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We develop a model of bistable oscillator with nonlinear dissipation. Using an electronic circuit
realization of this system we study its response to noise excitations experimentally. We show that
depending on noise intensity the system undergoes multiple qualitative changes in the structure of
its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork
bifurcations vs noise intensity, which we describe using an effective potential and corresponding
normal forms of bifurcations. These stochastic effects are explained by the partition of the phase
space by the nullclines of the system.
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Introduction – Bistable dynamics is typical for many
natural systems in physics [1–3], chemistry [4, 5], biology
[6–11], ecology [12, 13], geophysics [14–16]. The sim-
plest kind of bistability occurs when a system possesses
two stable equilibria in the phase space, separated by
a saddle. Adding noise gives rise to random switchings
between the deterministically stable states, resulting in
a steady state probability density with two local max-
ima. The Kramers oscillator is a classical example of the
stochastic bistable system describing Brownian motion
in the double-well potential [2, 4, 17],

ẏ = v, v̇ = −γv − dU(y)

dy
+
√

2γD n(t), (1)

where γ is the (constant) drag coefficient, U(y) is a
double-well potential and n(t) is Gaussian white noise,
D is the noise intensity. Two-dimensional equilibrium
PDF is:

P (y, v) = k exp

[
− 1

D

(
v2

2
+ U(y)

)]
, (2)

with the normalization constant k, and possess two max-
ima, corresponding to potential wells, separated by a sad-
dle point of the potential. This structure does not depend
on the noise intensity D: although the peaks in the PDF
are smeared out, their position is invariant with respect
to increase of noise intensity.

External random perturbations may result in the so-
called noise-induced transitions whereby PDF of ini-
tially monostable system changes from single- to mutli-
peaked when noise intensity varies [18–21]. Such tran-
sitions occur both with multiplicative noise as in origi-
nal Horthemke-Lefever scenario, and with additive noise
(see, e.g. [22]). Although noise-induced transitions
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are not true bifurcations [23], they underly qualitative
changes of stochastic dynamics when noise strength is
the control parameter. In this Letter we develop a gener-
alized bistable oscillator with nonlinear dissipation and
report on a multiple noise-induced transitions in this
system. We first develop an electronic circuit model
of the oscillator and demonstrate noise-induced transi-
tions in analog experiment. Second, we use deterministic
model and numerical simulations to explain mechanisms
of noise-induced transitions.
Model and Methods – Fig. 1 shows a circuit diagram

with two nonlinear elements N1 and N2 with the S- and
N-type of the I-V characteristic, respectively: iN1 =
F (V ), VN2 = G(i). The circuit is similar to Nagumo’s
tunnel diode neuron model [24, 25], except it contains
nonlinear resistor N2 in series with the inductor, L. The
circuit also includes a source of broadband Gaussian noise
current inoise(t), which will be assumed white in the fol-
lowing. The equations for the circuit in dimensionless
form are (see Supplementary Material [26] for details on
derivations):{

εẋ = −y − F (x)−
√

2Dn(t),
ẏ = x−G(y),

(3)

where x is the dimensionless voltage, V , across the ca-
pacitor C, y is the dimensionless current i through the
inductor L. The parameter ε sets separation of slow and

FIG. 1: (Color online) Circuit diagram of the model.
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fast variables of the system, ε ∼ C/L. The first equation
for the voltage contains an additive source of white Gaus-
sian noise, n(t), with the intensity D. Depending on the
shape of the functions F (x) and G(y) the circuit demon-
strates wide range of dynamics, including various types
of bistability, self-sustained oscillations and excitability.
It allows to observe a wide range of dynamical regimes:
from the behavior like in oscillator (1) with a double-
well potential to dynamics of an excitable oscillator or a
bistable self-sustained oscillators. This letter is restricted
to bistability of two stable equilibria with N-shape func-
tion G(y) = −ay + by3 with positive coefficients a and
b.

