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Abstract

We prove that every endomorphism of an infinite-dimensional vector
space splits as the sum of four idempotents and as the sum of four square-
zero endomorphisms, a result that is optimal for general fields.
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1 Introduction

In trying to decompose an endomorphism of a vector space into a sum/linear
combination/product of endomorphisms of special type, two situations are tra-
ditionally studied:

• The one of finite-dimensional vector spaces, i.e. the matrix case, see e.g.
[1, 2, 3, 4, 7, 12];

• In the infinite-dimensional setting one considers a real or complex Hilbert
space (or Banach space) and the endomorphisms and the summands (or
factors) are required to be bounded operators (see e.g. [5, 8, 9, 12, 13]).
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sailles, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
†e-mail address: dsp.prof@gmail.com

1

http://arxiv.org/abs/1601.00296v1


In this article, we shall explore a somewhat neglected territory, in which
the vector space is assumed to be infinite-dimensional and the ground field is
totally arbitrary. Hence, there is no structure from analysis involved here and
the problem is a purely algebraic one. Here are basic questions: Which endo-
morphisms can be written as a (finite) sum of idempotents? of involutions? of
square-zero endomorphisms? If so, what is the minimal number of summands
required in such a decomposition? In those questions, the special endomor-
phisms are all quadratic, a quadratic endomorphism u being one that satisfies
u2 ∈ span(id, u). Hence, we will consider more generally the question of decom-
posing an arbitrary endomorphism into the sum of quadratic endomorphisms
with prescribed split annihilating polynomials of degree 2.

Before we go on, we introduce some notation. Throughout the text, F is
an arbitrary field, and t is an indeterminate which we use to write polynomials
over F. We use the French convention for the set of all non-negative integers,
which we denote by N. All the vector spaces that we consider have F as ground
field. An endomorphism u of an F-vector space V endows V with a structure of
F[t]-module so that t.x = u(x) for all x ∈ V : We use the notation V u when we
speak of V as an F[t]-module. The endomorphism u is called elementary when
the module V u is free. Our basic method will be to start from an endomorphism
u of V and, by subtracting well-chosen “special” endomorphisms, to obtain an
elementary one. In this prospect, the key notion is the one of a stratification of
an F[t]-module, which we will define and study in Section 4.

2 Main results

We start with the main results of our article.

Definition 1. Let p1, . . . , pn be polynomials with coefficients in F. An endo-
morphism u of a vector space is called a (p1, . . . , pn)-sum when there exists an
n-tuple (u1, . . . , un) of endomorphisms of V such that

u =

n
∑

k=1

uk and ∀k ∈ [[1, n]], pk(uk) = 0.

Theorem 1. Let p1 and p2 be split polynomials of degree 2 with coefficients in
F. Then, every elementary endomorphism of a vector space is a (p1, p2)-sum.
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Theorem 2. Let p1, p2, p3, p4 be split polynomials of degree 2 with coefficients
in F. Then, every endomorphism of an infinite-dimensional vector space is a
(p1, p2, p3, p4)-sum.

Corollary 3. Let V be an infinite-dimensional vector space. Then, every endo-
morphism of V is the sum of four square-zero endomorphisms and the sum of
four idempotent endomorphisms.

R. Slowik recently showed [11] that over a field with characteristic different
from 2, any endomorphism of a vector space with (infinite) countable dimension
is the sum of ten square zero endomorphisms. On the other hand, in Hilbert
spaces it is known that every bounded operator is the sum of five square-zero
ones, and the result is optimal [9].

By checking the details of the proof of Theorem 2, the reader will easily
convince herself that Corollary 3 can be extended to left vector spaces over an
arbitrary division ring.

Before we go on, let us discuss the optimality of Corollary 3:

Proposition 4. Let u be a finite-rank endomorphism of a vector space V with
trace different from 0. Then, u is not the sum of three square-zero endomor-
phisms of V .

