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HIGHER THEORIES OF ALGEBRAIC STRUCTURES

TAKUO MATSUOKA

Abstract. The notion of (symmetric) coloured operad or “multicategory”
can be obtained from the notion of commutative algebra through a certain
general process which we call “theorization” (where our term comes from an
analogy with William Lawvere’s notion of algebraic theory). By exploiting the
inductivity in the structure of higher associativity, we obtain the notion of “n-
theory” for every integer n ≥ 0, which inductively theorizes n times, the notion
of commutative algebra. As a result, (coloured) morphism between n-theories
is a “graded” and “enriched” generalization of (n − 1)-theory. Theorization
is moreover, a generalization of the process of categorification in the sense of
Louis Crane, and the inductive hierarchy of those higher theories extends in
particular, the hierarchy of higher categories. In a part of low “theoretic”
order of this hierarchy, graded and enriched 1- and 0-theories vastly generalize
symmetric, braided, and many other kinds of enriched multicategories and
their algebras in various places.

We make various constructions of/with higher theories, and obtain some
fundamental notions and facts. We also find iterated theorizations of more
general kinds of algebraic structure including (coloured) properad of Bruno
Vallette and various kinds of topological field theory (TFT). We show that a
“TFT” in the extended context can reflect a very different type of data from a
TFT in the conventional sense, despite close formal similarity of the notions.

This work is intended to illustrate use of simple understanding of the co-
herence for associativity.
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0. Introduction

0.0. Higher theories.

0.0.0. Among variations of the notion of operad, the symmetric, the planar and the
braided (see Fiedorowicz [9]) versions are particularly simple to describe, and are
very commonly worked with. Over such an operad, an algebra can be considered
respectively in a symmetric, associative and braided (see Joyal and Street [12])
monoidal category.

In general, each operad governs algebras over it, and this role is important. In
other words, the notion of operad is important since it gives a way to do universal
algebra in (e.g., symmetric) monoidal categories. For this role, we consider an
operad as analogous to Lawvere’s algebraic theory [14].

By visiting the conceptual origin of the notion of operad, one finds that the
notion of symmetric operad arises naturally through a certain process, which we
call “theorization” (inspired by Lawvere’s notion), from the notion of commutative
algebra. Moreover, the same process can be started from the notion of U-algebra for
any operad U in sets or groupoids, instead of the commutative operad Com = E∞,
to produce a new kind of algebraic structure which we call “U-graded” operad
(Section 0.2.0). It turns out that planar and braided operads are U-graded operads
where U = E1, E2 respectively.



HIGHER THEORIES OF ALGEBRAIC STRUCTURES 3

The notion of U-graded operad in groupoids has a deceptively simple descrip-
tion, namely, a U-graded operad in groupoids can be described as an operad X in
groupoids equipped with a morphism P : X → U . (X is a U-graded operad in sets if
the maps induced by P on the groupoids of operations have everywhere, homotopy
fibre with a discrete homotopy type. The details will be discussed in Remark 0.8.)
This might hide the notion of theorization from a non-obsessed mind. However, we
have come to think that theorization is an important notion.

One purpose of this long introductory section is to introduce the notion of the-
orization, which will be a generalization with its own mathematical content, of the
notion of categorification in the sense of Crane [7, 6] (about which the most in-
fluential pioneer may have been Grothendieck), but will be at least as informal a
notion as categorification. Even though a very precise understanding of the notion
of theorization is not technically necessary for the body of the article, at least a
rough understanding will be essential for understanding the ideas of our work. In
the body, we shall use the language of theorization to navigate the reader through
ideas.

Let us, however, start with a sketch of what we actually do in this work. After
that, the main purpose of this introduction will be to introduce the idea of the-
orization, see its role in our work, and describe more exactly what we do in the
body.

0.0.1. In this work, we introduce and study ‘higher order’ generalizations of (coloured)
operads, which we call “higher theories” of algebras. Higher theories will be ob-
tained by iterating the process of theorization starting from the notion of coloured
operad. Introduction of these objects leads to (among other things) a framework
for a natural explanation and a vast generalization of the fact which we formulate
below as Proposition 0.0. Let us describe it now.

The proposition will be about places where the notion of U-graded operad can be
enriched, but the reader may assume that U = E1 or E2 (see above). As another
notice, colours in operads will not play an essential role for a while, so we shall
consider just uncoloured operads everywhere till we start taking colours explicitly
into consideration.

For a symmetric monoidal category A, let us denote by OpU (A) the category
of U-graded operads in A. OpU is a category-valued functor on the 2-category
AlgCom(Cat) of symmetric monoidal categories, where Cat denotes the Cartesian
symmetric monoidal 2-category of categories (with a fixed limit for size).

For an operad U , let us mean by an (U ⊗ E1)-monoidal category, an asso-
ciative monoidal object in the 2-category of U-monoidal categories, or equiva-
lently, a U-monoidal object in the 2-category of associative monoidal categories.
Note that there is a forgetful functor AlgCom

(
Cat

)
→ AlgU

(
AlgCom(Cat)

)
→

AlgU
(
AlgE1

(Cat)
)
from the symmetric monoidal categories to (U ⊗ E1)-monoidal

categories, where we have used the canonical functor C → AlgU (C) exsisting for
every coCartesian symmetric monoidal 2-category C (namely, a 2-category C closed
under the finite coproducts, made symmetric monoidal by the finite coproduct oper-
ations) obtained by letting every operation on a given object of C be the codiagonal
map of the object.

The formulation of the proposition is as follows. (See Remark 0.1 for a technical
point.)

Proposition 0.0. For every symmetric operad U , the functor OpU on AlgCom(Cat)
has an extention to AlgU

(
AlgE1

(Cat)
)
(in a manner which is functorial in U).

The meaning of Proposition is that there is a natural notion of U-graded operad
in every (U ⊗ E1)-monoidal category, such that the notion of U-graded operad
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in a symmetric monoidal category A coincides naturally with the notion of U-
graded operad in the (U ⊗E1)-monoidal category underlying A. Our definition will
generalize the familiar notions of

• associative algebra in a associative monoidal category,
• planar operad in a braided monoidal category,
• braided operad in a E3-monoidal infinity 1-category

(in addition to vacuously, the notion of symmetric operad in a symmetric monoidal
category).

Remark 0.1. In order to actually have these examples, Proposition needs to be
interpreted in the framework of sufficiently high dimensional category theory. (In-
finity 1-category theory is sufficient.) However, let us not emphasize this technical
point in this introduction, even though our work will eventually be about higher
category theory.

Remark 0.2. The author has unfortunately failed to find a reference for Proposition
as stated, or any generalization of it in the literature. A positive is that we have
found that natural ideas lead to vast generalization of Proposition, even though
this does not relieve our failure of attribution.

In fact, we introduce in this work much more general notion of “grading”, gener-
ally for higher theories, and find quite general but natural places where the notions
of graded higher theory can be enriched. An explanation of Proposition 0.0 from
the general perspective to be so acquired, will be given in Section 0.6.1. In fact,
all of these will result from extremely simple ideas, which we would like to describe
with their main consequences.

0.0.2. Our starting point is the idea that an operad and more generally, a coloured
operad or “multicategory” (see Lambek [13] or Section 1.1.2) is analogous to an
algebraic theory for its role of governing algebras over it. We extend this by defining,
for every integer n ≥ 0, the notion of n-theory, where a 0-theory is an algebra
(commutative etc.), a 1-theory will be a multicategory (symmetric etc.), and, for
n ≥ 2, each n-theory comes with a natural notion of algebra over it, in such a
way that an (n− 1)-theory coincides precisely with an algebra over the terminal n-
theory, generalizing from the case n = 1, the fact that, e.g., a commutative algebra
is an algebra over the terminal symmeric multicategory Com.

This will be realized by defining an n-theory as a theorized form of an (n − 1)-
theory, where the theorization we consider is a “coloured” version of it. Theorization
in the coloured sense, of commutative algebra, will be symmetric multicategory,
and in general, coloured theorization generalizes categorification in the same way
as how symmetric multicategory generalizes symmetric monoidal category, i.e., the
standard categorification of commutative algebra. (Details will be seen in Sections
0.3, 0.4.)

In particular, the hierarchy of n-theories as n varies, contains the hierarchy of
n-categories or iterated categorifications of category, as in fact a very small part of
it. Quite a variety of other hierarchies of iterated categorifications, such as operads
in n-categories and so on, also form very small parts of the same hierarchy.

Importance of these “higher theories” lies in the significance of the notion of
n-theory, to be revealed in this work, to our understanding of (n− 1)-theories, and
hence of 0-theories or algebras in fact, by induction. Indeed, the notion of algebra
over an n-theory naturally generalizes the notion of (n− 1)-theory, and one impor-
tant role of an n-theory is to govern algebras over it. In another important role, an
n-theory provides a place in which one can consider (n − 1)-theories. Namely, an
n-theory allows one to enrich the notion of (n− 1)-theory (including the “graded”
one) along it.
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These two points can actually be combined into one expression that a graded
and enriched (n − 1)-theory is a generalized (i.e., “coloured”) functors between
n-theories. We shall see these points later, but in summary, higher theories are
important since an (n− 1)-theory can be understood as closely similar to a functor
of n-theories.

In this work, we solve difficulties for iteratively theorizing the notion of algebra
(see Sections 0.3, 0.6 for more on this) in a fruitful manner as described, and then
study fundamental notions and basic facts about higher theories. In particular, we
investigate relationship among various mathematical structures related to these ob-
jects, as well as do and investigate various fundamental constructions. See Sections
0.6 and 0.7 in particular.

Remark 0.3. While algebraic theory in Lawvere’s sense is about a kind of algebraic
structure which makes sense in any Cartesian symmetric monoidal category, the
notion of algebra over an n-theory makes sense (in particular) in any, e.g., symmet-
ric, monoidal category. In this work, we only consider kinds of algebraic structure
which are definable at least in every symmetric monoidal category.

It has not been clear whether there is an analogous hierarchy starting from
Lawvere theory. Possible iterated categorifications of Lawvere’s notion are algebraic
theories enriched in n-categories, but we are looking for a larger hierarchy than
iterated categorifications.

An interesting consequence of the existence of the hierarchy of higher theories
is that, by considering an algebra over a non-terminal higher theory, an algebra
over such a thing, and so on, we obtain various exotic new kinds of structure, all
of whom can nevertheless be treated in a unified manner. These structures include
the hierarchy of n-theories for every kind of “grading”, specified by a choice of a
(trivially graded) higher theory U (and can in fact be exhausted essentially by all
of these). The adjectives “commutative” or “symmetric” above refer to this choice
(the choice being the “trivial” grading in these cases, to be specific). Hierarchies
in different gradings are related to each other in some specific way which will be
clarified in Section 3. (See Sections 0.6, 0.7 for a sketch.)

We expect that higher theories would lead to new methods for studying algebra,
generalizing use of operads and multicategories, which are just the second bit, com-
ing next of the algebras, in the hierarchy of higher theories. Moreover, the existence
of a hierarchy of iterated theorizations can be asked more generally, starting from
much more general kinds of “algebraic” structure than we have talked about so
far. Our construction of the hierarchy of n-theories (already of various kinds) may
be showing the meaningfulness of such a question, and this may be our deepest
contribution at the conceptual level.

The author indeed expects a similar hierarchy to exist starting from a more
general kind of algebraic structure which can be expressed as defined by an “asso-
ciative” operation. Indeed, at the heart of our method is a technology of producing
from a given kind of associative operation, a new kind of associative operation,
which is based on fundamental understanding of the higher structure of associativ-
ity.

Indeed, even though we shall discuss in this introduction only higher theoretic
structures related to algebras over multicategories, we shall also consider in Section
5, a modest generalization involving higher theoretic structures related to some
algebraic structures in which the operations may have multiple inputs and multiple
outputs, such as various versions of topological field theories.



6 MATSUOKA, TAKUO

Remark 0.4. A similar method also leads to a new model [17] for higher category
theory, including a model of “the infinity infinity category of infinity infinity cat-
egories” (given a limit for the size). This will not excessively be surprising since
higher theory will be a more general kind of structure than higher category; we
have already mentioned that the hierarchy of n-theories contains the hierarchy of
n-categories.

This new model moreover has a certain convenient feature which has not been
realized on any other known model (even of infinity 1-categories). Even thought
this is unfortunately not a convenient place for describing the mentioned feature,
other features of the model include that

• it is “algebraic” in the sense that the composition etc. are given by actual
operations, and

• its construction employs only a tiny amount of combinatorics, and no model
category theory, topology or geometry.

0.0.3. While the main focus of our work will be on higher theories, Proposition
0.0 can be considered as an instance in a low “theoretic” level of algebra, of a
consequence of this work.

0.1. The conceptual origin of the notion of multicategory.

0.1.0. Theorization will be a process which produces a new kind of algebraic struc-
ture from a given kind. In order to start a discussion of the idea of theorization,
we would like to be able to talk about kinds of algebraic structure.

An example of a kind of structure definable in a symmetric monoidal category,
is a symmetric monoidal functor from a fixed symmetric monoidal category, say B.
Thus, let us mean by a B-algebra in a symmetric monoidal category A, simply a
symmetric monoidal functor F : B → A. It is a ‘representation’ of B in A (or an
A-valued point of the ‘affine scheme’ SpecB).

Concretely, by describing the structure of B using a collection of generating
objects and generating maps (as well as decomposition of each of the source and
the target of every generating map into a monoidal product of generating objects),
one may obtain a presentation of the form of the structure of a B-algebra in terms
of structure maps and equations satisfied by the structure maps. For example, the
coCartesian symmetric monoidal category B = Fin of finite sets, is generated under
the symmetric monoidal multiplication operations ⊗ = ∐, by the terminal object
∗, and one map ∇S : ∗

⊗S → ∗ for each finite set S. It follows that the data of a
symmetric monoidal functor F : Fin→ A can be described as the object A = F (∗)
of A equipped with one operation F (∇S) : A

⊗S = F (∗⊗S) → A for each finite set
S, satisfying suitable equations resulting from the relations one has in Fin. Thus,
we have obtained a presentation of the form of the structure of a Fin-algebra, as
the form of data for defining a commutative algebra.

For a general B, if objects of B are generated under the monoidal multiplica-
tion by a family b = (bλ)λ∈Λ of objects, then a B-algebra defined by a symmetric
monoidal functor F : B → A, can be considered similarly as structured on the family
Fb of objects of A, by structure maps satisfying equations imposed by the structure
of B. For example, the universal B-algebra defined by id : B → B, is structured on
the family b of objects of B, where the structure maps will be the chosen generating
maps of B.

Algebra over a symmetric monoidal category in our sense, is simply the most
obvious formalization of kind of structure which can be presented as defined by
structure maps satisfying some specific equations. Lawvere’s theory is based on
this idea. Indeed, a multi-sorted, i.e., “coloured”, Lawvere theory is essentially
a Cartesian symmetric monoidal category B which is given a nice collection of
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generating objects. A PROP [16] or “category of operators” [3], with colours [4], is
similar.

An algebra over a multicategory is also covered. Indeed, given a multicategory
U , one can freely generate from it a symmetric monoidal category, say LU , so a
U-algebra in a symmetric monoidal category A will be equivalent as data to an
LU-algebra in A.

Even though we are not particularly interested in the notion of algebra over a
general symmetric monoidal category, this can be the starting point for our purpose
of finding kinds of algebraic structure which generalize nicely. For example, recall
that the basic idea of categorification is that a categorification of a certain kind of
algebraic structure, is a kind of structure on category obtained by replacing struc-
ture maps by functors, and structural equations by suitably coherent isomorphisms,
forming a part of the structure. We have a canonical categorification of B-algebra,
which we shall call a B-monoidal category, and it is simply a symmetric monoidal
functor B → Cat, where Cat denotes the Cartesian symmetric monoidal category
enriched in groupoids, of categories (with a fix limit for size), where for X ,Y ∈ Cat,
we let MapCat(X ,Y) be the groupoid formed by functors X → Y and isomorphisms
between them.

Remark 0.5. This is a technical remark.
Here and everywhere else in this introduction, a functor which we consider to a

category enriched in groupoids (or in categories) is a functor in the usual “weak-
ened” sense (which is sometimes called a pseudo-functor, see Grothendieck [11,
Section 8], [10]). Even though we shall not need to look into the details of this till
we enter the body, a symmetric monoidal structure on such a functor can also be
defined in an appropriate manner.

In fact, it should be understood that every categorical term in this introduction
is used in the similarly appropriate sense when there is enrichment of the relevant
categorical structures in groupoids or categories, where erichment itself should be
understood to be done in the standard “weakened” manner. See Bénabou [1].
(The reader who is comfortable with homotopy theory may instead replace all
sets/groupoids with infinity groupoids, and understand everything as enriched in
infinity groupoids, and this will trivialize the process of categorification since infinity
1-categories (of size up to a fixed limit) are already forming a (larger) infinity 1-
category.)

However, we notify the reader of a circularity here. Namely, we have used one
particular categorification of the notion of commutative algebra, i.e., the notion
of symmetric monoidal category, to categorify kinds of structure which are similar
to commutative algebra. Even though the result obtained is not bad, one may
not be able to expect that the same framework would also be the most useful for
categorifying very different kinds of structure.

For example, for categorification of the notion of multicategory, a method which
takes account of the categorical dimensionality appears to lead to a cleaner and
less redundant presentation of the result than the method of reformulating the
notion of multicategory as algebra over a symmetric monoidal category, and then
applying the previous definition. (It appears simpler to treat a multicategory as
an algebra over a categorically 2-dimensional algebraic structure, e.g., the terminal
“2-theory”, than to treat it as an algebra over a multicategory or a symmetric
monoidal category, which can naturally be seen as 1-dimensional structures.)

Therefore, the general idea which we have described of a kind of algebraic struc-
ture and its categorification, seems more important for practical purposes, than
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precise but limited formulations of the notions in particular contexts, such as B-
algebra and B-monoidal category. Nevertheless, we hope that the examples above
was clarifying on our view on algebraic structures.

Finally, we remark that, in order to consider a categorification of the notion of B-
algebra, the target of the symmetric monoidal functor on B to define a categorified
structure, did not need to be Cat. Namely, the notion of symmetric monoidal
functor B → A, whereA is any symmetric monoidal category enriched in groupiods,
formalizes the idea of replacing structural equations for the structure of a B-algebra
(in some presentation of the notion) by coherent isomorphisms.

Therefore, it seems reasonable to expect in general, that a meaningful categori-
fication of a kind of structure definable in a symmetric monoidal category, should
be a kind of structure definable in any symmetric monoidal category A enriched in
groupoids. In fact, the right way to consider categorification is perhaps as about
enrichment in groupoids, and the resulting weakening in a coherent manner, of the
structure.

While the expectation above is indeed fulfilled in the concrete cases which we
consider in this work, we shall keep concentrating on the case A = Cat of categori-
fied structures for the time being, since this will keep things simpler. One relation
between the mentioned general form of categorification and the idea of theorization,
will be seen in Section 0.3. On the other hand, for the kinds of structure which
we theorize in this work, the general form of categorification can be understood in
any case, as a specific kind of structure residing in a suitably associated theorized
structure, leaving us no need to consider more general situation than A = Cat in
this early stage. See e.g., Corollary 2.12 (or Theorem 2.10). For example, the case
“n = 0” of this result applies to the categorified form of the notion of B-algebra.

0.1.1. In order to get to the idea of theorization, we first recall that a basic feature
expected of the categorified structure is that, if a category C is equipped with a
categorified form of a certain kind of algebraic structure, then the original, uncate-
gorified form of the same structure should naturally make sense in C. For example,
if C is given a monoidal structure over a symmetric monoidal category B, then a
“B-algebra” in C means a lax B-monoidal functor to C from the unit B-monoidal
category.

However, for some kinds of algebraic structure, we have more general instances
of this phenomenon. In a symmetric monoidal category for example, the notion
of algebra makes sense over any symmetric operad or multicategory, and the same
moreover makes sense also in any symmetric multicategory. Indeed, an algebra
over a symmetric multicategory U in a symmetric multicategory V , is simply a
morphism U → V . Similarly, the notion of algebra over any planar multicategory
makes sense in any associative monoidal category, and more generally, in any planar
multicategory in the same manner.

While the notion of associative monoidal category categorifies the notion of as-
sociative algebra, the process of theorization, which will be more general than the
process of categorification, will produce the notion of planar multicategory from
the notion of associative algebra, and symmetric multicategory from commutative
algebra. In general, theorization will produce from a given kind of algebraic struc-
ture, a new kind of algebraic structure generalizing its categorification, in such a
manner that the original notion of algebra reduces to the notion of algebra over the
terminal one among the theorized objects (meaning symmetric multicategories, for
commutative algebras, so generalizing the simple fact that an commutative algebra
is an algebra over the terminal symmetric multicategory).

Let us thus recall how one may naturally arrive at the notion of symmetric
operad, starting from the notion of commutative algebra (and we are suggesting
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that the same procedure will produce the notion of planar operad from the notion
of associative algebra, for example). Specifically, let us try to find the notion of
symmetric operad (in sets) out of the desire of generalizing the notion of commu-
tative algebra to the notions of certain other kinds of algebra which makes sense
in a symmetric monoidal category. Indeed, one of the most important roles of a
multicategory is definitely the role of governing algebras over it.

The way how we generalized the notion of commutative algebra is as follows.
Recall, as we have already seen, that the structure of a commutative algebra on an
object A of a symmetric monoidal category, was given by a single S-ary operation
A⊗S → A for every finite set S which, collected over all S, had appropriate consis-
tency. We get a generalization of this by allowing not just a single S-ary operation,
but a family of S-ary operations parametrized by a set prescribed for S. This “set
of S-ary operations” for each S, is the first bit of the data defining an operad in
sets. Having this, we next would like to compose these operations just as we can
compose multiplication operations of a commutative algebra, and the composition
should have appropriate consistency. A symmetric multicategory is simply a more
general version of this, with many objects, or “colours”. (We shall take a look at
colours in a theorized structure in Section 0.3.1.)

Remark 0.6. In this formulation of an operad, part of the composition structure
makes the set of S-ary operations functorial with respect to bijections of “S”. This
gives the “action of the symmetric group” in another common formulation of an
operad.

A similar procedure can be imagined once a kind of “algebraic” structure in a
broad sense is specified as a specific kind of system of operations, in place of com-
mutative or associative algebra. Inspired by Lawvere’s notion of algebraic theory,
we call a multicategory also a (symmetric) 1-theory, and then generally call the-
orization, a process similar to the process above through which we have obtained
1-theories from the notion of commutative algebra. The result of such a process
will also be called a theorization. Thus, the notion of 1-theory is a theorization
of the notion of commutative algebra. We shall see in Sections 0.3 and 0.4, how the
process of theorization indeed generalizes the process of categorification.

Remark 0.7. Recall that operad was a kind of structure which made sense in any
symmetric monoidal category, the meaning of which for us was that the form of data
to define an operad, could be presented in terms of structure maps and structural
equations. In general, it seems reasonable to expect that a meaningful theorization
of a given kind of algebraic structure should have a similar presentation, and in
particular, should make sense in any symmetric monoidal category A. This ability
of presentation will be important when we would like to theorize a theorized kind
of structure once again, even though we shall till that time, stick normally to the
case A = Set in order to keep our exposition simpler.

0.2. Theorization of algebra.

0.2.0. As the simplest example of a theorization process next to the one which
we have seen in the previous section, let us consider theorization of the notion of
U-algebra for a symmetric operad U in sets (see Remark 0.8 below for the case of
an operad in groupoids). By using the same method as in the previous section, we
shall obtain a theorization of the notion of U-algebra, which we call U-graded operad
(in the uncoloured version). Let us assume for simplicity, that U is an uncoloured
operad.

Recall that the structure of a U-algebra on an object A of a symmetric monoidal
category, is defined by an associative action on A, of operations in U . If u is an
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S-ary operation in U for a finite set S, then it should act as an S-ary operation
A⊗S → A. Now, to theorize the notion of U-algebra given by an action of the
operators of U , means to modify the definition of this structure by replacing an
action of every operator u in U , by a choice of the set “of operations of shape (so
to speak) u”. We call an element of this set an operation of degree u.

Thus the data of a U-graded operad X in sets should include, for every operation
u in U , a set whose element we shall call an operation in X of degree u. If the
operation u is S-ary in U , then we shall say that any operation of degree u in X
has arity S.

There should further be given a consistent way to compose the operations in X
which moreover respects the degrees of the operations. These will be a complete
set of data for a U-graded operad X in sets.

There is also a coloured version of this, which we call U-graded 1-theory, mul-
ticategory or coloured operad, and this is a theorization of U-algebra in a more
general sense. From the general discussions of theorization in Sections 0.3 and 0.4,
U-graded multicategory will turn out to be also a generalization of U-monoidal
category, generalizing the way how symmetric multicategory generalizes symmetric
monoidal category.

0.2.1. By reflecting on what we have done above, we immediately find that a U-
graded operad in sets is in fact exactly a symmetric operad Y in sets equipped
with a morphism P : Y → U . The relation between X above and Y here is that
an S-ary operation in Y is an S-ary operation in X of any degree. The map P

maps an operation in Y to the degree which the operation had when it was in X .
Conversely, given an S-ary operation u in U , an operation in X of degree u is an
S-ary operation in Y which lies over u. For example, U , lying terminally over itself,
indeed corresponds in this manner, to the terminal U-graded operad, which has
exacly one operation of each degree.

Remark 0.8. In the case where U is an operad in groupoids, the set of S-ary opera-
tions in X of degree u should be functorial in u on the groupoid of S-ary operations
in U . The S-ary operations in Y will then be the corresponding groupoid pro-
jecting to the groupoid of S-ary operations in U (obtained by the Grothendieck
construction [11, Section 8] or the (homotopy) colimit in groupoids). For U = E2,
the mentioned functoriality corresponds to the action of the pure braid groups in
a braided operad. See Fiedorowicz [9].

In general, a symmetric operad Y in groupoids equipped with P : Y → U , cor-
responds to a U-graded operad X in groupoids. X is in sets if for every operation
u in U , the groupoid of operations in X of degree u, obtained as the (homotopy)
fibre over u in Y, is a homotopy 0-type, namely, a groupoid in which every pair of
maps f, g : x

∼
−→ y between the same pair of objects are equal.

Remark 0.9. Inclusion of operads in groupoids in the discussion leads to a subtle
situation. For example, if U = E2, then a U-algebra in a symmetric monoidal
category is simply a commutative algebra. Therefore, we are considering both E2-
graded multicategory and symmetric multicategory as theorizations of commutative
algebra. The crucial difference between the two theorizations is between the cate-
gorifications being generalized, namely, braided monoidal category and symmetric
monoidal category.

Similarly, a U-graded multicategory enriched in sets is a symmetric multicategory
in which multimaps are graded by multimaps of U . In other words, it is just a
symmetric multicategory (enriched in sets) equipped with a morphism to U . Now,
given a U-graded multicategory X , an X -algebra in a U-graded 1-theory Y will be
just a functor X → Y of U-graded 1-theories.
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Example 0.10. A multicategory graded by the initial operad Init, is a multicate-
gory with only unary multimaps, which is equivalent as data to a category.

A similar theorization of the notion of U-algebra, can be defined for a coloured
symmetric operad U enriched in sets, and a U-graded 1-theory enriched in sets will
be again a symmetric multicategory X (enriched in sets) equipped with a functor
to U . In other words, X will be such that not only multimaps in it are graded, but
objects are also graded by objects of U . For an object u of U , an object of X of
degree u, will be just an object of X lying over u.

