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UNIVERSAL WEAK SEMISTABLE REDUCTION

SAM MOLCHO

Abstract. We show that a toroidal morphism can be reduced to a weakly semistable
one in a universal way if we allow families to be modified to Deligne-Mumford stacks
instead of schemes.

1. Introduction

The semistable reduction theorem of [KKMSD73] is an essential step in the construc-
tion of compactifications of many moduli spaces. Roughly, the main result of [KKMSD73]
is that given a flat family X → SpecR over the spectrum of a discrete valuation ring,
where the total space of X is smooth and projective, there exists a finite base change
SpecR′ → SpecR and a modification X ′ of the fiber product X ×SpecR SpecR′ such that
the central fiber of X ′ is a divisor with normal crossings which is reduced.

Extensions of this result to the case where the base of X → SpecR has higher dimen-
sions are studied in the work [AK00] of Abramovich and Karu. In [AK00] the authors
show that given a surjective morphism X → S of projective complex varieties with geo-
metrically integral generic fiber, then one can find an alteration S′ → S and a modification
X ′ of X ×S S′ which is weakly semistable, rather than semistable – in other words, such
that the family X ′ → S′ is flat and has reduced fibers (and where S′ is non-singular).
The proof of [AK00] has two steps: in the first step, the morphism X → S is replaced by
a morphism of toroidal embeddings, in the sense of [KKMSD73]; in the second step, the
theorem is proved explicitly for morphisms X → S of toroidal embeddings.

In this paper we study only the final step of [AK00], that is, we assume from the
offset that our morphisms are morphisms of toroidal embeddings. The main result of
this paper is that in this context, if we relax the hypotheses to allow families X → S
of Deligne-Mumford stacks rather than schemes, weak semistable reduction can be done
“universally”. Specifically, we show

Theorem 1.0.1 (Universal Weak Semistable Reduction). Let X → S be any proper,surjective,
log smooth morphism of toroidal embeddings. Then, there exists a commutative diagram

X //

��

X

��

S // S

1
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where X → S is a weakly semistable morphism of Deligne-Mumford stacks, such that given
any diagram

Y //

��

X

��

T // S

with T → S a toroidal alteration and Y a modification of the fiber product X ×S T such
that Y → T is weakly semistable, the morphism Y → T factors uniquely through X → S.
Furthermore, X ×S T → T is weakly semistable.

2. The Toric Case

We begin by studying the toric case first. We do this because the exposition is simpler
in this case, yet all the essential ideas of the proof are already present, and the general
case reduces to the toric case.

We may identify a toric variety by a pair (F,N) of a lattice N and a fan F in NR =
N ⊗Z R. We usually denote the toric variety associated to (F,N) by A(F,N) or simply
A(F ). We will blur the distinction between (F,N) and A(F,N) and refer to either as
a toric variety. A morphism of toric varieties (F,N) → (G,Q) is a homomorphism of
lattices p : N → Q, such that pR : NR → QR takes each cone σ ∈ F into a cone κ ∈ G.
For the convenience of the reader, we briefly recall the combinatorial descriptions of the
key notions we will use throughout the paper:

Definition 2.0.2. The support SuppF of a fan F is the set of vectors in NR that belong
to some cone in F .

Definition 2.0.3. A morphism of toric varieties p : (F,N) → (G,Q) is called proper if
p−1(SuppG) = SuppF .

Definition 2.0.4. A morphism of toric varieties i : (F ′, N) → (F,N) is called a modifi-
cation or subdivision if i : N → N is the identity and Supp(F ′) = Supp(F ).

Definition 2.0.5. A morphism of toric varieties j : (G′, Q′) → (G,Q) is called an alter-
ation if j : Q′ → Q is a finite index injection and SuppG′ = SuppG.

Remark 2.0.6. Note that if j : Q′ → Q is an injection with finite cokernel, then the
condition SuppG′ = SuppG is equivalent to saying the morphism (G′, Q′) → (G,Q) is
proper. Furthermore, for any homomorphism j : Q′ → Q we get a “pull-back” fan j−1

R
(G)

which is isomorphic to G, since jR is an isomorphism. Thus, any toric alteration can
be factored as a modification (G′, Q′) → (G,Q′) composed with a finite index inclusion
(G,Q′) → (G,Q).

Remark 2.0.7. The pullback fan of remark 2.0.6 is a special case of the following more
general construction:

2.1. Minimal Modification. Let p : N → Q be a fixed homomorphism of lattices, and
suppose F,G are fans in the lattices N,Q respectively.

Lemma 2.1.1 ([GM], Lemma 4). There exists a minimal modification (F ′, N) of (F,N)
which maps to (G,Q) inducing p : N → Q.
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Proof. The fan F ′ is simply defined as F ′ := {p−1(κ) ∩ σ : κ ∈ G,σ ∈ F}. For the proof
that this is a fan and satisfies the universal property refer to [GM] or [AM14]. �

Definition 2.1.2. We call a morphism p : (F,N) → (G,Q) of toric varieties weakly
semistable if

(1) Every cone σ in F surjects onto a cone κ ∈ G

(2) Whenever we have p(σ) = κ, we have an equality of monoids p(N ∩ σ) = Q ∩ κ

Remark 2.1.3. Our definition of weak semistability is slightly different than the definition
in [AK00]: we do not demand that (G,Q) is smooth.