We start with a linear resistor N1, F (x) = c1x, with
positive c1. The circuit is described by,

ẏ = v,
εv̇ = −((3by2 − a)ε+ c1)v−
(1− c1a+ c1by

2)y −
√

2Dn(t).
(4)

The friction is nonlinear, but depends solely on the ”co-
ordinate” variable, y. For sufficiently small ε, c1 �
ε(3by2 − a) and dissipation becomes essentially linear.
Then the system is closely akin to Kramers oscillator,
Eq.(1), with linear friction. Our analog and numerical
simulations showed no qualitative differences in dynam-
ics of Kramers oscillator and the circuit (4) with linear
resistor N1, i.e. no noise-induced qualitative change in
the stationary PDF.

Next, we consider the case of nonlinear resistor N1
with F (x) = c1x − c3x3 + c5x

5 and with fixed positive
coefficients c1 = 1, c3 = 9, c5 = 22. A variety of the
electronic elements and circuits have I-V characteristic
like that. For example, N1 can be realized by the so-
called lambda-diode circuit [27]. The circuit is described
by the following ”coordinate-velocity” equations, y, v ≡
ẏ, with q(y, v) ≡ v − ay + by3,

ẏ = v,
εv̇ = −y − c1q + c3q

3 − c5q5+

εv(a− 3by2)−
√

2Dn(t).
(5)

We note that unlike for the case of linear resistor N1,
for the nonlinear N1 element, the system’s dissipation
depends on both coordinate and velocity, y and ẏ.

Experimental electronic setup was based on principles
of analog modeling of stochastic systems [28, 29] and is
described in details in the supplement [26]. State vari-
ables (y,v), time and parameters were transformed to
dimensionless giving rise to Eqs.(5) [26].

Noise-induced transitions – Noise strength is true con-
trol parameter of the system, as Fig. 2 indicates. For
weak noise, the circuit shows bistable dynamics with a
typical hoping between two metastable states and two
peaks in the PDF [Fig. 2(a1,b1)]. Increase of noise
intensity leads to qualitative change in stochastic dy-
namics: hoping between two states disappears and so
the PDF has a single global maximum, Fig. 2(a2,b2).
Furthermore, larger noise results in yet another noise-
induced transition whereby dynamics becomes bistable

FIG. 2: (Color online) Noise-induced transitions in analog
simulations. (a): Time traces of state variables for various
values of noise intensity: 1 – D = 1.51 × 10−4, 2 – D =
3.78×10−4, 3 – D = 3.00×10−3. (b): Stationary probability
density functions (PDF) P (y, v) corresponding to traces on
(a). Other parameters are: ε = 0.01, c1 = 1, c3 = 9, c5 =
22, a = 1.2, b = 100.

again with two-state hoping and double-peaked station-
ary PDF [Fig. 2(a3,b3)]. Noise-induced transitions are
most apparent in a diagram of the marginal PDF of coor-
dinate, P (y) =

∫∞
−∞ P (y, v)dv plotted vs noise intensity,

D, in Fig. 3(d). This figure tracks positions of PDF’s
extrema vs D, showing two pitchfork bifurcations.

The described stochastic dynamics can be represented
in terms of effective potential. The marginal PDF of the
velocity variable, P (v), is unimodal and the stationary
PDF, P (y, v), can be approximated by Eq.(2) with effec-
tive noise intensity and potential, Deff → D, Ueff(y) →
U(y). The marginal velocity PDF, P (v), is Gaussian in
this approximation, and so the effective noise intensity
is calculated as the velocity variance, Deff = var[v], i.e.
from recorded time series. Fig. 3(a–c) shows that the
marginal coordinate PDF, P (y), can be nicely fitted by

P (y) = k1 exp

[
− 1

Deff
Ueff(y)