In particular, a rank 1 idempotent of V is not the sum of three square-zero
endomorphisms, which proves that Corollary 3 is optimal as far as square-zero
endomorphisms are concerned.

Proof of Proposition 4. Assume on the contrary that u = a+b+c for square-zero
endomorphisms a, b, c of V . We claim that the finite-dimensional subspace

W := Imu+Im(au)+Im(bu)+Im(cu)+Im(abu)+Im(acu)+Im(bcu)+Im(abcu)

is stable under a, b and c. It is obvious that W is stable under a since a2 = 0.
Next, we claim that W includes

W ′ := Imu+Im(au)+Im(bu)+Im(cu)+Im(bau)+Im(acu)+Im(bcu)+Im(bacu).

Indeed, we note first that ab + ba = (a + b)2 = (u − c)2 = u(u − c) + cu,
and hence Im(bau) ⊂ Im(abu) + Im(u) + Im(cu) ⊂ W . Likewise, we find
Im(bacu) ⊂ Im(abcu) + Im(u) + Im(cu) ⊂ W , which proves the claimed in-
clusion. Symmetrically, one obtains that W ′ ⊂ W , and hence W ′ = W . As W ′
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is stable under b – again, because b2 = b – we conclude that W is stable under
a. Finally, W includes Imu and hence it is stable under u, whence W is stable
under c = u− a− b.

From there, we denote by u′, a′, b′, c′ the endomorphisms of W induced by
u, a, b, c respectively, so that u′ = a′ + b′ + c′. Then, tr(u′) = tr(u) since W
includes Imu, and a′, b′ and c′ are square-zero endomorphisms of W . It would
follow that tr(a′) = tr(b′) = tr(c′) = 0, whence tr(u′) = 0, a contradiction.

Now, let us turn to idempotents:

Proposition 5. Assume that F has characteristic not 2 and let α ∈ Fr{0, 1, 2, 3}
and V be a vector space over F. Then, α idV is not the sum of three idempotent
endomorphisms of V .

Proof. Assume on the contrary that α. idV = p + q + r for some idempotents
p, q, r. Note first that q and r both commute with (q+ r)(2 idV −q− r) = q+ r−
qr− rq (for instance, q(q+ r− qr− rq) = q− qrq = (q+ r− qr− rq)q). However,
(q + r)(2 idV −q − r) = (α idV −p)((2 − α) idV +p) = α(2 − α) idV +2(α − 1)p.
Since 2(α−1) 6= 0, we deduce that both q and r commute with p. Symmetrically,
q commutes with r. Then, p, q, r are simultaneously diagonalizable, which leads
to α being the sum of three elements of {0F, 1F}, contradicting the assumption
that α 6∈ {0, 1, 2, 3}.

If F has characteristic 2 and more than 2 elements, it can be shown that any
finite rank endomorphism of V with trace outside of the prime subfield of F is not
the sum of three idempotents: the proof is quite similar to the one of Proposition
4 and we shall therefore leave the details to the reader. We suspect however that
every endomorphism of V is the sum of three idempotents if F = F2: indeed,
the result is known to hold over finite-dimensional spaces, see [10].

Remark 1. Let u be an endomorphism of a vector space V . Let p1, . . . , pr be
polynomials with coefficients in F. Assume that V splits as V =

⊕

i∈I

Vi where each

Vi is stable under u and we denote by ui the induced endomorphism. Assume

finally that for all i ∈ I, the endomorphism ui splits as ui =
r
∑

k=1

ui,k where

ui,k ∈ End(V ) and pk(ui,k) = 0 for all k ∈ [[1, r]]. Then, by setting u(k) :=
⊕

i∈I

ui,k,

we see that u =
r
∑

k=1

u(k) and pk(u
(k)) = 0 for all k ∈ [[1, r]].
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Remark 2 (The canonical situation). In both Theorems 1 and 2, we can reduce
the situation to the one where each polynomial under consideration has the
form t2 − at for some a ∈ F. Indeed, let p1, . . . , pr be split polynomials with
degree 2 over K. For each k, denote by xk, yk the roots of pk and note that
an endomorphism v is annihilated by pk if and only if v − xk id is annihilated
by t2 − (yk − xk)t. Given u ∈ End(V ), we deduce that u is a (p1, . . . , pk)-sum

if and only u −
( r
∑

k=1

xk

)