The above definitions are justified since a morphism of toric varieties satisfies the above
combinatorial conditions if and only if the morphism of geometric realizations satisfies the
analogous geometric property. We discuss what weak semistability means in practice: it
is shown in [AK00] that a morphism that satisfies (1) is equidimensional and a morphism
that satisfies (2) has reduced fibers. Furthemore, it is shown in Appendix C of [Wis14]
that the geometry of the central fiber of such a morphism resembles the geometry of a
semistable morphism as in [KKMSD73]: a node in the central fiber is the intersection of
precisely two irreducible components. This justifies the terminology “semistable”. Further
justification is provided by the following lemma:

Lemma 2.1.4. If p : (F,N) → (G,Q) is weakly semistable and F,G are smooth, then p
is semistable.

The condition of weak semistability is crucial in the study of families of toric varieties.
First of all, it includes the condition that a family should be flat:

Theorem 2.1.5. A weakly semistable morphism of toric varieties is flat and saturated (in
the terminology of [Tsu97]).

Proof. The statement is local, so we may assume we are in the situation where a single
cone σ in N maps into a single cone κ in Q. By assumption, we have that faces of σ map
onto faces of κ, and whenever τ maps onto λ, we have N ∩ τ mapping onto λ ∩Q.

Consider the dual monoids Q∨κ = κ∨∩Q∨ and N∨σ = σ∨∩N∨ in the dual lattices. Since
N ∩ σ surjects onto Q ∩ κ, the dual map Q∨κ → N∨σ is injective and saturated. To see
flatness, we will verify that this dual map is an integral map of monoids in the sense of
Kato. We use Kato’s equational criterion for integrality [Kat89]. Suppose we are given

p1 + q1 = p2 + q2

where pi ∈ N∨σ and qi ∈ Q∨κ . We want to show that p1 = w + r1, p2 = w + r2, where
w ∈ N∨σ , ri ∈ Q∨κ , and q1 + r1 = q2 + r2. Since the map Q∨κ → N∨σ is injective and
saturated, we certainly have a (non-canonical) splitting of lattices N∨,gpσ = Q∨,gpκ ⊕L. So,
we may identify any p1, p2 with (w, r1), (w, r2) and we must have q1 + r1 = q2 + r2. The
point however is that this splitting may not respect the monoids, i.e w may not be positive
on σ ∩ N . To fix this, we will carefully choose a particular splitting. Pick the face τ of
σ which maps isomorphically onto κ and on which the values of p1 are minimal. To see
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that this is possible, let v1, · · · , vm be the extremal rays of κ, and let uk denote lifts of the
rays vi in σ. Among the uk, choose u1, u2, · · · um such that ui 7→ vi and such that p1(ui)
is minimal along all possible lifts of vi to an extremal ray of σ. The face τ of σ generated
by the ui is the desired face. By assumption, we have τ ∩N = Q∩ κ. Using this splitting
N∨,gpσ = N∨,gpτ ⊕ L = Q∨,gpκ ⊕ L, we see that we may write p1 + q1 = p2 + q2 in the form
(w, r1+q1) = (w, r2+q2). We may identify κ with τ , and thus the projection σ → κ gives us
a map p : σ → τ . Every element x of σ can be written uniquely as x = p(x)+ v, v ∈ Ker p.
Note that by construction, w(x) = p1(v), and r1(x) = p1(p(x)). To check that w is non-
negative on σ, it suffices to check it is non-negative on its extremal rays. For such a ray
x in σ ∩ Ker p, the result is clear since then w(x) = p1(x) ≥ 0 by assumption. For an
extremal ray not in Ker p, we write x = p(x) + v, where p(x) is an extremal ray on τ . We
then have that p1(p(x)) ≤ p1(x) by choice of τ ; hence w(x) = p1(v) = p1(x − p(x)) ≥ 0,
which completes the proof of integrality.

The fact that the morphism of monoids is saturated follows by theorem 4.2 in [Tsu97].

�

Observe that in general for any toric monoid σ in the lattice N , we have that N∨σ =
Hom(N ∩ σ,N) – the notation M indicates the sharpening of M , i.e the quotient of M by
the subgroup of units. For example, if σ has full dimension in N , N∨σ = Hom(N ∩σ,N), as
N∨σ then has no non-trivial units. Let M be any integral monoid, and consider the exact
sequence

0 → U → M → M → 0

Applying the functor M 7→ Mgp, we get a diagram

0 //

��

U //

��

M //

��

M //

��

0

��

0 // U // Mgp // M
gp

// 0

The middle map is injective, as the monoid M is integral by assumption; the map from
U to Ugp = U is the identity, since M injects into Mgp. Exactness of the diagram at
Mgp → M

gp
follows, since the associated group functor is left adjoint to the inclusion

(Mon → Gp), so preserves colimits, hence quotients. It is not hard to verify that the
diagram is also Cartesian. Let now P be any saturated monoid with a map Q∨κ → P .
Since Q∨κ → N∨σ is integral and saturated, we have that M := P ⊕Q∨

κ
N∨σ is a saturated

submonoid of Mgp. Passing to the sharpening, we get as well:

Corollary 2.1.6. The morphism Hom(κ ∩Q,N) → Hom(N ∩ σ,N) is saturated.