]
, Ueff(y) = −αy2 + βy4,

(6)
where the parameters α, β, and k1 are estimated from the
least square fit of the experimentally measured marginal
PDF, P (y). The effective potential can be re-written in
the form, Ueff(y) = 4β(−µ y2/2+y4/4), with µ = α/(2β).
The shape of the effective potential, is determined by
the effective bifurcation parameter, µ ≡ µ(D). Thus,
stochastic dynamics of the circuit can be described by the
normal form of the pitchfork bifurcation [30], ż = µz−z3:
bistable for µ > 0, monostable for µ < 0 and critical at
µ = 0. Fig. 3(e) shows the dependence of the effective bi-
furcation parameter vs noise intensity, µ(D), and clearly
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FIG. 3: (Color online) Noise-induced bifurcations in analog
simulations. (a)–(c): Marginal PDF, P (y) (lines) and its fit
using the effective potential Eq.(6) (red circles). Noise in-
tensity, effective potential parameters and effective noise in-
tensity are: (a) D = 1.51 × 10−4, α = 14.35, β = 3193.5,
Deff = 1.15 × 10−2; (b) D = 3.78 × 10−4, α = −9.71,
β = 2532.4, Deff = 4.07 × 10−2; (c) D = 3.00 × 10−3,
α = 76.12, β = 7707.1, Deff = 2.35 × 10−1. (d): Marginal
PDF vs noise intensity. For each value of noise intensity,
D, the PDF P (y) was normalized to by its maximal value,
i.e. Pn(y) = P (y)/Pmax. Blue dots track minima of the
corresponding effective potential. (e): Effective bifurcation
parameter µ(D). Vertical dashed lines indicate positions of
two pitchfork bifurcations. (f): Rice frequency, ωR, vs noise
intensity. Solid line shows experimentally measured values;
red circle correspond to approximation with Eq.(7) with the
effective potential Ueff. Other parameters are the same as in
the previous figure.

indicates two pitchfork bifurcations at D = 2.6 × 10−4

and D = 1.34 × 10−3 which match the bifurcation dia-
gram, Fig. 3(d).

Stochastic bistable oscillators are characterized by two
time scales: fast intrawell fluctuations and slower inter-
well switching. The mean frequency of bistable oscillator
can be quantified by the Rice frequency [17, 31], which
is the rate of zero-crossings by the oscillator’s coordinate
with positive velocity, ωR = 2π

∫∞
0
vP (y = 0, v)dv. For

the Brownian oscillator (1) the Rice frequency reads [31],

ωR =

√
2πD exp

[
−U(0)

D

]
∞∫
−∞

exp
[
−U(y)

D

]
dy

. (7)

For the bistable Kramers oscillator the Rice frequency in-
creases with noise intensity, D [31], reflecting the increase
of the Kramers rate of transitions between metastable
states: the longer is the residence in metastable states,
the smaller is the Karamers’s rate and the Rice frequency.
The dependence of the Rice frequency on noise intensity
in our circuit is non-monotonous [Fig. 3(f)]: ωR is low
for weak and strong noise, where the system is bistable,
and attains its maximal value for intermediate noise, cor-
responding to effective monostable dynamics with the
deepest effective potential at the origin (minimal value
of the bifurcation parameter, µ). Unlike for the Kramers
oscillator (1), the velocity distribution, P (v), for our
bistable oscillator is non-Gaussian. Nevertheless the non-
monotonous dependence ωR(D) is well approximated by
Eq.(7) with the effective potential and noise intensity, i.e.
with the substitution Ueff → U , Deff → D.
Mechanism of noise-induced transitions can be under-

stood by studying the structure of the phase space of
the deterministic circuit described by Eqs.(5). Fig. 4(a)
shows two stable nodes, separated by the saddle at the
origin, and nullclines of the system. The intrinsic fea-
ture of the system under study is an unusual structure of
the nullcline v̇ = 0. Besides the conventional N-shape
branch passing through equilibria [inset in Fig. 4(a)],
the nullcline includes two symmetric separate closed-loop
branches. Let us consider a loop at the upper left quad-
rant in Fig. 4(a). The upper side of the loop is attractive
and lower one is repulsive. When a phase trajectory ap-
proaches the loop from above, it slows down and moves
on the attractive side until it approaches the separatrix
of the saddle, and then eventually falls onto vicinity of
the saddle equilibrium at the origin. Repulsive side of
the close-loop branch directs phase trajectories towards
stable equilibrium. Symmetrical behavior occurs for the
loop at the left lower quadrant. We note, that for the lin-
ear resistor N1 the nullcilne v̇ = 0 has a single N-shape
branch only, i.e. no closed-loop segments.