. id is a
(

t2 − (y1 − x1)t, . . . , t
2 − (yr − xr)t

)

-sum. In

both Theorems 1 and 2, we note that the assumption on the endomorphism
u is left invariant by subtracting a scalar multiple of the identity from u (for
Theorem 1, note that V u is free if and only if V u−λ id if free, owing to the fact
that p(t) 7→ p(t+ λ) is an automorphism of the F-algebra F[t]). Hence, in both
theorems, it will suffice to consider the case when each polynomial pk has the
form t2 − at for some a ∈ F (depending on k).

Theorem 1 will be proved in Section 3. The proof of Theorem 2 is spread
over Sections 4 and 5.

3 Decomposing an elementary operator

Here, we give a quick proof of Theorem 1. We will need the following basic
lemma:

Lemma 6. Let u be an endomorphism of a vector space V with countable di-
mension, and let (en)n∈N be a basis of V . Assume that u(en) = en+1 mod
span(e0, . . . , en) for all n ∈ N. Then, (un(e0))n∈N is a basis of V .

Proof. We prove by induction that span(e0, . . . , en) ⊂ Fn := span(uk(e0))0≤k≤n

for all n ∈ N. This is obvious if n = 0. Assume that it holds for some n ≥ 0. In
order to prove that span(e0, . . . , en+1) ⊂ Fn+1, it suffices to see that en+1 ∈ Fn+1.
Yet, en+1 = u(en) + x for some x ∈ span(e0, . . . , en). By induction x and en
belong to Fn, and as u obviously maps Fn into Fn+1 we deduce that en+1 ∈ Fn+1,
which completes the inductive step.

From there, we immediately deduce that (un(e0))n∈N spans V . Moreover,
for all n ∈ N, we see that e0, u(e0), . . . , u

n(e0) are linearly independent because
n + 1 = dim span(e0, . . . , en) ≤ dimFn. We conclude that (un(e0))n∈N is a
linearly independent sequence, which completes the proof.

In light of Remark 2, we can limit the discussion to the following situation:
Let u be an elementary endomorphism of a vector space V , and a and b be
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scalars. We have to prove that there exist endomorphisms v and w of V such
that u = v+w, v2 = a v and w2 = bw. In this prospect, we know from Remark
1 that it suffices to prove this when V u has a single generator, say x. Since all
the non-zero free F[t]-modules with one generator are isomorphic, we can turn
the question on its head: It suffices to construct a non-zero vector space U over
F and a pair (v,w) of endomorphisms of U such that v2 = a v, w2 = bw, and
the F[t]-module Uv+w has a generator.

To do so, we take an arbitrary vector space U over F with a countable basis
(en)n∈N on which we define two endomorphisms v and w as follows:

• v(ek) = a ek + ek+1 for every even k ∈ N, otherwise v(ek) = 0;

• w(ek) = b ek + ek+1 for every odd k ∈ N, otherwise w(ek) = 0.

For every k ∈ N, we have v2(ek) = 0 = a v(ek) if k is odd, otherwise v2(ek) =
v(a ek + ek+1) = a v(ek) + 0 = a v(ek) since k + 1 is even. Hence, v2 = a v.
Likewise, one proves that w2 = bw.

Setting u := v+w, we see that u satisfies the condition of Lemma 6, whence
(un(e0))n∈N is a basis of U . It follows that Uu is a free F[t]-module with one
generator, which completes the proof of Theorem 1.