2.2. Fiber Products. The category of toric varieties posseses fiber products:

Definition 2.2.1 (Toric Fiber Products). The toric fiber product of

(F,N)

��

(H,L) // (G,Q)

is the toric variety with fan F ×G H = {σ ×κ λ : σ ∈ F, λ ∈ H,κ ∈ G,σ → κ, λ → κ} in
the lattice N ×Q L.
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It is straightforward to verify that this collection forms a fan and that it satisfies the
universal property of the fiber product with respect to toric maps. However, the toric
fiber product is an ill-behaved construction, as it does not in general agree with the fiber
product of the associated toric varieties in the category of schemes:

A(F ×G H) 6= A(F )×A(G) A(H)

Example 2.2.2. Consider the diagram

(R2
+,Z

2)

��

(R2
+,Z

2) // (R2
+,Z

2)

where the morphisms are (a, b) 7→ (a, a+ b) and (c, d) 7→ (c+ d, d) respectively (these are
the two charts of the blowup of A2 at the origin). We have R2

+×R2
+
R
2
+ = {(a, b, c, d); a+b =

c, a = c+ d} = R
2
+ ⊂ R

2. On the other hand, the fiber product of these two morphisms in
the category of schemes is the variety {(x, y, z, w) : xy = z, x = zw} which is reducible.

Example 2.2.3. What fails in the previous example is that the morphisms considered
are not flat. However, flatness does not suffice to ensure toric fiber products agree with
schematic fiber products. For instance, given the diagram

(R+,Z)

��

(R+,Z) // (R+,Z)

where the two morphisms are a 7→ 2a, b 7→ 3b respectively, the toric fiber product is
{(a, b) : 2a = 3b} ∼= R+(3, 2) ⊂ (Z(3, 2))R whose geometric realization is A1, whereas the
schematic fiber product is {(x, y) : x2 = y3}.

Remark 2.2.4 (Colimits of Lattices). Given a diagram of lattices, we may take the limit
or colimit of the diagram in the category of abelian groups. The limit of such a diagram is
always a lattice, hence coincides with the limit in the category of lattices as well. In general,
colimits of lattices are not lattices. However, given a finitely generated abelian group L,
we can form the associated lattice L = L/Ltor. The functor L 7→ L is a left adjoint, and
thus, the colimit lim

−→
Li in the category of lattices coincides with lim

−→
Li, where the second

direct limit is understood as the colimit in the category of abelian groups.

Remark 2.2.5 (Double Dual of a Lattice). Note that for any lattice L, we have a natural
isomorphism L ∼= (L∨)∨, whereL∨ = Hom(L,Z) as usual. Since we have

(lim
−→

Li)
∨ := Hom(lim

−→
Li,Z) = lim

←−
L∨i

by the defining property of a colimit, it follows that

(lim
←−

Li)
∨ = (lim

−→
L∨i )

∨)∨ ∼= lim
−→

L∨i

where the colimits are understood in the category of lattices, not abelian groups, as in the
preceeding remark. In particular, we have that

(N ×Q L)∨ = N∨ ⊕Q∨ L∨
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where, again, the coproduct is the coproduct in lattices, i.e the coproduct in groups divided
by any potential torsion.

In general, for cones σ ∈ F, κ ∈ G,λ ∈ H, we get maps σ∨ ∩ N∨ = N∨σ → N∨,
Q∨κ → Q∨, L∨λ → L∨ and so a map N∨σ ⊕Q∨

κ
L∨λ → N∨ ⊕Q∨ L∨ ∼= (N ×Q L)∨ when the

coproduct of the lattices is taken in the category of lattices. It is clear that vectors in
the image of N∨σ ⊕Q∨

κ
L∨λ are non-negative on σ ×κ λ ⊂ N ×Q L, and so we get a map

N∨σ ⊕Q∨
κ
L∨λ → (σ ×κ λ)

∨. On the one hand,

C[(σ ×κ λ)
∨ ∩ (N ×Q L)∨]

are the affine charts for the fiber product of (F,N), (G,Q), (H,L) in the category of toric
varieties. On the other hand, since the functor Mon → C-alg, M → C[M ] is left adjoint
to the inclusion of C-algebras into monoids (considered as monoids via multiplication),
the functor preserves colimits, so

C[N∨σ ⊕Q∨
κ
L∨λ ]

∼= C[N∨σ ]⊗C[Q∨
κ ]
C[L∨λ ]

which are the affine charts of the fiber product in the category of schemes. Thus, we see
that the toric fiber product and the usual schematic fiber product coincide if and only if

N∨σ ⊕Q∨
κ
L∨λ → (σ ×κ λ)

∨ ∩ (N ×Q L)∨

is an isomorphism for all cones {σ ×κ λ} in F ×G H.

Weak semistability thus reveals itself through the following lemma:

Lemma 2.2.6. Suppose

(F,N)

p

��

(G,Q)

weakly semistable. Then, for a map (G′, Q′) → (G,Q) of toric varieties, the geometric
realization of the diagram

FG′ = F ×G G′ //

pG′

��

F

p

��

G′ // G

is cartesian in the category of schemes, and pG′ is also weakly semistable.