Weak noise results in conventional stochastic hoping
between two metastable states with the double-peaked
PDF [Fig. 4(b)]. Note, that probability to cross closed-
loop branches of the nullcline is rather low and so they
have no effect on the position of the PDF’s maxima.
With the increase of noise intensity the PDF P (y, v)
smears vertically, i.e. with respect to velocity, v. Fig. 4(c)
indicates, that phase trajectories frequently visit closed-
loop branches [areas are marked by the green dashed line
on Fig. 4(c)] which results in deflection towards the ori-
gin, as described for deterministic case on Fig. 4(a).
This results in shifting of the PDF’s maxima towards
the origin. There is a critical noise intensity which corre-
sponds to maximal influence of the closed-loop nullcline
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FIG. 4: (Color online) Mechanism of noise-induced pitchfork
bifurcations. On all panels: equilibrium points are shown by
blue circles; blue dashed line indicates the nullcline ẏ = 0;
orange solid line shows the nullcline v̇ = 0; the separatrix
of the saddle at the origin is shown by blue dotted line.
(a): Deterministic dynamics of Eq.(5). Phase trajectories
started from various initial conditions are shown by black
arrowed lines. Inset shows expanded region near equilib-
ria. Panels (b)–(d) also show contour maps of the station-
ary PDF, P (y, v), obtained numerically. (b): D = 2 · 10−5;
(c): D = 6 · 10−5; (d): D = 2.4 · 10−3. Other parameters
are: ε = 0.01, c1 = 1, c3 = 9, c5 = 22, a = 1.2, b = 100, i.e.
the same as in analog experiments. See [26] for details on
numerical procedure.

branches, resulting in the PDF with single peak at the

origin. For larger values of noise intensity phase trajec-
tories begin to pass through the repulsive sides of the
closed-loop nullcline branches. They are then slow down
on attractive branches of the nullcline [areas marked by
violet dashed line on Fig. 4(d)] and then deflected to-
wards the origin. However, because of larger noise, phase
trajectories can now overcome the separatrix towards an-
other stable equilibrium, rather than fall onto the origin.
As a result, the origin is visited less frequently than sym-
metrical areas on the left and right of the separatrix. In
this way the central peak of the PDF becomes divided
into two and bistability is restored.

Conclusions – We have developed a generic model of
the bistable oscillator with nonlinear dissipation. Using
analog circuit experiment we showed that this system
demonstrates multiple noise-induced transitions, regis-
tered as changes of extrema in the stationary PDF. Using
the effective potential approach we showed that the ob-
served noise-induced transitions are described by a nor-
mal form of pitchfork bifurcation. We provided a clear
explanation of the mechanism of the effect based on par-
tition of the phase space of the system by nullclines and
manifolds of a saddle equilibrium.
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Supplemental material on Noise-induced
transitions in a double-well oscillator with
nonlinear dissipation

Proposed model and numerical methods – The electri-
cal circuit which is an exemplary realization of the de-
veloped oscillator is presented in the paper [see Fig. 1
in the paper]. It is the circuit with parallel capacitance
C and inductance L, including noise source inoise(t) and
two nonlinear elements N1 and N2 with the I-V char-
acteristics: iN1 = F (V ), VN2 = G(i) (V is the voltage
and i is the current). By using the Kirchhoff’s current
law the following differential equations for the voltage V
across the capacitance C and the current i through the
inductance L can be derived:

C
dV

dt′
+ iN1 + i+ inoise(t

′) = 0,

V = L
di

dt′
+ VN2.