4 Stratifications

4.1 Stratifications and associated objects

Definition 2. Let V be an F[t]-module. A stratification of V is a sequence
(Vα)α∈D, indexed over a well-ordered set D, of submodules of V in which:

• For all α ∈ D, the quotient module Vα/

(

∑

β<α

Vβ

)

is non-zero and has a

generator;

• V =
∑

α∈D

Vα.

To any such stratification, we assign the dimension sequence (nα)α∈D defined
by

nα := dimF

(

Vα/
∑

β<α

Vβ

)

(in the infinite-dimensional case, we consider the dimension to be +∞, not the
first infinite ordinal ℵ0).
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Let (Vα)α∈D be a stratification of V . For every α ∈ D, we can choose a
vector xα ∈ Vα such that Vα = F[t]x+

∑

β<α

Vβ, and we note that if nα is finite then

Vα = Fnα−1[t]xα ⊕
∑

β<α

Vβ and (tkxα)0≤k<nα
is linearly independent, otherwise

(tkxα)0≤k<+∞ is linearly independent and Vα = F[t]xα ⊕
∑

β<α

Vβ. We shall say

that the vector sequence (xα)α∈D is attached to (Vα)α∈D. In this case, an
obvious transfinite induction shows that, for all α and β in D with β < α, the
family (tk.xδ)β≤δ≤α, 0≤k<nδ

is linearly independent and















(

∑

γ<β

Vγ

)

⊕ span
(

(tk xδ)β≤δ≤α, 0≤k<nδ

)

= Vα

(

∑

γ<β

Vγ

)

⊕ span
(

(tk xδ)β≤δ<α, 0≤k<nδ

)

=
∑

γ<α

Vγ .

In particular, (tk xα)α∈D, 0≤k<nα
is a basis of V . As a special case, we get the

obvious consequence:

Lemma 7. Let V be an F[t]-module with a stratification (Vα)α∈D. Assume that
the corresponding dimension sequence (nα)α∈D is constant with sole value +∞.
Then, V is free.

Conversely, consider a sequence (xα)α∈D, indexed over a well-ordered set D,
of vectors of V such that xα 6∈

∑

β<α

F[t]xβ for all α ∈ D, and V =
∑

α∈D

F[t]xα.

Then, one sees that
(

∑

β≤α

F[t]xβ

)

α∈D
is a stratification of V , with corresponding

vector sequence (xα)α∈D.
Of course, any stratification can be re-indexed over an ordinal, and in general

we shall often assume that the stratifications we are dealing with are indexed
over ordinals.

4.2 Connectors for a stratification

Definition 3. Let u be an endomorphism of a vector space V . Let (Vα)α∈D
be a stratification of V u, with attached dimension sequence (nα)α∈D and an
associated vector sequence (xα)α∈D.

An endomorphism v of V is called a connector for u with respect to the vec-
tor sequence (xα)α∈D whenever it acts as follows on the basis (tk xα)α∈D,0≤k<nα

:
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for all α ∈ D such that nα < +∞, we have v(tnα−1 xα) = xα+1 mod Vα, and all
the other vectors are mapped to 0.

The definition is motivated by the following result:

Proposition 8. Let u be an endomorphism of a vector space V . Let (Vα)α∈κ be a
stratification of V u, with attached dimension sequence (nα)α∈κ and an associated
vector sequence (xα)α∈κ.

Assume that if κ has a maximum M then nM = +∞. Then, for any con-
nector v for u with respect to (xα)α∈κ, then endomorphism u+ v is elementary.

Proof. Without loss of generality, we can assume that κ is an ordinal.
We define D as the set of all α ∈ κ such that either α has no predecessor or

α has a predecessor and nα−1 = +∞. Note that D is a non-empty well-ordered
set.

Set w := u+ v.
Fix α ∈ D. Either nα+k < +∞ for all k ∈ N, in which case we setmα := +∞,

otherwise we denote by mα the smallest positive integer k such that α+k−1 ∈ κ
and nα+k−1 = +∞ (it exists because if κ has a maximum M then nM = +∞).
In any case, we set

Wα :=
∑

k<mα

Vα+k =
⋃

k<mα

Vα+k.

