂.

We are ready now to present our main results and their proofs modulo certain auxiliary
facts given in the next section and a short discussion of a link with the Szegö theorem just
now.

Recall that the Szegö theorem treats the large box asymptotic behavior of Tr ϕ(AΛ),
where A = {A(x− y)}x,y∈Zd is a selfadjoint convolution operator in l2(Zd), AΛ := A|Λ is its
restriction to the box Λ of (2.19) and ϕ : R → C is a function. According to the theorem
[6, 28]

Trϕ(AΛ) = Ld

∫

Td

ϕ(a(p))dp+ Ld−1Td + o(Ld−1), L→ ∞, (2.27)

where a is the Fourier transform of {A(x)}x∈Zd and Td is a functional of a and ϕ. Functions
a and ϕ are known as the symbol of A and the test function. It is important that (2.27)
is valid only if a and ϕ are smooth enough. If, however, a is piece-wise constant, then the
second (subleading) term of the formula is T̃d L

d−1 logL. These asymptotic formulas play an
important role in the description of the entanglement entropy of translation invariant free
fermions [13, 15, 20, 29].

Let us confine ourselves to the case d = 1 and view the operator of multiplication by p
in L2(T) as the symbol of the selfadjoint operator p̂ in l2(Z). Then we can write the r.h.s.
of (2.27) as Trϕ((a(p̂))Λ). This make natural to consider a more general setting, where one
chooses a sufficiently standard convolution operator B and studies asymptotic behavior of
Tr ϕ((a(B))Λ) depending on the choice of the pair (a, ϕ).

Note now that convolution operators can be viewed as a particular case of ergodic oper-
ators defined by (2.13). Indeed, it suffices to take in (2.13) the trivial case of the one-point
space of events Ω = {0}. Thus, we can extend the above general setting for the Szegö theo-
rem to ergodic operators just choosing as B a certain "standard" ergodic operator, say the
discrete Schrödinger operator H with ergodic potential (2.3) and studying the asymptotic
behavior of the random variable Trϕ((a(H))Λ), e.g., its expectation, its behavior for typical
realizations of potential, i.e., with probability 1, etc. A particular case of this setting, where
a and ϕ are smooth enough, was considered in [18]. It was found, that in this case and for
i.i.d. random potential the subleading term in the analog of (2.27) is not T1 but has the
order L1/2 and is a Gaussian random variable. Likewise, the case, where ϕ = h of (2.7) and
a = χ(−∞,µ], the indicator of the interval (−∞, µ] (see (2.8)) corresponds to the entanglement
entropy (2.22). We prove below that in this apparently non-smooth case the subleading term
does not depend on L and is a random variable, i.e., again the corresponding result differs
from that for convolution operators.

2.2 One-dimensional Case

2.2.1 Limit of Expectation

The proofs of (1.4) for the cases d = 1 and d ≥ 2 are similar. We will consider, however,
the case d = 1 separately, since it is simpler and makes more transparent several important
steps of the proof strategy for d ≥ 2.

Theorem 2.2 Let P be a non-trivial (P 6= 0, 1Zd) ergodic projection of (2.14) – (2.15)
satisfying (2.16), h be defined by (2.7) and Λ = [−M,M ], |Λ| =: L = 2M + 1 (cf. (2.19)).
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Then there exists
lim
L→∞

E{SΛ} = E{Trh(PZ−)}+ E{Tr h(PZ+)}, (2.28)

where
Z± = [0,±∞) (2.29)

and PZ± are the restrictions of P to Z±.

Remark 2.3 Assume that in addition to the ergodic group {Tx}x∈Z of (2.11) – (2.14)
the probability space is endowed with the measure preserving transformation R such that
V (x,Rω) = V (−x, ω), hence

P (x, y, Rω) = P (−x,−y, ω). (2.30)

This is, for instance, the case for any random i.i.d. potential as well as for the quasiperiodic
potential V (x, ω) = v(αx + ω), where v : T1 → R1 is an even 1-periodic function, α is an
irrational number and ω is uniformly distributed over the one-dimensional torus T1. Under
assumption (2.30) we can write (2.28) in a simpler form

lim
L→∞

E{SΛ} = 2E{Trh(PZ−)} = 2
∑

x∈Z−

E{(h(PZ−))(x, x)}, (2.31)

where {(h(PZ−))(x, y)}x,y∈Z− is the matrix of h(PZ−).

Proof. Given M ∈ N, we can write in the one dimensional case, i.e., for Λ = [−M,M ]:

Z \ Λ = Λ+M ∪ Λ−M , Λ+M = (+M,∞), Λ−M = (−∞,−M)

and in view of (2.21) and Lemma 3.4 (iv)

ΠΛ,Z\Λ = ΠΛ,Λ+M
+ΠΛ,Λ−M

, (2.32)

hence
Tr h0(ΠΛ,Z\Λ) = Tr h0(ΠΛ,Λ+M

+ΠΛ,Λ−M
). (2.33)

This, (2.22) and (2.28) show that we have to prove the limiting relation

lim
L→∞

E{Trh0(ΠΛ,Z\Λ)} = E{Trh0(ΠZ−,N+)}+ E{Trh0(ΠZ+,N−)}, (2.34)

where
N± = (0,±∞). (2.35)

To this end we will use Lemma 3.2 (i) for d = 1, p = 2, A1 = ΠΛ,Λ+M
and A2 = ΠΛ,Λ−M

,
hence A1+A2 = ΠΛ,Z\Λ (see (2.32). Let us check the first condition of (3.1), i.e., the uniform
in L bound

E{(TrΠ1/4
Λ,Z\Λ)

2} <∞.

It follows from Lemma 3.5 (i) that

E{(TrΠ1/4
Λ,Z\Λ)

2} ≤ C
(∑

x∈Λ

∑

z∈Z\Λ

e−γ|z−x|/4
)2

(2.36)

≤
(∑

x∈Λ

∑

z∈Λ+M

e−γ(z−x)/4 +
∑

x∈Λ

∑

z∈Λ−M

e−γ(z−x)/4
)2

≤ C1 <∞.
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Hence we have verified the first inequality in (3.1).
Likewise, it follows from the Hölder inequality for expectations and (2.16) that for any

collection {(xj , yj)}8j=1:

∣∣∣E
{ 8∏

j=1

P (x j , yj)
}∣∣∣ ≤

8∏

j=1

E
1/8{|P (xj, yj)|} ≤ C0

8∏

j=1

e−γ|xj−yj |/8.

This implies the inequality

E{(TrΠΛ,Λ+M
ΠΛ,Λ−M

)2} ≤ C (TrΠΛ,Λ+M
ΠΛ,Λ−M

)2, (2.37)

where ΠC1,C2 is obtained from ΠC1,C2 of (2.17) by replacing P (x, y) by C
1/8
0 e−γ|x−y|/8. Hence,

it suffices to estimate TrΠΛ,Λ+M
ΠΛ,Λ−M

. We have

TrΠΛ,Λ+M
ΠΛ,Λ−M

= C
1/2
0

∑

x,y∈Λ

∑

z±∈Λ±M

e−γ(|x−z+|+|y−z+|+|x−z−|+|y−z−|)/8.

Taking into account that Λ = [−M,M ] and Λ±M = (±M,±∞), hence z− < x < z+, the
exponent on the right of the above expression is −γ(z+ − z−)/4, hence the expression is
bounded by CL2e−γL/4 and

E{(TrΠΛ,Λ+M
ΠΛ,Λ−M

)2} ≤ CL4e−γL/2. (2.38)

Thus, the second inequality in (3.1) is also verified and then Lemma 3.2 (i) yields

E{SΛ} = E{Tr h0(ΠΛ,Λ+M
+ΠΛ,Λ−M

)} (2.39)

= E{Tr h0(ΠΛ,Λ+M
)}+ E{Trh0(ΠΛ,Λ−M

)}+O(e−cL), c > 0.

We are left to prove that (see (2.34))

lim
L→∞

E{Trh0(ΠΛ,Λ±M
)} = E{Trh0(ΠZ∓,N∓)}. (2.40)

Since the proofs of both relations are identical, we consider the case of ΠZ−,N+ and ΠΛ,Λ+M
.

It follows from (2.14) – (2.15) that

E{Trh0(ΠΛ,Λ+M
)} = E{Trh0(Π(−L,0],N+)},

hence we have to prove that

lim
L→∞

E{Trh0(Π(−L,0],N+
)} = E{Trh0(ΠZ−,N+)}. (2.41)

We will use Lemma 3.2 (ii) with A1 = ΠZ−,N+ and A2 = Π[−2L,0],N+ and we will view
Π[−2L,0],N+

as the restriction ΠZ−,N+ |(−L,0] to have the both operators A1 and A2 acting in the
same space l2(Z−) (see Lemma 3.4 (iii)). To check the condition (3.3), we will use Lemma
3.5 (iii) with C′

1 = (−L, 0], C′′
1 = Z− and C2 = N+. Thus, we have from (3.28)

E
{
Tr |ΠZ−,N+ −Π(−L,0],N+

|
}
≤ C

∑

x∈(−L,0]

∑

y∈(−∞,−L]

∑

z∈N+

e−γ(2z−x−y)/2 (2.42)

+ C
∑

x,y∈(−∞,−L]

∑

z∈N+

e−γ(2z−x−y)/2 = O(e−γL).