(8)

In the dimensionless variables x = V/V0 and y = i/i0
with V0 = 1 V, i0 = 1 A and dimensionless time t =
[(V0/(i0L)]t′, Eq.(8) can be re-written as,


ε
dx

dt
= −y − F (x)− ξ(t),

dy

dt
= x−G(y),

(9)

where ε = (C/L)V 2
0 /i0. The term ξ(t) is assumed to be

Gaussian white noise with zero mean and the intensity
D: 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t+ τ)〉 = 2Dδ(τ).

Numerical simulations were carried out by the integra-
tion of Eq. (9) by using the Heun method with time step
∆t = 0.0001.
Experimental setup – The main part of the analog

model is the operational amplifier integrator, whose
output voltage is proportional to the input voltage

integrated over time: Vout = − 1

R0C0

t∫
0

Vindt or

R0C0V̇out = −Vin. Scheme of the experimental setup
is shown in Fig. 5. It contains two integrators A1 and
A10, whose output voltages are taken as the dynamical
variables values x∗ and y∗ correspondingly. Then the sig-
nals x∗ are y∗ transformed in order to realize expressions
corresponding to the right parts of the original system
(Eq. (9)). The necessary signal transformations are car-
ried out by using the analog multipliers AD633JN and
the operational amplifiers TL072CP connected in the in-
verting and non-inverting amplifier configurations. Fi-
nally, obtained after transformation signals come to the
input of the integrators as Vin. The experimental setup
allows to analyze the instantaneous values of the vari-
ables x∗, y∗ and the instantaneous value of the veloc-
ity which can be obtained by using x∗ and y∗ as be-
ing: v∗ = ẏ∗ = x∗ + ay∗ − by3

∗. Time realizations are
taken at the corresponding outputs (are marked on the
Fig. 5) and then processed in PC. An acquisition board
(National Instruments NI-PCI 6133) is used for it. The

signals are acquired with a sampling frequency of 50 kHz.
The Rice frequency and the probability density functions
P (y, v) and P (y) are calculated by using realizations y(t)
and v(t) with time length 150 seconds. The scheme in
Fig. 5 is described by the following equations:

RxCx
dx∗
dt∗

= −y∗ − c1x∗ + c3x
3
∗−

c5x
5
∗ − ξ(t∗),

RyCy ẏ∗ = x∗ + ay∗ − by3
∗,

(10)

where Cx = 30nF , Cy = 300nF , Rx = 1KΩ is the re-
sistance at the integrator A1 (R1 = R2 = R13 = R20 =
Rx = 1KΩ), Ry = 10KΩ is the resistance at the in-
tegrator A10 (R14 = R19 = Ry = 10KΩ), parame-
ter a is equal to the input value of the voltage Va at

the analog multiplier A14, b = 10(1 +
R17

R18
), c1 = 1,

c3 = 4(1 +
R5

R6
), c5 = 0.4

R7

R8
, ε =

RxCx

RyCy
. By the sub-

stitution t = t∗/R0C0, x = x∗/V0, y = y∗/V0, v = v∗/V0,
where R0C0 = RyCy = 3 milliseconds and V0 = 1 Volt,
Eq. (10) is reduced to Eq. (9) in the dimensionless vari-
ables x and y or to Eq. (5) in the paper in the dimen-
sionless variables y and v.

System (10) was studied for the following parameters:
ε = 0.01, a = 1.2, b = 100, c1 = 1, c3 = 9, c5 = 22. There
is also the noisy term in Eq. (10), generated by external
noise generator. The generator G2-59 is used, it produces
broadband Gaussian noise, whose spectral density is al-
most constant in the frequency range 0 – 100 kHz. In
this frequency range noise can be approximated by white
Gaussian. It’s intensity, D′, can be measured from the
power spectral density of the noise generator signal. The
noise intensity D′ is related to dimensionless D used in
the paper as D = D′/(R0C0).

FIG. 5: Scheme of the experimental setup.
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