We shall prove that (Wα)α∈D is a stratification of V w and that the corresponding
dimension sequence takes no finite value.

To help us, we need additional notation. Let β ∈ κ. If β 6∈ D then β has
a predecessor β − 1. As there is no infinite decreasing sequence in κ, it follows
that there is a uniquely-defined element g(β) ∈ D together with an non-negative
integer m such that g(β)+m = β and g(β)+ k 6∈ D for all k ∈ [[1,m]]. It follows
from the above definition that

Vβ ⊂ Wg(β).

Now, for all β ∈ D, the endomorphism v maps Vβ into Vβ+1 unless nβ = +∞
in which case Vβ is stable under D. Hence, we deduce from the definition of mα

that Wα is stable under v. Moreover, we readily see that it is stable under u,
and we conclude that Wα is a submodule of V w.

Next, we see that (Wα)α∈D is increasing. Let indeed (α, β) ∈ D2 be such
that α < β. From the definition of mα, it follows that α+k < β for every integer
k such that 0 ≤ k < mα, and hence Wα ⊂

∑

γ∈κ,γ<β

Vγ ( Vβ ⊂ Wβ.
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Finally, let us fix α ∈ D. Denote by y the class of xα in the quotient module
E := Wα/

∑

β∈D, β<α

Wβ. Let us prove that E is non-zero and is the free module

generated by y. We start by proving that

∑

β∈D, β<α

Wβ =
∑

β∈κ, β<α

Vβ . (1)

Let β ∈ κ be such that β < α. Then, Vβ ⊂ Wg(β) with g(β) < α and g(β) ∈ D.
Conversely, let β ∈ D be such that β < α. Then, β + k < α for all k such
that 0 ≤ k < mα, and hence it follows from the definition of Wβ that Wβ ⊂

∑

γ∈κ, γ<α
Vγ .

Using equality (1), we deduce that

E =

(

∑

0≤k<mα

Vα+k

)

/

(

∑

β∈κ, β<α

Vβ

)

.

Assume first that mα = +∞. Then, nα+k is finite for each integer k and we set

(en)n∈N =
(

xα, u(xα), . . . , u
nα−1(xα), xα+1, u(xα+1), . . . , u

nα+1−1(xα+1), . . . ,

xα+k, u(xα+k), . . . , u
nα+k−1(xα+k), . . .

)

If mα is finite, then we take

(en)n∈N =
(

xα, u(xα), . . . , u
nα−1(xα), xα+1, u(xα+1), . . . , u

nα+1−1(xα+1), . . . ,

xα+mα−1, u(xα+mα−1), . . . , u
l(xα+mα−1), . . .

)

In any case we see by induction that
(

xα, . . . , u
nα+k−1(xα+k)

)

is linearly inde-
pendent and

span
(

xα, . . . , u
nα+k−1(xα+k)

)

⊕

(

∑

β∈κ, β<α

Vβ

)

= Vα+k

for all 0 ≤ k < mα.
Next, we prove that w(en) = en+1 mod

∑

β∈κ, β<α

Vβ + span(e0, . . . , en), for

all n ∈ N. Let indeed n ∈ N. Then en = tlxα+k for some 0 ≤ k < mα

and some 0 ≤ l < nα+k. If l < nα+k − 1 then we know that en+1 = u(en)
and v(en) = 0, whence w(en) = en+1. Assume that l = nα+k − 1. Then,
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u(en) ∈ Vα+k whereas v(en) − en+1 ∈ Vα+k, and hence w(en) − en+1 ∈ Vα+k =
∑

β∈κ, β<α

Vβ + span(e0, . . . , en).