Example 0.11. Recall, as noted in Example 0.10, that a category C can be con-
sidered as a symmetric multicategory having only unary maps. If we consider C
as a multicategory in this way, then a C-graded 1-theory enriched in sets is a cat-
egory equipped with a functor to C, and this theorizes C-algebra, or functor on C
(which one might also call a left C-module). On the other hand, a categorification
of C-algebra is a category valued functor C → Cat, and among the theorizations,
categorifications correspond to op-fibrations over C.

Suppose given a category C and two functors F ,G : C → Cat, corresponding
respectively to categories X ,Y lying over C, mapping down to C by op-fibrations.
Note that, by Example 0.11, F and G are categorified C-modules, and X and Y as
categories over C, are the corresponding C-graded 1-theories.

In this situation, the relation between maps F → G and maps X → Y, is as
follows. Namely, a functor φ : X → Y of categories over C (see Remark 0.5, to
be technical), corresponds to a map F → G if and only if φ preserves coCartesian
maps, and an arbitrary functor φ over C only corresponds to a lax map F → G
(defined with respect to the standard 2-category structure on Cat).

A similar pattern can be observed on theorization in general (Theorem 2.10).

0.3. Theorization in general.

0.3.0. For the idea for theorization of a general algebraic structure, the notion of
profunctor/distributor/bimodule is useful. For categories C,D, a D–C-bimodule
(in the category Set of sets) is a functor Cop × D → Set. The category of D–C-
bimodules contains the opposite of the functor category Fun(C,D) as a full subcat-
egory, where a functor F : C → D is identified with the bimodule MapD(F−,−).
Let us say that this bimodule is corepresented by F . By symmetry, the category
of bimodules also contains Fun(D, C). However, for the purpose of theorization, we
treat C and D asymmetrically, and mostly consider only corepresentation of bimod-
ules. Bimodules compose by tensor product, to make categories form a 2-category,
extending the 2-category formed with (opposite) functors as 1-morphisms, by the
identification of a functor with the bimodule corepresented by it.

0.3.1. We would like to consider the general idea of theorization, while having in
mind as an example, the case of the notion of B-algebra for a symmetric monoidal
category B.

We shall find that theorization is in fact more general than lax (or “op-lax”; see
below) categorification, where, by a lax categorification of a kind of structure, we
mean a relaxation of a specific categorification of the same kind of structure in the
sense that it is a specific generalization of the specified categorification such that,
in a lax categorified structure, a non-invertible map (going in a specified direction)
is allowed in place of every one of some specified structure isomorphisms in some
presentation of the categorified form of structure of the kind. Let us denote by
Cat, the 2-category of categories and functors. Then the notion of B-algebra has a
canonical lax categorification, which we shall call lax B-monoidal category, where a
lax B-monoidal category is by definition, a lax functor B → Cat which is given
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data of (not lax) commutation with the symmetric monoidal structures. In the case
where B is Fin, this coincides with the standard notion of lax symmetric monoidal
category.

There is another lax categorification of the notion of B-algebra, which we shall
call op-lax B-monoidal category. An op-lax B-monoidal category is similar to a
lax B-monoidal category except that the laxness of the functor B → Cat should
be opposite, namely, the non-invertible structure maps should go in the opposite
direction. In other words, it should be an symmetric monoidal op-lax functor in
one of the common conventions, in which a lax functor 1 → Cat from the unit
category 1, is a category equipped with a monad on it (see Benabou [1]).

The idea of theorization which we have described in Sections 0.1, 0.2, can now
be expressed as that it is a virtualization of an op-lax categorification, where by a
virtualization of op-lax B-monoidal structure, or any kind of structure as far as
the following makes sense, we mean a specific generalization of the structure such
that, in a virtualized structure, non-corepresentable bimodules are allowed in place
of some specified structure functors. (Note here also that the structure maps on
bimodules should be understood to be in the opposite direction to the structure
maps on functors, owing to the contravariance of the corepresentation of bimodules
by functors.)

To be cautious, specification of a theorization of B-algebra for example, includes
specification of the notion of “structure functor” for B-monoidal structure, which
should at least include specification of a collection of generating objects of B. Specif-
ically, given a family b = (bλ)λ∈Λ of objects of B which generates all objects under
the monoidal multiplication, we consider for a family X = (Xλ)λ of categories, a
symmetric monoidal functor F : B → Cat with Fb = X as a structure on X , and
then see a theorization as a more general kind of structure which we can consider
on X (although a slightly more precise understanding will be that the structure
is on the collection of colours to be described shortly, as will be concluded from
the discussions of Section 0.3.3 below). In this manner, a theorized structure is
generalizing B-monoid (i.e., B-algebra in sets) considered as a kind of structure on
similar family of sets.

For example, theorization of algebra over a multicategory U , can be considered
as the case where B is freely generated by U , and the generating objects which we
choose will be the indecomposable objects, i.e., the objects which come from U .
See Section 0.3.2 below.

Note in particular, that the idea above does not determine the theorization from
a categorification uniquely, so there is a question on which theorization if any, we
would like. In the case of algebra over a multicategory U , we achieve the following
through theorization. Firstly, our categorification is U-monoidal category, and this
already allows us to define a U-algebra internal in a U-monoidal category A as a lax
U-monoidal functor 1 → A, where 1 denotes the unit U-monoidal category. Now,
through the process of theorization, this notion of U-algebra becomes generalized
to the notion of functor of U-graded multicategories. See Example 0.17.

In general, given a specific kind of structure in a specific context, and some
reasonable categorification of it, we would like a similar extension of the notion
through theorization. It is a theorization which allows this that we would like, and
existence of such a theorization appears to be usually a non-trivial question.

Another thing to note is that the notion of theorization which we have formulated
is the “coloured” version which we did not discuss in detail in Section 0.1 or 0.2. A
colour in the theorized structure is an object of a category in the underlying family
of categories, e.g., (Xλ)λ∈Λ above. This generalizes the colours in a multicategory.
See Section 0.3.2 below.
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To be more detailed, in the case discussed above, one can consider an object of
Xλ as a colour having degree λ.

Remark 0.12. As mentioned in Remark 0.7, it is better to have a presentation of
the form of data for a theorized structure, so in particular, we have a definition of
a theorized structure enriched in a symmetric monoidal category. In practice, it is
perhaps not difficult usually, to write down a presentation by looking at the process
of the theorization carefully. Essentially, one simply needs to run the virtualization
process using the enriched version of bimodules, even though, to be rigourous, there
is a minor issue here that bimodules in a general symmetric monoidal category do
not necessarily compose, so we need to work actually in a 2-theory formed by
enriched categories and bimodules. However, we shall not worry about this in this
introduction, and shall mainly consider only unenriched theorized structures.

In the concrete situations which we treat in the body, another, simpler method
for theorization (which demands more concrete data as an input) will in fact give
a simpler solution for enriching the theorized structure in a symmetric monoidal
category, as will be seen in Section 0.3.4.

0.3.2. For a multicategory U , let us try to interpret U-graded multicategory as a
“theorization” of U-algebra in the defined sense.

Firstly, we consider the structure of a U-algebra as a structure on family of
objects (of a symmetric monoidal category) indexed by the objects of U . Namely,
we consider a U-algebra A in a symmetric monoidal category A, as consisting of

• for every object u ∈ ObU , an object A(u) of A,
• for every finite set S and an S-ary operation f : u → u′ in U , where u =
(us)s∈S is a family of objects of U indexed by S, a map Af : A(u)→ A(u′)
in A, where A(u) :=

⊗
s∈S A(us),

and then consider the latter as a structure on the family ObA :=
(
A(u)

)
u∈ObU

of objects of A. The structure is thus an action of every multimap f in U on the
relevant members of the family ObA.

We would like next to obtain from a U-graded multicategory X , a family similar
to ObA above, of categories, to underlie X . For this, we take the family ObX :=
(Xu)u∈ObU , where Xu denotes the category formed by the objects of X of degree
u, and maps (i.e., unary multimaps) between them of degree idu.

The rest of the structure of X can then be considered as a lax associative action
of the rest of the multimaps f in U , on these categories Xu, each f acting as the
bimodule formed by the multimaps in X of degree f , so X can be interpreted
as obtained by putting a theorized U-algebra structure on the family ObX . (See
Section 0.3.3 below to be more precise.)

Remark 0.13. Lax associativity of an action through bimodules generalizes op-lax
associativity of an action through functors.

If a U-graded multicategory X is seen as a theorized structure in this manner,
then a colour in this theorized structure is an object of a category Xu, where u is
any object of U . In other words, it is an object of the multicategory X .

0.3.3. We would like to give a minor and technical remark.
For a multicategory U , a natural theorization which our definition expects of U-

algebra would appear to be lax U-algebra in the 2-category mentioned above formed
by categories and bimodules between them. (Note Remark 0.13.) This does not
coincide with our desired theorization, which is U-graded multicategory.

Indeed, for an object u of U , if a category, say Xu, is associated to u, and
the identity map of u acts on Xu in our 2-category of bimodules, then this acton
gives another category, say Yu, with objects the objects of Xu, and a map, say
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F : Xu → Yu, of the structures of categories on the same collection of objects.
However, the theorization in the idea described in the previous sections, is not
where idu acts on an already existing category Xu, but where the structure of Xu
itself as a category, is the action of idu.

In other words, we usually do not just want to consider a relaxed structure in
the 2-category of categories and bimodules, but we would further like to require
that the resulting map corresponding to F in the example above, associated to each
member of the underlying family of categories, to be an isomorphism.

Remark 0.14. In the example of Section 0.3.2, there is another category structure
on the objects of Xu, in which a map is a (unary) map in X of degree an arbitrary
endomorphism of u in U , rather than just the identity. This clearly does not
interfere with the remark here.

0.3.4. For a final remark, for the kinds of structure which we know how to theorize,
we actually have a more economical description of the theorizations than we have
given above. This uses the construction of a 2-category by ‘categorically delooping’
an associative monoidal category A. See Bénabou [1, 2.2] or the review in Section
1.1.2. Note that, if A is a symmetric monoidal category, then the resulting 2-
category, which we shall denote by BA, inherits a symmetric monoidal structure.

To turn to the description of the theorization, for the case of the notion of
algebra over a multicategory U for example, a U-graded multicategory enriched
in a symmetric monoidal category A, can be described as a coloured version of a
lax U-algebra in the symmetric monoidal 2-category BA. We refer the reader to
Section 1.1.2 for the case U = Com of this. In general, it will be seen in Section
3.2.3 that, for an n-theory U , our theorization of U-algebra will, in the A-enriched
form, be an (“n-tuply”) coloured lax U-algebra enriched in BA.

This idea of coloured lax structure enriched in BA, is actually less redundant than
the idea of theorization which we have expressed above for a general situation, and
does not produce the issue discussed in Section 0.3.3, either. This idea is the one
along which we actually theorize kinds of algebraic structure which we can theorize
so far. See the definitions in the body. In particular, the simplest case will be
observed explicitly in Proposition 2.9.

However, compared to our previous formulation of the idea of theorization, the
formulation of the notion of “coloured lax structure” enriched in a symmetric
monoidal 2-category, would rely more on the manner how we generate the relevant
structure (e.g., the symmetric monoidal category B for the case of “B-algebra”).
Since the author does not know what exact data is needed for theorizing a kind of
“algebraic structure” in general, he does not know a general definition of a coloured
lax structure. To formulate this notion for a given kind of structure, seems essen-
tially equivalent to theorizing the kind of structure.

Remark 0.15. On the other hand, we have an ‘uncoloured theorization’ as soon as
we have a lax version of the kind of structure. However, unless we can further find
a reasonable common generalization of this uncoloured “theorization” and the cat-
egorification, there might not be a reasonable notion of algebra over an uncoloured
“theorized” object of the kind.

0.4. A basic construction. The idea of theorization was such that a categorified
structure was an instance of the theorized form of the same structure. Let us
suppose given a kind of structure and a theorization of it. Then, for a categorified
structure X , let us denote by ΘX , the theorized structure corresponding to X .
Concretely, ΘX is obtained by replacing as needed, structure functors of X with
bimodules copresented by them. The construction Θ generalizes the usual way
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to construct a multicategory from a monoidal category. Let us say that ΘX is
represented by X .

Remark 0.16. Recall that a theorized structure in general could have colours. This
flexibility is playing an important role here. Indeed, if the categorified structure X
is structured on a family, say ObX = (Obλ X )λ∈Λ of categories, where Λ denotes a
collection which is suitably specified in the chosen presentation of the form of the
structure in question, then any object of Obλ X for any λ ∈ Λ, is being a colour in
the theorized structure ΘX .

Thus the coloured version of the notion of theorization is indeed necessary in
order for every categorified structure to be an instance of a theorized structure.

As in the case of monoidal structure, Θ is usually only faithful, but not full.
Indeed, for (families of) categories X ,Y, each equipped with a categorified struc-
ture, a morphism ΘX → ΘY is equivalent as data to a lax morphism X → Y. See
Section 2.5.3.

Example 0.17. Let U be a symmetric multicategory, and let A be a U-monoidal
category. Then a U-algebra in A, namely, a lax U-monoidal functor 1→ A, where 1
denotes the unit U-monoidal category, is equivalent as data to a functor Θ1→ ΘA
of U-graded multicategories, which is by definition, a U-algebra in ΘA.

Remark 0.18. The functor Θ has a left adjoint (which in fact can be described in
a concrete manner). In the example above, U-algebra in A is thus equivalent to a
U-monoidal functor to A from the U-monoidal category freely generated from the
terminal U-graded 1-theory Θ1 (which thus has a concrete description).

0.5. Theorization of category.

0.5.0. For illustration of the general definition, let us describe a natural theoriza-
tion of the notion of category, which we shall call “categorical theory” here.

In order to define this, we first note that category can be understood as a kind of
structure on family of sets. Indeed, for a category X , there is the family MapX :=(
MapX (x, y)

)
x,y

of sets of morphisms, parametrized by pairs x, y of objects of X ,

so the structure of X can be understood as defined on this family MapX of sets,
by the composition operations. Moreover, this presentation immediately leads to
a generalization of the notion to the notion of category enriched in a symmetric
monoidal category.

Now, if we choose and fix a collection as the collection of objects for our (enriched)
categories, then 2-category with the same collection of objects can be considered
as a categorification of those categories. Categorical theory will be a theorization
of category whose associated categorification is 2-category.

The description of a categorical theory (enriched in sets) is as follows. Firstly,
it, like a 2-category (our categorification) has objects, 1-morphisms, and sets of
2-morphisms. 1-morphisms do not compose, however. Instead, for every nerve

f : x0
f1
−→ · · ·

fn
−→ xn of 1-morphisms and a 1-morphism g : x0 → xn, one has the

notion of (n-ary) 2-multimap f → g. The 2-morphisms, which were already
mentioned, are just unary 2-multimaps. There are given unit 2-morphisms and
associative composition for 2-multimaps, analogously to the similar operations for
multimaps in a planar multicategory.

A 2-category in particular represents a categorical theory, in which a 2-multimap
f → g is a 2-morphism fn◦· · ·◦f1 → g in the 2-category. Between two 2-categories,
a natural map of the represented categorical theories is not precisely a functor, but
is a lax functor of the 2-categories.

As we have also suggested, a categorical theory is also a generalization of a
planar multicategory. Indeed, planar multicategory was a theorization of associative
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algebra. The relation between the notions of planar multicategory and of categorical
theory, is parallel to the relation between the notions of associative monoid and of
category. Namely, categorical theory is a ‘many objects’ (or “coloured”) version of
planar multicategory, where the word “object” here refers to one at a deeper level
than the many objects which a multicategory (as a “coloured” operad) may already
have are at.

One thing one should note then, is that, while the 2-multimaps in a categor-
ical theory is generalizing the multimaps in a planar multicategory here, the 1-
morphisms in a categorical theory is generalizing the objects of a planar multicat-
egory, and no longer have the characteristic of operators like the 1-morphisms in a
category. Indeed, a 1-morphism in a categorical theory and an object of a planar
multicategory are both “colours”, and we have also mentioned earlier that there is
no operations of composition given for 1-morphisms in a categorical theory.

What we said above in comparison of the structures of a categorical theory and
of a planar multicategory, is that a categorical theory X has one more layer of
‘colouring’ under the 1-morphisms, given by the collection of the objects of X .

Example 0.19. Let A be an associative monoidal category. Then the categorical
theory corresponding to the planar multicategory ΘA, is represented by the 2-
category BA. (To be technical, the former categorical theory is “simply coloured”
in the sense that it has only one layer of colours, and it is equivalent to the ‘simply
coloured part’ at the base object, of the categorical theory ΘBA. See Section 2.6.4
for an explanation in a similar situation.)

Example 0.20. The “Morita” 2-category due to Bénabou [1] of associative al-
gebras and bimodules in a monoidal category A with nicely behaving colimits, is
well-defined as a categorical theory when A is more generally, an arbitrary planar
multicategory. There is a forgetful functor from this “Morita” categorical theory
to A considered as a categorical theory.

0.5.1. Following the general pattern about theorization, there is a notion of cat-
egory in a categorical theory, and, as an uncoloured version of it, monoid in a
categorical theory, which generalizes monad in a 2-category. A monad in a 2-
cateogry X was a lax functor to X from the unit 2-category (see Bénabou [1]),
which can also be considered as a map between the categorical theories represented
by these 2-categories. See Section 0.4. However, the latter is a monoid in the target
categorical theory ΘX by definition.

Example 0.21. Let C be a category enriched in groupoids, and let M be a monad
on C. Then there is a categorical theory as follows.

• An object is an object of C.
• A map x→ y is a map Mx→ y in C.
• Given a sequence of objects x0, . . . , xn and maps fi : Mxi−1 → xi in C

and g : Mx0 → xn, the set Mul(f ; g) of 2-multimaps f → g, is the set of
commutative diagrams

Mnx0 · · · xn

Mx0 xn

m

Mn−1f1 fn

=

g

in C (i.e., the set of isomorphisms filling the rectangle), where m denotes
the multiplication operation on M .

• Composition is done in the obvious manner.

A monoid in this categorical theory is exactly an M -algebra in C.
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More generally, a category in a categorical theory can be described as a coloured
version of a map of categorical theories. A basic example is a category in the
categorical theory obtained by considering a planar multicategory U as a categorical
theory. This is equivalent as data to a category enriched in the planar multicategory
U .

0.6. Iterating theorization.

0.6.0. In Section 0.5, we have theorized the notion of category by considering a
category as a structure on the family of sets consisting of the sets of maps. Recall
from Example 0.10 that a category was an ‘initially graded’ 1-theory. Section 0.3.2
shows thus that category is a theorization of Init-algebra, or bare, i.e., unstructured,
object. (It is not difficult to see in the similar manner, that the versions enriched
in a symmetric monoidal category, of the relevant notions also coincide.) For these
reasons, we shall call a categorical theory also an “Init-graded 2-theory”.

One can similarly consider the structure of a categorical theory as a structure on
the sets of its 2-multimaps, and then try to theorize the notion of categorical theory
after fixing the collections of objects and of 1-morphisms. It turns out that there is
indeed an interesting theorization in this case, which in particular generalizes the
notion of 3-category. One might call the resulting theorized object a categorical
2-theory or an initially graded 3-theory.

One might ask whether it is possible to iterate theorization in a similar manner
here, or starting from some specific additional structure, rather than ‘no structure at
all’. We should of course ask possibility of interesting theorizations. One condition
for this has been mentioned in Section 0.3.1. Other desirable things may include
abundance of natural examples, and reasonable properties.

In the case where the answer to the question is affirmative, just as the original
structure could be expressed as the structure of an algebra over the terminal object
among the (unenriched) theorized objects of the same kind, the theorization simi-
larly becomes the structure of an algebra over the terminal object among the twice
theorized objects, and so on, so all the structures can be described using their iter-
ated theorizations. Moreover, by considering an algebra over a non-terminal theory,
an algebra over it, and so on, one obtains various general structures, which can all
be treated in a unified manner.

The question asked above is non-trivial. However, we introduce the notion of n-
theory in this work, which will inductively be an interesting theorization of (n−1)-
theory. The hierarcy as n varies, of n-theories will be an infinite hierarchy of
iterated theorizations which extends the various standard hierarchies of iterated
categorifications, in particular, the hierarcy of n-categories in the “initially graded”
case.

While our higher theories will be in general a completely new mathematical
objects, we have already found very classical objects of mathematics among 2-
theories. Namely, while we have seen that a categorical theory was an “initially
graded” 2-theory, we have also noted in Section 0.5, that planar multicategories
were among categorical theories.

We have also seen non-classical objects among 2-theories in Section 0.5. Less ex-
otic examples of higher theories comes from the construction of Section 0.4. Namely,
a higher categorified instance of a lower theorized structure leads to a higher the-
orized structure through the iterated application of the construction Θ (details of
which can be found in Section 2.4). As an object, this is less interesting among the
general higher theories for the very reason that it is represented by a lower the-
ory. However, the functors between these theories are interesting in that it is much
more general than functors which we consider between the original lower theories.
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Namely, a functor between such higher theories amounts to highly relaxed functor
between the higher categorified lower theories, as follows from an iteration of the
remark in Section 0.4.

In Section 2.6 (as will be previewed in Section 0.7.2), we discuss a general con-
struction which we call “delooping”, through which we obtain an (n + 1)-theory
which normally fails to be representable by a categorified n-theory. Another con-
struction, which is closely related to the classical Day convolution, will also be
discussed in Section 4.4, and this also produces similar examples.

0.6.1. The notion of 2-theory immediately leads to a generalization of Proposition
0.0. Indeed, for a symmetric multicategory U , one can define a theorization of U-
graded 1-theory, which we call U-graded 2-theory. It follows from the general idea
on theorization that the notion of U-graded 1-theory makes sense naturally in a
U-graded 2-theory, and this notion gives a generalization of Proposition 0.0. Let us
see this. (The discussion below will be slightly imprecise even though essentially
correct. A more technical account can be found in Section 4.1.)

Given a (U ⊗ E1)-monoidal category A, one can categorically deloop A using
the E1-monoidal structure to obtain a U-monoidal 2-category BA, and hence a U-
graded 1-theory ΘBA enriched in categories. Since this is a categorified U-graded
1-theory, the notion of U-graded operad in ΘBA makes sense, which naturally
generalizes from the case where A is symmetric monoidal, the notion of U-graded
operad in A. Moreover, it is easy to check when U is one of the most familiar
operads, that this coincides with the usual notion. However, this notion of operad,
including the coloured cases of it, is nothing but the notion of 1-theory in the
U-graded 2-theory Θ(ΘBA).

0.6.2. More generally, with appropriate notion of grading, an n-theory makes sense
in an (n+1)-theory. Let us briefly discuss the notion of grading for higher theories.
(The details will be found in Section 3.)

A starting point is that there is notion of algebra over each n-theory. We have
mentioned that algebra over the terminal unenriched n-theory coincides with the
notion of (n − 1)-theory. For an n-theory U enriched in sets, we can theorize
the notion of U-algebra, generalizing from the case where U is terminal. We call
our theorization U-graded n-theory, where our term comes from the following.
Compare with our discussion in Section 0.2.1.

Proposition 0.22 (Proposition 3.8). An unenriched U-graded n-theory is equiv-
alent as data to an unenriched symmetric n-theory X equipped with a functor
X → U of symmetric n-theories.

It would therefore seem natural to call a U-algebra a U-graded (n−1)-theory,
and indeed, there is a natural notion of U-graded 0-theory of which U-algebra is an
(n − 1)-th theorization (Section 3.3.1). It is therefore also natural to refer to the
intermediate theorizations as U-graded m-theory for 1 ≤ m ≤ n− 2.

On the other hand, there is also a natural theorization of U-graded n-theory,
which we of course call U-graded (n+1)-theory. We obtain the following funda-
mental results.

Theorem 0.23 (Theorems 3.17, 3.19). A U-graded n-theory is equivalent as data
to an algebra over the (n+ 1)-theory ΘU . A U-graded (n+ 1)-theory is equivalent
as data to a ΘU-graded (n+ 1)-theory.

It follows that the natural notion of U-graded m-theory for m ≥ n + 2, is sim-
ply Θmn U-graded m-theory, where Θmn denotes the (m − n)-fold ‘iteration’ of the
construction Θ (Section 2.4).
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We now obtain that U-graded m-theory is a notion which naturally makes sense
in a U-graded (m+1)-theory. This is a more general enriched version of the notion,
to be investegated in Section 4.

Example 0.24. Let us denote the terminal n-theory by 1nCom, and let ∆: U →
1nCom be the unique functor. Since every n-theory V is graded by 1nCom, one obtains
from this a U-graded n-theory ∆∗V . A U-algebra in ∆∗V amounts to a (coloured)
functor U → V of n-theories.

0.7. Further developments.

0.7.0. Let us preview a few more highlights of our work.

0.7.1. In addition to algebra over an n-theory enriched in sets, we also define the
notion of algebra over a monoid (i.e., algebra enriched in sets) over an n-theory
enriched in sets (if n ≥ 2), algebra over unenriched such (if n ≥ 3), and so on.
For example, for an n-theory U enriched in sets, a U-graded (n − 2)-theory can
be expressed as an algebra over the terminal U-monoid, among which the terminal
unenriched one is such that an algebra over it is exactly a U-graded (n− 3)-theory,
and so on.

More generally, for a U-gradedm-theory X enriched in sets, we define the notion
of X -algebra, and more generally, of X -graded ℓ-theory, as well as the notion of
higher theory graded by unenriched such, and so on. We can actually give simple
definitions of all these, using Theorem 0.23 as a general principle (Section 3.3).
At the end, every structure (which is enriched in sets or groupoids) will come
with a hierarchy of higher theories “graded” by it. We obtain a generalization of
Proposition 0.22 with these new notions (Proposition 3.34). We also obtain a quite
general enrichment of all the notions in Section 4.

0.7.2. An n-theory enriched in a symmetric monoidal category A, can also be
described as a (suitable) n-theory in the (n + 1)-theory Θn+1BnA obtained by
applying the construction Θ n+1 times to the symmetric monoidal (n+1)-category
BnA (the n-th iterated categorical deloop of A). In Section 2.6, we generalize the
categorical delooping construction for symmeric monoidal higher category, to a
certain construction B which produces a symmetric n-theory from a symmetric
(n − 1)-theory. This is a generalization of the categorical delooping in such a
manner that, for a symmetric monoidal category A, there is a natural ‘equivalence’
Θn+1BnA = B

nΘA (or Corollary 2.15, to be more precise). It follows that a
natural notion of n-theory enriched in a symmetric multicategoryM, which is not
necessarily of the form ΘA, is n-theory in the (n + 1)-theory B

nM, and, as n
increases, the notion iteratively ‘theorizes’ the previous notions in a suitable sense.
(See the remark after Definition 2.16.)

Incidentally, if U is not of the form ΘA, then B
nU is usually not representable

by a categorified n-theory.

0.7.3. For a symmetric monoidal n-category C, we construct a certain (n + 1)-
theory AnC and a functor AnC → Θn+1BnSet of (n+ 1)-theories. The use of this
is the following. Namely, while we have already mentioned that an n-theory X
enriched in sets can be considered as an n-theory in Θn+1BnSet, the construction
above allows us to understand an X -graded m-theory enriched in a symmetric
monoidal category A, where 0 ≤ m ≤ n− 1, as an appropriate lift of the theory to
AnB

mA (a more general statement being as Corollary 4.10, where An = ΘnA∗Θ
n
0

in the notation there). There is also a version of this for m = n (Corollary 4.12),
which will have an application in our work.
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0.7.4. We also touch on more topics, such as the following.