Proof. The statement is local on F , so we may replace F by a single cone σ, G by a single
cone κ, and G′ by a single cone λ. Since p is weakly semistable, theorem 2.1.5 together
with theorem 4.2 in [Tsu97] imply that the pushout

N∨σ ⊕Q∨
κ
L∨λ

is saturated in its associated group. This associated group is actually a lattice, since by
choosing a face of τ of σ which maps isomorphically to κ, and with N ∩ τ ∼= Q ∩ κ, we
obtain a splitting N∨σ

∼= Q∨κ ⊕N ′ – c.f the proof of 2.1.5. Thus,

N∨σ ⊕Q∨
κ
L∨λ
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is identified with the intersection of a cone C in (N ×Q L)∨
R
with (N ×Q L)∨. The same

is true for (σ ∩ λ) ∩ (N ×Q L). However, the dual of each of these cones is isomorphic to
σ ×κ λ, in the first case by the defining property of the colimit, and in the second by the
relation (C∨)∨ = C for the double dual of a cone in a fixed lattice. Applying the dual
again, we see that N∨σ ⊕Q∨

κ
L∨λ must be isomorphic to (σ ∩ λ) ∩ (N ×Q L), and the result

follows by the discussion preceeding the lemma. �

Sometimes, when the morphism G′ → G has additional structure, the condition that
F → G is weakly semistable may be relaxed. For example, in a situation relevant to the
paper we have

Lemma 2.2.7. Suppose p : (F,N) → (G,Q) is arbitrary and j : (G′, Q′) → (G,Q) is an
alteration with G = G′. Then the fiber product A(F ) ×A(G,Q) A(G,Q′) is a toric variety,
and its fan is given by the minimal modification of (F,N ×Q Q′) mapping to (G,Q′).

Proof. The question is again local on F , so we may assume F = σ, G = G′ = κ is a
single cone. Since (σ ∩ N) ×(κ∩Q) (κ ∩ Q′) = σ ∩ N ′ is evidently saturated in N ′, where

N ′ = N ×Q Q′, the proof of lemma 2.2.1 will remain valid, provided we can show that
Hom(σ ∩N,N) ⊕Hom(κ∩Q,N) Hom(κ ∩ Q′,N) is saturated. But the functor P 7→ P sat is a
left adjoint, thus preserves direct limits, and the result follows. �

2.3. Toric Stacks. In what follows, we will need the notion of a toric stack. For us, a
toric stack will be always given by the data of a “KM” fan, i.e a triple (F,N, {Nσ}σ∈F ),
where (F,N) is the usual data of a toric variety, and Nσ is a collection of sublattices of
N , one for each σ ∈ F , with the properties

• Nσ ⊂ N ∩ Spanσ is a finite index inclusion.

• Nσ ∩ Span τ = Nτ for a face τ of σ.

A morphism of toric stacks (F,N, {Nσ}) → (G,Q, {Qκ}) is a morphism (F,N) → (G,Q)
such that whenever σ 7→ κ, Nσ → N → Q factors through Qκ.

The data of a KM fan (F,N,Nσ) has a geometric realization into a normal, separated
DM stack A(F,N,Nσ), which comes with an open dense torus acting on the stack in a
way compatible with the action of the torus on itself by multiplication. The coarse moduli
space of the stack is the toric variety (F,N). The data of a morphism has a realization into
a morphism of these stacks, and the associated morphism between coarse spaces is simply
(F,N) → (G,Q). The reader interested in this geometric realization and the properties of
toric stacks is referred to the paper [GM15].

Any toric variety can be regarded as a toric stack, by taking Nσ = N ∩ Spanσ for each
cone σ – note that there is no additional information in the Nσ in this case. Under this
identification, the category of toric varieties becomes a full subcategory of the category
of toric stacks. We will use this identification in what follows and keep denoting a toric
variety (F,N) by (F,N) even when the context makes it clear that it is considered as a
toric stack. We have from [GM15]:



8 SAM MOLCHO

Lemma 2.3.1. A morphism of toric stacks p : (F,N, {Nσ}) → (G,Q, {Qκ}) is repre-
sentable if and only if p−1(Qκ) = Nσ whenever σ 7→ κ.

2.4. The Main Construction. We now fix the morphism p : (F,N) → (G,Q) which is
surjective and proper.

Definition 2.4.1. Let C be the category whose objects are diagrams

(Φ, N ′)
j

//

π

��

(F,N)

p

��

(Γ, Q′)
i

// (G,Q)

such that

• The map i is an alteration.

• N ′ is the fiber product N ×Q Q′.

• Φ is a modification of j−1(F ).

• π is weakly semistable.

A morphism in C is a commutative diagram

(Φ′′, N ′′) //

��

(Φ′, N ′)

��

(Γ′′, Q′′) // (Γ′, Q′)

which commutes with the morphisms to p : (F,N) → (G,Q).

Theorem 2.4.2. The category C has a terminal object which is a DM toric stack. In
other words, there is a diagram

(F ′, N,Nσ) //

��

(F,N)

��

(G′, Q,Qκ) // (G,Q)

such that every diagram

(Φ, N ′)
j

//

π

��

(F,N)

p

��

(Γ, Q′)
i

// (G,Q)
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factors uniquely as

(Φ, N ′) //

π

��

(F ′, N,Nσ) //

��

(F,N)

p

��

(Γ, Q′) // (G′, Q,Qκ) // (G,Q)

Proof. We first construct G′. Let p(F ) denote the collection of images of cones of F . Note
that though every cone p(σ) is contained in a cone of G, thus is convex, p(F ) is in general
not a fan, as cones may not intersect along faces. We define G′ as the subdivision of G
determined by the cones in p(F ). Explicitly, this means the following: For every vector w
in G, we look at the collection

N0(w) = {σ ∈ F : p(v) = w for some v in the interior of σ}

The cones κ of G′ are precisely the cones such that for any two w,w′ in the interior of κ,
we have N0(w) = N0(w

′). Next, for a cone κ ∈ G′, we take

Qκ = ∩σ∈N0(κ)p(N ∩ σ)

In the interior of κ, this has the following description: w ∈ Qκ if and only if there exist
vi ∈ σi with p(vi) = w for every cone σi ∈ N0(κ). This completes the construction of the
base (G′, Q,Qκ).

