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Abstract

The holographic quantum entanglement entropy for an infinite strip region of the bound-
ary for the field theory dual to charged black holes in AdS3+1 is investigated. In this
framework we elucidate the low and high temperature behavior of the entanglement entropy
pertaining to various limits of the black hole charge. In the low temperature regime we
establish a first law of entanglement thermodynamics for the boundary field theory.
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1 Introduction

Quantum correlations play an important role in studying various aspects of many-body physics
pertaining to condensed matter systems, statistical mechanics, quantum information and quan-
tum gravity. In this regard entanglement entropy acts as a key quantity, providing the measure
for the quantum correlations in a bipartite quantum system.

A bipartite quantum system can be described as the union of the subsystem A under obser-
vation which is correlated with the rest of the system defined by its complement Ac. For this
bipartite quantum system the full Hilbert space H can be expressed as a tensor product of the
Hilbert spaces of A and Ac as H = HA⊗HAc in the case when there is no entanglement between
subsystems A and Ac. However, if the subsystems A and Ac are entangled then the full Hilbert
space can not be expressed as the tensor product of the Hilbert spaces of A and Ac, which implies
that the density matrix (ρ) of the full system also cannot be expressed as the tensor product of
ρA and ρAc i.e. ρ 6= ρA ⊗ ρAc . In such a scenario, at zero temperature the whole system can
be represented by a pure state | ψ〉 ǫ H, with the density matrix given by ρ =| ψ〉〈ψ |. The
reduced density matrix (ρA) for the subsystem A is obtained via tracing ρ over the degrees of
freedom of Ac giving ρA = TrAcρ and the entanglement entropy of the subsystem A is defined
as the corresponding Von Neumann entropy, SA = −TrA(ρA log ρA). More interestingly, if the
two subsystems A and Ac are spatially partitioned from each other by a geometric boundary
(∂A) then in d-spatial dimensions it is observed that the entanglement entropy follows an area
law, SA ∝ (∂A)/ad−1 + · · · , where the expansion parameter a is some small UV cutoff and the
dots represents higher order terms in power of a [1]. In the case of two dimensional conformal
field theories, the entanglement entropy is observed to depict a logarithmic behavior which is
in contrast to the area law discussed before. In particular, for two dimensional conformal field
theories one can write SA = (c/3) log(l/a) + · · · , where l is the length of interval correspond-
ing to subsystem A and c is the central charge of the theory [2–5]. The entanglement entropy
also follows two basic properties (i) SA=SAc , where Ac is the compliment of the region A and
(ii) SA1

+ SA2
≥ SA1

∪ SA2
+ SA1

∩ SA2
, which is the strong subadditivity condition for two

different regions A1 and A2 of a quantum system [6–9] (See [10–13] for applications).
The method to obtain analytically the entanglement entropy for a CFT is the replica trick

[2, 5, 14] which incorporates first the computation of Tr(ρnA) for some positive integral value
of n and then taking the limit n → 1 in the expression SA = −∂n(TrρnA) |n=1 (See [15] for
recent reviews and applications). Further advancement in the understanding and computation
of entanglement entropy was due to the works of Calabrese and Cardy, who used the methods
of (1 + 1)-dimensional CFT to study entanglement in numerous static as well as dynamic
scenarios [16–20]. However, in higher dimensions only the of quasi free fermions and bosons
has been studied rigorously studied in [21–26]. It was observed that for the bosonic case on
a lattice structure, the entanglement entropy for a subsystem A satisfies an “Area law” i.e.
SA = ld−1/ad−1 with l being the length of the susbystem A measured in lattice units and
a being the UV cutoff whereas, in the fermionic case a logarithmic behavior of entanglement
entropy was observed i.e. SA = ld−1 log l/a. Thus it is evident from the above discussions that
the ”Area law” for the entanglement entropy seems to be persistent even for the quantum field
theories in the higher dimensions.