This implies (2.41), hence (2.40) and, in view of (2.10) and (2.22), the theorem.
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2.2.2 Asymptotics with probability 1

We will now take into account that all the bounds for expectations above are exponential
in L (see e.g. (2.39) and (2.41)) and find the asymptotic form of the entanglement entropy
valid with probability 1.

Theorem 2.4 Let SΛ, Λ = [−M,M ] ⊂ Z be the entanglement entropy (2.22) of the one
dimensional system of disordered fermions having the discrete Schrödinger operator with
ergodic potential as the one body operator. Then we have with probability 1

SΛ = S+(T+Mω) + S−(T−Mω) + o(1), L := (2M + 1) → ∞, (2.43)

where
S± = Tr h(PZ∓), (2.44)

ΠZ±,N∓ are defined in (2.17) and (2.29) and T±M are the shift transformations, see (2.11) –
(2.14).

The random variables (2.44) are finite and not identically zero with probability 1.

Proof. It follows from the exponential bound (2.39) and the Borel-Cantelli lemma that
we have with probability 1

SΛ = Tr h0(ΠΛ,Λ+M
) + Tr h0(ΠΛ,Λ−M

) + o(1), L := 2M + 1 → ∞. (2.45)

Next, it follows from the exponential bound (2.41) and analogous bound for the pair

Tr h0(Π[−M,M ],(−∞,−M)) := Tr h0(ΠΛ,Λ−M
)

and
Tr h0(Π[−M,∞),(−∞,−M)) := Tr h0(PZ+,N−)

that we have with probability 1

Trh0(ΠΛ,Λ+M
) = Tr h0(Π(−∞,M),(M,∞)) + o(1), L := 2M + 1 → ∞ (2.46)

and
Trh0(ΠΛ,Λ−M

) = Tr h0(Π[−M,∞),(−∞,−M)) + o(1), L := 2M + 1 → ∞. (2.47)

Now, combining (2.45), (2.46) and (2.47), we obtain with probability 1

SΛ = Tr h0(Π(−∞,M),(M,∞)) + Tr h0(Π[−M,∞),(−∞,−M)) + o(1), L := 2M + 1 → ∞. (2.48)

Denoting
S±(ω) = Tr h0(ΠZ∓,N±),

we find that the first term on the right of (2.48) is S+(T+Mω) and the second term on the
right of (2.48) is S−(T+Mω). This and the equalities

Tr h0(ΠZ∓,N±) = Tr h(PZ∓),

following from (2.20) and (2.17), cf. (2.10) and (2.22), prove (2.43).
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To prove that (2.44) are finite and not identically zero with probability 1 it suffices to
prove that E{S±} is finite and positive:

0 < E{S±} <∞. (2.49)

We have by (2.44), (2.20) – (2.22) and Lemma 3.1 (iii):

4E{TrΠZ∓,N±} ≤ E{Tr h0(ΠZ∓,N±)} = E{Tr h(PZ∓)} ≤ 2E{TrΠ1/2
Z∓,N±

}. (2.50)

By using the Peierls inequality (3.23), (2.17) and (2.16) in the r.h.s., we obtain

2E{TrΠ1/2
Z∓,N±

} ≤ 2
∑

x∈Z∓

( ∑

y∈N±

E{|P (x, y)|2}
)1/2

≤ C <∞.

This proves a finite upper bound for r.h.s. (2.50), hence, for the r.h.s. of (2.49).
Furthermore, we have for the l.h.s. of (2.50):

4E{TrΠZ∓,N±} = 4
∑

x∈Z∓

∑

y∈N±

E{|P (x, y)|2} = 4

∞∑

l=1

lQ(l),

with Q defined in (2.25). Thus, if the l.h.s. of (2.50) is zero, then P (x, y) = 0, x 6= y with
probability 1 by (2.25), i.e., the projection P is diagonal, P (x, y) = P (x, x)δxy. Since P
commutes with the Schrödinger operator (2.3), we have P (x, x) = P (x+ 1, x+ 1), ∀x ∈ Z,
i.e., P = p1Z, p ∈ {0, 1} with probability 1. This contradicts the hypothesis of the theorem.

Remark 2.5 The lower bound for the entanglement entropy (see (2.50)), which follows from
Lemma 3.1, can also be used in the translation invariant case, where the operator A of (2.1)
is a convolution operator in l2(Zd), e.g. the Schrödiger operator with a constant potential:

A = {A(x− y)}x,y∈Zd,
∑

x∈Zd

|A(x)| <∞. (2.51)

In this case

P (x, y) =
sin κ (x− y)

π(x− y)
, (2.52)

where κ ∈ [0, π) depends on the spectral interval in question and the Fourier transform
(symbol) of {A(x)}x∈Zd . In this case we have from (2.10) and Lemma 3.1 for d = 1:

SΛ ≥ 4
∑

|x|≤M,|y|>M

sin2 κ(x− y)

π2(x− y)2
(2.53)

= 8π2

∞∑

l=1

min{L, l} sin2 κl/l2 = 4π−2 logL+O(1), L→ ∞.

Analogous argument yields for d ≥ 1

SΛ ≥ CdL
d−1 logL+O(LL−1), L→ ∞, (2.54)

where Cd is universal, i.e., does not depend on the operator A.
The bounds (2.53) – (2.54) provide a simple manifestation of the logarithmic corrections

to the area law in the translation invariant macroscopic systems, see [8, 11, 13, 15, 20, 30].
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2.3 Multidimensional case

We will deal now with the entanglement entropy SΛ of (2.10) for the d ≥ 2 dimensional cube
Λ of (2.19). We will prove first that the limit of expectation of Ld−1SΛ exists and give a
formula for the limit generalizing formula (2.28) of the one dimensional case. We then prove
a power law decaying bound for the variance of Ld−1SΛThus, for d ≥ 2 the entanglement
entropy per unit surface is selfaveraging, i.e., converges in probability to the nonrandom
limit equals to the limit of its expectation.

2.3.1 Limit of Expectation

We will use the same strategy as in the one-dimensional case, i.e., the replacement of the
operator ΠΛ,Zd\Λ in (2.22) by an appropriate "limiting" operator.

To present our results in a compact form we will assume certain symmetry properties of
the ergodic potential (general case is described in a remark after the theorem).

Assume, just as in the one-dimensional case (see Remark 2.3), that our probability space
possesses the measure preserving transformation R (reflection) such that with probability 1
(cf. (2.30))

V (x,Rω) = V (−x, ω), x ∈ Z
d. (2.55)

Assume also that there exists a collection of measure preserving transformations {Σσ} (per-
mutations) of the probability space that form a representation of the d-dimensional symmet-
ric group Sd and such that with probability 1

V (x,Σω) = V (σx, ω), x ∈ Z
d, σ ∈ Sd. (2.56)

Note that an important case of an i.i.d. potential has the both properties. Since the d-
dimensional discrete Laplacian commutes with the reflection x → −x and permutations of
the components x = (x1, ..., xd) → σx = (xσ(1), ..., xσ(d)) of vectors of Zd, the Schrödinger
operator H , hence its spectral projection (see Theorem 2.7 of [23]), also possesses these
properties:

P (x, y, Rω) = P (−x,−y, ω), x, y ∈ Z
d (2.57)

and
P (x, y,Σσω) = P (σx, σy, ω), x, y ∈ Z

d (2.58)

Theorem 2.6 Let P be an ergodic orthogonal projection (2.14) – (2.15) satisfying condition
(2.16) as well as (2.57) and (2.58), h be defined by (2.7) and Λ = [−M,M ]d, L = 2M + 1.
Then there exists

lim
L→∞

L−(d−1)
E{SΛ} = 2d

∑

x1≤0

E{(h(PZd
−
))(x1, 0; x1, 0)}, (2.59)

where {(
h(PZd

−
)
)
(x1, ξ; y1, η)

}
x1,y1∈Z−;ξ,η∈Zd−1

is the matrix of the operator h(PZd
−
) and we write Z

d
− = Z− × Z

d−1, Z− = {0,−1, ...,−∞},
i.e., the explicit splitting of x ∈ Zd into the "longitudinal" x1 ∈ Z− and the "transversal"
ξ ∈ Zd−1 components.
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Remark 2.7 We will give here the general form of Theorem 2.6 where we do not assume
the symmetry properties (2.55) and (2.56) of ergodic projection. Denote

Z
d
−s(j) = {x = (x1, ..., xd) ∈ Z

d : sxj ≤ 0}, s = ±.