• Pull-back and push-forward constructions which changes gradings, and
their properties (Sections 3.3, 4.3). The result Corollary 4.12 mentioned
in Section 0.7.3, will be used for the construction of the push-forward ‘on
the right side’.
• Some other basic constructions such as a construction for higher theories
related to Day’s convolution [8]. The Day type construction leads to a
notion of algebra over an enriched higher theory (Section 4.4).
• Hierarchies of iterated theorizations associated to more general systems of
operations, with multiple inputs and multiple outputs, such as operations
of ‘shapes’ of bordisms as in various versions of a topological field theory
(Section 5). Examples also include iterated theorizations of the notion due
to Vallette of coloured properad [18]. See Example 5.5.

The last topic leads to vast generalizations of the relevant versions of the notion
of topological field theory. We obtain a simple but in a way exotic example (Section
5.2) in addition to examples of a more expected type.

0.7.5. We also enrich everything we consider in this work, in the Cartesian sym-
metric monoidal infinity 1-category of infinity groupoids, instead of in sets. Fortu-
nately, this does not add any difficulty to the discussions. However, we invite the
reader who does not wish to deal with homotopy theory, to Section 0.9.2.

0.8. Outline. We shall give a definition of the most unstructured version of a
higher theory in Section 1. We shall follow up the definition in Section 2 with
discussions of simple subjects such as a planar variant, a less coloured variant,
the construction Θ, and the generalized “delooping” construction. We shall then
discuss algebra and graded higher theory over a higher theory in Section 3. This
will include a discussion of “iterated monoid” over a higher theory. We shall then
discuss in Section 4, a general manner for enriching the notion of higher theory,
and various topics about this, such as a construction for higher theories which is
related to the Day convolution. Finally, we shall discuss iterated theorizations of
more general algebraic structure in Section 5. Appendix is for comparison of
this work with a related important work [0] of Baez and Dolan.

0.9. Notes for the reader.

0.9.0. The first section here is about founding our treatment on homotopy theory.
We suggest the reader who does not wish to deal with homotopy theory, to skip to
Section 0.9.2.

0.9.1. For practical purposes, it seems best to build our theory in the framework
of homotopy theory. Namely, we would like to let the infinity 1-category of in-
finity groupoids be the default place where we enrich any categorical or algebraic
structure.

We shall simply choose this infinity 1-category to be our starting point, even
though this is not actually necessary. This is not necessary since we could instead
start from the category of sets, and find a fetus of higher category theory within
what we build. In fact, the model for higher category theory which seems most
convenient for this work is the one built by working on what amounts to a certain
small part of what we build in this work; n-theories, which will be the subject
of this work, will be much more general than n-categories. One model for higher
category theory is actually just a few technical steps away from our work here.

However, we choose to separate construction of this model for higher category
theory from the purpose of this work, to have two simpler and better focused
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expositions instead of one which would inevitably be more complicated and less
focused. The other exposition will appear in [17]. We feel that the present approach
keeps things simpler.

On the other hand, the subject of the present work does not select by any means,
the mentioned model for higher category theory as the only acceptable model.
Indeed, any other reasonable model for higher category theory of the reader’s choice,
would also be good as a foundation for this work. In order to communicate to as
wide audience as we can, we shall try to make clear which data are being used
from the theory of higher categories when we use them, so the hope is that even
the reader who has no more than basic ideas on the essence of the higher category
theory, would find our exposition largely accessible.

0.9.2. For the reader who does not wish to deal with homotopy theory, our ter-
minology in the body will be such that it could be read as if we are working in
the framework of the classical, discrete category theory. For example, we shall say
“category” to in fact mean “infinity 1-category”. So such a reader would be com-
fortable with interpreting what we write in the normal, classical manner, and then
ignoring what is redundant in such an interpretation.

Remark 0.25. Here are two cautions. One is that, when we say “groupoid” (while in
fact meaning infinity groupoid), this can often be interpreted as set in the classical
context, but sometimes, it will be better to interpret it honestly as “groupoid” (i.e.,
1-groupoid). The other is that there is fear that some of the examples we give may
degenerate to trivialities in the non-homotopical interpretation.

While we also welcome the reader who does this, our method for theorization
is by dealing with the structure of the coherence for higher associativity, which is
also the key for higher category theory, so our expectation is that the reader who
interprets our work in the classical context, would eventually find the “homotopical”
interpretation more natural.

0.9.3. As we have mentioned in Section 0.9.2, we adopt the convention that all
terms should be interpreted in homotopical/infinity 1-categorical sense. Namely,
categorical terms are used in the sense enriched in the infinity 1-category of infinity
groupoids, and algebraic terms are used freely in the sense generalized in accordance
with the enriched categorical structures.

However, we do welcome the reader who prefers to work in the classical setting,
to interpret the terms in the usual, non-homotopical manner. In this case, cate-
gorical terms (e.g., multicategory) should be understood in the sense enriched in
the category of sets (or sometimes better groupoids) unless otherwise specified, and
Remark 0.5 would continue in effect.

For example, by a 1-category, we officially mean an infinity 1-category, while
also welcoming the classical interpretation. We often call a 1-category (namely an
infinity 1-category) simply a category. More generally, for an integer n ≥ 0, by an
n-category (resp. infinity category), we mean an infinity n-category (resp. infinity
infinity category).

0.9.4. Unless otherwise noted, we do not consider non-unital associative algebraic
structures. Moreover, we normally treat unitality as part of associativity.

0.9.5. In our notations, we shall freely put a non-negative integer (or a variable,
such as “n”, for a non-negative integer) as a superscript to a letter in order to avoid
excessive use of multiple subscripts. Other than the exceptions listed below, and
unless otherwise noted, such a superscript will be a label just like a subscript, put
on the right upper corner in order to preserve rooms for subscripts. In particular,
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there will be only few occasions where we need to take a power of a thing, in which
case, we shall indicate so.

Major exceptions are as follows.

• “∆n”, “di”, “Rn” will respectively denote the n-dimensional symplex, the
i-th simplicial coface operator, n-dimensional Euclidean space.
• “f−1” for a map or a morphism f , will denote the inverse of f , or the
inverse image by the map f .
• “Bn” and “Bn” will denote the n-fold applications of the (“delooping”)
constructions “B” and “B” respectively (which will have been defined).
• “Θnm” will denote the instance of a certain construction (defined in this
work) which applies to an “m-theory”, and produces an “n-theory”.
• “1nU” and “Un” will respectively denote the terminal (U-graded, unenriched
uncoloured) n-theory and the n-dimensional “universal” monoid.

All other exceptions will be noted at the relevant places.

1. Symmetric higher theories

1.0. Introduction. After giving a small number of preliminary definitions, we
shall give in this section, the definition of a symmetric higher theory, which will be
a higher theory with least amount of structure.

1.1. The definition.

1.1.0. Let

• Ord denote the category (in the classical, discrete sense) of finite ordinals
(including the empty set ∅),
• ∆ denote the category (again in the discrete sense) of combinatorial sim-
plices, in other words, non-empty finite ordinals.

For example, we have objects [0] = {0} and [1] = {0 < 1} of ∆, and the maps in
∆ called the coface operators di : [0]→ [1], for i = 0, 1, where d0(0) = 1, d1(0) = 0.

The following is about all of the combinatorics which we need for this work.
Namely, there is a functor [−] : Ord→∆op defined as follows.

For an object I ∈ Ord, we define

[I] := [1] d
0

∪d
1

[0] · · ·
d0∪d

1

[0] [1] (I-fold; e.g., [∅] = [0]).

In other words, [I] =
⋃
i∈I [1] is obtained by gluing for every pair i < i+1 of adjacent

elements of I, 1 in the i-th component [1], with 0 in the (i+ 1)-th component [1].
For a map φ : I → J in Ord, we note that [I] =

⋃
j∈J [φ

−1j], where adjacent

components are glued (similarly to before) at the respective maximal and minimal
elements. We define [φ] : [I] ← [J ] in ∆ to be the map obtained by gluing over
j ∈ J , the maps [1]→ [φ−1j] in ∆ preserving the minimum and the maximum.

Remark 1.0. Let

• Fin denote the category (in the discrete sense) of finite sets,
• Fin∗ denote the category (discrete sense) of pointed finite sets.

Namely, an object of Fin∗ is a finite set S equipped with a “base point” ∗ ∈ S, and
a morphism is a map f for which we have f(∗) = ∗.

Then there is a commutative square

Ord ∆op

Fin Fin∗,

forget

[−]

∆1/∂∆1

( )+
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where ∆1 denotes the simplicial 1-simplex ∆op → Fin, with its boundary ∂∆1, and
( )+ is the functor which externally adds a base point to every finite set.

Remark 1.1. The functor [−] : Ord → ∆op has a right adjoint ∆̃1 : ∆op → Ord,
which, as a functor, is the lift of ∆1 : ∆op → Fin obtained by putting the natural
total order on the set of all faces of ∆1 of each fixed dimension. In particular,

[I] = Hom∆([0], [I]) ≃ HomOrd(I, ∆̃
1
0)

as a functor of I ∈ Ord.

Notation 1.2. In the following, we usually write the elements of an ordinal I as
1 < 2 < · · · in the ascending order, and then the elements of [I] as 0 < 1 < 2 < · · · .

1.1.1. Next, we explain our terminology and notations conerning families, nerves
and operations on them. Here we introduce only a minimal amount of it; more will
be introduced later during various other definitions.

For S ∈ Fin, we mean by an S-family a family of mathematical objects indexed
by the elements of S.

Let φ : T → S be a map in Fin. Then from an S-family x = (xs)s∈S , we obtain
a T -family φ∗x := (xφt)t∈T .

For I ∈ Ord, we mean by an I-nerve in a category, a pair consisting of

• a [I]-family of objects x = (xi)i∈[I], and
• an I-family of maps f = (fi)i∈I , where fi : xi−1 → xi.

Such an f is also called an I-nerve connecting the [I]-family x.
Let φ : I → J be a map in Ord. Then from an [I]-family x, we obtain an [J ]-

family φ!x := [φ]∗x, and from an I-nerve f as above connecting x, we obtain an
J-nerve φ!f connecting φ!x, defined by

(φ!f)j = f[φ](j) · · · f[φ](j−1)+1.

Note that {[φ](j − 1) + 1 < · · · < [φ](j)} = φ−1j ⊂ I.

Definition 1.3. Let I ∈ Ord. Then an [I]-family J in either Ord or Fin, is said to
be elemental if J[π](1) = ∗, the terminal object, where π denotes the unique map
I → {1}, so [π](1) is the maximum of [I].

1.1.2. The notion of multicategory is a theorization of the notion of commutative
algebra. Indeed, a multicategory (enriched in groupoids) is a virtualized form of a
op-lax symmetric monoidal category.

We can also formulate the notion of coloured lax commutative algebra as follows.

Definition 1.4. A coloured lax commutative algebra U in a symmetric monoidal
2-category A consists of the following data.

(0) A collection ObU , whose member is called an object of U , and, for every
object u ∈ ObU , an object U(u) ∈ ObA.

(1) For every finite set S, every S-family u0 = (u0s)s∈S of objects of U , and
every object u1, a map mU

1 (u0;u1) : U(u0) → U(u1), where U(u0) :=⊗
s∈S U(u0s).

(2) Suppose given
– a finite ordinal I,
– an elemental [I]-family S = (Si)i∈[I] of finite sets, and an I-nerve
φ = (φi)i∈I in Fin connecting S,

– for every i ∈ [I], an Si-family ui = (uis)s∈Si in ObU .
Then a 2-morphism mU

2 : π!m
U
1 [u]→ mU

1 (u0;u[π](1)) in A, where

– mU
1 [u] :=

(
mU

1 (ui−1;ui)
)
i∈I

, wheremU
1 (ui−1;ui) :=

⊗
s∈Si

mU
1 (ui−1|s;uis),

where ui−1|s denotes the restriction of ui−1 to (φi)
−1s ⊂ Si−1, namely,
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mU
1 [u] is an I-nerve inA connecting the [I]-family U(u) :=

(
U(ui)

)
i∈[I]

of objects,
– π denotes the unique map I → {1}.

(∞) Data of coherence for the structure.

We shall not write down the details of (∞) since the explicit form of it is not
so important here. A more general case is treated in Definition 1.6, in particular,
Sections 1.8, 1.9, below.

Now, given a monoidal category A, by its categorical deloop, we mean the 2-
category BA with a chosen “base” object, in which all objects are equivalent, and
the endomorphism monoidal category of the base object is given an equivalence
with A. (Note that this determines BA uniquely.)

For a symmetric monoidal category A, we can consider a multicategory enriched
in A as, by definition, a coloured lax commutative algebra U in the symmetric
monoidal 2-category BA (with the induced symmetric monoidal structure) such
that, for every object u ∈ ObU , U(u) is the unit (i.e., the base) object of BA.
For a multicategory U , we denote the object mU1 (u0;u1) ∈ A by MulU (u0;u1). In
the case where A is the Cartesian symmetric monoidal category Gpd of groupoids,
MulU (u0;u1) is the groupoid of multimaps u0 → u1 in U . For a general A, the
object MulU (u0;u1) of A is made to behave as if it were formed by (generally
fantastical) multimaps u0 → u1.

For example, in the case where A is the Cartesian symmetric monoidal category
of categories (with a fixed limit for the size), a multicategory enriched in A is the
obvious categoried form of a multicategory. This is not a useless notion, and the
notion of coloured lax commutative algebra can more generally be defined in a
categorified multicategory, for example. A more general notion of enrichment will
be the subject of Section 4.

1.1.3. Starting from commutative algebra and multicategory, there is an infinite
hierarchy of iterated theorizations. The idea for its construction is simple. We
consider the structure of a multicategory as given by an associative system of “com-
position” operations for multimaps. In general, we would like to produce from one
kind of associative system of operations, another kind of associative system of oper-
ations. This can be done using the following simple observation on the inductivity
of the structure of coherent associativity.

Suppose that we have a collection m of operations (e.g., mU
1 of Definition 1.4)

which, if made coherently associative, would define (in perhaps a special case) n-
th theorized version of a multicategory (e.g., a multicategory if n = 0). Suppose
further that we actually have a collection m′ of (at least lax) associativity maps for
the operations m, but that we still do not have coherence data for these maps m′,
so m is not yet coherently (lax) associative. An example of m′ is mU

2 for m = mU
1

in Definition 1.4.
In this situation, data of coherence for the lax associativity has the following

interpretation. Consider m′ as itself a new collection of operations. Then the
coherence data we are looking for amounts precisely to data of coherent associativity
for the collection m′ of operations.

A (n+1)-theorization of multicategory is then obtained by formalizing the struc-
ture given by the collection m′ of operations and its coherent associativity. See
Definition 1.6 below for the details.

Remark 1.5. As mentioned in Remark 0.4, the same idea leads (with relatively
simple other ideas) to a model for higher category theory which has a certain
convenient feature [17]. Indeed, since the structure with which we are dealing here
is more general, the most crucial steps in the construction of this model for higher
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category theory, are also naturally embedded in this work, and most notably, in
the following definition.

Definition 1.6. Let n ≥ 2 be an integer. A symmetric n-theory U (which will
often be called simply an “n-theory”) enriched in a symmetric monoidal category
A, consists of data of the forms specified below as (0), (1), (2) (or just (0), (1) if
n = 2), “(k)” for every integer k such that 3 ≤ k ≤ n− 1, (n), (n+1), (n+2), and
“(n+ ℓ)” for every integer ℓ ≥ 3.

We refer to a multicategory enriched in A also as a (symmetric) 1-theory en-
riched in A. We refer to a commutative algebra in A also as a (symmetric) 0-theory
(“enriched”) in A.

The case whereA is the Cartesian symmetric monoidal category Gpd of groupoids,
of n-theories, will play important roles, so we let Gpd be the default place where an
n-theory is to be enriched, and consider an n-theory enriched in groupoids as an un-
enriched n-theory. An n-theory in the narrower sense will mean an “unenriched”
n-theory.

An n-theory in the broader sense will mean an enriched (or unenriched) n-
theory. Later, enrichment of an n-theory will be considered in a more general place
than a symmetric monoidal category.

Specification of the forms of data will occupy the rest of this section.

1.2. Objects of a higher theory. The form of data (0) for Definition 1.6 is as
follows.

(0) A collection ObU , whose member will be called an object of U .

1.3. Multimaps in a higher theory. The form of data (1) for Definition 1.6 is
as follows.

(1) Suppose given
(0′) an elemental [1]-family I = (S, ∗) of finite sets, and a {1}-nerve (π : S →

∗) in Fin connecting I, whole of which is determined by a free choice
of S,

(0′′) an S-family u0 = (u0s)s∈S of objects of U , and an object u1.
Then a collection MulπU (u0;u1) or MulπU [u] for short, whose member will be
called an (S-ary) (1-)multimap u0 → u1 in U .

Observe that data of this form extend as follows. Suppose given

• ψ : S → T in Fin,
• u0 as above,
• a T -family u1 of objects of U .

Then we let MulψU [u] denote the collection of all T -families v = (vt)t∈T , where vt is
a multimap u0|t → u1t in U , where the source here is the restriction of the S-family
u0 to ψ−1t ⊂ S, so vt is ψ

−1t-ary.

1.4. 2-multimaps in an n-theory, in the case n ≥ 3.

1.4.0. The form of data (2) for Definition 1.6 is as follows.

(2) Suppose given
(1′) an elemental [1]-family I1 = (I10 , {1}) in Ord, and an {1}-nerve (π : I10 →

{1}),
(0′) an elemental [I10 ]-family I0 = (I0i )i∈[I10 ] in Fin, and a I10 -nerve φ

0

connecting I0, namely, φ0 = (φ0i )i∈I10 , where φ
0
i : I

0
i−1 → I0i ,

(0′′) an I0-family u0 in ObU , namely, u0 = (u0i )i∈[I10 ], where u
0
i is an I0i -

family in ObU ,
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(1′′) ∗ a φ0-nerve u10 of multimaps in U , connecting u0, which by defi-

nition means that u10 = (u10i)i∈I10 , where u
1
0i ∈Mul

φ0
i

U (u0i−1;u
0
i ),

∗ u11 ∈Mulπ!φ
0

[π!u
0].

Then a collection MulπU [u
0](u10;u

1
1) or MulπU [u] for short, whose member will

be called a 2-multimap u10 → u11 in U .

1.4.1. We can extend data of this form from above for the similar input data with
the requirement that the [I10 ]-family I0 be elemental discarded. The idea is to treat
such input data as an I0[π(1)]-family of elemental data, to obtain an I0[π(1)]-family of
outputs.

Thus, for input data similar to (1′) through (1′′) above with I0 non-elemental,
we let Mulπ[u]U denote the collection whose member is an I0[π](1)-family (vs)s∈I0

[π](1)

of 2-multimaps in U , where vs ∈MulπU
[
u0|s

](
u10

∣∣
s
;u11s

)
, where

• u0|s :=
(
u0i

∣∣
s

)
i∈[I10 ]

, where u0i
∣∣
s
is the restriction of u0i to I

0
is := (φ0←i)

−1s ⊂

I0i , where φ
0
←i := φ0[π](1) · · ·φ

0
i+1,

• u10
∣∣
s
:=

((
u10

∣∣
s

)
i

)
i∈I10

, where
(
u10

∣∣
s

)
i
:=

(
u10it

)
t∈I0is

,

so
(
u10

∣∣
s

)
i
∈ Mul(φ

0
/s)i

(
u0i−1

∣∣
s
;u0i

∣∣
s

)
, where (φ0/s)i := φ0i

∣∣
I0i−1,s

: I0i−1,s → I0i,s, so

φ0/s is an I10 -nerve in Fin connecting the elemental [I10 ]-family (I0is)i∈[I10 ]. In other

words, u10
∣∣
s
is a φ0/s-nerve of multimaps in U connecting u0|s.

1.4.2. We can extend data (2) further by discarding the requirement that I1 be
elemental, in the similar way as above.

To do this, suppose given

• a map ψ : I10 → I11 in Ord,
• not necessarily elemental data of the form (0′) and (0′′) of (2),
• a φ0-nerve u10 and a ψ!φ

0-nerve u11 respectively, of multimaps in U (which
we mean to be interpreted following the previous step).

Then we let MulψU [u] denote the collection whose member is an I11 -family v =

(vi)i∈I11 of 2-multimaps in U , where vi ∈Mulπi
[
u0|i

](
u10

∣∣
i
;u11i

)
, where

• πi denotes the unique map I10i := ψ−1i → ∗, so ψ =
∑

i∈I11
πi (where∑

i∈I11
denotes the functor which takes the disjoint union equipped with

the lexicographical order),
• u0|i denotes the restriction of u0 to [I10i] ⊂ [I10 ],
• u10

∣∣
i
denotes the restriction of u10 to I10i,

so u10
∣∣
i
is a (φ0|i)-nerve connecting u

0|i, where φ
0|i denotes the restriction of φ0 to

I10i.

1.5. k-multimaps in a higher theory.

1.5.0. The form of data (k) for 3 ≤ k ≤ n − 1 for Definition 1.6, is specified
inductively as follows.

(k) Suppose given

(k − 1′) an elemental [1]-family Ik−1 = (Ik−10 , {1}) in Ord, and an {1}-nerve

(π : Ik−10 → {1}),

(k − 2′) an elemental [Ik−10 ]-family Ik−2 = (Ik−2i )i∈[Ik−1
0 ] in Ord, and an Ik−10 -

nerve φk−2 = (φk−2i )i∈Ik−1
0

connecting Ik−2,

– (k − 3′) through (k − 3′′) of (k − 1),
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(k − 2′′) a Ik−2-family uk−2 = (uk−2i )i∈[Ik−1
0 ] of (k − 2)-multimaps in U , where

the Ik−2i -family uk−2i is in fact a φk−2→i !φ
k−3-nerve (see (k−1′′) below) of

(k−2)-multimaps in U (where φ→i := φi · · ·φ1), connecting φ
k−2
→i !u

k−3,

(k − 1′′) ∗ a φk−2-nerve uk−10 of (k − 1)-multimaps connecting uk−2 in U ,

which by definition means that uk−10 = (uk−10i )i∈Ik−1
0

, where

uk−10i ∈ Mul
φk−2
i

U [u≤k−2|i] (see below), where u≤k−2|i consists
of

u≤k−4 := (uν)0≤ν≤k−4, (φ
k−2
→i−1)!u

k−3, uk−2|i,

where uk−2|i denotes the restriction of uk−2 to {i−1, i} ⊂ [Ik−10 ],

∗ uk−11 ∈ Mulπ!φ
k−2

[π!u
≤k−2], where π!u

≤k−2 consists of

u≤k−4, (π!φ
k−2)!u

k−3, π!u
k−2.

Then a collection MulπU [u
≤k−2](uk−10 ;uk−11 ) or MulπU [u] for short, whose

member will be called a k-multimap uk−10 → uk−11 in U .

Definition 1.7. We refer to data (I;π, φ), where I := (Iν)0≤ν≤k−1, φ := (φν)0≤ν≤k−2,
of the form specified by (k− 1′) through (0′) above, as the arity of a k-multimap
in a symmetric higher theory.

We refer to data u = (uν)0≤ν≤k−1 of the form specified by (0′′) through (k− 1′′)
above (by induction in k), as the type of a k-multimap in U , of arity (I;π, φ).

Remark 1.8. Even though we have not yet specified the forms of the rest of data
for U , note that the notion of the type of a k-multimap “in U” makes sense as soon
as data of the forms (0) through (k − 1) are given “for U”.

Data of the form (k) above extend for the similar input data with the elementality
requirements discarded. This can be done by induction, starting from the elemental
case above, as follows.

1.5.1. Fix an integer ν such that 1 ≤ ν ≤ k − 1, and suppose as an inductive
hypothesis, that we have extended data (k) for input data similar to (k−1′) through
(k−1′′) above, where the families I0 through Iν−2 are allowed to be non-elemental.
Then we extend data (k) for input data with the families up to Iν−1 allowed to be
non-elemental, as follows.

Suppose given data similar to (k−1′) through (k−1′′) above, where the families
I0 through Iν−1 are allowed to be non-elemental (which we mean to be interpreted
following the previous inductive step). Then we let MulπU [u] denote the collection
whose member is an Iν−1[πν ](1)-family (vi)i∈Iν−1

[πν ](1)
, where πν denotes the unique map

Iν0 → {1}, and vi ∈MulπU [u|i], where u|i consists of

u≤ν−4, (φν−2→i−1)!u
ν−3, u≥ν−2|i := (uκ|i)κ≥ν−2,

where if ν ≤ k − 2,

• u≥ν−2,≤k−3|i = (uκ|i)ν−2≤κ≤k−3 are as already defined by the previous
step of the induction on k (see the case ν = k − 1 below for uν−2|i and
uν−1|i, and the next point for u≥ν,≤k−3|i),

• uk−2|i :=
(
uk−2j

∣∣
i

)
j∈[Ik−1

0 ]
, where uk−2j

∣∣
i
is as already defined by the previ-

ous step of the induction on k (see below),

and if ν = k − 1,

• uν−2|i denotes the restriction of uν−2 to [(πν! φ
ν−1)−1i] ⊂ [Iν−10 ],
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• uν−1|i :=
(
uν−1j

∣∣
i

)
j∈[Iν0 ]

, where uν−1j

∣∣
i
denotes the

(
(φν−1/i )→j

)
!

(
φν−2|i

)
-

nerve connecting
(
(φν−1/i )→j

)
!

(
uν−2|i

)
, obtained by restricting uν−1j to Iν−1ji :=

(φν−1←j )
−1i ⊂ Iν−1j , where

– φν−1/i denotes the Iν0 -nerve in Ord connecting the elemental [Iν0 ]-family

(Iν−1ji )j∈[Iν0 ], obtained by restricting φν−1,

– φν−2|i is the I
ν−1
0i -nerve obtained by restricting φν−2, connecting the

[Iν−10i ]-family Iν−2|i obtained by restricting Iν−2,
so

(
(φν−1/i )→j

)
!

(
φν−2|i

)
=

(
φν−1→j !

φν−2
)∣∣
Iν−1
ji

,

(
(φν−1/i )→j

)
!

(
uν−2|i

)
=

(
φν−1→j !

uν−2
)∣∣

[Iν−1
ji ]

,

and for any ν, uk−10

∣∣
i
= (uk−10ji )j∈Ik−1

0
, and uk−11

∣∣
i
= (uk−11i ) are as already spec-

ified by the previous step of the induction on k. Note (see below) that, by in-

duction on k, uk−10j for j ∈ Ik−10 is an Ik−2[π](1)-family (uk−10ji )i∈Ik−2

[π1](1)

, where uk−10ji ∈

Mulφ
k−2
i [u≤k−2|i,j ], and similarly for uk−11 .

1.5.2. Finally, data (k) extend for the input data with Ik−1 non-elemental, as
follows. Suppose given

• a map ψ : Ik−10 → Ik−11 in Ord,
• not necessarily elemental data of the form (k− 2′) through (k− 2′′) above,

• a φk−2-nerve uk−10 connecting uk−2, and a ψ!φ
k−2-nerve uk−11 connecting

ψ!u
k−2 respectively, of (k − 1)-multimaps in U .

Then we let MulψU [u] denote the collection whose member is an Ik−11 -family v =
(vi)i∈Ik−1

1
of k-multimaps in U , where vi ∈ Mulπi [u|i], where

• πi denotes the unique map Ik−10i := ψ−1i→ ∗, so ψ =
∑

i∈Ik−1
1

πi,

• u|i consists of

u≤k−4, (φk−2→[ψ](i−1))!
uk−3, uk−2|i, u

k−1|i,

where
– uk−2|i denotes the restriction of uk−2 to [Ik−10i ] ⊂ [Ik−10 ],

– uk−1
∣∣
i
:=

(
uk−1j

∣∣
i

)
j∈[1]

, where uk−10

∣∣
i
denotes the restriction of uk−10

to Ik−10i , and uk−11

∣∣
i
:= (uk−11i ),

so uk−10

∣∣
i
is a (φk−2|i)-nerve connecting uk−2|i, where φ

k−2|i denotes the

restriction of φk−2 to Ik−10i .