At this point we need to verify that this construction actually yields a fan. The difficult
part is verifying that the cones are strictly convex. So fix a cone κ ∈ G′, and pick
two interior vectors w,w′ ∈ κ. We will show that the whole line segment connecting
w to w′ must also be in the interior of κ. Suppose there exists a t ∈ (0, 1) for which
N0(tw + (1 − t)w′) is different from N0(w) = N0(w

′). Take for simplicity the smallest
such t – this makes sense since the condition N0(w) = N0(u) is an open condition on u–
and denote the point tw + (1 − t)w′ by w′′ to ease the notation. Certainly, since every
cone σi in N0(w) is strictly convex, the line segment between two lifts of w,w′ in σi is
also in σi, so N0(w) ⊂ N0(w

′′). So take a cone σ ∈ N0(w
′′) −N0(w), and a lift v′′ of w′′

in N0(w
′′). We look at the fiber of the map of vector space NR → QR over the interval

[w,w′] in QR. Call this fiber N[w,w′], and let F[w,w′] be the intersection of N[w,w′] with the
fan F . Then F[w,w′] is a polyhedral decomposition of N[w,w′]. The cone σ restricts to the

vertex v′′ in F[w,w′] since the relative dimension of σ under F → G is 0 by assumption,
and similarily cones in N0(w) correspond to edges in F[w,w′]. Since (F,N) → (G,Q) is

surjective and proper, the support of F[w,w′] is all of N[w,w′]. In particular, the star of v′′

in F[w,w′] must intersect F[w,w′′) non-trivially; so, in particular, there is an edge in the star
of v′′ in F[w,w′] which maps to a vector sw + (1 − s)w′ with s < t. By assumption on t,
we have N0(sw + (1− s)w′) = N0(w), so in fact the edge corresponds to a cone in N0(w)
and thus contains a lift of w. Since σ is by choice not in N0(w), v

′′ is an extreme point of
the edge. But this is a contradiction, since the edge must extend to contain a lift of w′ as
well, as we assumed N0(w) = N0(w

′). Thus we must have N0(w) = N0(sw + (1 − s)w′)
for all s ∈ [0, 1], and convexity follows.

To construct (F ′, N,Nσ), we simply take the minimal subdivision of (F,N) that maps to
(G′, Q,Qκ), as in 2.1.1. This means that F ′ is the fan {p−1(κ)∩σ : κ ∈ G′, σ ∈ F} and the
sublattice corresponding to σ′ := p−1(κ)∩σ is Lσ′ := p−1(Qκ∩σ′). As mentioned in 2.1.1,
a proof that this construction yields a fan can be found in [GM],[AM14]. In [AM14],[GM] it
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is also shown that such a morphism is weakly semistable: essentially, cones of F ′ map onto
cones of G′ by construction, and Nσ maps onto Qκ whenever σ 7→ κ by construction again.

Suppose now we are given a diagram

(Φ, N ′)
j

//

π

��

(F,N)

p

��

(Γ, Q′)
i

// (G,Q)

where i is an alteration, N ′ the fiber product N ×Q Q′, and Φ a subdivision of j−1F .
Assume furthermore that π is semistable. Let w,w′ be two lattice points in the interior
of a cone γ of the fan Γ. Suppose that w maps into a cone κ ∈ G′; we show that w′ maps
to the same cone as well. Consider lifts v1, · · · , vn of v = i(w) to cones σi ∈ N0(w) ⊂ F .
Since Φ subdivides j−1F , there are cones g1, · · · , gn in Φ such that j(gi) ⊆ σi; so we may
find lifts w1, · · · , wn of w in gi. But then each cone gi maps to γ under the projection π,
and hence maps onto γ and γ ∩Q′ = π(gi ∩N) from conditions (1), (2) in the definition of
semistability. Since w′ is in γ∩Q′ as well, this means that there exists w′1, · · · , w

′
n ∈ gi∩N

that map to w′ as well – and hence there are v′1 = j(w′1), · · · , v
′
n = j(w′n) in the cones

σi ∈ N0(w) that map to w′ as well. It follows that N0(w) ⊂ N0(w
′), thus, by symmetry,

N0(w) = N0(w
′); hence w,w′ belong to the same cone κ of G′. Furthermore, they are in

the image of the lattice Nσi
for each cone in N0(w), thus in fact in the monoid Qκ. Thus

(Γ, Q′) factors through (G′, Q,Qκ). The fact that (Φ, N) must factor through (F,N,Nσ)
factors through the universal property defining (F,N,Nσ) automatically.

�

Remark 2.4.3. It might be worth pointing out that this proof goes through without
assuming that the map i : (Γ, Q′) → (G,Q) is an alteration. All that is required is that
the kernel of N → Q and that the kernel of N ′ → Q′ coincide.