Then have instead of (2.59)

lim
L→∞

L−(d−1)
E{SΛ} =

d∑

j=1

∑

s=±

∑

sxj≤0

(2.60)

× E{(h(PZd
−s(j)

))(0, ..., 0, xj, 0, ..., 0; 0, ..., 0, xj, 0, ..., 0},

where {(
h(PZd

−s
)
)
(x; y)

}
x,y∈Zd

−s(j)

is the matrix of the operator h(PZd
−s
).

Proof. Denote by Λ
(0)
1 , . . . ,Λ

(0)
2d the faces of Λ, by Λ1, . . . ,Λ2d the semi-infinite cylindric

domains adjacent to each of Λ
(0)
1 , . . . ,Λ

(0)
2d from the exterior of Λ and by

Λ̃ = Z
d \
(
∪2d
j=0 Λj

)
. (2.61)

This and additivity of the operator ΠC1,C2 of (2.17) with respect to C2 allow us to write (cf.
(2.32))

ΠΛ,Zd\Λ =

2d∑

j=1

ΠΛ,Λj
+ΠΛ,Λ̃. (2.62)

Let us prove first that

lim
L→∞

(
L−(d−1)

E{SΛ} −
2d∑

j=1

lim
L→∞

E{L−(d−1)Trh0(ΠΛ,Λj
)}
)
= 0,

i.e., that in view of (2.22) and (2.62)

L−(d−1)
E{SΛ} = E

{
L−(d−1)Tr h0

( 2d∑

j=1

ΠΛ,Λj
+ΠΛ,Λ̃

)}
(2.63)

= E

{
L−(d−1)Tr h0

( 2d∑

j=1

ΠΛ,Λj

)}
+ o(1)

=

2d∑

j=1

E

{
L−(d−1)Tr h0

(
ΠΛ,Λj

)}
+ o(1), L→ ∞.

We will prove this in two steps both based on Lemmas 3.2 and 3.5. The first step is the
justification of the omission of ΠΛ,Λ̃ in the second line of (2.63) and the second is the proof
of the approximate additivity of h0 given in the third line of (2.63).
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For the first step we will use Lemma 3.2 (ii) with A1 = ΠΛ,Zd\Λ and A2 =
∑2d

j=1ΠΛ,Λj
,

hence A1 − A2 = ΠΛ,Λ̃ and (3.29) . According to the lemma we have to check conditions
(3.3). The first of conditions in our case is the validity of the uniform in L bounds

E{(L−(d−1)TrΠ
1/4

Λ,Zd\Λ
)2} <∞, E{(L−(d−1)TrΠ

1/4

Λ,∪2d
j=1Λj

)2} <∞ (2.64)

To prove the first bound above we will use Lemma 3.5 (i) according to which the bound is
valid if

L−(d−1)
∑

x∈Λ,z∈Zd\Λ

e−γ|x−z|/4 <∞.

The sum in z ∈ Zd \ Λ is not less than the sum over the all half-spaces, where one of
coordinates zj of z = (z1, ..., zd) is either zj > M or zj < −M . For instance, the term with
the sum over the half-space {z = (z1, ζ) ∈ Zd : z1 > M, ζ ∈ Zd−1} is

L−(d−1)
∑

|x1|≤M,z1>M

∑

ξ∈[−M,M ]d−1,ζ∈Zd−1

e−γ(z1−x1)/4−γ|ξ−ζ|/4

≤ CL−(d−1)
∑

ξ∈[−M,M ]d−1,ζ∈Zd−1

e−γ|ξ−ζ|/4 ≤ C1 <∞

since the double sum over x1 and z1 is uniformly bounded in L → ∞, the sum of the
exponential e−γ|ξ−ζ|/4 over ζ ∈ Z

d is independent of ξ and the sum over ξ is L(d−1). The
proof of the second bound in (2.64) is analogous. Thus, the first of conditions of (3.3) holds.

Let us consider the second condition of (3.3), i.e., determine the order of magnitude of ε
in L→ ∞ from the asymptotic relation

E

{
L−(d−1)TrΠΛ,Λ̃

}
= O(ε), (2.65)

where we took into account that ΠΛ,Λ̃ is positive definite, hence |ΠΛ,Λ̃| = ΠΛ,Λ̃. We will
use Lemma 3.5 (ii) with A = ΠΛ,Λ̃, according to which it suffices to determine the order of
magnitude of ε in L guarantying the bound

L−(d−1)
∑

x∈Λ

∑

z∈Λ̃

e−γ|x−z| ≤ CL−1 := ε. (2.66)

The bound follows from the first inequality of (3.29), if we split Λ̃ in parallelepipeds and
apply twice the first inequality of (3.29) to each of the corresponding sums, the first in the
initial dimension d and the second in the dimension d− 1. Then Lemma 3.2 (ii) implies

E

{(
L−(d−1)Tr (h0(ΠΛ,∪2d

j=0Λj∪Λ̃
)− h0(ΠΛ,∪2d

j=0Λj
))
)2}

= O(L1/5 log2 L), (2.67)

hence the second line of (2.63).
Let us prove the passage from the second line to the third line, i.e., the approximate

additivity of h0. Here we will use Lemma 3.2 (i) with Aj = ΠΛ,Λj
and p = 2d, i.e., we are to

check conditions (3.1) for these operators.
Since in our case (see (2.17) and (2.62))

q∑

j=1

ΠΛ,Λj
= ΠΛ,∪q

j=1Λj
, 1 ≤ q ≤ 2d,
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the verification of the first of conditions (3.1) is quite similar to that of (2.36) and (2.64).
Thus, consider the second of conditions (3.1), i.e., the determination of ε from the bounds
(cf. (2.38) )

E{(L−(d−1)TrΠΛ,Λj
ΠΛ,Λk

)2} ≤ ε2, 1 ≤ j 6= k ≤ 2d. (2.68)

The corresponding argument is quite similar to that proving (2.38) for d = 1. The only
difference is that for d = 1 the distance between the "neighboring" sets Λ+M and Λ−M is L
(hence the exponential bound (2.38)), while for d ≥ 2 every Λj has nearest neighbors with a
non-empty boundary with Λj. However, the codimension of the boundary is at least 2 (cf.
the proof of (2.67)) and we obtain that ε = O(L−1), cf. the proof of (2.65), hence o(1) in
the third line of (2.63) is O(L−1/5 log2 L), since according to Lemma 3.2 (i)

E

{(
L−(d−1)Tr

(
h0

( 2d∑

j=1

ΠΛ,Λ1

)
−

2d∑

j=1

h0(ΠΛ,Λj
)
))2}

= O(L−1/5 log2 L), (2.69)

hence we get the third line of (2.63)) or, in the case, where the ergodic potential possesses
the symmetries (2.55) and (2.56), that

L−(d−1)
E{SΛ} = 2d E{L−(d−1)Tr h0(ΠΛ,Λ1)}+O(L−1/11), L→ ∞. (2.70)

Moreover, even in the case, where the above symmetries are absent, it suffices to prove the
existence of the limit of the expectation on the right of (2.70), since the proof for any j > 1 is
identical to that for j = 1 modulo the change of notation. Thus, we will prove the existence
of the limit

lim
L→∞

L−(d−1)
E{Tr h0(ΠΛ,Λ1)} (2.71)

assuming for convenience that

Λ1 = [M + 1,∞)× Λ(0) ⊂ Z
d, Λ(0) = [−M,M ]d−1 ∈ Z

d−1. (2.72)

It is also convenient to shift Λ and Λ1 to the left by the vector (−L, 0) ∈ Zd in order to deal
with the cube (cf. (2.19)) and the semi-infinite parallelepiped

Λ∗ = [−2m, 0]× Λ(0), Λ∗
1 = N+ × Λ(0), (2.73)

where N+ is defined in (2.35), since this shift does not change (2.71), i.e.,

L−(d−1)
E{SΛ} = 2d E{L−(d−1)Tr h0(ΠΛ∗,Λ∗

1
)}+O(L−1/11), L→ ∞, (2.74)

or, if {(h0(ΠΛ∗,Λ∗
1
)(x1, ξ; y1, η)}x1,y1∈(−L.0],ξ,η∈Λ

(0)
1

is the matrix of h0(ΠΛ∗,Λ∗
1
),

L−(d−1)
E{SΛ} (2.75)

= 2dL−(d−1)
∑

x1∈(−L,0]

∑

ξ∈Λ(0)

E{h0(ΠΛ∗,Λ∗
1
)(x1, ξ; y1, η)}+O(L−1/11), L→ ∞.