1.5.3. This allows us to go to the next inductive step.

1.6. The object “formed by n-multimaps in an n-theory”. The form of data
(n) for Definition 1.6 is as follows.

(n) Suppose given the type u of an n-multimap in U of arity given as (I;π, φ).
Namely, suppose given a set of data similar to (k − 1′) through (k − 1′′) of
“(k)” in Section 1.5, but with k substituted by n (where Ik−2 should be
a family in Fin if n = 2), so these will be (n − 1′) through (n − 1′′) here.
Then an object MulπU [u

≤n−2](un−10 ;un−11 ) of A, or MulπU [u] for short. In
the case where A is Gpd or some other category so that MulπU [u] can have
its objects, then those objects will be called n-multimaps un−10 → un−11

in U . For a general A, we shall call MulπU [u] the object “of n-multimaps”.



HIGHER THEORIES OF ALGEBRAIC STRUCTURES 29

Data of this form extend for non-elemental input data just as data “(k)” did in
Section 1.5.

To see this, for the purpose of induction starting from the elemental case above,
fix an integer ν such that 1 ≤ ν ≤ n− 1, and suppose given data similar to (n− 1′)
through (n− 1′′) above, where the families I0 through Iν−1 are allowed to be non-
elemental. Then we define MulπU [u] :=

⊗
i∈Iν−1

[πν ](1)
MulπU [u|i], which makes sense by

induction on ν.
Suppose given next, instead of π : In−10 → {1} above, a map ψ : In−10 → In−11 in

Ord, and suppose un−11 is now an ψ!φ
n−2-nerve of (n − 1)-multimaps connecting

ψ!u
n−2. Then we let πi for i ∈ I

n−1
1 denote the unique map ψ−1i → ∗ (so ψ =∑

i πi), and define MulψU [u] :=
⊗

i∈In−1
1

Mulπi [u|i].

1.7. Composition of n-multimaps. The form of data (n+ 1) for Definition 1.6
is as follows.

(n+ 1) Suppose given the arity (I;π, φ) of an (n + 1)-multimap in a symmetric
higher theory, namely

– (k− 1′) and (k− 2′) of “(k)” in Section 1.5, but with k substituted by
n+ 1, so these will be (n′) and (n− 1′) here.

– (n− 2′) through (0′) of (n) in Section 1.6,
as well as

– (0′′) through (n− 2′′) of (n) in Section 1.6,
– (k − 2′′) of “(k)” in Section 1.5, but with k substituted by n + 1, so

this will be (n− 1′′) here.

Then a map mU1 (π) : Mulφ
n−1

U [u]→ Mulπ!φ
n−1

U [π!u] in A, where

– the source of mU1 (π) is the object
⊗

i∈In0
Mulφ

n−1
i [u|i] of A (“of φn−1-

nerves of n-multimaps connecting un−1 in U”), where u|i consists of

u≤n−3, (φn−1→i−1)!u
n−2, un−1|i,

– π!u consists of u≤n−2, π!u
n−1.

The mapmU1 (π) will be called the composition operation for n-multimaps.

Definition 1.9. We refer to data u = (uν)0≤ν≤n−1 of the form specified by (0′′)
through (n− 1′′) above, as the type of a φn−1-nerve of n-multimaps in U .

Data of the form (n+ 1) above extend for non-elemental input data as follows.
To begin with, fix an integer ν such that 1 ≤ ν ≤ n − 1, and suppose given

data similar to (n′) through (n− 1′′) above, where the families I0 through Iν−1 are

allowed to be non-elemental. Then we define mU1 (π) : Mulφ
n−1

U [u]→ Mulπ!φ
n−1

U [π!u]

as the monoidal product over i ∈ Iν−1[πν ](1) of the maps mU1 (π) : Mulφ
n−1

U [u|i] →

Mulπ!φ
n−1

[π!u|i], which makes sense by induction on ν.
Next, suppose given data similar to (n′) through (n−1′′) above, where the fami-

lies I0 through In−1 are allowed to be non-elemental. Then we definemU1 (π) : Mulφ
n−1

U [u]→

Mulπ!φ
n−1

U [π!u] as the monoidal product over i ∈ In−1[π](1) of the mapsm1(π) : Mulφ
n−1
/i [u|i]→

Mul
π!φ

n−1
/i [π!u|i].

Finally, suppose given, instead of π : In0 → {1} above, a map ψ : In0 → In1 in
Ord. Then we let πi for i ∈ I

n
1 denote the unique map ψ−1i → ∗ (so ψ =

∑
i πi),

and define mU1 (ψ) : Mulφ
n−1

[u] −→ Mulψ!φ
n−1

[ψ!u], where ψ!u consists of u≤n−2,

ψ!u
n−1, as the monoidal product over i ∈ In1 of the maps m1(πi) : Mulφ

n−1|i [u|i]→

Mul(ψ!φ
n−1)i [(ψ!u)|i], where u|i consists of

u≤n−3, (φn−1→[ψ](i−1))!
un−2, un−1|i,
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so (ψ!u)|i consists of

u≤n−3,
(
(ψ!φ

n−1)→i−1
)
!
un−2,

(
ψ!u

n−1
)∣∣
i
.

1.8. The associativity isomorphism for the composition. The form of data
(n+ 2) for Definition 1.6 is as follows.

(n+ 2) Suppose given the arity (I;π, φ) of an (n + 2)-multimap in a symmetric
higher theory, and the type u of a φn−1-nerve of n-multimaps in U . Then
a 2-isomorphism mU2 (π) : π!m

U
1 (φ

n)
∼
−→ mU1 (π!φ

n) in A, where mU1 (φ
n) de-

notes the In+1
0 -nerve obtained by indexing with i ∈ In+1

0 , the maps

m1(φ
n
i ) : Mul(φ

n
→i−1)!φ

n−1

[(φn→i−1)!u] −→ Mul(φ
n
→i)!φ

n−1

[(φn→i)!u].

Data of this form extend for non-elemental input data as follows.
To begin with, fix an integer ν such that 1 ≤ ν ≤ n− 1, and suppose given data

similar to (n+ 1′) through (n− 1′′) above, where the families I0 through Iν−1 are

allowed to be non-elemental. Then we define mU2 (π) : π!m
U
1 (φ

n)
∼
−→ mU1 (π!φ

n) as
the monoidal product over i ∈ Iν−1[πν ](1) of the 2-isomorphisms

mU2 (π) : π!m1(φ
n)

∼
−−→ m1(π

n) : Mulφ
n−1

[u|i] −→ Mulπ
n
!φ

n−1

[πn!u|i],

which makes sense by induction on ν.
Next, suppose given data similar to (n + 1′) through (n − 1′′) above, where

the families I0 through In−1 are allowed to be non-elemental. Then we define
mU2 (π) : π!m1(φ

n)
∼
−→ m1(π!φ

n) as the monoidal product over i ∈ In−1[π!φn](1) of the

2-isomorphisms

m2(π) : π!m1(φ
n)

∼
−−→ m1(π

n) : Mul
φn−1
/i [u|i] −→ Mul

πn
!φ

n−1
/i [πn!u|i].

Next, suppose given data similar to (n+ 1′) through (n− 1′′) above, where the
families I0 through In are allowed to be non-elemental. Then we write for i ∈ In[π](1),

πni := π!(φ
n
/i) (so π!φ

n =
∑

i π
n
i ), and define m2(π) : π!m1(φ

n)
∼
−→ m1(π!φ

n) as the

monoidal product over i ∈ In[π](1) of the 2-isomorphisms

m2(π) : π!m1(φ
n
/i)

∼
−−→ m1(π

n
i ) : Mulφ

n−1|i [u|i] −→ Mulπ
n
i !

(φn−1|i)[(πn!u)|i].

Finally, suppose given, instead of π : In+1
0 → {1} above, a map ψ : In+1

0 → In+1
1

in Ord. Then we let πi for i ∈ In+1
1 denote the unique map ψ−1i → ∗ (so ψ =∑

i πi), and define the isomorphism m2(ψ) : ψ!m1(φ
n)
∼
−→ m1(ψ!φ

n) of In+1
1 -nerves

in A as the family indexed by i ∈ In+1
1 of the isomorphisms

m2(πi) : πi!m1

(
φn|i

) ∼
−−→ m1

(
(ψ!φ

n)i
)
.

1.9. Coherence for the associativity.

1.9.0. The form of data (n+ ℓ) for ℓ ≥ 3 for Definition 1.6, is specified inductively
as follows.

(n+ ℓ) Suppose given the arity (I;π, φ) of an (n + ℓ)-multimap in a symmetric
higher theory, and the type u of a φn−1-nerve of n-multimaps in U . Then
an ℓ-isomorphism

mUℓ (π) : π!m
U
ℓ−1(φ

n+ℓ−2)
∼
−−→ mUℓ−1(π!φ

n+ℓ−2)

in A, wheremUℓ−1(φ
n+ℓ−2) denotes the In+ℓ−10 -nerve of (ℓ−1)-isomorphisms

obtained by indexing with i ∈ In+ℓ−10 the isomorphisms

mℓ−1(φ
n+ℓ−2
i ) : mUℓ−2(φ

n+ℓ−2
→i−1 !

φn+ℓ−3)
∼
−−→ mUℓ−2(φ

n+ℓ−2
→i !φ

n+ℓ−3)
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of (ℓ − 2)-isomorphisms

πn+ℓ−3!mℓ−3(φ
n+ℓ−4)

∼
−−→ mℓ−3(π

n+ℓ−3
!φ
n+ℓ−4)

(where πn+ℓ−3 := (π!φ
n+ℓ−2)!φ

n+ℓ−3) inA, or Mulφ
n−1

[u]→ Mulπ
n
!φ

n−1

[πn!u]
if ℓ = 3.

Data of this form extend for non-elemental input data as follows.
The initial step is a similar induction as before. Fix an integer ν such that

1 ≤ ν ≤ n+ ℓ− 1, and suppose given data similar to (n+ ℓ− 1′) through (n− 1′′)
above, where the families I0 through Iν−1 are allowed to be non-elemental. Then
we define mUℓ (π) : π!mℓ−1(φ

n+ℓ−2)
∼
−→ mℓ−1(π!φ

n+ℓ−2) as

• if ν ≤ n+ 1, the monoidal product over Iν−1[πν ](1),

• if ν ≥ n+2, the (n+ ℓ+1−ν)-isomorphism of Iν−1[πν ](1)-nerves of (ν−n−1)-

isomorphisms (or 1-morphisms if ν = n + 2) in A, given by the family
indexed by Iν−1[πν ](1),

of mUℓ (π) defined for each i ∈ Iν−1[πν ](1) as an instance of the previous inductive step.

For instance, as the case ν = n + ℓ − 1, suppose given data similar to (n +
ℓ − 1′) through (n − 1′′) above, where the families I0 through In+ℓ−2 are allowed

to be non-elemental. Then we write for i ∈ In+ℓ−2[π](1) , πn+ℓ−2i := π!φ
n+ℓ−2
/i (so

π!φ
n+ℓ−2 =

∑
i π

n+ℓ−2
i ), and define the isomorphism mℓ(π) : π!mℓ−1(φ

n+ℓ−2)
∼
−→

mℓ−1(π!φ
n+ℓ−2) of isomorphisms

(
π!φ

n+ℓ−2
)
!
mℓ−2

(
φn+ℓ−3

) ∼
−−→ mℓ−2

(
(π!φ

n+ℓ−2)!φ
n+ℓ−3

)

of In+ℓ−2[π](1) -nerves of (ℓ − 2)-isomorphisms (or 1-morphisms if ℓ = 3) in A, as given

by the family indexed by i ∈ In+ℓ−2[π](1) of

mℓ(π) : π!mℓ−1(φ
n+ℓ−2
/i )

∼
−−→ mℓ−1(π

n+ℓ−2
i ) :

πn+ℓ−2i !mℓ−2

(
φn+ℓ−3|i

) ∼
−−→ mℓ−2

((
(π!φ

n+ℓ−2)!φ
n+ℓ−3

)
i

)
.

Finally, suppose given, instead of π : In+ℓ−10 → {1} above, a map ψ : In+ℓ−10 →

In+ℓ−11 in Ord. Then we let πi for i ∈ I
n+ℓ−1
1 denote the unique map ψ−1i→ ∗ (so

ψ =
∑
i πi), and define the isomorphism

mℓ(ψ) : ψ!mℓ−1(φ
n+ℓ−2)

∼
−−→ mℓ−1(ψ!φ

n+ℓ−2)

of In+ℓ−11 -nerves of (ℓ − 1)-isomorphisms in A, as given by the family indexed by

i ∈ In+ℓ−11 of the isomorphisms

mℓ(πi) : πi!mℓ−1

(
φn+ℓ−2|i

) ∼
−−→ mℓ−1

(
(ψ!φ

n+ℓ−2)i
)
.

1.9.1. We can thus proceed to the next inductive step, and this completes Defini-
tion 1.6.

2. Simple variants and basic constructions

2.0. Introduction. In this section, we shall first discuss a planar variant of higher
theories, which iteratevely theorize associative algebra. In particular, we shall find
the structure of a planar (n− 1)-theory formed by endomorphisms in a symmetric
n-theory. This will lead to a discussion of other theorized structures similarly
residing in a symmetric higher theory. We shall further discuss less coloured variants
of higher theory, relation of higher theory to higher categorified structure, and a
construction for a higher theory which generalizes the “delooping” construction for
a symmetric monoidal category.

2.1. Planar theories.
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2.1.0. The notion of symmetric multicategory had variants such as planar and
braided. While a generalization of these will appear in Section 3, the notion of
planar n-theory is particularly simple to describe, and turns out to be also funda-
mental, so we shall discuss it here.

The definition of a planar n-theory is the same as the definition of a symmetric
n-theory except that one uses the category Ord instead of Fin. Namely, I0 (and S)
appearing in the definition 1.6 of an n-theory should now be in Ord, and everything
else is as it makes sense under this modification.

In particular, one obtains a planar n-theory from a symmetric n-theory U by
restricting the data defining U , through the forgetful functor Ord→ Fin.

2.1.1. The notion of planar n-theory is fundamental for the following reason.
Given a symmetric n-theory U , and its object x, the structure of a planar (n− 1)-
theory underlies the structure formed by endomorphisms (i.e., unary endomul-
timaps) of x.

The idea is that if one intends to take as the part (0′) of the input data for U , the
constant elemental I10 -nerve ∗ → · · · → ∗, and as the part (0′′), a constant family
at x, then the rest of the required input data is of the same form as the form for
the input data for a planar (n− 1)-theory.

Thus, a planar (n − 1)-theory V =MapU(x, x) is obtained as follows. Suppose
inductively in k, that an input for the data (k) for the planar (n − 1)-theory V is
given by Jν , ψν , vν for all integers ν in the suitable range. Then one obtains an
input for the data (k + 1) for U by letting

• Iν := Jν−1, φν := ψν−1 for ν ≥ 1,
• I0 and φ0 constant as above, as well as u0 constant at x,
• uν := vν−1 for ν ≥ 1,

so we use the output for this by U as the data (k) for V for the original input.
For example, the collection of the objects of V is MulπU (x;x), where π is the

identity map of I01 = {1}.

2.2. More related higher theorizations. In Section 2.1, we have found the
structure of a planar (n−1)-theory within the structure of every n-theory. The case
n = 1 of this is the associative algebra of endomorphisms within a multicategory,
and by no accident, a planar n-theory is an n-th theorization of an associative
algebra.

Since we can also find other structures within the structure of a multicategory,
we can find higher theorized forms of them within the structure of an n-theory.

For example, if we focus on, instead of endormophisms on a selected object, all
unary multimaps between arbitrary objects within an n-theory, then we find that
they naturally form a structure which is an (n−1)-th theorization of the structure of
a category. We have seen examples of theorized categories in Section 0.5. We have
also noted there that theorized category was a ‘more coloured’ version of planar
multicategory. Higher theorizations of category relates to planar higher theories in
a similar manner.

For another example, if we fix one object of an n-theory to look at, but allow all
endomultimaps of arbitrary arities (and arbitrary higher multimaps between them),
then we find the structure of an (n − 1)-th theorization of an uncoloured operad.
The theorizations can have colours at ‘shallower’ levels, and these will be precisely
defined as (n− 1)-tuply coloured n-theories in Section 2.3.

2.3. Restricting strata for colours.
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2.3.0. The data of a multicategory, or a coloured operad, enriched in groupoids,
say, consists of collection of objects or “colours”, and operations or “multimaps”
which compose. In an n-theory, only the multimaps of dimension n are required
to compose, so only these are really considered as operations, while the collections
of lower dimensional multimaps are then considered as forming strata of colours
whose role is to specify the types of the operations in the top dimension.

As we could consider uncoloured operad, we sometimes want to consider un-
coloured, and only partially coloured, higher theories. Specifically, we would like
to consider situations in which the data below some dimension are all fixed to be
‘trivial’. We actually do this by simulating such a situation, instead of defining
what we mean by the “trivial” data.

Definition 2.0. Let n ≥ 2 be an integer. Then a (symmetric) uncoloured n-
theory U enriched in a symmetric monoidal category A, consists of data of the
forms specified below as (n), (n+ 1) and (∞).

(n) (The object “formed by objects”.) Suppose given the arity (I;π, φ) of an
n-multimap in a symmetric higher theory, namely, (n− 1′) through (0′) of
(n) in Section 1.6. Then an object Obπ U of A, to be called the object of
objects of U of the specified arity.

This extends for non-elemental input data just as data (n) of Section 1.6 did,
and we use the resulting extended data in the specification of the next data form.

(n+ 1) (Composition of objects.) Suppose given the arity (I;π, φ) of an (n + 1)-

multimap in a symmetric higher theory. Then a map mU1 (π) : Obφ
n−1

U →

Obπ!φ
n−1

U in A, where the source here is the object
⊗

i∈In0
Obφ

n−1
i U . The

map m1(π) will be called the composition operation for objects of U .
(∞) Data of coherent associativity for the composition operations, correspond-

ing to those for an n-theory described in Sections 1.8 and 1.9.

This completes Definition 2.0.

Definition 2.1. Let n ≥ 2 be an integer. We say that an n-theory as defined in
Definition 1.6, as n-tuply coloured.

Let m be an integer such that 1 ≤ m ≤ n − 1. Then a (symmetric) m-tuply
coloured n-theory U enriched in a symmetric monoidal category A, consists of
data of the forms specified below as (n −m), “(k)” for every integer k such that
n−m+ 1 ≤ k ≤ n− 1, (n), (n+ 1) and (∞).

(n−m) (Object.) Suppose given the arity (I;π, φ) of an (n − m)-multimap in a
symmetric higher theory (or a finite set S with unique map π : S → ∗, if
n − m = 1). Then a collection Obπ U , whose member will be called an
object of U of the specified arity.

This extends for non-elemental input data just as data (k) of Section 1.5 did for
k = n−m, and we use the resulting extended data in the specification of the next
data form.

(k) ((k − n+m)-multimap, inductively for n −m + 1 ≤ k ≤ n − 1.) Suppose
given

– the arity (I;π, φ) of a k-multimap in a symmetric higher theory,
– if k − 3 ≥ n−m, then (n−m′′) through (k − 3′′) of (k − 1) here,

and
(k − 2′′) if k−2 ≥ n−m, then an Ik−2-family uk−2−n+m = (uk−n+m−2i )i∈[Ik−1

0 ]

of (k − n+m− 2)-multimaps (or objects if k − n+m− 2 = 0) in U ,

where, if k− n+m− 2 ≥ 1, then the Ik−2i -family uk−n+m−2i is in fact
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a φk−2→i !φ
k−3-nerve (see (k − 1′′) below) of (k − n+m− 2)-multimaps

in U , connecting φk−2→i !u
k−n−m−3,

(k − 1′′) if k − 1 = n−m, then
∗ a φk−2-nerve u00 of objects in U , which by definition means that

u00 = (u00i)i∈Ik−1
0

, where u00i ∈ Obφ
k−2
i U ,

∗ an object u01 ∈ Obπ!φ
k−2

U ;
if k − 1 ≥ n−m+ 1, then
∗ a φk−2-nerve uk−1−n+m0 of (k−n+m− 1)-multimaps in U con-

necting uk−n+m−2, which by definition means that uk−n+m−10 =

(uk−n+m−10i )i∈Ik−1
0

, where uk−n+m−10i ∈ Mulφ
k−2
i [u≤k−n+m−2|i]

(see below),

∗ uk−n+m−11 ∈ Mulπ!φ
k−2

[π!u
≤k−n+m−2].

Then a collection MulπU [u
≤k−n+m−2](uk−n+m−10 ;uk−n+m−11 ) or MulπU [u] for

short, whose member will be called a (k−n+m)-multimap uk−n+m−10 →

uk−n+m−11 in U .

This extends for non-elemental input data just as data (k) of Section 1.5 did,
and we use the resulting extended data in the specification of the next data form.

(n) (The object “formed by m-multimaps”.) Suppose given the arity (I;π, φ)
of an n-multimap in a symmetric higher theory, and a set of data similar
to (0′′) through (k−1′′) of “(k)” above, but with k substituted by n, so these
will be (0′′) through (n−1′′) here. Then an object MulπU [u

≤m−2](um−10 ;um−11 )

ofA, or MulπU [u] for short, to be called the object of m-multimaps um−10 →
um−11 in U .

This extends for non-elemental input data just as data (n) of Section 1.6 did,
and we use the resulting extended data in the specification of the next data form.

(n+ 1) (Composition of m-multimaps.) Suppose given
– the arity (I;π, φ) of an (n+1)-multimap in a symmetric higher theory,
– (n−m′′) through (n− 2′′) of (n) above,
– (k − 2′′) of (k) above, but with k substituted by n+ 1, so this will be

(n− 1′′) here.

Then a map mU1 (π) : Mulφ
n−1

U [u]→ Mulπ!φ
n−1

U [π!u] in A, where the source

here is the object
⊗

i∈In0
Mulφ

n−1
i [u|i] (of φ

n−1-nerves of m-multimaps con-

necting um−1 in U). The map m1(π) will be called the composition
operation for m-multimaps in U .

(∞) Data of (coherent) associativity for the composition operations, correspond-
ing to those for an n-theory described in Sections 1.8 and 1.9.

This completes Definition 2.1.

2.3.1. Any notion which makes sense for a general n-theory also makes sense for
an n-theory with restricted strata of colours as above. Indeed, given the definition
of a notion concerning an n-theory, one obtains the definition of the corresponding
notion for a less coloured n-theory just by suppressing from the definition, every
specification involving colours in the lower dimensions in the n-theory. For example,
at a place where one needs to choose an object of an n-theory, one just does not
need to make any choice with an m-tuply coloured n-theory if m ≤ n−1. Similarly,
at a place where one needs to make some choice for every object of the n-theory,
one just make one choice with a not fully coloured n-theory.

2.4. Forgetting categorifications to theorizations.
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2.4.0. For an integer m ≥ 0, let us denote by Catm the Cartesian symmetric
monoidal category of m-categories with a fix limit for the size, where we let a
0-category mean a groupoid by convention.

While an n-theory enriched in Catm is an instance of an enriched n-theory, it
is also unenriched in the sense that we can more generally consider m-categories
enriched in a symmetric monoidal category. Thus it can be considered both as an
“unenriched” instance of an m-categorified n-theory, and as an enriched “uncate-
gorified” n-theory. Interpolating these two views, it can also be considered as an
ℓ-categorified n-theory enriched in (m− ℓ)-categories, for every integer ℓ such that
1 ≤ ℓ ≤ m− 1.

2.4.1. Since (n + 1)-theory is a theorization of n-theory, there are in particular,
n-theories enriched in Catm+1 among (n + 1)-theories enriched in Catm. Indeed,
a op-lax n-theory enriched in Catm+1 can be characterized among (n+ 1)-theories
enriched in Catm, as one in which every profunctor/distributor/bimodule (enriched
in Catm) virtually giving the composition of n-multimaps, is corepresentable, and
an n-theory can be characterized among op-lax n-theories as one in which every
associativity map is an isomorphism.

Given an n-theory U enriched in (m+1)-categories, let us denote by ΘnU , (n+1)-
theory enriched in m-categories obtained by replacing each functor of composition
operation for n-multimaps in U , by the bimodule corepresented by it. We shall say
that ΘnU is represented by U .

Definition 2.2. Let n ≥ 0, m ≥ 2 be integers, and let U be an n-theory enriched in
m-categories. Given an integer ℓ such that 0 ≤ ℓ ≤ m, we define an (n+ ℓ)-theory
Θn+ℓn U enriched in (m− ℓ)-categories, by the inductive relations

Θn+ℓn U =

{
U if ℓ = 0,

Θn+ℓ−1Θ
n+ℓ−1
n U if ℓ ≥ 1.

For example, we obtain from a symmetric monoidal n-category A an uncate-
gorified n-theory Θn0A. Even though this is an n-theory, it is true that this is not
really a new mathematical object since it is essentially just a symmetric monoidal
n-categoryA. An n-theory which fails to be represented by an (n−1)-theory arises,
for example, through the “delooping”, as well as the “convolution”, constructions,
which we shall discuss in Sections 2.6 and 4.4 respectively.

However, considering symmetric monoidal n-categories as n-theories means con-
sidering very differentmorphisms between symmetric monoidal n-categories, since a
functor of these n-theories turns out to be an n-lax version of a symmetric monoidal
functor of the original symmetric monoidal n-categories. Here and everywhere, by
“n-lax” we mean “relaxed n times”. The way in which the structure is relaxed
each time is actually quite interesting here, and the author also finds the structure
resulting from iteration of these processes of relaxation fascinating.

Even though n-lax symmetric monoidal functor may still not be a very new
notion, the construction above is certainly giving a new meaning to this notion, in a
richer environment where many new and natural mathematical structures interact,
as we shall show through this work.

In general, for m-categorified n-theories U ,V , a functor Θm+n
n U → Θm+n

n V of
uncategorified (n +m)-theories is equivalent as data to an m-lax functor U → V ,
as follows similarly to Therem 2.10 below.

2.4.2. There are of course, less coloured versions of all the above. In particular, in
the situation of Definition 2.2, if U is k-tuply coloured, where 0 ≤ k ≤ n− 1, then
Θn+ℓn U is obtained as (k + ℓ)-tuply coloured.
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2.5. Theorization and lax functors.

2.5.0. The obvious notion of functor of n-theories has a reasonable lax version.
Let us start with recording the definition of a functor.

Definition 2.3. Let n ≥ 2 be an integer, and let U and V be n-theories enriched
in a symmetric monoidal category A. Then a functor F : U → V of n-theories
consists of data of the forms specified below as (0), “(k)” for every integer k such
that 1 ≤ k ≤ n− 1, (n), (n+ 1), (n+ 2), and “(n+ ℓ)” for every integer ℓ ≥ 3.

Similarly to the data for an n-theory, data for a functor will be associated to
input data satisfying the same elementality requirements as before. As before, each
data form specified needs to be extended for non-elemental input data before the
next data form is specified. The way how we do this is more or less the same as
before, and we shall do this implicitly.

The forms of data are as follows.

(0) (Action on objects.) For every object u of U , an object Fu of V .
(k) (Action on k-mutimaps, inductively for 1 ≤ k ≤ n − 1.) Suppose given

the type u of a k-multimap in U of arity given as (I;π, φ). Then for every
k-multimap x ∈MulπU [u], a k-multimap Fx ∈ MulπV [Fu].