Hence, Lemma 6 applies to the endomorphism w of E induced by w, and
it yields that the resulting module Ew is non-zero and free with generator y.
Hence, (Wα)α∈D is a stratification of V w and all the terms of its dimension
sequence equal +∞. By Lemma 7, we conclude that Ew is elementary.

5 Decompositions into four quadratic operators

Here, we shall prove Theorem 2. Combining Remark 2 with Theorem 1, one sees
that we only need to prove the following result.

Proposition 9. Let u be an endomorphism of an infinite-dimensional space V ,
and let a and b be scalars. Then, there exist endomorphisms u1 and u2 of V
such that u− u1 − u2 is elementary, u21 = a u1 and u22 = b u2.

We will prove Proposition 9 by constructing a “well-behaved” stratification
of V u. In the first section, we perform such a construction, and in the subsequent
one we use it to construct the claimed endomorphisms u1 and u2 by use of a
connector.

5.1 On the existence of a well-behaved stratification

Proposition 10. Let V be an F[t]-module with infinite dimension as a vector
space over F. Then, there is a stratification (Vα)α∈κ of V such that:

(i) κ is a cardinal;

(ii) If κ is finite then dimV0 = +∞.

Proof. We construct such a stratification by transfinite induction. First we de-
note by ν the dimension of the F-vector space V , seen as a cardinal. We choose
a basis (ek)k∈ν of V . If V is no torsion module, we can further assume that e0
does not belong to the torsion submodule of V , i.e. F[t] e0 is a free submodule
of V . Then, we construct an ordinal κ ≤ ν and an increasing sequence (Vα)α∈κ
of submodules of V as follows.

We put V0 := F[t] e0.
Let α ∈ ν and assume that we have constructed an increasing sequence

(Vβ)β<α of submodules of V such that, for all β < α:

10



(i) the F[t]-module Vβ/
∑

γ<β

Vγ is non-zero and has a generator;

(ii) the vector eβ belongs to Vβ.

Put W :=
∑

β<α

Vβ. If V = W , then the process terminates at α. Otherwise,

we take the least k ∈ ν such that ek 6∈ W (note that α ≤ k), and we put
Vα := W + F[t]ek. The module Vα/W is non-zero and has a generator (namely,
the class of ek). Finally, we note that eα ∈ Vα. Hence, the inductive step is
climbed.

Assume first that the process never terminates. Then, by condition (ii), we
have V =

∑

α∈ν

Vα. It follows that (Vα)α∈ν is a stratification of V , and ν is a

cardinal.
In the rest of the proof, we assume that the process terminates at some

ordinal α, so that (Vβ)β<κ is a stratification of V . First of all, we prove that ν is
countable. Let us take an associated vector sequence (xβ)β<α. Then, we know
that V =

∑

β<α

F[t]xβ, and hence, denoting by µ the cardinality of α, we find

dimF V ≤ µ× ℵ0.

Note that µ < ν. Yet, if ℵ0 < ν, then µ × ℵ0 < ν and we have a contradiction.
If follows that ν = ℵ0 and hence α is a finite ordinal. Next, as V is infinite-
dimensional at least one of the F-vector spaces F[t]xβ, for β < α, must be
infinite-dimensional. Hence, V is not a torsion module and by our assumptions
dimV0 = dimF[t]e0 = +∞. Hence, the claimed conclusion follows.

5.2 The reduction to an elementary endomorphism

We are now ready to prove Theorem 2. Here is the key step.

Proposition 11. Let u be an endomorphism of a vector space V . Let (Vα)α∈κ
be a stratification of V u that is indexed over an ordinal κ. Assume that κ is a
limit ordinal or V0 is infinite-dimensional.

Let a and b be scalars. Then, there exist endomorphisms u1 and u2 of V
such that u21 = a u1, u

2
2 = b u2 and u− (u1 + u2) is elementary.