Let us show first that it suffices to justify the replacement of h0(ΠΛ∗,Λ∗
1
) in the first term on

the right of (2.75) by the restriction h0(ΠZd
−,Nd

+
)
∣∣∣
Λ∗

of h0(ΠZd
−,Nd

+
) to Λ∗ where

N
d
± = N± × N

d−1. (2.76)
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Indeed, let
{(h0(ΠZd

−,Nd
+
)(x1, ξ; y1, η)}x1,y1∈ Z−, ξ,η∈Zd−1, (2.77)

be the matrix of h0(ΠZd
−,Nd

+
). Then the first term on the right of (2.74) becomes after the

replacement

L−(d−1)
E{Trh0(ΠΛ∗,Λ∗

1
)} (2.78)

= L−(d−1)
∑

x1∈(−L,0]

∑

ξ∈Λ(0)

E{(h0(ΠZd
−,Nd

+
))(x1, ξ; x1, ξ)}+ o(1), L→ ∞.

Let T(0,α) be the measure preserving shift transformation (see, e.g. (2.11) – (2.14)) by a
vector a = (0, α) ∈ Z

d, α ∈ Z
d−1, so that we have with probability 1

ΠZd
−,Nd

+
(x1, ξ; y1, η;T(0,α)ω) = ΠZd

−,Nd
+
(x1, ξ + α; y1, η + α;ω), (2.79)

i.e., the equality is valid for every (x1, y1) ∈ Z+ × Z+ and all ω ∈ Ωx1,y1, P(Ωx1,y1) = 1.
Since the set of values of (x1, y1) ∈ Z+ × Z+ is countable, the equality is valid for all
(x1, y1) ∈ Z+ × Z+ on the set of event Ω0 = ∩(x1,y1)∈Z+× Z+Ωx1,y1, P(Ω0) = 1, i.e., the
matrix

{(ΠZd
−,Nd

+
(x1, ξ; y1, η)}x1,y1Z−,ξ,η∈Zd−1

determines a random operator in l2(Zd
+), which is ergodic with respect to the "transversal"

coordinates (ξ, η) ∈ Zd−1 × Zd−1. It follows then from an extended version of Theorem
2.7 of [23] that the matrix (2.77) determines the operator h0(ΠZd

−,Nd
+
), which has the same

property. In particular, since Ta is a measure preserving transformation of the event space,
E{(h0(ΠZd

−,Nd
+
))(x1, ξ; x1, ξ)} does not depend on ξ ∈ Zd−1 in view of (2.79), hence the first

term on the right of (2.78) is
∑

x1∈(−L,0]

E{(h0(ΠZd
−,Nd

+
))(x1, 0; x1, 0)}. (2.80)

We are left then to find the limit of the above expression as L→ ∞. Since the terms of the
sum are non-negative, it suffices to show that the sum is bounded uniformly in L → ∞.We
will use the bounds 0 ≤ h0(x) ≤ 2x1/2 (see Lemma 3.1 (iii)) and the Peierls inequality for
f(x) = 2x1/2 (see Lemma 3.3 (i)) to obtain

(h0(ΠZd
−,Nd

+
))(x1, 0; x1, 0) ≤ 2

(
Π

1/2

Zd
−,Nd

+

)
(x1, 0; x1, 0)

≤ 2
(
ΠZd

−,Nd
+
(x1, 0; x1, 0)

)1/2

and then the Schwarz inequality for expectations, (2.17), the bound,

|P (x, y)| ≤ 1 (2.81)

valid for any projection in l2(C), and (2.16) yield

E{(h0(ΠZd
−,Nd

+
))(x1, 0; x1, 0)} ≤ 2E1/2{ΠZd

−,Nd
+
(x1, 0; x1, 0)}

= 2E1/2
{ ∑

z∈Nd
+

|P (x1, 0; z)|2
}
≤ 2
(
C0

∑

z1≤1,ζ∈Zd−1

e−γ(z1−x1)−γ|ζ|
)1/2

≤ Ceγx1/2 ,
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guarantying evidently the uniform in L = 2M + 1 → ∞ boundedness of (2.80).
In view of the above it suffices to justify (2.78), i.e., the replacement of h0(ΠΛ∗,Λ∗

1
) in

(2.74) by the restriction πΛ∗h0(ΠZd
−,Nd

+
)πΛ∗ of h0(ΠZd

−,Nd
+
) to Λ∗ of (2.73) and we write here

and below πC for the orthogonal projection onto the subspace l2(C) ⊂ l2(Zd
−).

This will be carried out in two steps: (i) ΠΛ∗,Λ∗
1
→ ΠΛ∗,Nd

+
and (ii) ΠΛ∗,Nd

+
→ ΠZd

−,Nd
+
.

(i) The replacement
ΠΛ∗,Λ∗

1
→ ΠΛ∗,Nd

+
.

We will use Lemma 3.2 (ii) with A1 = ΠΛ∗,Nd
+

and A2 = ΠΛ∗,Λ∗
1
. To check the first of

conditions (3.3), we note first that (Tr (A
1/4
1 + A

1/4
2 ))2 ≤ 2(Tr A

1/4
1 )2 + 2(Tr (A

1/4
2 )2, hence

we have to prove that uniformly in L→ ∞

E{(L−(d−1)Tr (ΠΛ∗,Λ∗
1
)1/4)2} <∞, E{(L−(d−1)Tr (ΠΛ∗,Nd

+
)1/4)2} <∞.

The both bounds follow from Lemma 3.5 (ii) (cf. (2.36) and (2.64)). Thus, let us check the
second bound in (3.3). Since Λ∗

1 ⊂ Nd
+, have from Lemma 3.4 (v)

ΠΛ∗,Nd
+
−ΠΛ∗,Λ∗

1
= ΠΛ∗,Nd

+\Λ∗
1
≥ 0

and in view of Lemma 3.2 (ii) we have to determine the order of magnitude of ε in L → ∞
from the expression

L−(d−1)
∑

x∈Λ∗

E{ TrΠΛ∗,Nd
+\Λ∗

1
} = O(ε).

We have from Lemma 3.5 (ii) and (3.29) the following bound for the l.h.s. of the expression:

C0L
−(d−1)

∑

x∈Λ∗

∑

z∈Nd
+\Λ∗

1

e−γ|x−z| ≤ CL−1.

Indded, the bound follows from the first inequality of (3.29), if we apply it twice: first in the
dimension d and then in the dimension d− 1. Thus, ε = O(L−1) and Lemma 3.2 (ii) yields
the asymptotic relation

L−(d−1)
E{Trh0(ΠΛ∗,Λ∗

1
)} (2.82)

= L−(d−1)
E{Trh0(ΠΛ∗,Nd

+
)}+O(L−1/11), L → ∞

justifying the first step of replacement ΠΛ∗,Λ∗
1
→ ΠΛ∗,Nd

+
in (2.74).

(ii) The replacement ΠΛ∗,Nd
+
→ ΠZd

−,Nd
+
. We have to prove that

L−(d−1)
E{Tr (πΛ∗h0(ΠΛ∗,N+)πΛ∗ − πΛ∗h0(ΠZd

−,N+
)πΛ∗)} = o(1), L → ∞, (2.83)

where we inserted the projection πΛ∗ in the first term on the left to make the subsequent
argument more transparent. It is convenient to introduce the operator

ΠΛ∗,N+
, Λ∗ = Z

d
− \ Λ∗ (2.84)

acting in l2(Λ∗) and the block operator ΠΛ∗,Nd
+
⊕ΠΛ∗,Nd

+
acting in l2(Zd

−). Since

Tr πΛ∗h0(ΠΛ∗,Nd
+
)πΛ∗ = Tr πΛ∗h0(ΠΛ∗,Nd

+
⊕ ΠΛ∗,Nd

+
)πΛ∗
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we can write (2.83) as

L−(d−1)
E{Tr (πΛ∗h0(ΠΛ∗,N+ ⊕ ΠΛ∗,Nd

+
)πΛ∗ − πΛ∗h0(ΠZd

−,N+
)πΛ∗)} = o(1), L→ ∞, (2.85)

Relations analogous to (2.83) but without the projection πΛ∗ have been proved above by using
Lemma 3.2 (ii), see e.g. (2.41). Here the lemma, as it was formulated, is not applicable since
the involved operators are infinite dimensional. However it is easy to check that the l.h.s.
of (2.85) can be estimated by using an analog of the lemma valid under the conditions (cf.
(3.3))

L−2(d−1)
E{(TrΠ1/4

Λ∗,N+
)2} = L−2(d−1)

E{(TrπΛ∗Π
1/4
Λ∗,N+

⊕ Π
1/4

Λ∗,Nd
+

πΛ∗)2} <∞, (2.86)

L−2(d−1)
E{(Tr πΛ∗Π

1/4

Zd
−,Nd

+
πΛ∗)2} <∞,

and

E

{
L−(d−1)Tr

∣∣R
∣∣
}
= O(ε(L)), R = ΠZd

−,Nd
+
−ΠΛ∗,Nd

+
⊕ ΠΛ∗,Nd

+
), L→ ∞. (2.87)

Conditions (2.86) are analogous to those verified several time above (see (2.36) and (2.64)).
Let us find ε(L) from (2.87). By (3.26) and (3.31) with l = 1, L1 = L

L−(d−1)
E{Tr |R|} ≤ AL−(d−1)

∑

x∈Λ∗

∑

y∈Λ∗

∑

z∈Nd
+

e−γ(|x−z|+|y−z|)/2 ≤ CL−(d−1)Ld−2 = CL−1.