(n) (Action on n-multimaps.) Suppose given the type u of an n-multimap in
U of arity given as (I;π, φ). Then a map m̌F

1 (π) : MulπU [u]→ MulπV [Fu] in
A.

(n+ 1) (The isomorphism of compatibility with the composition.) Suppose given
– the arity (I;π, φ) of an (n+1)-multimap in a symmetric higher theory,
– the type u of a φn−1-nerve of n-multimaps in U .

Then a 2-isomorphism

m̌F
2 (π) : m̌

F
1 (π!φ

n−1) ◦mU1 (π)
∼
−−→ mV1 (π) ◦ m̌

F
1 (φ

n−1)

in A, filling the square

Mulφ
n−1

U [u] Mulπ!φ
n−1

U [π!u]

Mulφ
n−1

V [Fu] Mulπ!φ
n−1

V [π!Fu],

mU
1 (π)

m̌F
1 (φn−1) m̌F

1 (π!φ
n−1)

mV
1 (π)

where m̌F
1 (φ

n−1) denotes the monoidal product over i ∈ In0 of the maps

m̌F
1 (φ

n−1
i ) : Mulφ

n−1
i [u|i] −→ Mulφ

n−1
i [Fu|i].

(n+ 2) (The isomorphism of coherence for the compatibility with the composition.)
Suppose given

– the arity (I;π, φ) of an (n+2)-multimap in a symmetric higher theory,
– the type u of a φn−1-nerve of n-multimaps in U .

Then an 3-isomorphism

m̌F
3 (π) : m̌

F
2 (π!φ

n) ◦mU2 (π)
∼
−−→ mV2 (π) ◦ π!m̌

F
2 (φ

n)

in A, filling the square

m̌F
1 (π

n
!φ
n−1) ◦ π!m

U
1 (φ

n) π!m
V
1 (φ

n) ◦ m̌F
1 (φ

n−1)

m̌F
1 (π

n
!φ
n−1) ◦mU1 (π!φ

n) mV1 (π!φ
n) ◦ m̌F

1 (φ
n−1),

π!m̌
F
2 (φn)

mU
2 (π) mV

2 (π)

m̌F
2 (π!φ

n)
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where m̌F
2 (φ

n) denotes the In+1
0 -nerve

(
m̌F

1 (φ
n
i )
)
i∈In+1

0
of 2-isomorphisms

in A connecting in the reverse order the family indexed by j (= [π](1)− i)
∈ [In+1

0 ] of the maps

mV1
(
φn

)
←j
◦ m̌F

1

(
(φn→j)!φ

n−1
)
◦mU1

(
φn

)
→j

: Mulφ
n−1

U [u] −→ Mulπ!φ
n−1

V [π!Fu]

in A.
(n+ ℓ) (Higher coherence, inductively for ℓ ≥ 3.) Suppose given

– the arity (I;π, φ) of an (n+ℓ)-multimap in a symmetric higher theory,
– the type u of a φn−1-nerve of n-multimaps in U .

Then an (ℓ+ 1)-isomorphism

m̌F
ℓ+1(π) : m̌

F
ℓ (π!φ

n+ℓ−2) ◦mUℓ (π)
∼
−−→ mVℓ (π) ◦ π!m̌

F
ℓ (φ

n+ℓ−2)

in A, filling the square

m̌F
ℓ−1(π

n+ℓ−2
!φ
n+ℓ−3)◦

π!m
U
ℓ−1(φ

n+ℓ−2)

π!m
V
ℓ−1(φ

n+ℓ−2)◦

πn+ℓ−2!m̌
F
ℓ−1(φ

n+ℓ−3)

m̌F
ℓ−1(π

n+ℓ−2
!φ
n+ℓ−3)◦

mUℓ−1(π!φ
n+ℓ−2)

mVℓ−1(π!φ
n+ℓ−2) ◦

πn+ℓ−2!m̌
F
ℓ−1(φ

n+ℓ−3),

π!m̌
F
ℓ (φn+ℓ−2)

mU
ℓ (π) mV

ℓ (π)

m̌F
ℓ (π!φ

n+ℓ−2)

where m̌F
ℓ (φ

n+ℓ−2) denotes the In+ℓ−10 -nerve
(
m̌F
ℓ−1(φ

n+ℓ−2
i )

)
i∈In+ℓ−1

0
of ℓ-

isomorphisms in A connecting in the reverse order the family indexed by j
(= [π](1)− i) ∈ [In+ℓ−10 ] of the (ℓ− 1)-isomorphisms

mVℓ−1(φ
n+ℓ−2)←j◦

φn+ℓ−2←j !
m̌F
ℓ−1(φ

n+ℓ−2
→j !

φn+ℓ−3) ◦mUℓ−1(φ
n+ℓ−2)→j :

m̌F
ℓ−2(π

n+ℓ−3
!φ
n+ℓ−4) ◦ πn+ℓ−2!m

U
ℓ−2(φ

n+ℓ−3)
∼
−−→ mVℓ−2(π

n+ℓ−3) ◦ πn+ℓ−3!m̌
F
ℓ−2(φ

n+ℓ−4)

in A.

This completes Definition 2.3.

2.5.1. Now a lax functor can be defined as follows.

Definition 2.4. Let n ≥ 2 be an integer, and let U and V be n-theories enriched
in a symmetric monoidal 2-category A (i.e., in the symmetric monoidal category
underlying A). Then a lax functor F : U → V consists of data of the forms

• (0) through (n) specified above for Definition 2.3 for the same value of “n”,
• (n+ 1) and (∞) below.

(n+ 1) (The map of compatibility with the composition.) Suppose given
– the arity (I;π, φ) of an (n+1)-multimap in a symmetric higher theory,
– the type u of a φn−1-nerve of n-multimaps in U .

Then a 2-map

mF
2 (π) : m

V
1 (π) ◦ m̌

F
1 (φ

n−1) −→ m̌F
1 (π!φ

n−1) ◦mU1 (π)

in A. See (n+ 1) for Definition 2.3 above.
(∞) Data of coherence, similar to that for a functor.

This completes Definition 2.4.
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2.5.2. The notion of lax functor can be used to define the notion of “(n+1)-tuply”
coloured lax n-theory, which will allow us to describe an (n + 1)-theory along the
line discussed in Section 0.3.4, as to be done in Proposition 2.9. In order to do this,
let us first understand an n-theory as a functor of higher theories.

In order to describe the source of the functor, we need the following definitions.
Recall that an n-theory U consists by definition, of data (k) for all integers k ≥ 0,
of the forms specified in Section 1. Of these, the part k ≤ n − 1 does not involve
the information of where the theory is enriched.

Definition 2.5. Let n ≥ 0 be an integer. Then we refer to data of the forms
(0) through (n − 1) as specified for Definition 1.6 of an n-theory, as a system of
colours up to dimension n − 1 for a higher theory, or a system of colours for
an n-theory.

In particular, for every n-theory U and every integer m such that 0 ≤ m ≤ n−1,
we have a system of colours up to dimension m underlying U , consisting of the
data (0) through (m) for U , so U consists of this system of colours and a structure
on it.

Definition 2.6. Let m ≥ 0 and n ≥ m + 1 be integers. Then for the system
of colours up to dimension m consisting of data of the forms (0) through (m) as
specified for Definition 1.6 of an n-theory, we refer to the rest of data for an n-
theory, consisting of data of the forms (k) for k ≥ m+ 1, as the structure of an
n-theory on the system of colours.

In order to describe the target of the functor, we need to recall the categorical de-
looping, which associates to a monoid A (or more generally, a monoidal n-category),
a category (or (n+1)-category in the general case) BA with a chosen “base” object,
in which

• all objects are equivalent,
• the endomorphism monoid (or monoidal n-category) of the base object is
given an equivalence with A.

Note that, if A is a symmetric monoidal n-category, then BA is canonically a
symmetric monoidal (n+ 1)-category (with unit the base object) since the functor
B preserves direct products.

Now the following gives an interpretation of a higher theory as a functor of higher
theories.

Example 2.7. Choose and fixed a system of colours up to dimension n − 1, and
denote by T the terminal object among unenriched (n+ 1)-theories extending this
system of lower colours. Explicitly, T is such that every collection of n-multimaps
in it is non-empty, and every groupoid of (n+ 1)-multimaps in it is contractible.

Then the structure on the chosen system of colours, of an n-theory enriched in a
symmetric monoidal category A, is equivalent as data to a functor T → Θn+1

0 BnA
(where Bn indicates n-fold application of the delooping construction B) of (n+1)-
theories which is n-trapped in the sense that it sends any object of T to the
base object of BnA, and any k-multimap of T for 1 ≤ k ≤ n − 1, to the identity
k-morphism or the base object of Bn−kA.

Let us say that an (n+1)-theory T as in Example 2.7 is terminal on the chosen
system of colours up to dimension n−1. Considering T as a coloured variant of the
terminal unenriched uncoloured (n+1)-theory 1n+1

Com (where Com = E∞ denotes the
commutative operad), one might say that an n-theory enriched in A is an n-trapped
functor 1n+1

Com → Θn+1
0 BnA with strata of colours for an n-theory.
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Definition 2.8. For an integer n ≥ 0, an (n+ 1)-tuply coloured lax n-theory
enriched in a symmetric monoidal 2-categoryA, is an n-trapped lax functor 1n+1

Com →

Θn+1
0 BnA with strata of colours up to dimension n, namely, an n-trapped lax

functor F : T → Θn+1
0 BnA, where T is an unenriched (n + 1)-theory, which is

terminal on a system of colours for an (n+ 1)-theory.
An (n + 1)-tuply coloured lax n-theory enriched in A, defined by a lax functor

F as above, is said to be trapped if F sends n-multimaps of T to the unit object
of A.

Proposition 2.9. Let A be a symmetric monoidal category. Then, for an integer
n ≥ 1, an n-theory enriched in A is equivalent as data to a trapped n-tuply coloured
lax (n− 1)-theory enriched in BA.

This is a consequence of Theorem 2.10 below, as will be seen in Section 2.6.4.

2.5.3. The following is a key fact on the relation between theorization and cate-
gorification.

Theorem 2.10. Let n ≥ 0 be an integer, and U and V be categorified n-theories.
Then a functor ΘnU → ΘnV of uncategorified (n+1)-theories, is equivalent as data
to a lax functor U → V.

Proof. 0.We first note that the form of data for the action of a functor ΘnU → ΘnV
on the colours up to dimension n− 1, is identical to the form of data for the action
of a lax functor U → V on the colours up to the same dimension. Then for any
fixed data of this form, we would like to prove that the categories (or 2-categories)
naturally formed respectively by the structures on these same data, of functors (of
(n+ 1)-theories), and of lax functors (of categorified n-theories), are equivalent.
1. The structure of a categorified n-theory is given on the categories of n-multimaps,
by the (cohrently) associative composition functors. A lax functor F : U → V
extending the chosen action, is then seen to be given by

(0) the action of F on the categories of n-multimaps through functors specified
by the data m̌F

1 , and
(1) the (lax) compatibility specified by the data mF

2 and m̌F
k for k ≥ 3, of the

mentioned action with the associative composition functors for n-multimaps
in U and in V .

2. Recall that we have obtained ΘnU by replacing the composition functors of U
by the bimodules/distributors/profunctors represented by them, and similarly for
V .

Given data as (0) above for a lax functor F , of an action on n-multimaps,
data of compatibility as (1) above, of this action with the composition functors
for n-multimaps, can equivalently be described as an action on the (associative)
composition bimodules for n-multimaps (which were represented by the composition
functors) in ΘnU and in ΘnV . Note that these bimodules (in ΘnU or in ΘnV) are
formed by (n + 1)-multimaps, and the (coherent) associativity of the composition
(for n-multimaps) can equivalently be described as the (coherently associative)
composition operations for (n+ 1)-multimaps.

In this manner, we consider F as a structure between ΘnU and ΘnV .
The difference of this structure between ΘnU and ΘnV , from a functorG : ΘnU →

ΘnV of (n+ 1)-theories, is that

• the action of G on n-multimaps does not (explicitly) include the data of
functoriality included in m̌F

1 , and
• the action of G on (n+ 1)-multimaps (given by m̌G

1 ) and its compatibility
(given by m̌G

k , k ≥ 2) with the composition operations for (n+1)-multimaps
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in ΘnU and in ΘnV , do not explicitly include the data of compatibility with
the bimodules structures, included in mF

2 and m̌F
≥3.

Never the less, we obtain a functor ΘnF : ΘnU → ΘnV by forgetting these extra
data (which will turn out in the next step to have been actually redundant).
3. Conversely, suppose given a functor G : ΘnU → ΘnV which extends the chosen
actions up to dimension n − 1. Then, from the discussions above, a lax functor
H : U → V extending the same lower actions, such that ΘnH = G, is constructed
if we equip the higher data for G with the following.

• A functoriality in the n-multimap x ∈ MulπU [u], on the n-multimap Gx ∈
MulπV [Hu].

• A compatibility of this functoriality with the data m̌G
i , i ≥ 1, of the action

of G (in a manner compatible with the (associative) composition operations
for (n+ 1)-multimaps in ΘnU and in ΘnV) on (n+ 1)-multimaps.

In order to obtain a functoriality of the n-multimap Gx, one notes that a map
in the category MulπU [u] is suitably ‘unary’ (n+1)-multimaps in ΘnU . The desired
functoriality is given by the restriction of the associative action of G to unary
(n+ 1)-multimaps in ΘnU .

A compatibility of this functoriality with the action of G means

• a naturality of every instance of the map

m̌G
1 (π) : Map

Mul
π!φ

n−1

U [π!u≤n−1]

(
mU1 (π)(u

n
0 ), u

n
1

)

−→ Map
Mul

π!φ
n−1

V
[π!Hu≤n−1]

(
mV1 (π)(Gu

n
0 ), Gu

n
1

)

in un, and
• a compatibility of this naturality with the compatibility, given by m̌G

i , i ≥ 2,
of these maps m̌G

1 (π) with the composition operations in ΘnU and in ΘnV .

We note that the functoriality in un of the target of m̌G
1 (π) is the composite of

the functoriality of Map
Mul

π!φ
n−1

V
[π!Hu≤n−1]

(
mV1 (π)(−),−

)
in its variables, with the

functoriality of G. Moreover, the compatibility of this functoriality with the com-
position structures of ΘnU and of ΘnV , is also induced by the same functoriality of
G, from the compatibility of the functoriality of Map

Mul
π!φ

n−1

V
[π!v]

(
mV1 (π)(−),−

)

with the composition operations.
Now, the functoriality, together with its compatibility with the composition

structure of ΘnU , of Map
Mul

π!φ
n−1

U [π!u≤n−1]

(
mU1 (π)(−),−

)
= MulπΘnU

[
u≤n−1

](
−;−

)

can alternatively be considered as obtained by suitably restricting the composition
structure of ΘnU , and similarly for Map

Mul
π!φ

n−1

V
[π!v]

(
mV1 (π)(−),−

)
. Since the

functoriality of G on the category of n-multimaps is as constructed above, we see
that the compatibility of the action of G on (n+1)-multimaps with the composition
structures of ΘnU and of ΘnV , also induces the desired data.
4. We have thus constructed a desired lax functor H : U → V naturally from G.
Moreover, it is immediate to verify that this construction recovers in the case G =
ΘnF , all the data “forgotten” in the construction F 7→ ΘnF , so the lax functor
“H” will be naturally equivalent to F . �

Remark 2.11. We have thus described for the (n+ 1)-theory W = ΘnV , a functor
G : ΘnU → W as a lax functor U → V . Similar arguments lead to a description
of G for an arbitrary (n + 1)-theory W , as a structure generalizing a lax functor
U → V . One might call this structure between U and W a functor U → W . Thus,
a functor ΘnU → W will be equivalent as data to a functor U → W .
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2.5.4. Note that n-theories enriched in groupoids are also among n-theories en-
riched in categories since a groupoid can be considered as a category in which every
morphism is invertible. This kind of unenriched categorified n-theories is special as
a target of a functor in that there is no difference between an ordinary functor and
a lax functor from an unenriched categorified n-theory to such a target.

Corollary 2.12. The functor Θn is fully faithful on n-theories enriched in groupoids.

2.6. Delooping a higher theory.

2.6.0. There is a construction, which we shall call the delooping, of a symmetric
n-tuply coloured (n+ 1)-theory from a symmetric n-theory. We shall describe this
construction, and then discuss its relation to the “categorical” delooping.

An (n + 1)-theory which is obtained through this construction normally fails
to be representable by an n-theory. Delooped theories will be conveniently used
throughout this work as the targets of (possibly “coloured”) functors of higher
theories.

2.6.1. The delooping construction relies on the following construction.
Suppose first that the arity of a 2-multimap is specified as in (1′) and (0′) of

(2) in Section 1.4. Then since our notation 1.2 chooses an embedding I10 →֒ [I10 ],
it makes sense to take the coproduct

∐
I10
I0. Then note that a φ0-nerve u00 as in

(2) of Definition 2.1 in the case m− n = 1, of objects of an (n− 1)-tuply coloured
n-theory, can be considered as a (

∐
I10
I0)-family, while an (I00 -ary) object u

0
1 is a

(
∐
I11
π!I

0)-family, where I11 := {1}.

Suppose next given the arity (I;π, φ) of a 3-multimap in a symmetric higher
theory. Then for every i ∈ I20 and j ∈ I1i , we have a map

∐
(φ1

i )
−1j (φ

1
→i−1)!I

0 →

I0
[φ1

→i](j)
whose component for k ∈ (φ1i )

−1j is the composite

φ0[φ1
→i](j)

· · ·φ0[φ1
→i−1](k)+1 : I

0
[φ1

→i−1](k)
−→ I0[φ1

→i](j)
.

Taking the coproduct of these over j, we obtain a map
∐
I1i−1

(φ1→i−1)!I
0 →

∐
I1i

(φ1→i)!I
0,

which together form an I20 -nerve in Fin.
Let us denote this nerve by

∫
I1 φ

0, and the [I20 ]-family of finite sets connected by

it by
∫
I1 I

0. Then data u0i of (1
′′) of (3) for Definition 2.1 in the casem = n−1, can

be considered as a
( ∫

I1
I0
)
i
-family, so u0 is identical as data to a (

∫
I1
I0)-family.

2.6.2. Suppose now given an n-theory V . Then we wish to construct a new n-tuply
coloured (n + 1)-theory U = BV by precomposing the above constructions to the
data for V .

The construction of U is as follows.

(1) Given a finite set S, we let Obπ U = ObV , where π denotes the unique map
S → ∗.

(2) Given the arity of a 2-multimap as in the preliminary construction above,

if n = 0, then we let mU1 (π) : Obφ
0

U → Obπ!φ
0

U be the multiplication

map (ObV)
⊗(

∐
I10
I0)
→ ObV . If n ≥ 1, and further given a φ0-nerve u00 of

objects of U and an I00 -ary object u01 as in (2) of Definition 2.1 in the case

m = n− 1, then we let MulπU [u
0] = Mulπ

′

V [u
0], where π′ denotes the unique

map
∐
I10
I0 → ∗, and u0 is considered as a (

∫
I1 I

0)-family of objects in V ,

by the preliminary construction above.

Next, if n ≥ 2, suppose given input data for (3) for Definition 2.1 in the case
m = n − 1. Then we can construct a set of data of the form required of an input
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to (2) in Section 1.4 for V , as follows. If we define

J1
0 := I20 , J0 :=

∫

I1
I0, ψ0 :=

∫

I1
φ0, ψ1 := (π : J1

0 → {1}),

then J, ψ, u give the required form of data. Using this, we let MulπU [u] = MulπV [u].
If n ≥ 1, we let mUν (π) = mVν (π) for ν = 1 or 2, in the similar manner, where the

form of u is different in the case n = 1, and we are not given u in the case n = 0.
For every k ≥ 4, data (k) for U are constructed in the similar manner from data

(k − 1) for V .

2.6.3. It is clear that if U is an m-tuply coloured n-theory, then its deloop BU is
obtained as an m-tuply coloured (n+ 1)-theory.

2.6.4. Our delooping construction for higher theories relates to the categorical
delooping recalled in Section 2.5 for the formulation of Example 2.7. Let us describe
one relation which will be convenient for us.

Specifically, let n ≥ 0 be an integer, and A be a symmetric monoidal n-category.
Then for an integer m such that 0 ≤ m ≤ n, we would like to relate the (m + 1)-
theory BΘm0 A to the (m+1)-theory Θm+1

0 BA, both enriched in (n−m)-categories.
An obvious issue for this is that Θm+1

0 BA is fully coloured whereas BΘm0 A is only

m-tuply coloured. However, if we restrict the data for Θm+1
0 BA so the only object

we consider is the base object of BA, then the rest of the data for Θm+1
0 BA is of the

form of data for an m-tuply coloured (m+1)-theory enriched in (n−m)-categories.

Proposition 2.13. Let n ≥ 0 be an integer, and A be a symmetric monoidal n-
category. Then for every integer m such that 0 ≤ m ≤ n, BΘm0 A is equivalent to
the (n − m)-categorified m-tuply coloured (m + 1)-theory obtained as above from
Θm+1

0 BA by restricting objects to just the base object of BA.

Proof. The case m = 0 is immediate from the constructions, and the general case
follows by induction, from Lemma 2.14 below. �

The lemma is as follows, and follows immediately from the definitions.

Lemma 2.14. For an arbitrary times categorified n-theory U , we have

BΘnU ≃ Θn+1BU .

Proof of Proposition 2.9. Definition 2.8 and Proposition 2.13 implies that a trapped
n-tuply coloured lax (n − 1)-theory enriched in BA is equivalent as data to a lax
functor 1nCom → B

nA with strata of colours up to dimension n − 1. Example 2.7
and Proposition 2.13 implies that an n-theory enriched in A is equivalent as data
to a functor 1n+1

Com → ΘnB
nA with strata of colours up to dimension n− 1.

Let T be an unenriched n-theory which is terminal on a system of colours up
to dimension n − 1. Then the (n + 1)-theory ΘnT (where we have considered T
as trivially categorified) is terminal on the same system of colours, so the result
follows immediately from the equivalence of Theorem 2.10. �

We also obtain the following from Proposition 2.13.

Corollary 2.15. Let A be a symmetric monoidal category. Then for an unenriched
(n + 1)-theory U , an n-trapped functor U → Θn+1

0 BnA is equivalent as data to a
functor U → B

nΘ0A.

Definition 2.16. Let n ≥ 0 be an integer. Then an n-theory enriched in a
multicategory M, is a functor 1n+1

Com → B
nM with strata of colours for an n-

theory.
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Generalizing Proposition 2.9, this is equivalent as data to a functor 1nCom →
B
nM (Remark 2.11) with strata of colours up to dimension n − 1 for a higher

theory.

3. Graded higher theories

3.0. Introduction. The purpose of this section is to discuss grading of higher
theory by a higher theory (enriched in groupoids). It turns out that this notion
naturally arises by considering theorization of algebra over a higher theory. We
shall also see how “graded” lower theory over a higher theory is related to iterated
monoid, i.e., monoid (i.e., algebra in the category of groupoids) over a monoid
over ... over a monoid, over a higher theory enriched in groupoids.

3.1. Algebras over a higher theory.

3.1.0. We have sought for the notion of n-theory as an interesting n-th theorization
of the notion of commutative algebra. As have been discussed in Section 0, what
we wished to get from this was for each n-theory to govern algebras over it, which
naturally generalize (n− 1)-theories.

Definition 3.0. Let n ≥ 2 be an integer, and let U be an unenriched n-theory.
Then a U-algebra X enriched in a multicategoryM consists of data of the forms
specified below as (0) and (1) (or just (0) if n = 2), “(k)” for every integer k such
that 2 ≤ k ≤ n− 2, (n− 1), (n) and (∞).

Let us specify the forms of data for Definition.

Remark 3.1. As before, we implicitly extend each data form specified below for
non-elemental input data before proceeding to specifying the next data form, in a
more or less similar manner as before.

(0) (Object.) For every object u of U , a collection Obu X , whose member will
be called an object of X of degree u.

(1) (Multimap, in the case n ≥ 3.) Suppose given (0′) and (0′′) of (1) in Section
1.3, and
(0◦) an S-family x0 of objects of X of degree u0 (namely, x0s ∈ Obu0s X

for every s ∈ S), and an object x1 of degree u1.
Then for every multimap v ∈ MulπU [u], a collection MulπX ,v(x0;x1) or MulπX ,v[x]
for short, whose member will be called an (S-ary) (1-)multimap x0 → x1
in X of degree v.

(k) (k-multimap, inductively for 2 ≤ k ≤ n− 2.) Suppose given (a), (0◦), (b),
(k − 2◦) (or just (a), “(0◦)” if k = 2), and (k − 1◦) below:
(a) the type u of a k-multimap in U of arity given as (I;π, φ).
(0◦) an I0-family x0 of objects of X , of degree u0, namely, x0 = (x0i )i∈[I10 ],

where x0i is an I0i -family of objects of X , of degree u0i ,
(b) if k ≥ 4, then (1◦) through (k − 3◦) of (k − 1) here,

(k − 2◦) (in the case k ≥ 3) an Ik−2-family xk−2 = (xk−2i )i∈[Ik−1
0 ] of (k −

2)-multimaps in X , where xk−2i is an φk−2→i !φ
k−3-nerve of (k − 2)-

multimaps in X , connecting φk−2→i !x
k−3 of degree uk−2i ,

(k − 1◦) – a φk−2-nerve xk−10 of (k − 1)-multimaps connecting xk−2, of

degree uk−10 in X , namely, xk−10i ∈ Mul
φk−2
i

uk−1
0i

[x≤k−2|i] for every

i ∈ Ik−10 ,

– xk−11 ∈ Mulπ!φ
k−2

uk−1
1

[π!x
≤k−2].
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Then for every k-multimap v ∈MulπU [u], a collection MulπX ,v[x
≤k−2](xk−10 ;xk−11 )

or MulπX ,v[x] for short, whose member will be called a k-multimap xk−10 →

xk−11 in X of degree v.

Definition 3.2. We refer to data x = (xν)0≤ν≤k−1 of the form specified by (0◦)
through (k− 1◦) above (by induction in k), as the type of a k-multimap in X of
arity (I;π, φ) and of degree u.

Remark 3.3. Even though we have not yet specified the forms of the rest of data
for X , note that the notion of the type of a k-multimap “in X” makes sense as soon
as data of the forms (0) through (k − 1) are given “for X”.

(n− 1) (The object “formed by (n− 1)-multimaps”.) Suppose given the type u of
an (n − 1)-multimap in U of arity given as (I;π, φ), and the type x of an
(n− 1)-multimap in X of the same arity of degree u, namely, a set of data
similar to (0◦) through (k − 1◦), of “(k)” above, but with k substituted
by n − 1, so these will be (0◦) through (n − 2◦) here. Then for every
(n − 1)-multimap v ∈ MulπU [u], an object MulπX ,v[x

≤n−3](xn−20 ;xn−21 ) of
M, or MulπX ,v[x] for short. In the case whereM is Θ0Gpd or some other
multicategory so that MulπX ,v[x] can have its objects, then those objects

will be called (n− 1)-multimaps xn−20 → xn−21 in X of degree v. For a
generalM, we shall call MulπX ,v[x] the object “of (n− 1)-multimaps in X
of degree v”.