The combination of this result with Proposition 10 yields Proposition 9,
which in turn yields Theorem 1.
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Proof. We take the dimension sequence (nα)α∈κ of V u and a vector sequence
(xα)α∈κ. Given an ordinal α, there is a largest non-negative integer k for which
there exists an ordinal γ satisfying α = γ + k: we say that α is even when k is
even, and odd otherwise.

Case 1: κ is a limit ordinal.

We define two endomorphisms v1 and v2 of V as follows on the basis (uk(xα))α∈κ,0≤k<nα
:

For each ordinal α ∈ κ such that nα < +∞, we set

v1
(

unα−1(xα)
)

:=

{

a unα−1(xα)− xα+1 if α is even

0 if α is odd

v2
(

unα−1(xα)
)

:=

{

0 if α is even

b unα−1(xα)− xα+1 if α is odd

and v1 and v2 are required to map all the other basis vectors to 0. We check on
the above basis that v21 = a v1 and v22 = b v2. Indeed, let α be an even ordinal
such that nα < +∞. Then, v1(u

nα−1(xα)) = a unα−1(xα) − xα+1 and α + 1 is
odd whence v1(xα+1) = 0, which leads to v21(u

nα−1(xα)) = a v1(u
nα−1(xα)). For

any other basis vector y, we have v1(y) = 0 and hence v21(y) = 0 = a v1(y). The
proof is similar for v2.

Next, it is obvious that v := −v1 − v2 is a connector for u with respect to
the vector sequence (xα)α∈κ. We deduce from Proposition 8 that u− v1 − v2 is
elementary.

Case 2: κ has a maximum M .

Then, we know that V0 is infinite-dimensional. If κ = 0, then u is already
elementary and we just take u1 = u2 = 0. In the rest of the proof, we assume
that M > 0. Set W := span(uk(xα))0<α≤M, 0≤k<nα

and note that V = V0 ⊕W .
Denote by π the projection of V onto V0 along W , and set w := π ◦ u ◦ (id−π).
Then, u′ := u − w stabilizes both V0 and W . For α ∈ κ r {0}, set Wα :=
span(uk(xβ))0<β≤α, 0≤k<nβ

and note that u′ stabilizes Wα. Set finally W0 := V .
Now, define D := κ with the same order on κ r {0}, but with x < 0 for all
x ∈ κ r {0}. One sees that D is still a well-ordered set and now (Wk)k∈D is
a stratification for V u′

for which the last dimension equals +∞. An associated
vector sequence is (xk)k∈D.

Like in Case 1, we define a connector v of u′ for this stratification and this
vector sequence. Hence, u− (w− v) is elementary. In order to conclude, it only
remains to split (w − v) into v1 + v2 where v21 = a v1 and v22 = b v2.
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First of all, we see that (w − v)(uk(x0)) = 0 for all k ∈ N.
For each α ∈ κ r {0} and each integer k such that 0 ≤ k < nα, either

k 6= nα − 1 and hence (w − v)(uk(xα)) = 0, or k = nα − 1 and hence there is a
vector yα of V0 such that

(w − v)(uk(xα)) =

{

a uk(xα)− xα+1 + yα if α is odd

b uk(xα)− xα+1 + yα if α is even.

Now, we define endomorphisms v1 and v2 as follows on the basis (uk(xα))α∈κ,0≤k<nα
:

for all α ∈ κ such that nα < +∞,

v1
(

unα−1(xα)
)

=

{

a unα−1(xα)− xα+1 + yα if α is odd

0 if α is even,

and

v2
(

unα−1(xα)
)

=

{

0 if α is odd

b unα−1(xα)− xα+1 + yα if α is even,

and v1 and v2 are required to map all the basis vectors to 0. Obviously v1+v2 =
w − v. On the other hand, as in Case 1 it is easily checked that v21 = a v1 and
v22 = b v2 by using the fact that v1 and v2 vanish everywhere on V0 (and in
particular they map any yα to 0). As u − (v1 + v2) is elementary, the proof is
complete.

Therefore, Theorem 2 is now fully established.
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