We conclude that ε in (2.85) is ε = O(L−1) and according to Lemma 3.2 (ii)

L−(d−1)
E

{∣∣∣Tr πΛ∗

(
h0(ΠΛ∗,N+)− h0(ΠZd

−,N+
)
)
πΛ∗

∣∣∣
}
= O(L−1/11). (2.88)

Thus, we have justified the replacement of ΠΛ∗,Nd
+

by ΠZd
−,Nd

+
in (2.74). This, (2.10) and

(2.22) prove the theorem.

2.3.2 Variance

The above result on the limit of the entanglement entropy per unit area, hence for the
validity of the area law in the mean, is valid for any ergodic orthogonal projection P of
(2.22) satisfying the exponential bound (2.16) and even a weaker power law bound, guar-
antying the validity of the above proofs. Confining ourselves to the spectral projections
(2.8) of the Schrödinger operator with ergodic potentials, we note that the most studied
class of the operators for which (2.16) holds consists of operators with i.i.d. potential hav-
ing a regular common probability distribution, more generally, potentials with sufficiently
fast decay of correlations [1, 3, 12, 31]. However, the bound (2.16) holds also for the one
dimensional Schrödinger operators with quasiperiodic potential (see, e.g., [17] for the corre-
sponding proofs and references), which have, so to say, a minimum amount of randomness.
Thus, the sufficiently fast decay of correlations of ergodic potential is not necessary for the
sufficiently fast decay of entries of ergodic projections, hence for the validity of Theorems
2.2, 2.4 and (2.6).

On the other hand, the next theorem on the decay, although rather weak, of the variance
of the entanglement entropy per unit area as L→ ∞ is proved for i.i.d. random potentials.
We believe that our bound on the decay of variance is not optimal and that this and more
strong bounds are also valid for random potentials with sufficiently fast decaying correlations.

19



Theorem 2.8 Let P be the spectral projection (2.8) corresponding to a spectral interval I of
the Schrödinger operator (2.3) in l2(Zd) with i.i.d. random potential such that its common
probability distribution F is the Hölder continuous: F ((a−ε, a+ε)) ≤ A|ε|s, a ∈ suppF, ε >
0, s ∈ (0, 1]. Let SΛ be the corresponding entanglement entropy (2.10). Assume that the
exponential bound (2.16) is valid on I. Then there exists L-independent C < ∞ providing
the bound

Var{L−(d−1)SΛ} := E{(L−(d−1)SΛ)
2} − (E{L−(d−1)SΛ})2 ≤ CL−1/11. (2.89)

Proof. The scheme of the proof is as follows. We present the entanglement entropy
as a sum of sufficiently large number of independent random variables modulo error terms
vanishing as L→ ∞ at least as fast as L−1/11 and use then the additivity of the variance of
a collection of independent random variables choosing their number to guaranty the order
O(L−1/11) for the sum. Since, however, the variance is not simple to estimate, we will often
use its rather rough bounds via the expectations of squares of the corresponding random
variables, in particular those obtained above. This is why our final bound (2.89) is O(L−1/11),
cf. (2.70) and (2.82).

Here is the simple inequality, which we will often use below:

Var{ξ1} ≤ 2Var{ξ2}+ 2E{|ξ1 − ξ2|2}. (2.90)

Using this inequality with

ξ1 = L−(d−1)SΛ, ξ2 =

2d∑

j=1

L−(d−1)Tr h0
(
ΠΛ,Λj

)
.

and taking into account (2.67) and (2.69), we get

Var{L−(d−1)SΛ} ≤ 2Var{
2d∑

j=1

L−(d−1)Tr h0(ΠΛ,Λj
)}+O(L−1/5 log2 1/L2). (2.91)

We will use now the general inequality

Var

{ p∑

j=1

ξj

}
≤
(

p∑

j=1

Var
1/2{ξj}

)2

with ξj = L−(d−1)Tr h0(ΠΛ,Λj
) and p = 2d to obtain instead of (2.91)

Var

{ 2d∑

j=1

L−(d−1)Tr h0(ΠΛ,Λj
)
}
≤
(

p∑

j=1

Var
1/2{L−(d−1)Tr h0(ΠΛ,Λj

)}
)2

.

Recall now that we are dealing in this section with a i.i.d. random potential, hence satisfying
(2.57) and (2.58). This, (2.17) and the above inequality allow us to write instead of (2.91)

Var
{
L−(d−1)SΛ

}
≤ 8d2 Var

{
L−(d−1)Tr h0 (ΠΛ,Λ1)

}
+O(L−1/5 logL). (2.92)

We conclude that the problem on the variance of the entanglement entropy reduces to that
on Var{L−1Tr h0 (ΠΛ,Λ1)}.
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To proceed it is convenient, again as in the case of expectations, to pass from the cube
Λ of (2.19) and the semi-infinite parallelepiped Λ1 of (2.72) to the shifted cube Λ∗ and
parallelepiped Λ∗

1 of (2.73). Choose l = [log2 L] and split the cubic face Λ(0) as

Λ(0) = Λ
(0)
1 ∪ Λ

(0)
2 , Λ

(0)
1 ∩ Λ

(0)
2 = ∅,

where

Λ
(0)
1 =

m⋃

k=1

Λ
(0)
1k , m = O

((
L/(L1 + l)

)(d−1)
)
,

with Λ
(0)
1k , k = 1, ..., m being (d− 1)-dimensional cubes of side length L1 to be chosen later,

separated by corridors of width l, and Λ
(0)
2 = Λ

(0)
1 \ Λ

(0)
1,0 is the set of all corridors between

the cubes Λ
(0)
1k ’s. Denote Λ′

1 and Λ′
2 the cylindrical sets adjacent to Λ

(0)
1 and Λ

(0)
2 from the

exterior of Λ∗. Then evidently

ΠΛ∗,Λ∗
1
= ΠΛ∗,Λ′

1
+ΠΛ∗,Λ′

2
.

It follows from (3.27) and (3.29) with A1 = ΠΛ∗,Λ∗
1

and A2 = ΠΛ∗,Λ′
1

that

L−(d−1)
E{Tr |ΠΛ∗,Λ∗

1
− ΠΛ∗,Λ′

1
|} = L−(d−1)

E{TrΠΛ∗,Λ′
2
} (2.93)

≤ C
∑

x∈Λ∗,y∈Λ′
2

e−γ|x−y| ≤ CL−(d−1)|Λ2| ≤ Cl/L1.

Similarly, denote Λ′′
1 and Λ′′

2 the cylindrical sets adjacent to Λ
(0)
1 and Λ

(0)
2 from the interior

of Λ∗ and use Lemma 3.5 (iii) and (3.30) to obtain

L−(d−1)
E{Tr |ΠΛ∗,Λ′

1
− ΠΛ′′

1 ,Λ
′
1
|} ≤ C

∑

z∈Λ′
1

∑

x∈Λ∗,y∈Λ′′
2

e−γ|x−z|−γ|y−z| (2.94)

≤ CL−(d−1)|Λ2| ≤ Cl/L1.

Let Λ′′
1k, k = 1, ..., m be the cylindrical sets adjacent to Λ

(0)
1k from the interior of Λ∗. Since

Λ′′
1 = ∪m

k=1Λ
′′
1k, one can consider the matrix ΠΛ′′

1 ,Λ
′
1

as a block matrix with the diagonal part
D consisting of m blocks Dk = {ΠΛ′′

1 ,Λ
′
1
(x, y)}x,y∈Λ′′

1k
, k = 1, ..., m and the off diagonal part

R = ΠΛ′′
1 ,Λ

′
1
−D. Then Lemma 3.5 (iii) and (3.31) yield

L−(d−1)E{Tr |ΠΛ′′
1 ,Λ

′
1
−D|} ≤ C

∑

z∈Λ′
1

∑

j 6=k

∑

x∈Λ′′
1j ,y∈Λ

′′
1k

e−γ|x−z|−γ|y−z| (2.95)

≤ Cm2e−γl/2 ≤ Ce−γ[l/d]/4.

Combining the bound (2.93) – (2.95) with Lemma 3.2 (ii) and (2.90), we get

Var{L−(d−1)Tr h0 (ΠΛ,Λ1)} = Var{L−(d−1)Tr h0
(
ΠΛ∗,Λ∗

1

)
} (2.96)

≤ 2Var{L−(d−1)Tr h0 (D)}+O((l/L1)
1/5) +O(e−γl/3).