(n) (Action of the n-multimaps of U .) Suppose given
– the type u of an n-multimap in U of arity given as (I;π, φ),
– (0◦) through (n− 3◦) of (n− 1) above,
– (k − 2◦) of “(k)” above, but with k substituted by n, so this will be

(n− 2◦) here.
Then a map

m̌X1 (π) : MulπU
[
u
]
−→ MulM

(
Mulφ

n−2

X ,un−1
0

[x];Mulπ!φ
n−2

X ,un−1
1

[π!x]
)

of groupoids, where Mulφ
n−2

X ,un−1
0

[x] denotes the (
∐
In−1
0

In−2)-family
∐
i∈In−1

0
Mul

φn−2
i

X ,un−1
0i

[x|i]

of objects ofM, and π!x consists of x≤n−3, π!x
n−2. For v in the source of

this map, the multimap

m̌1(π)(v) : Mulφ
n−2

un−1
0

[x] −→ Mulπ!φ
n−2

un−1
1

[π!x]

in M will be called the composition operation along v for (n − 1)-
multimaps in X .

Definition 3.4. We refer to data x = (xν)0≤ν≤n−2 of the form specified by (0◦)
through (n − 2◦) above, as the type of a φn−2-nerve of (n − 1)-multimaps in
X of degree u≤n−2.

(∞) Data of (coherent) associativity for the action of n-multimaps, similar to
those for a functor (Definition 2.3).

This completes Definition 3.0.

3.1.1. Similarly, one can define the notion of algebra over a less coloured n-theory.
See Section 2.3.

Example 3.5. A 1nCom-algebra enriched in a symmetric monoidal category A, i.e.,
in the multicategory Θ0A, is equivalent as data to an (n− 1)-theory enriched in A.
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It follows from Example 2.7 and Corollary 2.15, that a 1nCom-algebra enriched in
the multicategory M = Θ0A, is a coloured functor 1nCom → B

n−1M, and this is
true in fact, for every multicategory M. This can further be generalized over an
arbitrary n-theory U after we theorize the notion of U-algebra, which we shall do
next.

3.2. Iterated theorizations of algebra.

3.2.0. We would like to theorize the notion of algebra. Let us first relax the notion.

Definition 3.6. Let n ≥ 2 be an integer, and let U be an unenriched n-theory.
Then a lax U-algebra X enriched in a categorified multicategory M consists of
data of the forms (0) through (n), specified above for Definition 3.0 for the same
value of “n”, and data of coherent lax associativity for the action of n-multimaps,
similar to those for a lax functor (Definition 2.4).

This essentially contains at least the unenriched version of a virtualization of
the notion of op-lax categorified U-algebra, namely, a theorization of the notion of
U-algebra. We shall write down an enriched version of the definition explicitly, in
a form which will be convenient shortly. (The notion will be generalized in Section
4.) A natural name for the kind of thing will turn out to be “graded n-theory”.

Definition 3.7. Let n ≥ 1 be an integer, and let U be an n-theory enriched in
groupoids. Then a U-graded n-theory X enriched in a multicategoryM consists
of data of the forms specified below as (0) and (1) (or just (0) if n = 2), “(k)” for
every integer k such that 2 ≤ k ≤ n− 2, (n− 1), (n), (n+ 1), and (∞).

The forms of data are as follows. Remark 3.1 applies here again.

(0) (Object.) For every object u of U , a collection Obu X , whose member will
be called an object of X of degree u.

(1) (Multimap, in the case n ≥ 2.) Suppose given (0′) and (0′′) of (1) in Section
1.3, and
(0◦) an S-family x0 of objects of X of degree u0, and an object x1 of degree

u1.
Then for every multimap v ∈ MulπU [u], a collection MulπX ,v(x0;x1) or MulπX ,v[x]
for short, whose member will be called an (S-ary) (1-)multimap x0 → x1
in X of degree v.

(k) (k-multimap, inductively for 2 ≤ k ≤ n− 1.) Suppose given the type u of a
k-multimap in U of arity given as (I;π, φ), and the type x of a k-multimap
in X of the same arity of degree u, namely, (0◦), (b), (k−2◦) (or just “(0◦)”
if k = 2), and (k − 1◦) below:
(0◦) an I0-family x0 of objects of X , of degree u0, namely, x0i ∈ Obu0

i
X for

every i ∈ [I10 ],
(b) if k ≥ 4, then (1◦) through (k − 3◦) of (k − 1) here,

(k − 2◦) (in the case k ≥ 3) an Ik−2-family xk−2 = (xk−2i )i∈[Ik−1
0 ], where x

k−2
i

is an φk−2→i !φ
k−3-nerve of (k − 2)-multimaps connecting φk−2→i !x

k−3 in

X , of degree uk−2i ,

(k − 1◦) a φk−2-nerve xk−10 of (k − 1)-multimaps connecting xk−2, of degree

uk−10 in X , and xk−11 ∈Mulπ!φ
k−2

uk−1
1

[π!x
≤k−2].

Then for every k-multimap v ∈MulπU [u], a collection MulπX ,v[x
≤k−2](xk−10 ;xk−11 )

or MulπX ,v[x] for short, whose member will be called a k-multimap xk−10 →

xk−11 in X of degree v.
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(n) (Action of the n-multimaps of U .) Suppose given the type x of an n-
multimap in X of arity and degree given respectively as (I;π, φ) and u.
Then a functor (to the underlying category ofM)

MX1 (π)[x≤n−2](xn−10 , xn−11 ) : MulπU [u] −→M

which will also be denoted by MX1 (π)[x] for short. For v in the source of
this functor, we write

MulπX ,v[x] := MulπX ,v[x
≤n−2](xn−10 ;xn−11 ) :=MX1 (π)[x](v).

In the case whereM is Θ0Gpd or some other multicategory so that MulπX ,v[x]

can have its objects, then those objects will be called n-multimaps xn−10 →
xn−11 in X of degree v. For a generalM, we shall call MulπX ,v[x] the object
“of n-multimaps in X of degree v”.

(n+ 1) (Associativity map.) Suppose given
– the arity (I;π, φ) of an (n+1)-multimap in a symmetric higher theory,
– the type u of a φn−1-nerve of n-multimaps in U ,
– the type x of a φn−1-nerve of n-multimaps in X of degree u≤n−1,

namely, (0◦) through (k − 2◦) of “(k)” above, but with k substituted
by n+ 1, so this will be (0◦) through (n− 1◦) here.

Then a multimap

MX2 (π) : MX1 (φn−1)[x] −→MX1 (π!φ
n−1)[π!x] ◦m

U
1 (π)

of functors Mulφ
n−1

U [u] → M, where the source of this multimap is the∐
In0
In−1-family

∐
i∈In0

pri
∗M1(φ

n−1
i )[x|i], where pri denotes the projection

Mulφ
n−1

U [u]→ Mulφ
n−1
i [u|i]. For v in the source of this functor, we write

mX1 (π)v :=MX2 (π)(v) : Mulφ
n−1

v [x] −→ Mulπ!φ
n−1

π!v
[π!x],

where π!v := mU1 (π)(v), and call it the composition operation along v

for n-multimaps.
(∞) Data of coherence for the associativity, corresponding to those for a lax

U-algebra (Definition 3.6).

This completes Definition 3.7.

3.2.1. Let us consider the unenriched case whereM = Θ0Gpd.
Note that in this case, M1(π)[x] above can be identified with the data of the

canonical projection map

colim
v∈Mulπ

U
[u]

MulπX ,v[x] −→ MulπU [u]

of groupoids. The groupoid colimvMulπX ,v[x] of n-multimaps of arbitrary degrees,
will further be the groupoid of n-multimaps in a symmetric n-theory.

Indeed, data M2 induces “composition” operations colimvm
X
1 (π)(v) on these

groupoids, covering the composition operations mU1 (π) in U . Writing down the
coherence data for the associativity in X (which is straightforward), we obtain the
case m = 0 of Proposition 3.8 below (hence our term for the notion).

The construction simply remains valid in the unenriched (higher) categorified
caseM = Θ0Catm.

Proposition 3.8. Let n ≥ 1 be an integer, and let U be an n-theory enriched in
groupoids. Then for every integer m ≥ 0, an unenriched m-categorified U-graded
n-theory (i.e., U-graded n-theory enriched in Θ0Catm) is equivalent as data to an
unenriched m-categorified symmetric n-theory Y equipped with a functor Y → U .

In order to see this more precisely, let us introduce the following terminology,
which will be justified shortly.
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Definition 3.9. Let n ≥ 1 be an integer, and U be an (unenriched) n-theory.
Then, for an integer m such that 0 ≤ m ≤ n, we refer to data of the forms (0)
through (m−1) specified for Definition 3.7, as a system of colours up to dimension
m − 1 for a U-graded higher theory, or a system of colours for a U-graded
m-theory.

Suppose given a system X of colours up to dimension n − 2 for a U-graded
higher theory. Then we obtain a system ∆!X (where ∆: U → 1nCom) of colours up
to dimension n−2 for a symmetric higher theory, by inductively defining as follows.

We first define Ob∆!X as the collection whose member is a pair (u, x), where
u ∈ ObU and x ∈ Obu X . If n ≥ 3, then inductively for an integer k such
that 1 ≤ k ≤ n − 2, the type of a k-multimap in Y will be an identical form
of data as a pair (u, x), where u is the type of a k-multimap in U , and x is the
type of a k-multimap in X of degree u. We then inductively define Mulπ∆!X [(u, x)]
as the collection whose member is a pair (v, y) consisting of v ∈ MulπU [u] and
y ∈ MulπX ,v[x]. Moreover, one can associate to every member (v, y) ∈ Mulπ∆!X

[x]
the member v ∈MulπU [u].

Proposition 3.8 now follows since the category (or (m+2)-category) of extensions
of the data ∆!X to an unenriched m-categorified symmetric n-theory equipped
with a functor to U , gets equated by the described construction, to the category
(or (m+ 2)-category) of extensions of the data X to an unenriched m-categorified
U-graded n-theory.

Example 3.10. Let Init denote the initial uncoloured operad in groupoids.

• A category is equivalent as data to an Init-graded 1-theory.
• A planar multicategory is equivalent as data to an E1-graded 1-theory.
• A braided multicategory (see Fiedorowicz [9]) is equivalent as data to an
E2-graded 1-theory.

Example 3.11. Since U-graded n-theory is a theorization of U-algebra, one ob-
tains from a U-monoidal category X , a U-graded n-theory by replacing the functors
giving the composition operations by the bimodules/distributors/profunctors corep-
resented by them. We shall say that this n-theory is represented by X , and shall
denote it by Θn−1X , where the subscript comes from the fact that U-algebra is a
generalization of (n− 1)-theory from the case U = 1nCom.

Example 3.12. Recall that we called a plain n-theory, i.e., an n-theory which is not
considered with any grading, also a symmetric n-theory. Every symmetric n-theory
is canonically graded by the terminal unenriched uncoloured n-theory 1nCom, and
there is no difference between a symmetric n-theory and a 1nCom-graded n-theory.

3.2.2. For an unenriched U-graded n-theory X , let us denote the symmetric n-
theory underlying X (which maps to U ; see Proposition 3.8) by ∆!X , where ∆
denotes the unique functor U → 1nCom. For example, for the terminal unenriched
uncoloured U-graded n-theory 1nU , we have that the canonical projection functor
∆!1

n
U → U is an equivalence.
Using this, we can obtain a compact reformulation of the notion of algebra, as

will be given now.
Suppose given a system of colours up to dimension n − 2 for U-graded higher

theory, and let T denote the terminal unenriched U-graded n-theory on this system
of colours. Note that one can consider the structure of a U-algebra on this system
of colours. Indeed, the structure of a U-algebra enriched in a multicategory M,
is equivalent as data to a functor ∆!T → B

n−1M of n-theories (and equivalently
therefore, an uncoloured ∆!T -algebra enriched inM). It is convenient to say that
a U-algebra enriched in M is a functor U → B

n−1M with strata of colours up to
dimension n− 2, or colours for a U-algebra.
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For example, a U-monoid, i.e., a U-algebra enriched in groupoids, is naturally
equivalent as data to a coloured functor U → B

n−1Θ0Gpd. In this sense, the sym-
metric (n+ 1)-theory B

n−1Θ0Gpd classifies (uncoloured) monoids over unenriched
symmetric n-theories, where the universal monoid is the uncoloured B

n−1Θ0Gpd-
monoid U

n−1 “classified” by the identity functor of Bn−1Θ0Gpd.

Proposition 3.13. For the universal monoid U
n−1, the projection functor of the

B
n−1Θ0Gpd-graded n-theory Θn−1U

n−1 is equivalent to

B
n−1Θ0(Gpd∗) −→ B

n−1Θ0Gpd

induced from the forgetful functor Gpd∗ → Gpd, where Gpd∗ denotes the Cartesian
symmetric monoidal category of pointed groupoids.

The proof is straightforward from the definitions.

3.2.3. Now the notion of algebra generalizes immediately as follows.

Definition 3.14. Let n ≥ 2 be an integer, and U be an unenriched n-theory.
Then a U-algebra in a symmetric n-theory V is a functor U → V with strata
of colours for a U-algebra, namely, a functor ∆!T → V , where T is the terminal
unenriched U-graded n-theory on a system of colours up to dimension n − 2 for a
U-graded higher theory.

We generalize this as follows.

Definition 3.15. Let n ≥ 1 be an integer, and U be an unenriched n-theory. Then
an n-tuply coloured lax U-algebra in a categorified symmetric n-theory V , is
a lax functor U → V with strata of colours up to dimension n − 1, namely, a lax
functor ∆!T → V , where T is the terminal unenriched U-graded n-theory on a
system of colours up to dimension n− 1 for a U-graded higher theory.

We obtain from Definition 3.7 that a U-graded n-theory enriched in a symmetric
monoidal category A, i.e., in Θ0A, is (circularly) an n-tuply coloured lax U-algebra
in B

nA.

Remark 3.16. Using the definition mentioned in Remark 2.11, of a “functor”, one
can define an n-tuply coloured U-algebra in a symmetric (n + 1)-theory W as a
functor U → W with strata of colours up to dimension n − 1. In particular, a
U-graded n-theory enriched in a multicategoryM will be equivalent as data to an
n-tuply coloured U-algebra in B

nM. Note the equivalence ΘnB
nA = B

nΘ0A for a
symmetric monoidal category A, which follows from Lemma 2.14.

We obtain the following fundamental result.

Theorem 3.17. Let n ≥ 1 be an integer, and let U be an n-theory enriched in
groupoids. Then a U-graded n-theory enriched in a multicategory M is equivalent
as data to a ΘnU-algebra enriched in M.

Proof. We shall prove the case where M is represented by a symmetric monoidal
category A. The general case follows from essentially the same (and simpler) argu-
ment, but one needs to use Remark 3.16 and the remark after Definition 2.16, of
which we have omitted the details.

Let us first note that systems of colours for a U-graded n-theory and for a ΘnU-
algebra are identical forms of data. Choose and fix data of this form. Then we
would like to show that the categories of the structures on this same system of
colours, of a U-graded n-theory and of ΘnU-algebras, are equivalent. Let us prove
this.

Let T denote the terminal unenriched U-graded n-theory on the chosen system
of colours. Then the structure of a U-graded n-theory on those strata of colours
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could be described as a lax functor ∆!T → B
nA, which Theorem 2.10 and Lemma

2.14 equates with the data of a functor Θn∆!T → B
nΘ0A.

Let next J denote the terminal unenriched ΘnU-graded (n + 1)-theory on the
same system of colours. Then the structure of a ΘnU-algebra on those strata of
colours can be described as a functor ∆′!J → B

nΘ0A, where ∆′ : ΘnU → 1n+1
Com.

However, it is immediate that the strata of colours up to dimension n − 1, of
Θn∆!T , and of ∆′!J , are identical, and these two (n + 1)-theories on the same
strata of colours are in fact equivalent. The result follows. �

Definition 3.18. Let A be a 0-theory in groupoids, i.e., a commutative monoid.
Then an A-graded 0-theory is a Θ0A-algebra.

In particular, an unenriched A-graded 0-theory is equivalent as data to a com-
mutative monoid X equipped with a morphism X → A.

3.2.4. The notion of U-graded n-theory can be theorized in almost the same way
as how we have theorized the notion of algebra over an n-theory. We might call the
resulting object a U-graded (n+ 1)-theory.

However, this is not really a new notion as should be expected from Theorem
3.17.

Theorem 3.19. Let n ≥ 0 be an integer, and let U be an n-theory enriched in
groupoids. Then a U-graded (n + 1)-theory is equivalent as data to a ΘnU-graded
(n+ 1)-theory.

The proof is also similar to the proof of Theorem 3.17. We leave the details to
the interested reader.

Definition 3.20. Let n ≥ 0 be an integer, and let U be an n-theory enriched in
groupoids. For an integer m ≥ n + 2, a U-graded m-theory is a Θmn U-graded
m-theory, or equivalently, a Θm+1

n U-algebra.

Thus, for every U , U-graded m-theories are iterated theorizations of U-algebra
for m ≥ n.

Example 3.21. An E1-graded n-theory is equivalent as data to a planar n-theory
defined in Section 2.1.

More generally, for every multicategory U enriched in groupoids, there is a similar
description of a U-graded n-theory. Recall that the notion of planar n-theory was
defined by replacing the category Fin in the definition of a symmetric n-theory, with
the category Ord. For a similar description of the notion of U-graded n-theory, we
would like to replace Fin by a category which is an analogue for U , of Ord.

In order to construct this category, note that the forgetful functor Θ0 from U-
monoidal categories to U-graded multicategories, has a left adjoint LU , and that
the unique functor ∆: U → Com of symmetric multicategories, where Com = E∞
denotes the commutative operad (i.e., the terminal unenriched symmetric operad),
induces a functor ∆∗ : LU1

1
U → ∆∗LCom1

1
Com = ∆∗Fin of U-monoidal categories,

where 11
U denotes the terminal unenriched U-graded multicategory.

For simplicity, suppose first that U is uncoloured. Then we obtain a description
of a U-graded n-theory by replacing the category Fin in the definition 1.6 of a
symmetric n-theory, with L := LU1

1
U , where

• by a family indexed by J ∈ L, we mean a family indexed by ∆∗J ∈ Fin,
and
• for I ∈ Ord, we say that a [I]-family J of objects of L is elemental if ∆∗J
is an elemental [I]-family in Fin.
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If U is instead a coloured multicategory, then the description is similar except
that we would need to have objects of the “theory” to have “degrees” in U . We
leave the details to the reader.

3.3. Iterated monoids.

3.3.0. Let U be an n-theory enriched in groupoids, and X be a U-monoid. Then
since the structure of X is a generalization of the structure of an (n− 1)-theory, it
is natural to consider the notion of X -algebra if n ≥ 2.

The notion can actually be reduced to the same notion in the special case where
X is the unit (or terminal uncoloured) U-monoid. Indeed, if we denote by ∆ the
unique functor U → 1nCom, then an X -algebra will simply be an algebra over the unit
∆!Θn−1X -monoid. (In particular, the dependence of the notion on U will be only
through the presentation of the symmetric n-theory Y = ∆!Θn−1X as underlying
Θn−1X .)

3.3.1. Let now X be the unit U-monoid (so U = ∆!Θn−1X ). Then the notion of
X -algebra will be such that the notion of U-algebra theorizes it. In fact, the notion
of U-algebra ‘detheorizes’ more times, and the most detheorized notion will at the
end be equivalent to the notion of algebra over the unit monoid over ... over the
unit monoid over U , where we should have n− 1 unit monoids in the expression.

We can directly define all iteratively detheorized notions as follows.

Definition 3.22. Let n ≥ 1 be an integer, and U be an n-theory enriched in
groupoids. Then for an integer m such that 0 ≤ m ≤ n−1, a U-graded m-theory
enriched in a multicategoryM, is a functor U → Θnm+1B

mM with strata of colours
for a U-graded m-theory.

To be explicit, in the case m = 0, there is no colours added. In the case m ≥ 1,
given a system of colours for a U-graded m-theory X , the structure on it, of a U-
gradedm-theory, is a functor T → Θnm+1B

mM, where T is the symmetric n-theory
described as follows.

(0) ObT is the collection whose member is a pair (u, x), where u ∈ ObU and
x ∈ Obu X .

By induction, for k such that 1 ≤ k ≤ m, the type of a k-multimap in T of a given
arity (I;π, φ), is specified by

• the type u of a k-multimap in U of arity (I;π, φ),
• the type x of a k-multimap in X of the same arity of degree u.

(k) (Inductively for k such that 1 ≤ k ≤ m − 1.) Suppose given the arity
(I;π, φ) of a k-multimap, and the type (u, x) of a k-multimap in T of arity
(I;π, φ). Then MulπT [(u, x)] is the collection whose member is a pair (v, y),
where v ∈MulπU [u] and y ∈MulπX ,v[x].

(m) Suppose given data similar to the input data for “(k)” above, but with k

substituted by m. Then MulπT [(u, x)] = MulπU [u].
(ℓ) (Inductively for ℓ such thatm+1 ≤ ℓ ≤ n.) Suppose given the arity (I;π, φ)

of a ℓ-multimap, and the type of an ℓ-multimap in T of arity (I;π, φ), which
by induction, will be specified by

– the type u of a ℓ-multimap in U of arity (I;π, φ),
– the type x of a φm−1-nerve of m-multimaps in X of degree u≤m−1.

Then MulπT [(u, x)] = MulπU [u].

The composition is given by the composition in U .
Thus, the notion of U-graded (n − 1)-theory coincides with the notion of U-

algebra, and for all m ≥ 0 (which may be ≥ n), the notion of U-graded m-theory
is iteratively an m-th theorization of the notion of U-graded 0-theory.
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Lemma 3.23. A U-graded m-theory is equivalent as data to a ΘnU-graded m-
theory.

The proof of this is direct from Corollary 2.12.

Definition 3.24. Let n ≥ 0 be an integer, and U be an n-theory enriched in
groupoids. Then we refer to a U-graded 1-theory also as a U-graded multicate-
gory.

Definition 3.25. Let n ≥ 1 be an integer, and U be an n-theory enriched in
groupoids. Let m ≥ 0 and ℓ ≥ 1 be integers. Then, for an ℓ-categorified U-graded
m-theory X , we denote by ΘmX , the (ℓ− 1)-categorified U-graded (m+ 1)-theory
represented by X , namely, obtained by replacing the structure functors of X by the
bimodules/distributors/profunctors corepresented by them.

If X is enriched in ℓ-categories, then it can be regarded as k-categorified for any
k ≥ ℓ. However, resulting ΘmX is independent of k. In particular, ΘmX is also
defined for an U-graded m-theory X enriched in groupoids, and it is an uncate-
gorified U-graded (m+1)-theory, which can be considered as as highly categorified
(trivially) as one wishes to.

Definition 3.26. Let n ≥ 1 be an integer, and U be an n-theory enriched in
groupoids. Let m ≥ 0 be an integer, and X be a U-graded m-theory which is
possibly higher categorified. Then, for an integer ℓ ≥ 0, we define a (less or un-
categorified) U-graded (m+ ℓ)-theory Θm+ℓ

m X by the inductive relations

Θm+ℓ
m X =

{
X if ℓ = 0,

Θm+ℓ−1Θ
m+ℓ−1
m X if ℓ ≥ 1.

3.3.2. The following definition essentially achieves (more than) our initial goal of
the discussions here.

Definition 3.27. Let n ≥ 0 be an integer, and U be an n-theory enriched in
groupoids. Let m ≥ 0 be an integer, and X be a U-graded m-theory enriched in
groupoids. Then for an integer ℓ ≥ 0, an X -graded ℓ-theory is a ∆!Θ

N
mX -graded

ℓ-theory, where N := max{m,n}, and ∆: ΘNn U → 1NCom.

Example 3.28. Let X be the terminal uncoloured U-graded m-theory enriched in
groupoids. Then we have ∆!Θ

N
mX = ΘNn U , so an X -graded ℓ-theory is equivalent

as data to a U-graded ℓ-theory, as had been predicted.

3.3.3. In order to analyse the notions further, we shall next consider how gradings
can be altered.

Given a functor F : V → U of n-theories enriched in groupoids, it is clear that
a U-graded m-theory X gets pulled back by F . Let us denote the resulting V-
graded m-theory by F ∗X . In the case where m = n, and X is unenriched, the
projection (∆V)!F

∗X → V (where ∆V : V → 1nCom) is the base change of the
projection (∆U )!X → U by F in a suitable sense. In the case where m ≤ n− 1, one
has VΘnm(F

∗X ) = F ∗(UΘnmX ), where the superscripts to Θnm indicate the gradings
considered. If m ≥ n+ 1, then F ∗ is the pull-back by Θmn F : Θmn V → Θmn U .

Example 3.29. For an n-theory V enriched in groupoids, and an uncoloured V-
monoid X defined by a functor F : V → B

n−1Θ0Gpd, we have an equivalence
Θn−1X = F ∗(Θn−1U

n−1) of (simply coloured) V-graded n-theories, where Θn−1U
n−1

has been described in Proposition 3.13.

Let again U be an n-theory enriched in groupoids. For an integer m ≥ 0,
suppose that V is a U-gradedm-theory enriched in groupoids, and denote by P , the
projection ∆!Θ

N
mV → ΘNn U , where N ≥ m,n, and ∆: U → 1nCom. Then also clearly,
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one obtains from an unenriched (possibly higher categorified) V-graded m-theory
Y, its push forward P!Y as a U-graded m-theory, generalizing the construction ∆!.

In the casem = n, P!Y has the same underlying symmetric n-theory as that of Y,
with projection to U given by the projection to ∆!V composed with P : ∆!V → U .

In the case m ≤ n− 1, the description of P!Y is as follows.

(0) For an object u ∈ ObU , Obu P!Y is the collection whose member is a pair
(v, y), where v ∈ Obu V and y ∈ Obv Y.

Let k be an integer such that 1 ≤ k ≤ m, and suppose given the type u of a k-
multimap in U whose arity is given as (I;π, φ). Then by induction, the type of a
k-multimap in P!X of the same arity of degree u, is specified by

• the type v of a k-multimap in V of the same arity of degree u,
• the type y of a k-multimap in Y of the same arity of degree v.

(k) (Inductively for 1 ≤ k ≤ m− 1.) Suppose given
– a k-multimap uk in U whose arity and type are given respectively as

(I;π, φ) and u≤k−1 = (uν)0≤ν≤k−1,
– the type (v, y) of a k-multimap in P!X of the same arity of degree
u≤k−1.

Then MulπP!Y,uk [(v, y)] is the collection whose member is a pair (w, z), where
w ∈ MulπV,uk [v] and z ∈MulπY,w[y].

(m) Suppose given data similar to the input data for “(k)” above, but with k

substituted by m. Then

MulπP!Y,um [(v, y)] = colim
w∈Mulπ

V,um [v]
MulπY,w[y].

The composition is given by the composition in Y.
It is immediate to verify that we have an equivalence UΘnm(P!Y) ≃ P!

VΘnmY.
In the case m ≥ n+1, the description above applies after U is replaced by Θmn U .
In general, between suitable categories, the construction P! gives a left adjoint

to the functor P ∗.

Remark 3.30. A construction P∗, which suitably gives a right adjoint of P ∗, will
be considered later in Section 4.3. This construction is not as obvious, and will in
general, only produce an (m+ 1)-theory from an m-theory.

Example 3.31. P!1
m
V = V for the terminal unenriched uncoloured V-graded m-

theory 1mV .

Example 3.32. In the case where V is the terminal uncoloured U-gradedm-theory
enriched in groupoids, P is an equivalence, and P ∗ and P! are the mutually inverse
equivalences giving the identification of Example 3.28.