Using the notation of definition 2.4.1, we have as a corollary:

Corollary 2.4.4. The minimal modification Φ of j−1(F ) such that

(Φ, N ′)
j

//

π

��

(F,N)

p

��

(Γ, Q′)
i

// (G,Q)

commutes and π is weakly semistable is given by the fiber product of

(F,N,Nσ)

p

��

(Γ, Q′)
i
// (G′, Q,Qκ)

Its geometric realization coincides with A(Γ, Q′)×A(G′,Q,Qκ) A(F,N,Nσ).
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Proof. This follows immediately by combining 2.4.2, 2.2.6, 2.3.1. �

3. Globalizing

We are now ready to discuss the changes necessary to generalize the above construction
in the toroidal case. Recall the relevant definitions from [KKMSD73]. To any toroidal
embedding (X,U) there is associated a stratification, the strata being determined by the
irreducible components of the divisor X − U . To each stratum Y , we associate a lattice

MY = Divisors on StarY

MY
+ = Effective Divisors on StarY

NY = Hom(MY ,Z)

σY = {v ∈ NY : v is non-negative on MY
+ }

The collection of the cones σY is a cone complex, which we denote by C(X); the only
contrast with the toric theory is that the cones do not all inhabit a single (canonical)
lattice N . Subdivisions of this cone complex correspond to birational modifications of
(X,U) which are the identity on U .

We make heavy use of the following observation, explained in [KKMSD73]. We consider
morphisms

λ : SpecC[[N]] → X

which take the generic point η of SpecC[[N]] to U , and the closed point 0 to Y . Then, for
a divisor D in MY , we get a pairing

〈λ,D〉 = ord0λ
∗D

This way we obtain a map Hom (SpecC[[N]],X) → σY , whose image is the interior of σY .
So we may identify an interior v ∈ σY with an equivalence class of maps SpecC[[N]] to
X, two maps being equivalent if and only if their order of intersection with each divisor is
the same. We will abbreviate this equivalence class of maps by v as well. Similarily, the
R+ span of the cone σY can be identified with the image of Hom (SpecC[[R+]],X). This
is best explained through the following three observations.

Remark 3.0.5. Suppose V is an affine toric variety, corresponding to the cone σ in the
lattice N . Denote the dual lattice of N by M as usual, and denote by σ∨ the dual cone
of σ, i.e {u ∈ MR : 〈u, v〉 ≥ 0 for all v ∈ σ}, so that V = SpecC[σ∨ ∩ M ]. An element
v ∈ σ ∩N is the same thing as a homomorphism of monoids σ∨ ∩M → N. We have

HomMon(σ
∨ ∩M,N) = HomC−alg(C[σ

∨ ∩M ],C[N]) =

= HomSchemes(SpecC[N] = A
1, V )

If v in in the interior of σ, the image of 0 under A1 → V is precisely the torus fixed point
of V . Composing C[σ∨∩M ] → C[N] with the completion C[N] → C[[N]] gives a morphism
SpecC[[N]] → V which defines precisely the same homomorphism σ∨ ∩ M → N as v.
Thus, for an affine toric variety each equivalence class of morphisms SpecC[[N]] → V
has a canonical representative, obtained by completing the homomorphism C[N] → V
correpsonding to v.
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Remark 3.0.6. Suppose V = V (σ) is the affine toric variety associated to the cone σ in
N , as in the preceeding remark. A similar description as the one given in the preceeding
remark can in fact be given for any vector v ∈ σ rather than just the integral ones. A
vector v in σ corresponds to a homomorphism σ∨ → R+, which induces (and is determined
by) by restriction to a homomorphism σ∨∩M → R+. This is the same data as a C-algebra
homomorphism C[σ∨∩M ] → C[R+] as above, which induces a map C[σ∨∩M ] → C[[R+]],
i.e a map λ : SpecC[[R+]] → V (σ). When v is in the interior of σ, we have that under this
morphism the closed point maps to the torus fixed point of V (σ). Note that for any toric
divisor D of V (σ), i.e any element u ∈ M , we have 〈v, u〉 = ordt=0λ

∗u by construction.
We may thus identify vectors v ∈ σ with morphisms

λ : SpecC[[R+]] → V (σ)

such that λ(η) ∈ torus, and λ(0) = torus fixed point, up to the equivalence relation
that ordt=0λ

∗ induces the same homomorphism on M . We also have the analogue of
the observation in the preceeding remark, that every equivalence class of a morphism
SpecC[[R+]] → V (σ) has a unique representative obtained by completing SpecC[R+] →
V (σ).

Remark 3.0.7. We can now combine the two remarks above with the fact that every
toroidal embedding is etale locally (hence formally locally) isomorphic to a toric variety,
to obtain that every interior vector v ∈ σY , not necessarily integral, corresponds to an
equivalence class of morphisms

λ : SpecC[[R+]] → V

such that λ(η) ∈ U , λ(0) ∈ Y . Of course, there is no longer a canonical representative
for a morphism in this equivalence class. Here, the ring C[[R+]] is the completion of
C[R+] with respect to the valuation on C[R+] which takes a polynomial

∑
α∈R+

cαxα to

inf{α : cα 6= 0}. The completion C[[R+]] is naturally a valuation ring as well; we denote
its fraction field by C[[R]]. The field C[[R]] is algebraically closed. A proof of this fact,
using an appropriate version of Hensel’s lemma is given in appendix 1 of [FOOO10]. It
is also possible to give a direct proof by observing that the proof of the Newton-Puiseaux
theorem extends to the case of real exponents as well.