Since D is block diagonal, we can write

Tr h0 (D) =

m∑

k=1

Tr h0 (Dk)
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and if Λ′
1k, k = 1, ..., m are the cylindrical sets adjacent to Λ

(0)
1k from the exterior of Λ∗, then

E{Tr |Dk − ΠΛ′′
1k ,Λ

′
1k
|} = E{Tr |ΠΛ′′

1k,Λ
′
1
−ΠΛ′′

1k ,Λ
′
1k
|} ≤

∑

x∈Λ′′
1k

∑

y∈Λ′
1\Λ

′
1k

e−γ|x−y| ≤ Ce−γl/3.

The last two bounds and (2.96) yield finally

Var{L−(d−1)Tr h0 (ΠΛ,Λ1)} ≤ 2Var

{
L−(d−1)

m∑

k=1

Tr h0
(
ΠΛ′′

1k ,Λ
′
1k

)
}

+O(l/L1). (2.97)

Let Λ̃1k, k = 1, ..., m be the cylinders such that each of them contains the cylinder Λ′
1k ∪Λ′′

1k

and the distance between them is l/3. Let HΛ̃k
be the restriction to Λ̃k of the discrete

Schrödinger operator H of (2.3), i.e., the "Dirichlet" Schrödinger operator in l2(Λ̃k). We
will replace in ΠΛ′′

1k,Λ
′
1k

of above formula the spectral projection P (2.8) of H by the spectral
projection PΛ̃1k

of HΛ̃1k
corresponding the same spectral interval I. It is important that since

the random potential (2.5) in H consists of i.i.d. random variables and the distance between

the different Λ̃1k is l/3, the operators HΛ̃k
, k = 1, .., m and hence their spectral projections

PΛ̃1k
, k = 1, ..., m are independent. Introduce the operators (cf. (2.17))

Π̃k = {Π̃k(x, y)}x,y∈Λ1k
, k = 1, ..., m, Π̃k(x, y) =

∑

z∈Λ′
1k1

PΛ̃1k
(x, z)PΛ̃1k

(z, y), (2.98)

then by Lemmas 3.6 and (3.4)

E

{
L−2(d−1)

(
Trh0

(
ΠΛ′′

1k ,Λ
′
1k

)
− Trh0(Π̃k)

)2} ≤ Ce−cl. (2.99)

Bounds (2.97) – (2.99) combined with (2.90) yield

Var{L−(d−1)Tr h0 (ΠΛ,Λ1)} ≤ 2Var{L−(d−1)

m∑

k=1

Tr h0(Π̃k)}+O(l/L1). (2.100)

We will now take into account that by construction (see (2.98)) {Trh0(Π̃k)}mk=1 are indepen-
dent random variables, thus

Var

{
L−(d−1)

m∑

k=1

Tr h0(Π̃k)
}
= L−(d−1)

m∑

k=1

Var

{
Tr h0(Π̃k)

}
≤ C(L1/L)

d−1. (2.101)

Choosing here L1 = L5/(5d−4) and using (2.92), (2.100) and (2.101), we obtain (2.89).

3 Auxiliary Results

In this section we present technical results, which we use to prove the above theorems. First
is an elementary facts on the function h0 of (2.20).
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Lemma 3.1 Let the functions h : [0, 1] → [0, 1] and h0 : [0, 1/4] → [0, 1] be defined by (2.7).
Then h0:

(i) is nonnegative, monotone and convex:
(ii) admits the representation: h0(x) =

√
xϕ(x), where 0 ≤ ϕ(x ≤ Cx1/4;

(iii) satisfies the bound: 4x ≤ h0(x) ≤ 2
√
x.

We pass now to the main technical result of the paper.

Lemma 3.2 Let Λ be a parallelepiped in Z
d with sides of lengths L1, ..., Ld and parallel to

the coordinate axes and A1, ..., Ap be positive definite random operators acting in the l2(Λ)
such that 0 ≤ A1 + ...+ Aq ≤ 1/4, q = 1, ..., p. We have

(i) if L(d−1) := L2...Ld, uniformly in L→ ∞,

E
{
(L−(d−1)Tr (

p∑

j=1

Aj)
1/4)2

}
≤ C1 <∞, (3.1)

E{(L−(d−1)TrAjAk)
2} ≤ ε2(L), 1 ≤ j < k ≤ p

and h0 is defined by (2.20), then there exists C ∈ (0,∞), depending only on C1 and p and
such that

E

{(
L−(d−1)Tr

(
h0

( p∑

j=1

Aj

)
−

p∑

j=1

h0(Aj)
))2}

≤ C1ε
1/5 log2 1/ε. (3.2)

(ii) If 0 ≤ A1, A2 ≤ 1
4

and uniformly in L→ ∞

E

{
(L−(d−1)Tr (A

1/4
1 + A

1/4
2 ))2

}
≤ C1 <∞, L−(d−1)

E{Tr |A1 − A2|} ≤ ε(L), (3.3)

where |A| := (A2)1/2, then there exists C ∈ (0,∞), depending only on C1 and such that

E
{
(L−(d−1)Tr

(
h0(A1)− h0(A2)

)
)2
}
≤ Cε1/5 log2 1/ε. (3.4)

Proof. (i). Let us prove first the case p = 2 of the assertion. Write

h0(λ) = r(λ)ϕ(λ), (3.5)

where
r(λ) =

√
λ 1[0,1](λ) (3.6)

and
ϕ(λ) = (h0(λ)/

√
λ) 1[0,1/4](λ). (3.7)

Let us prove first that

L−2(d−1)
E
{
Tr 2
(
r(A1 + A2)− r((

√
A1 +

√
A2)

2)
)
ϕ(A1 + A2)

}
= O(ε−1/5). (3.8)

Set η = ε−1/5 and consider the convolution of r

rη = r ∗ Pη, (3.9)

and the Poisson kernel.
Pη = π−1 η

λ2 + η2
.
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Then
sup

λ∈[0,1/2]

|rη(λ)− r(λ)| ≤ Cη1/2

and
‖rη(A1 + A2)− r(A1 + A2)‖ ≤ Cη1/2.

This and the inequality
|TrM1M2| ≤ ||M1||TrM2, (3.10)

valid for a hermitian M1 and a positive definite M2, yield

L−2(d−1)
E

{
(Tr (rη(A1 + A2)− r(A1 + A2))ϕ(A1 + A2))

2
}

(3.11)

≤ CηL−2(d−1)
E
{
(Trϕ(A1 + A2))

2} ≤ C1η.

Here in the last inequality we use the first condition of (3.1) combined with the bounds

ϕ(λ) ≤ C|λ|1/4. (3.12)

Similarly

L−2(d−1)
E

{(
Tr
(∣∣∣rη

((√
A1 +

√
A2

)2)− r
((√

A1 +
√
A2

)2)∣∣∣ϕ(A1 + A2)
))2}

≤ Cη.

We will use now the resolvent identity

G1(z)−G2(z) = G1(z)(M2 −M1)G2(z), (3.13)

where
G1,2(z) = (M1,2 − z)−1 (3.14)

are the resolvents of hermitian matrices M1,2. The identity and the spectral theorem for
hermitian matrices yield

rη(M1)− rη(M2) =

∫ 1/4

0

dλr(λ)ℑ(G1(λ+ iη)−G2(λ+ iη)) (3.15)

=

∫ 1/4

0

dλr(λ)ℑ(G1(λ+ iη)(M2 −M1)G2(λ+ iη)).

Hence, taking M1 = A1 + A2 and M2 =
(√

A1 +
√
A2

)2
, we get

L−(d−1)|Tr (rη(A1 + A2)− rη((
√
A1 +

√
A2)))ϕ(A1 + A2)| (3.16)

≤ Cη−2L−(d−1)Tr 1/2(A1A2) Tr
1/2ϕ2(A1 + A2),

where we used the Schwarz inequality for traces, (3.10) and the bound

‖G(z)‖ ≤ |ℑz|−1 (3.17)

valid for the resolvent of a hermitian matrix.

24



The bound (3.16) combined with the Schwarz inequality for expectation, (3.11) and
η = ε1/5 yields (3.8).

Now let us prove that

L−2(d−1)
E
{
Tr 2
√
A1

(
ϕ(A1 + A2)− ϕ(A1)

)}
≤ Cε1/5 log2 ε−1, (3.18)

L−2(d−1)
E
{
Tr 2
√
A2

(
ϕ(A1 + A2)− ϕ(A2)

)}
≤ Cε1/5 log2 ε−1.

Similarly to (3.9) we introduce the convolution

ϕη = ϕ ∗ Pη, η = ε1/5,

satisfying (see (2.7) and (3.6))

sup
0≤λ≤1

|ϕη(λ)− ϕ(λ)| ≤ Cη1/2 log η−1.