Example 3.33. Consider the case where U is an initially graded 1-theory enriched
in groupoids, andm = 0. In this case, a U-monoid V is a groupoid-valued functor on
U , and the projection P : (∆U )!Θ0V → U is the corresponding op-fibration (fibred
in groupoids). For a V-graded 0-theory X , the op-fibration

(∆U )!P!Θ0X −→ U

describing the U-monoid P!X is the composite of the op-fibrations (∆V)!Θ0X →
Θ0V and P , agreeing with the alternative description of the U-module P!X as the
left Kan extension along P of the (∆U )!Θ0V-module X .

The version of this connection for U = 1nCom, has been concretely expressed in
Proposition 3.13.

Proposition 3.8 generalizes as follows.
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Proposition 3.34. Let n ≥ 0 be an integer, U be an n-theory enriched in groupoids,
m ≥ 0 be an integer, and V be a U-graded m-theory enriched in groupoids. Then
an unenriched V-graded m-theory is equivalent as data to an unenriched U-graded
m-theory X equipped with a “projection” functor X → V.

Proof. We may assume m ≤ n without loss of generality, and the case m = n may
not be tautologous, but is obviously true.

For the case m ≤ n − 1, denote by P , the projection (∆U )!Θ
n
mV → U , where

∆U : U → 1nCom. Then, from an unenriched V-graded m-theory Y, we obtain a
U-graded m-theory P!Y equipped with the functor

P!∆Y : P!Y −→ P!1
m
V = V ,

where ∆Y denotes the unique functor Y → 1mV .
Conversely, given an unenriched U-graded m-theory X with projection Q : X →

V , one obtains a V-graded m-theory
(
(∆U )!Θ

n
mQ

)
!
1mX .

We would like to show that these constructions are inverse to each other.
The functor P!∆: P!

(
(∆U )!Θ

n
mQ

)
!
1mX → P!1

m
V is equivalent to Q : X → V .

It therefore, suffices to show a natural equivalence
(
(∆U )!Θ

n
mP!∆Y

)
!
1mP!Y ≃ Y.

However, the functor (∆U )!Θ
n
mP!∆Y can be identified with the functor

(∆U ◦Θ
n
mP )!

VΘnm∆Y : (∆U ◦Θ
n
mP )!

VΘnmY −→ (∆U ◦Θ
n
mP )!

VΘnm1mV ,

so we obtain

VΘnm
(
(∆U )!Θ

n
mP!∆Y

)
!
1mP!Y

=
(
(∆U )!Θ

n
mP!∆Y

)
!
P!YΘnm1mP!Y

,

=
(
(∆U ◦Θ

n
mP )!

VΘnm∆Y
)
!
1nY

= VΘnmY,

from which the result follows. �

4. Enrichment of higher theories

4.0. Introduction. The subject of this section will be a general notion of enrich-
ment for graded higher theories. We shall show how some previous notions such
as grading by a graded higher theory, can be compactly understood using the new
notions introduced in this section. We shall also show how the new framework helps
with considering push-forward construction ‘on the right side’, along some functors
of higher theories. We shall also discuss a construction for higher theories which is
related to the Day convolution for symmetric monoidal categories, and leads to a
notion of algebra over an enriched higher theory.

4.1. Enriched theories.

4.1.0. Given a kind of algebraic structure, one motivation for theorizing it was
to generalize it to similar structure definable in a theorized form of the same kind
of algebraic structure. Specifically, we would like to define the kind in question of
algebraic structure in a theorized structure V , as a (coloured) morphism to V from
the terminal unenriched theorized structure.

For example, for an n-theory U enriched in groupoids, we would like to define
the notion of U-algebra in a U-graded n-theory, since U-graded n-theory is the
kind of structure which theorize the structure of a U-algebra. More generally, the
following definition seems reasonable, which can be considered as giving a quite
general manner of enrichment, of the notion of graded higher theory.
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Definition 4.0. Let n ≥ 0 be an integer, and U be an n-theory enriched in
groupoids. Let m ≥ 0 and M ≥ m + 1 be integers, and V be a U-graded M -
theory. Then an m-theory in V is a functor 1MU → V of U-gradedM -theories with
strata of colours for a U-graded m-theory. Namely, it consists of

• a system of colours up to dimension m− 1 for a U-graded higher theory,
• a functor ΘMm+1T → V , where T denotes the terminal unenriched U-graded

(m+ 1)-theory on the chosen system of colours.

The system of colours will be called the system of colours of the m-theory
defined.

In the case m = n− 1, m-theory will also be called an algebra.

Remark 4.1. In order to avoid redundancy, we call the defined kind of object simply
an “m-theory” (or “algebra”) instead of a “U-gradedm-theory” (or U-algebra) when
it is understood that a U-grading is contained is the data V . We may explicitly
refer to the m-theory as a U-graded m-theory when (M ≥ n and) V is a priori, just
a symmetric M -theory, and different higher theories may be being considered over
which we would like to grade V , perhaps including the commutative operad Com.
This would clarify that a U-grading is considered for V . Note however, that this
would be still ambiguous if more than one U-gradings are being considered for V .

Similarly to the definitions in Section 2.3, there are also less coloured versions
of the notion of enriched graded theory. These are the cases where the U-graded
theory T which were considered in Definition 4.0, are less coloured.

There is also a lax generalization.

Definition 4.2. Let n ≥ 0 be an integer, and U be an n-theory enriched in
groupoids. Let m ≥ 0 and M ≥ m + 1 be integers, and let V be a possibly higher
categorified U-graded M -theory. Then for an integer ℓ ≥ 0, an ℓ-lax m-theory in
V is an m-theory in ΘM+ℓ

M V .

V needs to be at least ℓ-categorified in order for this to be properly more general
than the (ℓ− 1)-lax notion.

If V is represented by a once more categorified U-graded (M − 1)-theory W ,
then an ℓ-lax m-theory in V = ΘM−1W , is also an “m-tuply coloured” (ℓ + 1)-lax
(m− 1)-theory in W .

4.1.1. As we have discussed in Section 0, we obtain the following in a low “theo-
retic” level of algebra. For a functorial formulation of the following, see Proposition
0.0.

Proposition 4.3. For every coloured symmetric operad U in groupoids, the notion
of coloured U-graded operad in a symmetric monoidal category has a generalization
in a (U ⊗ E1)-monoidal category. Namely, there is a notion of coloured U-graded
operad in a (U ⊗E1)-monoidal category, such that the notion of coloured U-graded
operad in a symmetric monoidal category coincides with the notion of coloured U-
graded operad in its underlying (U ⊗ E1)-monoidal category.

Indeed, for a (U ⊗ E1)-monoidal category A, it sufficed to define a coloured
U-graded operad in A as a 1-theory in the U-graded 2-theory Θ2

0BA, where BA
denotes the U-monoidal 2-category obtained by categorically delooping A using
the E1-monoidal structure (or a suitably “trapped” (See Section 2.5) functor 12

U →
Θ2

0BA, to be more precise).
In the case where U = Init, E1, E2, this coincides with the familiar notion. See

Example 3.10.
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Remark 4.4. It seems natural that the notion of U-graded multicategory can further
be generalized to be enriched in a (U ⊗E1)-graded multicategory. We hope to come
back to this in a sequel to this work.

4.1.2. We can more generally consider the similarly general enrichement of the
notion of U-graded higher theory in the case where U is graded by an N -theory,
where N ≥ n+ 1. In this case, a U-graded higher theory in the previous sense was
simply a ∆!Θ

N
n U-graded higher theory.

The notion is therefore a special case of the notion defined in Definition 4.0. To
be explicit, we have the following. (There will be changes in the notation.)

Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids,
• m ≥ 0 be an integer, and X be a U-graded m-theory enriched in groupoids,
• ℓ ≥ 0 and L ≥ ℓ+ 1 be integers, and Y be an X -graded L-theory.

Then Y is a ∆!Θ
N
mX -graded L-theory, where N := max{m,n}, and ∆: U → 1nCom,

so an ℓ-theory in Y makes sense according to Definition 4.0.

Definition 4.5. Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids,
• m ≥ 0 be an integer, and X be a U-graded m-theory enriched in groupoids,
• ℓ ≥ 0 and L ≥ ℓ+ 1 be integers, and V be a U-graded L-theory.

Then an X -graded ℓ-theory in V is an ℓ-theory in the X -graded L-theory P ∗V ,
where P denotes the projection ∆!Θ

N
mX → ΘNn U , where N := max{m,n}, and

∆: U → 1nCom.
In the case ℓ = m− 1, an X -graded ℓ-theory will also be called an X -algebra.

Thus, a U-graded m-theory in V is an uncoloured T -algebra in V for an unen-
riched U-graded (m + 1)-theory T which is terminal on a system of colours up to
dimension m− 1.

Remark 4.6. For the notion of Definition 4.5, we are refraining from saying “U-
graded X -graded” theory when we do not intend to emphasize the U-grading, and
this is part of our convention on the terminology. See Remark 4.1.

Example 4.7. For U and X as in Definition 4.5, a X -graded ℓ-theory enriched in
a multicategoryM, is equivalent as data to an X -graded ℓ-theory in the U-graded
(ℓ+ 1)-theory ∆∗BℓM, where ∆: U → 1nCom.

Example 4.8. In Definition 4.5, if X is the terminal uncoloured U-gradedm-theory
enriched in groupoids, then P is an equivalence, and an X -graded ℓ-theory in V is
equivalent as data to an ℓ-theory in V .

4.2. Graded theories as lifts of an algebra.

4.2.0. Using Definition 4.5, an X -graded ℓ-theory in V in the notation there, can
be written as an appropriate coloured functor of U-graded higher theories. On the
other hand, X itself may be defined by a coloured functor F : 1m+1

U → ∆∗BmΘ0Gpd
of U-graded theories. In this situation, one might wish to describe a higher theory
graded by X , directly in terms of F . We shall show that it can indeed be described
as a coloured lift of F .

Note that we may assume m = L(≥ ℓ + 1) without loss of generality. We shall
first discuss a result in this situation (Proposition 4.9).

For application in Section 4.3, we shall also give an analogous result Proposition
4.11 for the case “ℓ = m”.
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4.2.1. Let us first recall common notation.
If C is a category and x is an object of C, then we denote by C/x, the category

of objects of C lying over x, i.e., equipped with a map to x. More generally, if a
category D is equipped with a functor to C, then we define D/x := D×C C/x. Note
here that C/x is mapping to C by the functor which forgets the structure map to x.
Note that the notation is abusive in that the name of the functor D → C is dropped
from it. In order to avoid this abuse from causing any confusion, we shall use this
notation only when the considered functor D → C is clear from the context.

4.2.2. To get on the task now, let us denote by CAT the very large category
of large categories. Consider this as symmetric monoidal by the Cartesian struc-
ture, and give the functor category Fun(Gpdop,CAT) the structure of a multicat-
egory by the Day convolution. Namely, we consider the structure of a multicat-
egory underlying (or “represented” by) the symmetric monoidal structure given
by the Day convolution. Then the Grothendieck construction defines a func-
tor G : Fun(Gpdop,CAT) → Θ0(CAT/Gpd) of multicategories, where CAT/Gpd is
made symmetric monoidal by the structure induced from the (Cartesian) symmetric
monoidal structure of Gpd.

Furthermore, considering Gpd as a symmetric monoidal (full) subcategory of
CAT, we obtain the composite

Θ0Gpd
Yoneda
−−−−−→ Fun(Gpdop,Gpd)

inclusion
−−−−−−→ Fun(Gpdop,CAT)

G
−−→ Θ0(CAT/Gpd),

where the structures of multicategories on the functor categories are by the Day
convolution. We denote this functor by T : Θ0Gpd → Θ0(CAT/Gpd), X 7→ TX , so
TX is defined by the forgetful functor AX := Gpd/X → Gpd.

Now let n ≥ 0 be an integer, and U be an n-theory. Then for an integer
m ≥ 0, we obtain from a U-graded m-theory V enriched in Gpd, a U-graded m-
theory T∗V enriched in CAT/Gpd, by postcomposition with B

mT : BmΘ0Gpd →
B
mΘ0(CAT/Gpd).
T∗V can be considered as a U-graded m-theory A∗V enriched in CAT, equipped

with a functor A∗V → ∆∗BmGpd, where ∆: U → 1nCom. In particular, we obtain a
functor ΘmA∗V → ∆∗BmΘ0Gpd by Lemma 2.14.

Proposition 4.9. Let n ≥ 0 be an integer, and U be an n-theory enriched in
groupoids. Let m ≥ 1 be an integer, and T be a U-graded (m+ 1)-theory enriched
in groupoids. Suppose that an uncoloured T -monoid X is defined by a functor
F : T → ∆∗BmΘ0Gpd, where ∆: U → 1nCom, of U-graded (m + 1)-theories (e.g.,
these data may be specifying a U-graded m-theory).

Then, for an integer ℓ such that 0 ≤ ℓ ≤ m − 1, an X -graded ℓ-theory in a U-
graded m-theory V enriched in groupoids, is equivalent as data to a lift with strata
of colours up to dimension ℓ− 1, of F to ΘmA∗V.

Proof. Since X is uncoloured, a system of colours for an X -graded ℓ-theory (up to
dimension ℓ−1) is equivalent as data to a system of colours for an T -graded ℓ-theory.
If J is the terminal unenriched T -graded (ℓ+1)-theory on a system of colours up to
dimension ℓ− 1, then, from the definitions, a correspondence is immediate between
the structures on this system of colours, of X -graded ℓ-theories in V , and lifts of F to
functors P!Θ

m+1
ℓ+1 J → ΘmA∗V , where P denotes the projection ∆!Θ

N
m+1T → ΘNn U ,

N ≥ m+ 1, n. �

Corollary 4.10. Let F , X be as in Proposition. Then, for an integer ℓ such that
0 ≤ ℓ ≤ m − 1, an X -graded ℓ-theory enriched in a symmetric multicategory M
is equivalent as data to a lift with strata of colours up to dimension ℓ− 1, of F to
∆∗BℓΘm−ℓA∗Θ

m−ℓ
1 M.
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Proof. An X -graded ℓ-theory enriched in a symmetric multicategoryM, is an X -
graded ℓ-theory in ∆∗W , where W denotes the symmetric (ℓ + 1)-theory B

ℓM.
Proposition identifies this with a coloured lift of F to ∆∗ΘmA∗Θ

m
ℓ+1W . Moreover,

there is an equivalence

ΘmA∗Θ
m
ℓ+1W = B

ℓΘm−ℓA∗Θ
m−ℓ
1 M.

of unenriched (m+ 1)-theories lying over BmΘ0Gpd = B
ℓ
B
m−ℓΘ0Gpd. �

4.2.3. In Section 4.3, we shall use a natural analogue of Proposition 4.9 for ℓ = m.
The way how we obtain it will be by restricting the context.

Let us denote by CAT the very large 2-category of large categories extending
the 1-category CAT. In order to formulate the result, we first extend T to the
composite

T : Θ0CAT
Yoneda
−−−−−→ Fun(CATop,CAT)

restriction
−−−−−−−→ Fun(Gpdop,CAT)

G
−−→ Θ0(CAT/Gpd)

of functors of categorified multicategories, where Fun indicates the 2-categories of
functors extended to categorified multicategories by the Day convolution, and Gpd
is considered as a symmetric monoidal subcategory of CAT. Thus, for C ∈ CAT,
the object TC ∈ CAT/Gpd is defined by the forgetful functor AC := Gpd/C → Gpd.

Now let n ≥ 0 be an integer, and U be an n-theory. Then as before, for an
integer m ≥ 0, we obtain from a U-graded m-theory V enriched in CAT,

• a U-graded m-theory A∗V enriched in CAT,
• a functor ΘmA∗V → ∆∗BmΘ0Gpd,

by considering T∗V .

Proposition 4.11. For U , F , X as in Proposition 4.9, an X -graded m-theory
in the (m + 1)-theory represented by a U-graded m-theory V enriched in CAT, is
equivalent as data to a lift with strata of colours up to dimension m − 1, of F to
ΘmA∗V.

The proof is similar to the proof of Proposition 4.9.

Corollary 4.12. For F , X as in Proposition 4.9, an X -graded m-theory enriched
in a symmetric monoidal category A, is equivalent as data to a lift with strata of
colours up to dimension m− 1, of F to ∆∗BmΘ0A∗A.

Proof. This is the case V = ∆∗BmA of Proposition since we have an equivalence

A∗B
mA = B

mA∗A

of (m+ 1)-theories enriched in CAT, lying over BmGpd. �

4.3. The right adjoint of the restriction of degrees.

4.3.0. In Section 3.3, we have considered the left adjoint to the functor ‘restricting’
the degrees for graded theories. We would like to consider the right adjoint in the
following situation.

Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids,
• m ≥ 0 be an integer, and V be an U-gradedm-theory enriched in groupoids,
• X be an unenriched V-graded m-theory.

Denote by P the projection functor ∆!Θ
N
mV → ΘNn U , where N ≥ m,n, and ∆: U →

1nCom. Then it turns out that we can construct a U-graded (m + 1)-theory P∗X
having an appropriate universal property.
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We shall do this construction in two steps. The key observation is that we can
reduce the situation above into two simpler situations according to the factorization
of P as

∆!Θ
N
mV

R
−−→ ∆!Θ

N
mT

Q
−−→ ΘNn U ,

where T denotes the U-graded m-theory enriched in groupoids which is terminal
on the system of colours of V , so V can be identified with an uncoloured T -graded
m-theory.

The two cases which we shall treat separately below, will imply respectively that
we obtain a T -graded (m+1)-theory R∗X , and that we obtain from this, a U-graded
(m+ 1)-theory Q∗R∗X . Moreover, it will follow that the construction P∗ := Q∗R∗
has a universal property desired of the right push-forward.

Remark 4.13. As we shall see in the construction, Q∗ will produce an (m+1)-theory
in which the groupoids of (m+ 1)-multimaps may not necessarily be small, even if
the groupoids of m-multimaps are all small in X .

Let us see the constructions Q∗ and R∗.

4.3.1. In order to construct R∗ above, it suffices to construct a U-graded (m+1)-
theory P∗X in the spacial case of the original situation where V is an uncoloured U-
graded m-theory. This can be done with the following construction at the universal
level.

Recall from Section 3.2 and Corollary 4.12 that V corresponds to a functor
FV : Θ

N
n U → ΘNm+1B

mΘ0Gpd, where N ≥ n,m + 1, and X corresponds then to a
functor FX : J → FV

∗
B
mΘ0A∗Gpd of unenriched U-graded (m+1)-theories, where

J is terminal on the system of colours of X .
Let Cocorr denote the symmetric monoidal 2-category of groupoids and cocor-

respondences. Thus, its object is a groupoid, and for groupoids X,Y , the category
MapCocorr(X,Y ) is the category formed naturally by the diagrams of the form

X −→M ←− Y

in Gpd, where the groupoid M is allowed to vary arbitrarily. Composition is done
by the obvious push-out operation. The symmetric monoidal structure is induced
from the Cartesian product in Gpd.

Then there is a symmetric monoidal lax functor Γ: A∗Gpd → Cocorr which
sends

• an object of A∗Gpd given by X ∈ Gpd and a functor F : X → Gpd, to the
groupoid limX F ,
• a map (X,F ) → (Y,G) in A∗Gpd given by a map f : X → Y and a map

f̃ : F → f∗G, to the map in Cocorr corresponding to the diagram

lim
X
F

f̃
−−→ lim

X
f∗G

f∗

←−− lim
Y
G

in Gpd,

and extends these data naturally. From this, we obtain the induced functor Γ: Θ2
0A∗Gpd→

Θ2
0Cocorr of 2-theories, and hence

B
mΓ: Θm+1B

mΘ0A∗Gpd = B
mΘ2

0A∗Gpd −→ B
mΘ2

0Cocorr.

Denote by Cocorr∗ the symmetic monoidal 2-category of co-correspondences
in the category Gpd∗ of pointed groupoids. The forgetful functor Gpd∗ → Gpd
(which preserves push-outs and direct products) induces a symmetric monoidal
functor Cocorr∗ → Cocorr. In particular, we can consider the (m + 2)-theory
Θm+1B

mΘ0Cocorr∗ as graded by Θm+1B
mΘ0Cocorr = B

mΘ2
0Cocorr. This

Θm+1B
mΘ0Cocorr-graded (m + 2)-theory is in fact representable by a (m + 1)-

theory. This will be an instance of the following.
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Lemma 4.14. Let C and D be n-theories enriched in CAT, and suppose given a
functor P : D → C of categorified n-theories. Then the ΘnC-graded (n + 1)-theory
corresponding to the induced functor P : ΘnD → ΘnC of symmetric (n+1)-theories,
is representable by a categorified ΘnC-graded n-theory if the functors induced by P
on the categories of n-multimaps, are all op-fibrations.

Moreover, the representing ΘnC-graded n-theory in this situation, is enriched in
fact in groupoids if and only if the op-fibrations are all fibred in groupoids.

Proof. Let y be the type of an n-multimap in D, and x be an n-multimap in C
of type Py. Then the category of n-multimaps in the representing n-theory, of
type y of degree x, will be the fibre of the op-fibration over x in the category of
n-multimaps of type y in D. We would like to let (n+1)-multimaps in ΘnC act on
these categories, but an (n+1)-multimap in ΘnC is a morphism in the category of
appropriate n-multimaps in C, which acts on the fibres of the op-fibrations. It is
straightforward to check that this extends to the structure of a categorified ΘnC-
graded n-theory which represents the ΘnC-graded (n+ 1)-theory ΘnD.

The construction also shows the second statement. �

Remark 4.15. The condition is also necessary.
To see this, note that the category of n-multimaps in C of a given arity can be

recovered from ΘnC, as the category formed by n-multimaps in ΘnC of the same
arity, under the unary (n + 1)-multimaps between them in ΘnC. Moreover, we
obtain a similar description of the category of n-multimaps in D of a given arity,
as a category lying over the corresponding category for C, in view of the noted
description of the latter category. On the other hand, for a categorified ΘnC-graded
n-theory E , the category formed by n-multimaps in ∆!ΘnE of a given arity (where
∆: ΘnC → 1n+1

Com) under the unary (n+1)-multimaps between them in ∆!ΘnE , can
be seen to be lying over the corresponding category in F := ΘnC, as the op-fibration
corresponding to the action of the unary (n+ 1)-multimaps in F between those n-
multimaps, on the categories of n-multimaps in E of the same arity of appropriate
degrees. Therefore, if ΘnD corresponds to the F -graded (n+ 1)-theory ΘnE , then
we conclude that the assumption of Proposition is satisfied by D.

We can indeed apply Lemma to the forgetful functor BmΘ0Cocorr∗ → B
mΘ0Cocorr

of categorified (m+ 1)-theories, since the forgetful functor Cocorr∗ → Cocorr is
such that the functors induced on the categories of 1-morphisms are easily seen to
be op-fibrations fibred in groupoids.

Let us identify B
mΘ2

0Cocorr∗ with the B
mΘ2

0Cocorr-graded (m + 1)-theory
enriched in groupiods representing it. From this, we obtain a simply coloured J -
graded (m+ 1)-theory FX

∗(BmΓ)∗(BmΘ2
0Cocorr∗).

Definition 4.16. Let U , X , P , J , FX be as above. Denote by Q the projection
∆!Θ

N
m+1J → ΘNn U , where N := max{m+ 1, n}, and ∆: U → 1nCom.

Then we define a U-graded (m+1)-theory P∗X asQ!FX
∗(BmΓ)∗(BmΘ2

0Cocorr∗).

Example 4.17. In the case where V is the terminal unenriched uncoloured U-
graded m-theory 1mU , X can be identified with a U-graded m-theory, and it follows
from Proposition 3.13 that P∗X = ΘmX .

4.3.2. In order to do the other construction, let us introduce a notation.
Suppose given a collection Λ, and a familyX = (Xλ)λ∈Λ of groupoids parametrized

by Λ. Then by
∏

ΛX =
∏
λ∈ΛXλ, we denote the not necessarily small groupoid

whose truncated n-type is
∏

ΛX
≤n naturally formed by associations σ to every

member λ ∈ Λ, of an object σ(λ) ∈ X≤nλ , where X≤nλ denotes the truncated n-type
of Xλ.
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Note that
∏

ΛX
≤n may not be small, but is well-defined as a homotopy n-type

by induction on n. For example, we define σ, τ ∈
∏

ΛX
≤0 to be equal if and only

if σ(λ) = τ(λ) for every λ ∈ Λ, and then this equality relation is an equivalence
relation, so the members of

∏
ΛX

≤0 form a possibly large 0-type under this relation
of equality.

4.3.3. In order to construct Q∗ of Section 4.3.0, it suffices to construct a U-graded
(m+ 1)-theory P∗X in the original situation modified as follows.

• V is terminal on the system of colours for a U-graded m-theory.
• X is a V-graded (m+ 1)-theory.

The construction is as follows. If necessary, Theorem 3.17 allows us to replace U
by ΘNn U for any N > n, so we shall assume without loss of generality, that the
dimension of U is sufficiently high.

For an object u ∈ ObU , we let an object σ ∈ Obu P∗X of P∗X of degree u be
an association to every v ∈ Obu V of an object σ(v) ∈ Obv X .

Let k be an integer such that 1 ≤ k ≤ m−1. Then the collections of k-multimaps
in P∗X will inductively be as follows. Suppose given a k-multimap uk in U of arity
and type given respectively as (I;π, φ) and u≤k−1 = (uν)0≤ν≤k−1, and the type
σ = (σν)0≤ν≤k−1 of a k-multimap in P∗X of the same arity of degree u≤k−1 (see
Definition 3.7). Then, we let a k-multimap τ ∈ MulπP∗X ,uk [σ] be an association

to every k-multimap vk in V of arity (I;π, φ) and degree uk, of a k-multimap
τ(vk) ∈ MulπX ,vk [σ(v

≤k−1)], where v≤k−1 = (vν)0≤ν≤k−1 is the type of v
k (of degree

u≤k−1), and σ
(
v≤k−1

)
:=

(
σν(vν)

)
0≤ν≤k−1

(where σν
(
vν

)
:=

(
σνi (v

ν
i )
)
i∈[Iν+1

0 ]
if

ν ≤ k − 2, etc.) is by induction, the type of a k-multimap in X of the same arity
of degree v≤k−1.

The collections of m-multimaps in P∗X will be as follows. Suppose given input
data similar to above, but with k replaced by m. Then we let an m-multimap
τ ∈MulπP∗X ,um [σ] be an association to every one of the types v of m-multimaps in

V of arity (I;π, φ) and degree u≤m−1, of an m-multimap τ [v] ∈MulπP!X ,um [σ(v)].
The groupoids of (m+ 1)-multimaps in P∗X will be as follows. Suppose given a

(m + 1)-multimap um+1 in U of arity and type given respectively as (I;π, φ) and
u≤m, and the type σ of a (m + 1)-multimap in P∗X of the same arity of degree
u≤m. Then we let

MulπP∗X ,um+1[σ] =
∏

v

MulπP!X ,um+1[σ≤m−1(v)](σm0 [v];σm1 [π!v]),

where v runs through all the types of φm−1-nerves of m-multimaps in V of degree
u≤m−1.

The action of (m + 2)-multimaps of U on the groupoids of (m + 1)-multimaps
in P∗X , will be as follows. Suppose given a (m + 2)-multimap um+2 in U of arity
and type given respectively as (I;π, φ) and u≤m+1, and the type σ of a φm-nerve of

(m+1)-multimaps in P∗X of degree u≤m. Then we let the action Mulφ
m

P∗X ,u
m+1
0

[σ]→

Mulπ!φ
m

P∗X ,u
m+1
1

[π!σ] of u
m+2 be given by composing the following two maps, namely,



HIGHER THEORIES OF ALGEBRAIC STRUCTURES 61

• the map
∏

i∈Im+1
0

∏

wi

Mul
φm
i

P!X ,u
m+1
0i

[σ≤m−2(w≤m−2i )]

[(
(φm→i−1)!σ

m−1
)(
wm−1i

)](
σmi−1[wi];σ

m
i [(φmi )!wi]

)

−→
∏

v

∏

i∈Im+1
0

Mul
φm
i

P!X ,u
m+1
0i

[
σ≤m−2(v≤m−2)

][(
φm→i−1

)
!