3.1. Toroidal Stacks. We would now like to transport the main points of the theory of
toric stacks to toroidal embeddings. Though it is possible to give analogous definitions
by working étale locally and modifying the appropriate results of [GM15], we prefer not
to work from scratch, and use the construction of the “root stack” of Borne and Vistoli,
[BV12], section 4. In order to use this result, we have to work a little bit with logarithmic
structures rather than toroidal embeddings. Note that a toroidal embedding (X,U) carries
a canonical structure of a log scheme (X,M), by setting

M(V ) = {f ∈ OX(V ) : f ∈ O∗X(V ∩ U)}

Conversely, by the chart criterion of log smoothness of [Kat89], it follows that a toroidal
embedding without self intersection is the same thing as a log smooth log scheme (X,M)
with Zariski log structure. The sheaf M has the following characteristic monoid M at the
generic point ηY of a stratum Y :

MηY = (σY )∨ ∩MY
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Given a log scheme (X,M), the construction of Borne and Vistoli asserts that for any

map of monoids M → M
′
which is Kummer, i.e injective with finite cokernel, there exists

a DM log stack (X ,M ′) mapping to (X,M), with the morphism M → M ′ inducing the
given map M → M ′. Furthremore, the morphism is log smooth and the terminal object of
the category of log schemes (Y,N) → (X,M) such that M → N factors through M → M ′.

Since the stack (X ,M ′) is log smooth with Zariski log structure, we will refer to it
as a toroidal stack without self intersection. A method analogous to the toric case for
producing toroidal stacks from a toroidal embedding (X,U) is to assign for each cone σY

in C(X) a sublattice NσY ⊂ NY ∩ Span(σY ) which is injective with finite cokernel, and
with the property that Nτ = Span τ ∩Nσ for a face τ of σ – on the level of log structures,

this is precisely a Kummer extension M
′
of the sheaf M , where M is the canonical log

structure. Thus, a compatible triple (C(X), NY , NσY ), as Y ranges through the strata of
(X,U) produces a toroidal stack.

3.2. The Main Construction. The toric construction explained in section 2 carries over
to the toroidal case with minimal changes, by replacing the fans of X and S with the cone
complexes C(X), C(S). The morphism X → S induces a morphism p : C(X) → C(S) by
composing a map C[[R+]] → X with X → S. So suppose a cone κ ∈ C(S), and a point
w ∈ κ are given. We consider

N0(w) = {σ : ∃!v ∈ σo such that p(v) = w}

Lemma 3.2.1. The cones {w : N0(w) = fixed} are strictly convex, and form a subdivision
of κ.

Proof. We try to mimic the proof of the toric case 2.4.2. The question is local on S, so
we may assume that C(S) is a single cone κ. We take two vectors w,w′ in κ for which
N0(w) = N0(w

′), and try to show that we have N0(tw+(1−t)w′) = N0(w) for all t ∈ [0, 1].
As above, we may assume that this condition fails for some t and derive a contradiction,
and even take for t the minimal element of [0, 1] for which the condition fails (note that
the condition can only fail in a closed subset of [0, 1]). So we may replace κ by the interval
[w,w′], and C(X) by its fiber over [w,w′], which we will denote by C(X)[w,w′]. Put
w′′ = tw+ (1− t)w′. As in the toric proof, we can choose an element in N0(w

′′)−N0(w),
which corresponds to a vertex v′′ in C(X)[w,w′]. The key step in the toric proof is that
the star of v′′ in C(X)[w,w′] intersects the fiber of [w,w

′′) in C(X), which follows from the
properness of the map. This statement is not clear in the toroidal situation, but we claim
it is nevertheless still correct. To see this, pick a family of maps

SpecC[[R+]]× [0, 1] → S

corresponding to the interval [w,w′] in κ, and a lift

SpecC[[R+]] → X

of the map corresponding to w′′, which represents the vector v′′ ∈ C(X). We abusively
denote this map by v′′ as well. Let x = v′′(0) ∈ X. Since X → S is log smooth, we may
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choose a chart

(X,x)
f

//

p

��

(V, v)

π

��

(S, p(x))
g

// (W,π(v))

for the morphism p, where: the horizontal morphisms f, g are étale; V,W are toric varieties,
π is a toric morphism, and v, π(v) are special points in the torus orbits; and the morphism
NR → QR is surjective, where N,Q are the lattices of V and W respectively. Let [z, z′]
denote the interval corresponding to [w,w′] in QR under g, and let y′′ ∈ NR denote the
element corresponding to v′′ under f . Since NR → QR is surjective, we may lift [z, z′] to
an interval [y, y′] ∈ NR lying over [z, z′], with y′′ ∈ [y, y′]. In other words, if we denote by
T (V ), T (W ) the tori of V and W respectively, we get that the family