Then, an argument similar to that proving (3.11) yields

L−2(d−1)
E
{
Tr 2
√
A1

(
ϕ(A1 + A2)− ϕη(A1 + A2)

)}
(3.19)

≤ Cη log2 η−1L−2(d−1)
E
{
Tr 2
√
A1} ≤ Cη log2 η−1.

We can also write an analog of (3.15):

L−(d−1)Tr
√
A
(
ϕη(A1 + A2)− ϕη(A1)

)

= L−(d−1)

∫ 1/4

0

dλϕ(λ)Tr
√
A1G1(λ+ iη)A2G2(λ+ iη),

where now
G1(z) = (A1 − z)−1, G2(z) = (A1 + A2 − z)−1.

Since G1(z) and A
1/2
1 commute, we have by (3.10), (3.17) and with η = ε1/5

L−2(d−1)
E
{
(TrA

1/2
1 G1A2G2)

2
}

= L−2(d−1)
E

{∣∣(TrA1/2
1 A

1/2
2 A

1/2
2 G2G1)

2
∣∣
}
≤ Cη−4L−2(d−1)

E
{
TrA1A2TrA2

}

≤ Cη−4L−2(d−1)
E

1/2
{
(TrA1A2)

2
}
E

1/2
{
(TrA2)

2
}
≤ Cη−4ε = Cε1/5.

The above inequality combined with (3.19) implies the first inequality of (3.18). The second
one can be obtained similarly. Combining (3.18) with (3.8) we get (3.2).

We have proved the case p = 2 of assertion (i) of the lemma. The case of an arbitrary
p ≥ 2 follows from the above by induction in p.

(ii). The proof is similar to that of assertion (i). First we prove the inequality

L−2(d−1)
E
{
(Tr
(
r(A1)− r(A2)

)
ϕ(A))2

}
≤ Cε1/5 log2 ε−1, (3.20)

and then
L−2(d−1)

E
{
(Tr r(A2)

(
ϕ(A1)− ϕ(A2)

)
)2
}
≤ Cε1/5 log2 ε−1. (3.21)

The next three lemmas are useful to check the conditions of the previous lemma.
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Lemma 3.3 Let M be an n× n hermitian matrix and f : R → R be a convex function. We
have:

(i) for any vector e ∈ Cn of norm 1

(f(M)e, e) ≤ f((Me, e)); (3.22)

(ii) for any orthonormal basis {ej}nj=1 in Cn

Trf(M) ≤
n∑

j=1

f(Mjj), Mjj = (Mej , ej) (3.23)

Proof. According to the spectral theorem for hermitian matrices

(f(M)e, e) =

∫ ∞

−∞

f(λ)µe(dλ),

where µe is non-negative and of the total mass 1. Hence, by the Jensen inequality and again
by spectral theorem the r.h.s. is bounded from above by

f

(∫ ∞

−∞

λµe(dλ)

)
= f ((Me, e)) .

This proves (3.22). As for (3.23), known as the Peierls inequality (see e.g. [27]), it follows
from (3.22) with e = ej by summation over j.

Lemma 3.4 Let ΠC1,C2 be defined by (2.17) where P is an orthogonal projection in l2(Zd).
We have

(i) ΠC1,C2 is positive definite;
(ii) ||ΠC1,C2|| ≤ 1 and if C1 ⊂ Z

d \ C2, then ||ΠC1,C2 || ≤ 1/4
(iii) if C ′

1 ⊂ C′′
1 , then ΠC′

1,C2
is the restriction of ΠC′′

1 ,C2
to l2(C′

1) : ΠC′
1,C2

= ΠC′′
1 ,C2

∣∣
C′
1

;

(iv) if C2 = ∪p
j=1C2j and C2j ∩ C2k = ∅, j 6= k, then ΠC1,C2 =

∑p
j=1ΠC1,C2j;

(v) if C ′

2 ⊂ C′′
2 , then ΠC1,C′′

2
− ΠC1,C′

2
= ΠC1,C′′

2 \C
′
2
.

Lemma 3.5 Let C be a domain in Zd and A = {A(x, y)}x,y∈C be a random selfadjoint
operator acting in l2(C). We have the bounds:

(i) for α = 1/2, 1/4 and a positive definite A

E
{
(TrAα)2

}
≤
(∑

x∈C

E
α
{
A(x, x)

})2
(3.24)

and for A = ΠC1, C2 of (2.17), (2.81) and (2.16)

E
{
(TrΠα

C1,C2
)2
}
≤ C

( ∑

x∈C1,z∈C2

e−αγ|x−z|
)2
; (3.25)

(ii) for a bounded A and |A| = (A2)1/2
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E
{
Tr |A|

}
≤
∑

x,y∈C

E
{
|A(x, y)|

}
, (3.26)

and
E
{
Tr |ΠC1,C2 |

}
= E

{
TrΠC1,C2

}
≤ C

∑

x∈C1,z∈C2

e−γ|x−z|; (3.27)

(iii) for C′
1 ⊂ C1

E
{
Tr |ΠC1,C2 −ΠC′

1,C2
|
}
≤ 2C0

∑

x∈C1

∑

y∈C1\C′
1

∑

z∈C2

e−γ|x−z|/2−γ|y−z|/2; (3.28)

(iv) for C1 = Z− × Λ1, C2 = N+ × Λ2, and C′
1 = Z− × Λ′

1 with Λ1Λ
′
1,Λ2 ⊂ Zd−1, Λ1 ⊂ Λ′

1

Σ1 :=
∑

x∈C1

∑

y∈C2

e−γ|x−y| ≤ C
∑

x′∈Λ1

∑

y′∈Λ2

e−γ|x−y| ≤ Cmin{|Λ1|, |Λ2|} (3.29)

Σ2 :=
∑

x∈C1

∑

y∈C1\C′
1

∑

z∈C2

e−γ|x−z|/2−γ|y−z|/2 ≤ C|Λ1 \ Λ′
1|, (3.30)

where x = (x1, ξ), (y1, η), x1 ∈ Z−, y1 ∈ N+, ξ ∈ Λ1, η ∈ Λ2 and if Λ1 is a (d − 1)-
dimensional cube with an edge length L1, Λ

′
1 is a (d− 1)-dimensional parallelepiped (may be

infinite), and dist{Λ1,Λ
′
1} > l ≥ 1, then

Σ3 :=
∑

x∈C1

∑

y∈C′
1

∑

z∈C2

e−γ|x−z|/2−γ|y−z|/2 ≤ Ce−γl/4dLd−2
1 . (3.31)

Proof. (i). To prove (3.24), we use the Peierls inequality (3.23) for f(x) = xα, x ∈ [0,∞)
yielding

E
{
(TrAα)2

}
≤
∑

x,y∈C

E
{
(A(x, x))α(A(y, y))α

}
.

We have then by the Hölder inequality for expectations with α = 1/2, 1/4:

E
{
(A(x, x))α(A(y, y))α

}
≤ E

α
{
A(x, x)

}
E

α
{
(A(y, y)

}
,

thus, (3.24).
If A = ΠC1, C2 of (2.17), then

A(x, x) =
∑

z∈C2

|P (x, z)|2

and we have by (2.81) and (2.16)

E
{
A(x, x)

}
≤
∑

z∈C2

E
{
|P (x, y)|

}
≤ C

∑

z∈C2

e−γ|x−z|.

Plugging this into (3.24) and using (3.32), we obtain (3.25).
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(ii). We have by (3.23) with f(x) = x1/2, x ∈ [0,∞):

E
{
Tr |A|

}
≤E

{∑

x∈C

((A2)(x, x))1/2
}

=E

{∑

x∈C

(∑

y∈C

|A(x, y)|2
)1/2}

≤ E
{∑

x∈C

∑

y∈C

|A(x, y)|
}
.

Here we have used a simple inequality

(∑
|aj|
)s

≤
∑

|aj |s, s ∈ [0, 1]. (3.32)

If A = ΠC1,C2 of (2.17), then we have by (2.81) and (2.16):

E
{
TrΠC1,C2

}
=

∑

x∈C1,z∈C2

E
{
|P (x, z)|2

}
≤ C0

∑

x∈C1,z∈C2

e−γ|x−z|.

(iii). If in the previous proof A = ΠC1,C2 − ΠC′
1,C2

, then by Lemma 3.4 (iii) A = ΠC1,C2 −
ΠC1,C2|C′

1
and we have for the r.h.s. of (3.26) by (2.17), the Schwarz inequality, (2.81) and

(2.16)

∑

x,y∈C

E
{
|A(x, y)|

}
≤ 2

∑

x∈C1

∑

y∈C1\C′
1

E
{
|ΠC′′

1 ,C2
(x, y)|

}
≤ 2C0

∑

x∈C1

∑

y∈C\C′
1

∑

z∈C2

e−γ(|x−z|+|y−z|)/2.