(
σm−1(vm−1)

)]

(
σmi−1[(φ

m
→i−1)!v

m−1];σmi [(φm→i)!v
m−1]

)
,

where
– the source is simply the result of expanding the factors of the product

Mulφ
m

P∗X ,u
m+1
0

[σ] =
∏
i∈Im+1

0
Mul

φm
i

P∗X ,u
m+1
0i

[σ|i],

– v runs through all the types of φm−1-nerves of m-multimaps in V of
degree u≤m−1,

– the map is induced from the correspondence v 7→ wi = (φm→i−1)!v, and
• the map

∏

v

Mulφ
m

P!X ,u
m+1
0

[
σ≤m−1(v)

][(
σmi [(φm→i)!v

m−1]
)
i∈[Im+10]

]

−→
∏

v

Mulπ!φ
m

P!X ,u
m+1
1

[σ≤m−1(v)](σm0 [v];σm1 [π!v]),

where v runs through the same range, and the map is given by the action
of um+2 in P!X .

It is straightforward to extend these data naturally to the full data for a U-graded
(m+ 1)-theory P∗X .

4.3.4. From these constructions, we in particular have obtained the constructions
R∗ and Q∗ in the situation of Section 4.3.0. Therefore, we can extend the previous
constructions to this situation by defining P∗ := Q∗R∗. Note Example 4.17. P∗
will have the following universal property.

Proposition 4.18. Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids,
• m ≥ 0 be an integer, and V be a U-graded m-theory enriched in groupoids,
• X be an unenriched V-graded m-theory.

Denote by P the projection functor ∆!Θ
N
mV → ΘNn U , where N ≥ m,n, and ∆: U →

1nCom.
Then, for a U-graded (m+1)-theory Z, a functor Z → P∗X of U-graded (m+1)-

theories is naturally equivalent as data to a functor P ∗Z → ΘmX of V-graded
(m+ 1)-theories.

Indeed, this is an immediate consequence of the similar universal properties of
the constructions R∗ and Q∗, which can be verified easily from the constructions.

Example 4.19. Let U , V be as in Proposition, but suppose moreover that V is
uncoloured. Then a system of colours for a V-graded higher theory is the same as
a system of colours for a U-graded higher theory. Let ℓ ≥ 0 be an integer, and
suppose given such a system of colours up to dimension ℓ − 1. Let T denote the
terminal unenriched V-graded (ℓ + 1)-theory on this system of colours. We would
like to consider for an integer L ≥ ℓ+1,m, Proposition for an unenriched V-graded
L-theory X and the U-graded (L + 1)-theory Z := P!Θ

L+1
ℓ+1 T , where P is as in

Proposition.



62 MATSUOKA, TAKUO

We obtain that a functor Z → P∗X is equivalent as data to a functor ΘLℓ+1T =

P ∗P!Θ
L
ℓ+1T → X , which simply defines the structure of an ℓ-theory in X , on the

considered system of colours.

Corollary 4.20. In addition to U , V, X of Proposition, suppose given a U-graded

m-theory W enriched in groupoids. Let P̃ : P!P
∗W → W be the counit for the

adjunction, and Q : ∆!Θ
N
m+1W → ΘNn U and Q̃ : P!P

∗W → V be respective projec-
tions.

Then there is a natural equivalence Q∗P∗X ≃ P̃∗Q̃
∗X of W-graded (m + 1)-

theories.

Proof. This follows immediately from Proposition and the following lemma. �

Lemma 4.21. Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids,
• m ≥ 0 be an integer, and V and W be U-graded m-theories enriched in

groupoids.

Let P , P̃ , Q, Q̃ be similar to those in Proposition and Corollary 4.20.
Then, for a W-graded m-theory Y, there is a natural equivalence P ∗Q!Y ≃

Q̃!P̃
∗Y of V-graded m-theories.

Proof. Straightforward from the definitions. �

4.4. Convolution for higher theories. In Example 4.19, if X is of the form
P ∗Y for a U-graded L-theory Y, then we obtain that a V-graded ℓ-theory in Y can
equivalently be written as an ℓ-theory in the U-graded (L + 1)-theory P∗P

∗Y.
There is also a coloured generalization of this. We change the notations, and

consider the following situation.
Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids,
• m ≥ 0 be an integer, and T be a U-graded (m + 1)-theory enriched in
groupoids, which is terminal on a system of colours up to dimension m− 1,
• X be an uncoloured T -monoid, so together with T , this is defining a U-
graded m-theory,
• ℓ ≥ 0 and L ≥ ℓ + 1,m be integers, and Y be an unenriched U-graded
L-theory.

For these, let P : ∆!Θ
N
m+1T → ΘNn U (where N ≥ m+1, n, and ∆: U → 1nCom) and

R : P!ΘmX → T be the respective projections.
Then the T -graded (L+ 1)-theory R∗R

∗P ∗Y is such that an X -graded ℓ-theory
in Y is equivalent as data to an ℓ-theory in R∗R

∗P ∗Y. Therefore, R∗R
∗P ∗Y,

considered as a construction between the U-gradedm-theories X and Y, is in a way
analogous to the Day convolution for monoidal categories [8].

Remark 4.22. In the case ℓ = 0, we obtain that the data of an X -graded 0-theory
in Y is further equivalent to the data of a 0-theory in (PR)∗(PR)

∗Y. This may be
closer to the conventional contexts for the Day convolution.

The purpose of this section is to obtain an enriched generalization of this for the
case ℓ = m− 1, where enrichment is in a symmetric monoidal higher category.

Let us start with the following.

Definition 4.23. Suppose given

• an integer d ≥ 0, and an d-theory T enriched in groupoids,
• an integer k such that 0 ≤ k ≤ d, and a symmetric monoidal k-category A,
• functors F,G : T → B

d−kΘk0A, or equivalently, (F,G) : T → B
d−kΘk0(A ×

A).
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Then we define a T -graded d-theory Fun(F,G) as (F,G)∗Bd−kFunA, where FunA
denotes Θk0Fun([1],A) (where the k-category Fun([1],A) is given the object-wise
symmetric monoidal structure) considered as a Θk0(A×A)-graded k-theory via the
symmetric monoidal functor

(d1, d0) : Fun([1],A) −→ A×A.

induced from the simplicial coface operators d1, d0 : [0]→ [1].

We would like to generalize the construction “Fun” for coloured theories. The
following definition includes this.

Definition 4.24. Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids with the
unique functor ∆: U → 1nCom,

• m ≥ 0 be an integer, and T ,J be U-graded (m + 1)-theory enriched in
groupoids,

• k be an integer such that 0 ≤ k ≤ m+ 1, and A be a symmetric monoidal
k-category,

• F : T → ∆∗Bm+1−kΘk0A and G : J → ∆∗Bm−k+1Θk0A be functors of U-
graded (m+ 1)-theories.

For these, let P : ∆!Θ
N
m+1T → ΘNn U (where N := max{m+1, n}) and Q̃ : P!P

∗J →

T be the respective projections, and P̃ : P!P
∗J → J be the counit for the adjunc-

tion.
Then we define the T -graded (m+1)-theory Fun

(
(T , F ), (J , G)

)
as Q̃!Fun(FQ̃,GP̃ ),

where

FQ̃,GP̃ : ∆!Θ
N
m+1P!P

∗J −→ ΘNm−k+1B
m−k+1A

are the indicated functors of symmetric N -theories.

This indeed gives the desired enriched generalization of the previous construction
done using the right push-forward construction. Namely, we obtain the following
in the special case where k = 1 and A = Gpd of the construction here.

Proposition 4.25. Let

• n ≥ 0 be an integer, and U be an n-theory enriched in groupoids with the
unique functor ∆: U → 1nCom,

• m ≥ 0 be an integer, and T and J be U-graded (m+1)-theories enriched in
groupoids, each of which is terminal on a system of colours up to dimension
m− 1,

• F : T → ∆∗BmΘ0Gpd and G : J → ∆∗BmΘ0Gpd be functors of U-graded
(m+ 1)-theories.

Denote by X and Y, the U-graded m-theories defined by F and G.
Then Fun

(
X ,Y

)
:= Fun

(
(T , F ), (J , G)

)
is equivalent to R∗R

∗P ∗Y, where R : ΘmX →

T and P : ∆!Θ
N
m+1T → ΘNn U (where N ≥ m+ 1, n) are the respective projections.

The proof is straightforward by direct inspection of the constructions.
It follows that, if m ≥ 1, an X -algebra in Y is equivalent as data to an (m −

1)-theory in Fun(X ,Y). Since the latter notion makes sense for any symmetric
monoidal k-category A, where 0 ≤ k ≤ m + 1, we can think of it as the definition
in such an enriched context, of an X -algebra in Y.

5. Higher theorization of symmetric monoidal functor

5.0. The definition.
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5.0.0. We have so far considered iterated theorizations of algebra over a multicat-
egory. One might wonder whether there are iterative theorizations of symmetric
monoidal functor on a fixed symmetric monoidal category B, to a varying target
symmetric monoidal category.

This is actually a generalization of the previous case. Indeed, the functor Θ0

from symmetric monoidal categories to multicategories, has a left adjoint L, so, for
a multicategory U , a symmetric monoidal functor on LU is the same as a U-algebra,
which we have already theorized.

We would like to show here that, if a symmetric monoidal category B admits a
certain concrete form of description, then we indeed obtain iterated theorizations
of symmetric monoidal functor on B, by replacing in Definition 1.6 of a symmetric
higher theory, the coCartesian symmetric monoidal category Fin by B.

It turns out that B may more generally be a symmetric monoidal infinity category
satisfying certain conditions.

Remark 5.0. When the dimension of the category B is at least 2, then a source of
difficulty for having interesting symmetric monoidal functors B → A, where A is a
symmetric monoidal category, is that such a functor must invert all maps in B in
dimensions ≥ 2. However, this restriction will be discarded in one dimension at a
time as theorization (in particular, relaxation) of the notion is iterated. Indeed, in
the n-dimensional theory which we define below, the inversion of maps of B will be
forced only in dimensions ≥ n+ 2.

Let B be a symmetric monoidal infinity category, and denote the underlying
infinity category of B by C, so B is C equipped with a symmetric monoidal structure.
The conditions we would like to impose on B are (0) and “(k)” below for all integers
k ≥ 1.

(0) The groupoid ObC of objects of C is free as a commutative monoid on a
groupoid of generators.

(k) Suppose given data of the forms (k− 1′) through (1′) of (k) in Section 1.5,
or equivalently, the arity of a k-multimap in an Init-graded higher theory.
Then the groupoid formed by all k-multimap of the specified arity in the
Init-graded k-theory Θk1C, is free on a groupoid as a commutative monoid
under the symmetric monoidal structure of B.

Note that the groupoid of free generators is then the full subgroupoid consisting
of indecomposable objects (from which we exclude the unit(s) by definition).

Remark 5.1. If B is in fact a symmetric monoidal d-category for a finite value of
d, then the groupoid of (d + 1)-multimaps, and more gerenerally, of φd-nerves of

(d+1)-multimaps in Θd+1
1 C (see Definition 1.6), will be equivalent to the groupoid of

φd−1-nerves of d-morphisms in Θd1C. In particular, the conditions (k) for all integers
k ≥ 0 hold in this case if the conditions hold for all k ≤ d, and the groupoid of
φd−1-nerves of d-morphisms is free as a commutative monoid for every specification
of the arity.

In addition to B = Fin, the following are examples of B satisfying these condi-
tions. The symmetric monoidal structures are all given by the “disjoint union”.

• The 2-category Corr(Fin) of correspondences of finite sets, and its under-
lying 1-category Corr(Fin).
• The category Bord1 of compact 0-dimensional manifolds and (the groupoids
of) 1-dimensional bordisms between them. Any choice of tangential struc-
ture on manifolds.
• The category Endd−1Bordd

(∅) of closed (d − 1)-manifolds and (the groupoids
of) d-dimensional bordisms. Any choice of tangential structure.



HIGHER THEORIES OF ALGEBRAIC STRUCTURES 65

• The fully extended cobordism d-category Bordd of bordisms up to dimension
d. Any choice of tangential structure.
• For an integer k such that 2 ≤ k ≤ d − 1, the k-category Endd−kBordd

(∅) of
endomorphisms in Bordd of the empty (d− k − 1)-dimensional cobordism.
• The (d + 1)-category of d-th iterated cocorrespondences in Fin, and its
underlying d-category. See e.g., Lurie [15, Section 3.2] for the idea, and
Ben-Zvi and Nadler [2, Remark 1.17] for an explicit discussion of a definition
which applies readily here. See also Calaque [5].

Remark 5.2. One can also define versions of the fully extended cobordism category
where each bordism is given a codimension n embedding into the Euclidean space.
These bordisms will form an En-monoidal d-category.

While our technique so far does not seem to apply directly for theorizing the
notion of topological field theory on such a category, this kind of category seems
close to satisfying an En analogue of the assumption required for our technique.
We hope to treat theorization of these topological field theories in a sequel to this
work.

Remark 5.3. Some other non-embedded (symmetric monoidal) variants of the cobor-
dism category, such as discussed by Lurie in [15, Section 4], also satisfy the condi-
tions of Remark 5.1.

5.0.1. Let now B be a symmetric monoidal infinity category satisfying the condi-
tions (k) above for every integer k ≥ 0. We shall obtain an n-th theorization of
symmetric monoidal functor (to a variable symmetric monoidal 1-category) on B.
(See Remark 5.0.) Our n-theorized objects will be called “B-graded n-theories”.

A B-graded n-theory will consist of data similar to the data (k) for k ≥ 0,
for a symmetric (i.e., “Fin-graded”) n-theory (see Section 1), but with appropriate
modifications applied as follows.

Firstly, the form of data (0) (in the case n ≥ 1) will be as follows.

(0) For every indecomposable object b of B, a collection Obb U , whose member
will be called an object of U of degree b.

We extend this for an arbitrary object b ∈ B as follows. Namely, we let Obb U
be the collection of b-families of objects of U , defined as follows.

Definition 5.4. Let b be an object of B. Then a b-family of objects of a B-graded
higher theory U , is a pair consisting of

• a decomposition b ≃
⊗

S c, where S is a finite set, and c = (cs)s∈S is an
S-family of indecomposable objects of B, and

• a c-family u ∈ Obc U , by which we mean that u is an S-family (us)s∈S ,
where us ∈ Obcs U .

Let us next describe the type of a 1-multimap. This is where the true difference
of a general B-graded theory from the case B = Fin is seen. Namely, for a general
B, a multimap in a B-graded theory will in general, not only accept multiple inputs,
but also emit multiple outputs.

Thus, the type of a multimap in a B-graded higher theory U consists of

(0′) a map b1 : b00 → b01 in B which is indecomposable with respect to the com-
mutative monoid structure,

(0′′) a b0-family u of objects of U , namely, u = (ui)i=0,1, where ui is a b
0
i -family

of objects of U .

In general, we modify Definition 1.6 of a symmetric n-theory in the following
two respects.

• We modify the form of data (k) for every k ≥ 1 as follows. We
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– keep the forms of input data (k − 1′) through (1′) unchanged,
– replace the nerve in Fin in (0′) with a k-multimap in Θk1C (where C

denotes the infinity category underlying B as before) of the specified
arity, which is moreover, indecomposable with respect to the commu-
tative monoid structure,

– modify the form of the rest of input data accordingly,
– let the similar data as associated in (k) of Definition 1.6, be associated

to these modified form of input data.
• We generalize the processes of extension of data (k) to processes of extension
from indecomposable to arbitrary k-multimaps, using the free decomposi-
tion of k-multimaps just similarly to before.

Example 5.5. For the symmetric monoidal 1-categoryB = Cocorr(Fin) underlying
the symmetric monoidal 2-category of cocorrespondences in Fin, the notion of B-
graded 1-theory enriched in a symmetric monoidal category A, coincides with the
notion of coloured properad of Vallette in A [18]. Thus, the notion of (coloured)
properad is a theorization of the notion of B-algebra, and B-graded higher theories
give further theorizations.

5.1. Symmetric monoidal functors as algebras in a theory.

5.1.0. We would like to see that, if B is a symmetric monoidal d-category which
satisfies our assumptions, then symmetric monoidal functors B → A with A any
symmetric monoidal d-category, are indeed included in our framework.

5.1.1. Let us start with the following. Let B be a symmetric monoidal d-category
which satisfies our assumptions (k) for all integers k ≥ 0. Then we would like to
construct a B-graded d-theory from a symmetric monoidal d-category E equipped
with a symmetric monoidal functor P : E → B. The d-theory, which we shall denote
by Eθ, is as follows.

For a indecomposable object b ∈ B, an object of Eθ of degree b is an object of E
in the fibre over b.

For every integer k such that 1 ≤ k ≤ d − 1, data (k) which we specify for
Eθ is inductively as follows. Denote by C the d-category, i.e., (d − 1)-categorified
Init-graded 1-theory, underlying B. Suppose given

• an indecomposable k-multimap bk in Θk1C of arity specified by data of the
forms (k − 1′) through (1′) of (k) in Section 1.5, and of type given as
b≤k−1 = (bν)0≤ν≤k−1,
• a type e = (eν)0≤ν≤k−1 of a k-multimap in the B-graded theory Eθ of the
same arity of degree b≤k−1.

By induction, ek−1i (where i = 0, 1) will be a family consisting of lifts in E of the
factors/components (in the unique decomposition in B) of the (nerve of) (k − 1)-

multimaps (or objects if k = 1) bk−1i , so
⊗
ek−1i in E lifts bk−1i , where

⊗
indicates

taking the monoidal product of the members of the family (which is ek−1i here) in

E . Moreover, if k ≥ 2, then the (k − 1)-morphisms π!
(⊗

ek−10

)
and

⊗
ek−11 in E

have common source and target by induction.
Given these data, we define a k-multimap ek−10 → ek−11 in Eθ of degree bk, to be

a lift of bk to a k-morphism π!
(⊗

ek−10

)
→

⊗
ek−11 (or

⊗
e00 →

⊗
e01 if k = 1) in

E , completing the induction.
Similarly, the groupoids of n-multimaps in Eθ will be the groupoids of similar

lifts, and n-multimaps in Eθ compose by the composition of n-multimaps in Θn0E .
Thus we have constructed a B-graded d-theory Eθ.
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Remark 5.6. This construction is not faithful in E (equipped with P : E → B). In-
stead, the construction ( )θ gives (non-trivial) right localization functors of suitable
categories.

5.1.2. Let us denote by 1dB, the terminal unenriched uncoloured B-graded d-theory.
Inspecting the construction above, it is easy to see that a 0-theory in Eθ, or a
functor 1dB → E

θ, is equivalent as data to a section to the symmetric monoidal
functor P : E → B, which commutes with the symmetric monoidal structures, but
is (d− 1)-lax as a functor.

Let now A be a symmetric monoidal d-category. Then we have the projection
functor A × B → B, which is symmetric monoidal. It follows that a 0-theory in
(A× B)θ is a symmetric monoidal (d− 1)-lax functor B → A.

Remark 5.7. Even though the construction above has thus captured symmetric
monoidal functors B → A for every symmetric monoidal 1-category A, this is not
the most interesting target if d ≥ 2. However, in the case where d ≥ 2 and the
dimension of A is also d, the reader may be unsatisfied for the laxness which has
crept in. (In relation to Remark 5.6, this laxness is due to the way how B as
the terminal one among symmetric monoidal d-categories lying over B, can fail
to be local with respect to the right localization if d ≥ 2.) Compared with d-lax
symmetric monoidal functors B → A, which could be captured in the framework of
Θd0B-graded d-theories in the previous approach, our new approach here has only
eliminated the laxness with respect to the symmetric monoidal structure. However,
in order to deal with the remaining laxness with a similar technique, we would need
to assume a finer version of the unique decomposition, which would be more difficult
to be satisfied.

5.2. An example of different nature. In the case B = Bord1, there is an ex-
ample of a 1-theory which is associated to a category rather than a symmetric
monoidal category. An algebra in it will appear very different from a 1-dimensional
field theory in the usual sense. Let us sketch these. The tangential structure we
consider is framing, or equivalently, orientation.

Let C be a category. Then we can use it to construct a Bord1-graded 1-theory
as follows.

Firstly, we need to associate to every indecomposable object of Bord1, a collection
to be the collection of objects of that degree. To every 0-dimensional manifold
consisting of one point pt with any framing of pt × R

1, we associate the collection
ObC.

Next, we need to associate to every indecomposable map in Bord1, a groupoid
to be the groupoid of 1-multimaps of that degree.

• If the bordism is diffeomorphic to the interval as a manifold, then to every
object x ∈ ObC at the incoming (relatively to the orientation) end point,
and every object y ∈ Ob C at the outgoing end point, we associate the
groupoid MapC(x, y).
• If the bordism is diffeormorphic to the circle, then, for simplicity, we asso-
ciate the terminal groupoid (but note Remark 5.8 below).

Finally, we need to define the composition operations. This can be given by the
composition of maps in C (and its associativity).

Thus, we have sketched a construction of a Bord1-graded 1-theory. Let us denote
this theory by ZC .

Note that, in the case where C is the unit category 1, we obtain Z1 = 11
Bord1

,
the terminal Bord1-graded 1-theory. It follows that, in general, any object x ∈ C,
or equivalently, a functor 1 → C, induces a functor Zx : 1

1
Bord1

→ ZC , which, by
definition, is a field theory in ZC .
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The contractibility of the diffeomorphism group of the framed interval implies
that Zx for x ∈ C exhaust all field theories in ZC .

Remark 5.8. There is another version of ZC , in which the groupoid which we as-

sociate to the circle is the Hochschild homology HH•C ≃
∫ x∈C

MapC(x, x). All the
claims above also hold for this version of ZC , as a result of the following observation
(and simple computations).

The observation is as follows. Let ↑, ↓ denote the two 1-framed points of opposite
framings, and let I denote the terminal category (i.e., Init-graded 1-theory) on the
two colours “↑” and “↓” (so, as a category, I is a contractible groupoid). Let ThI
and ThBord respectively denote the categories of I-graded and of Bord1-graded 1-
theories. There is an obvious adjunction ∆! : ThI ⇄ Cat :∆∗, where ∆: {↑, ↓} → ∗.
The contractibility of the diffeomorphism group of the framed interval implies that
there is also a functor ThBord → ThI with left adjoint Z satisfying Z = Z ◦∆∗.

Appendix A. A comparison to the work of Beaz and Dolan

A.0. Resemblance has been pointed out between our work and the beautiful pio-
neering work as early as about two decades ago, of Baez and Dolan [0]. Since some
of our purposes overlap theirs, and the methods also has great similarity, we think
that a comparison of two works would be worthwhile.

Specifically, Baez and Dolan introduce what they call the “slice operad” con-
struction for the purpose of defining the notion of “opetopic set”, which they use
to give a definition of an n-category. The slice operad construction is not just in-
teresting and powerful, but some of the ideas which they have developed for this
construction, are quite close to some of the ideas which we have used for our work.
There seems to be no doubt therefore, that our work was shaped by the great
influences from some ideas which go back to their work (or which at least were
popularized perhaps through their work).

The “slice” construction constructs from a multicategory O, a new multicategory
O+. This looks close to our ΘO, even though ΘO is a 2-theory, rather than a 1-
theory. Since Baez and Dolan constructed O+ as a multicategory, they did not need
to introduce a new concept like our concept of higher theory. Moreover, iteration
of their construction is automatic, unlike iteration of the process of theorization,
which was the first main theme of our work. We recognize this as a great advantage
of their construction.

A.1. This does not mean, however, that staying in the world of multicategories is
necessary or desirable in all respects. We have succeeded after all, in defining all the
higher notions of theory, and the new framework accommodates simpler approaches
to some issues. For example, the case n = 1 of our Theorem 3.17 implies that the
2-theory ΘO is such that an uncoloured ΘO-algebra is precisely the same as an
O+-algebra (described in the quotation below). Moreover, the construction of ΘO
from O was direct and immediate.

The notion of theorization also clarify the work of Baez and Dolan conceptually.
Let us first hear the description of the slice operad in the inventors’ own words. We
shall quote from [0]. In the context at hand, their term “operad” means coloured
operad (in sets, over which “algebras” are also considered in sets), and “type”
means colour in our terminology.

“We define the “slice operad” O+ of an operad O in such a way
that an algebra of O+ is precisely an operad over O, i.e., an op-
erad with the same set of types as O, equipped with an operad
homomorphism to O. Syntactically, it turns out that:
1. The types of O+ are the operations of O.
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2. The operations of O+ are the reduction laws of O.
3. The reduction laws of O+ are the ways of combining reduction

laws of O to give other reduction laws.

This gets at the heart of the process of “categorification,” in which
laws are promoted to operations and these operations satisfy new
coherence laws of their own. Here the coherence laws arise simply
from the ways of combining the the old laws.” [sic]

(John C. Baez and James Dolan [0, Section 1])

In their work, they observe the points (1), (2), (3) from the actual construction
of O+, but do not explicitly discuss the conceptual reason for why O+ had to be
related to categorification. The notion of theorization sheds light on this. Indeed,
“an operad over O” in their definition, is precisely an (uncoloured) theorized O-
monoid (or algebra “enriched” in sets), as those authors may have known in some
formulation.

A.2. There are also other advantages in employing higher theories. For example,
recall that the ultimate goal of Baez and Dolan was to give a definition of an n-
category. For this, they needed a few more steps after defining the slice operad.
On the other hand, a version of n-categories are already among the n-theories. To
examine the difference closely, we generally consider an n-theory formed not just
by the n-multimaps, but with strata of colours consisting of objects to (n − 1)-
multimaps (which is the usual “colour” in an operad in the case n = 1), and in a
special case, the structure of an n-category is formed by these objects as objects,
and the unary higher multimaps as higher morphisms. Contrary to this, Baez and
Dolan do not consider an algebraic structure having more than one layer of colours
since they consider only multicategories. This is the reason why they needed to find
another route which might appear like a detour from the point of view of higher
theories. (However, some opetopic sets appear to be modeling a version of initially
graded higher theories, so their method merely does not appear as direct as one
can wish to make it.)

The flexibility coming from the rooms for strata of colours, is also important for
considering enrichment, since possibility for more interesting enrichment requires
more strata of colours. Even though the purposes of Baez and Dolan did not
motivate them to consider a very general notion of enrichment, their framework
as built may not support a very interesting notion of enrichment, either. Note
also that, even if one intends to work only with mutlicategories, enrichment of
multicategories is most generally done along 2-theories.

A.3. From the quotation of Baez and Dolan’s words above, the idea expressed in
the final two sentences is remarkable. Indeed, it is exactly the idea which we have
described in Section 1.1, and used in our definition of an n-theory, except for two
differences.

One difference is that we see the same, more generally at the heart of theorization.
The other is that we have a simpler understanding of the “new coherence law”, in
terms of the theorized form of the structure.

Now, our version of their idea has led to a process which keeps the complexity
of structures from increasing rapidly by instead raising the theoretic order, and the
resulting simplicity helped us enormously with various constructions concerning
higher theories. (In those constructions, roles were also played by the flexibility
from the rooms for strata of colours.)

Our version of their idea also helped us with treating some systems of operations
with multiple inputs and multiple outputs.
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A.4. To summarize, our work has benefited from the fruits of the developments
which were initiated by such prominent works as Beaz and Dolan’s.
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