SpecC[R]× [0, 1] → T (W ) ⊂ W

corresponding to [z, z′] lifts to a family of maps

SpecC[R]× [0, 1] → T (V ) ⊂ V

which under π projects to [z, z′], and with y′′ the map over z′′, i.e such that the morphism
at t ∈ [0, 1] is y′′. Denote the cone of C(V ) that contains y′′ in its interior by ρ, and the
cone of C(X) that contains v′′ in its interior by σ, and let ηρ, ησ be the generic points of
the strata in V and X corresponding to ρ and σ respectively. Since y′′(0) is in the interior
of the stratum corresponding to ρ, the valuation of y′′∗(D) is positive for every divisor
containing the stratum, and the same is true for every vector in the interval [y, y′] which
is sufficiently close to y′′. Consequently, for such vectors, the induced map OV,ηρ → C[R]
is continuous with respect to the Krull topology on OV,ηρ . Thus, the family of maps

ys : SpecC[R]× [0, 1] → T (V ) ⊂ V

extends to a family of maps

ys : SpecC[[R]]× (t− ǫ, t+ ǫ) → Spec ÔV,ηρ

for sufficiently small ǫ – to be precise, ǫ small enough that y∗s(D) > 0 for all D containing
the stratum corresponding to ρ, and all s ∈ (t− ǫ, t+ ǫ). Since the map X → V is étale,
and SpecC[[R]] is algebraically closed, there is a lift of this family to a family of maps

SpecC[[R]]× (t− ǫ, t+ ǫ) → X

which under p composes to the original family SpecC[[R]]×(t−ǫ, t+ǫ) → S corresponding
to [w,w′]. Now, for each s ∈ (t − ǫ, t + ǫ), the map SpecC[[R]] → X extends to a map
SpecC[[R+]] → X by properness of X → S. But such a map corresponds to an element
of C(X), so we get a family of elements in C(X) which at s = t specialize to v′′. Thus,
the star of v′′ in C(X) contains a lift of the line segment [w,w′′), and the same argument
as in the toric case goes through. �

Theorem 2.4.2 now carries through without any change in the proof, once we consider the
appropriate generalization of the category C in the toroidal setting. We fix a proper, surjec-
tive toroidal morphism X → S, which gives a cone complex morphism C(X) → C(S). We
consider the subdivision of S determined by the cones {w ∈ C(S) : N0(w) = constant},
and the subdivision of C(X) given by p−1({w ∈ C(S) : N0(w) = constant}) ∩ σ. For a
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cone κ whose interior is given by the collection {w : N0(w) = {σi}
n
1}, we take the sub-

lattice Q′κof Qκ to be the lattice generated by the elements in ∩n
i=1p(σi ∩Nσi

), and for a
cone σi ∩ p−1(κ) we take the sublattice N ′

σi∩p−1(κ) = p−1(Q′κ). This construction yields a

toroidal morphism of toroidal stacks X → S, according to [BV12].

By an alteration, we mean an alteration T → S which is also a morphism of toroidal
embeddings. Concretely, this means that when κ′ ∈ C(T ) → κ ∈ C(S), the map κ′ → κ
is an alteration in the toric sense. Then, we consider

Definition 3.2.2. Let Ct be the category whose objects are diagrams

Y
j

//

π

��

X

p

��

T
i

// S

such that

• Y, T are toroidal embeddings and j, π, i are morphisms of toroidal embeddings.

• The map i is an alteration.

• Y is a modification of the fiber product X ×S T .

• π is weakly semistable.

A morphism in Ct is a commutative diagram

Y ′ //

��

Y

��

T ′ // T

which commutes with the morphisms to p : X → S.

Then we have

Theorem 3.2.3. The family X → S is the terminal object of Ct.

Proof. The proof of the toric case in 2.4.2 carries through in exactly the same way. �

As a corollary, we get

Theorem 1.0.1 (Universal Weak Semistable Reduction). Let X → S be any proper,
surjective, log smooth morphism of toroidal embeddings. Then, there exists a commutative
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diagram

X //

��

X

��

S // S

where X → S is a weakly semistable morphism of Deligne-Mumford stacks, such that
given any diagram

Y //

��

X

��

T // S

with T → S a toroidal alteration and Y a modification of the fiber product X ×S T such
that Y → T is weakly semistable, the morphism Y → T factors uniquely through X → S.
Furthermore, X ×S T → T is weakly semistable.

References

[AK00] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math.
139 (2000), no. 2, 241–273. MR 1738451 (2001f:14021)

[AM14] K. Ascher and S. Molcho, Logarithmic stable toric varieties and their moduli, ArXiv e-prints
(2014).

[BV12] Niels Borne and Angelo Vistoli, Parabolic sheaves on logarithmic schemes, Adv. Math. 231
(2012), no. 3-4, 1327–1363. MR 2964607

[FOOO10] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian floer theory on

compact toric manifolds, i, Duke Math. J. 151 (2010), no. 1, 23–175.
[GM] W.D Gillam and S. Molcho, Stacky Fans, Log Stable Maps, and Morse Theory,

http://math.colorado.edu/~samo2465/flows3.pdf.
[GM15] W. D. Gillam and S. Molcho, A Theory of Stacky Fans, ArXiv e-prints (2015).
[Kat89] Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and

number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989,
pp. 191–224. MR 1463703 (99b:14020)

[KKMSD73] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I,
Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973. MR 0335518 (49
#299)

[Tsu97] T. Tsuji, Saturated Morphisms of Logarithmic Schemes, 1997.
[Wis14] Molcho S. Wise, J., Moduli of morphisms of logarithmic schemes, ArXiv e-prints (2014).

http://math.colorado.edu/~samo2465/flows3.pdf

	1. Introduction
	2. The Toric Case
	2.1. Minimal Modification
	2.2. Fiber Products
	2.3. Toric Stacks
	2.4. The Main Construction

	3. Globalizing
	3.1. Toroidal Stacks
	3.2. The Main Construction

	References