(iv) To prove (3.29), we write x = (x1, ξ), (y1, η), x1 ∈ Z−, y1 ∈ N+, ξ ∈ Λ1, η ∈ Λ2

and take into account that
|x− y| = |x1 − y1|+ |ξ − η| (3.33)

and that x1 ≤ 0, y1 > 0. Then the sums with respect to x1 and y1 give a factor C in the
r.h.s. of (3.29) and we obtain the first inequality of (3.29). Next, summing in the r.h.s. first
with respect to ξ and then with respect to η, we obtain Σ1 ≤ C|Λ1| and summing in the
opposite order we obtain Σ1 ≤ C|Λ1|. This proves the second inequality of (3.29)

To prove (3.30), we write again x = (x1, ξ), y = (y1, η, z = (z1, ζ), and take into account
the analogs of (3.33) for |x− z| and |y− z|. Since x1, y1 ≤ 0, z1 > 0 we can take a sum with
respect to x1, y1 and z1 which gives us a multiplier C Then, since for any ξ, η

∑

z′

e−γ|ξ−ζ|/2−γ|η−ζ|/2 ≤ Ce−γ|ξ−η|/4

we obtain the sum, similar to that we have in the proof of (3.29).
To prove (3.31), we repeat first the argument used in the proof of (3.30) and obtain

Σ3 ≤ C
∑

x′∈Λ1

∑

y′∈Λ′
1

e−γ|x′−y′|/4 = Σ′
3.

We then note that it follows from the condition dist{Λ1,Λ
′
1} > l that there is α ∈ [2, d] such

that we have for ξ = {ξ′α}d−1
α′=1, η = {ηα′}d−1

α′=1

inf
ξ∈Λ1,η∈Λ1

|ξα − ηα| > l/d
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and that without loss of generality we can assume α = 1 and ξ1 > η1 for any ξ ∈ Λ1, η ∈ Λ′
1.

Then, denoting e1 the first basic vector in Zd−1, we obtain

−|ξ1 − η1| ≤ −[l/d]− |ξ1 − η1 − [l/d]|,

hence
Σ′

3 ≤ Ce−γl/4d
∑

ξ∈Λ1

∑

η∈Λ′
1+[l/d]e1

e−γ|ξ−η|/4.

Since in the last sum ξ1 ≤ L0 := supξ∈Λ1
{ξ1} ≤ η1, we can sum with respect to ξ1, η1 like we

did in the proof of (3.29) and we get (3.31).

We will prove now an important bound, which we use in proof of Theorem 2.8. Let H
be a discrete Schrödinger operator in l2(Zd) with i.i.d. potential

V = gQ, Q = {Q(x)}x∈Zd (3.34)

such that the common probability distribution F of every Q(x) satisfies the condition

|F (q + δ)− F (q − δ)| ≤ C|δ|s, C <∞, s ∈ (0, 1] (3.35)

for all q ∈ supp F and sufficiently small δ. Assume that on an interval I of the spectrum of
H the bound

E{|(H − λ− iε)−1(x, y)|s} ≤ Ce−γ̃|x−y|, x, y ∈ Z
d (3.36)

holds uniformly in ε > 0 and λ ∈ I for some s ∈ (0, 1) and C < ∞. According to [3] the
bound is valid for any I in the spectrum of H if g in (3.34) – (3.35) is large enough or
for any g and I lying in a certain depending on g neighborhood of spectrum edges. The
bound (3.36) is a manifestation of the Anderson localization, i.e., the pure point spectrum
and exponential decay of eigenfunctions. In fact, (3.36) implies various other manifestations,
which are commonly associated with the Anderson localization [1, 2, 3, 12, 31].

We have

Lemma 3.6 Let H be the discrete Schrödinger operator in l2(Zd), HΛ be its restriction to
a domain Λ ∈ Zd and P and P (Λ) be the spectral projections of H and HΛ corresponding to
a spectral interval I. Then we have for any I on which (3.36) holds

E{|P (x, y)− P (Λ)(x, y)| ≤ C|∂Λ|e−γ̃R/2, x, y ∈ Λ, dist({x, y}, ∂Λ) ≥ R,

where ∂Λ denotes the boundary of Λ, γ̃ > 0, C <∞.

Proof. It follows from the spectral theorem that if G(z) := (H−z)−1 = {G(z; x, y)}x,y∈Zd

and GΛ(z) := (HΛ− z)−1 = {GΛ(z; x, y)}x,y∈Λ are the resolvents of H and HΛ, then we have
with probability 1

P (x, y) =
1

2πi

∮

K

G(ζ ; x, y)dζ (3.37)

and

P (Λ)(x, y) =
1

2πi

∮

K

GΛ(ζ ; x, y)dζ, (3.38)
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where K is a rectangular contour, which encircles I and crosses transversally the real axis at
the endpoints of I (recall that the probability that a given point of real axis is an eigenvalue
of H is zero, see [23], see Theorems 2.10, 2.12 and 4.21).

We will now use the resolvent identity (3.13) for M1 = H and M2 = HΛ ⊕HZd\Λ, taking
into account that the non-diagonal parts of H and HΛ are −∆ (see (2.3)) and −∆Λ⊕∆Zd\Λ:

G(ζ ; x, y)−GΛ(ζ ; x, y) = −
∑

(u,v)∈L

G(ζ ; x, u)GΛ(ζ ; v, y), x, y ∈ Λ,

where L is a collection of bonds between the points v ∈ ∂Λ and their nearest neighbors in
Zd \ ∂Λ. It follows from (3.32)

|G(ζ ; x, y)−GΛ(ζ ; x, y)|s/2 ≤
∑

(u,v)∈L

|(G(ζ ; x, u)GΛ(ζ ; v, y)|s/2, x, y ∈ Λ,

and then the Hölder inequality for expectation yields

E{|G(ζ ; x, y)−GΛ(ζ ; x, y)|s/2}
≤
∑

(u,v)∈L

E
1/2{|G(ζ ; x, u)|s}E1/2{GΛ(ζ ; v, y)|s}, x, y ∈ Λ.

We have also the bound

E{|GΛ(ζ ; x, y)|s} ≤ C <∞, x, y ∈ Λ

valid uniformly in ℑζ under the conditions of the lemma (see e.g. [3]).
This, (3.37), (3.38), (3.17), and (3.36) imply

E{|P (x, y)− P (Λ)(x, y)|

≤ 1

2π

∮

K

|G(ζ ; x, y)−GΛ(ζ.x, y)|}s/2|ℑζ |s/2−1|dζ |

≤ C0|∂Λ|e−γ̃R/2

∮

K

|ℑζ |s/2−1||dζ | ≤ C|∂Λ|e−γ̃R/2.

4 Conclusion

Here we discuss obtained results and their possible meaning.
We have proved in Section 2 that the entanglement entropy of the system of free disor-

dered fermions with the Schrödinger operator with ergodic potential as one body Hamiltonian
satisfies the area law in the mean for any dimension d ≥ 1 and area law with probability 1
for d = 1. The condition of validity of these results is the exponential decay of the entries
of the matrix of the spectral projection of Schrödinger operator (see (2.16) and the text
below). Note also that the exponential decay (2.16) of spectrum projection does not require
the complete localization for all the energies below the Fermi level µ (see (2.2) and (2.8)),
moreover a single (connected) spectral interval of localized states. It applies also to the case
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in which the Fermi level is in a localized segment of spectrum above the bands of extended
states.

Our results may also be compared with those of work [7], where the area law for many
body quantum system is derived from the exponential decay of all multipoint correlations
(exponential clustering property). The property, in turn, is closely related to the existence
of the gap between the energy of the pure state in question and the rest of the many body
spectrum [14]. Note, however, that in the disordered case (for the disordered fermions at
least) the exponential decay results not from the spectrum gap but from the exponential
localizations of the one body states in the gapless spectrum.

In this paper we use the version of the setting in which one first carry out the macroscopic
limit L → ∞ and then the large block limit L → ∞ (cf. (1.1)). Another possible version is
where these limits are carried out simultaneously: L → ∞, L → ∞, L/L → c ∈ (0, 1), see
e.g. [19, 26]. Our basic results are also valid in this setting since there is an analog of bound
(2.16) for large but finite systems [3, 12].

The above has to be contrasted with the case of constant (zero) potential of the Schrödinger
operator, more generally, for convolution operators in l2(Zd), where the entanglement en-
tropy is asymptotically proportional to Ld−1 logL, see (2.54) and [15, 20, 30]. Thus, our
results can be viewed as a manifestation of the instability of the Ld−1 logL asymptotics with
respect to the replacement of convolution operators by ergodic operators having the pure
point component of the spectrum. This is especially well pronounced in the one dimensional
case, where the exponential bound (2.16) is valid for i.i.d. potential of any non zero ampli-
tude of random potential (although with γ → 0 as the amplitude tends to zero) [21]. This
instability seems reminiscent to the instability of the conducting state or the rounding effect
of disorder on phase transitions, see e.g. [4].
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