Further development in understanding of the entanglement entropy for quantum field theories
came with the advent of AdS/CFT correspondence which relates (d)-dimensional strongly cou-
pled boundary quantum field theory to a theory of weakly coupled gravity in (d+1)-dimensional
bulk space-time [27–31]. Using this duality Ryu and Takyanagi proposed a conjecture to holo-
graphically evaluate the entanglement entropy of a (d)-dimensional quantum field theory [32,33]
which was later generalized for time dependent backgrounds by Hubeny-Rangamani-Takayanagi
(HRT formula)in [34]. This holographic prescription for obtaining the entanglement entropy
SA for a region A (enclosed by the boundary ∂A) in the (d)-dimensional boundary field the-
ory involves computation of the area of the extremal surface (denoted by γA) extending from
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the boundary ∂A of the region A into the (d + 1)-dimensional bulk such that SA is given by

Area(γA)/(4G
(d+1)
N ), where G

(d+1)
N is the gravitational constant of the bulk. The holographic

prescription of computing entanglement entropy due Ryu and Takyanagi reproduced the afore-
mentioned “Area law of entanglement entropy” for a (d)-dimensional boundary CFT dual to
(d+1)-dimensional AdS vacuum solution in the bulk and also confirmed the validity of the strong
subadditivity inequalities [35]. Besides this, it also confirmed the logarithmic behavior of the
entanglement entropy for a (1 + 1)-dimensional boundary CFT in AdS2+1/CFT1+1 setup [35].
This remarkable success of Ryu and Takyanagi conjecture embarked the study of entanglement
entropy and related phenomenon for different classes of (d)-dimensional boundary field theories
dual to different solutions of classical gravity in a (d+1)-dimensional bulk (See [35,36] and the
references therein). One such application of the conjecture involves the study of the entangle-
ment entropy for a boundary CFT at finite temperature which is dual to a Schwarzschild black
hole solution in the bulk [37–40]. Furthermore, for such a boundary CFT at finite temperature
the authors in [40] have used analytic series expansion technique to derive an expression entan-
glement entropy in terms of temperature and subsystem length and have used it to study low
and high temperature behavior of entanglement entropy. Such studies related to a boundary
CFT at finite temperature lead to a proposal of an analogous “First law of thermodynamics”

like relation for entanglement entropy by the authors in [41] (See [42] for other studies related
to entanglement thermodynamics).

Another class of boundary field theories that have been studied using the Ryu and Takyanagi
conjecture are the ones which are dual to charged black holes in the bulk [39,43,44]. In particular,
the authors in [43] have studied the entanglement entropy for the boundary field theory dual
to Reissner-Nordstrom black holes in arbitrary (d + 1)-dimensional AdS spacetime. For such
a boundary field theory at finite temperature and charge density, the issue of entanglement
thermodynamics was also addressed in [45, 46]. Despite, such attempts to study entanglement
entropy for boundary field theories dual to Reissner-Nordstrom black holes in the AdS bulk a
complete description of the temperature dependence of entanglement entropy is still lacking and
the entanglement thermodynamics (“First law of thermodynamics” like relation for entanglement
entropy) still remains underexplored for such boundary field theories. Thus in this article we
attempt to comprehensively investigate the temperature dependence of the entanglement entropy
for a strip like region in the boundary field theory which is dual to RN black holes in AdS4/CFT3
setup. We also comprehensively explore the entanglement thermodynamics pertaining to such
boundary field theories at finite temperature and charge density.

This article is organized as follows. In section 1 we review the Ryu-Takyanagi conjucture and
describe the setup for computing the holographic entanglement entropy for boundary field theory
dual to planar black holes. In section 2 we state the holographic prescription for computing
the entanglement entropy for boundary field theories dual to Reissner-Nordstrom black holes in
AdS4/CFT3 setup. In section 3 we compute the entanglement entropy for boundary field theory
dual to extremal and non-extremal charged black holes in the small charge regime and obtain
the “First law of entanglement thermodynamics” at low temperatures. In the same section we
also study the low and high temperature behavior of entanglement entropy in the small charge
regime for the case of non-extremal black holes in the AdS4 bulk spacetime. In section 4 we
present the entanglement entropy for boundary field theory dual to extremal and non-extremal
charged black holes in the large charge regime. Finally in section 5 we summarize out results
and findings.

2 Review of holographic entanglement entropy of planar black

holes

The AdS/CFT correspondence suggests that a black hole solution in the bulk AdS spacetime is
dual to a boundary CFT at finite temperature. In order to compute the entanglement entropy
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for such a strongly coupled boundary field theory at finite temperature one has to implement the
Ryu-Takayangi prescription as described in introduction. For our purpose we have geometrically
partitioned the boundary field theory into a subsystem(A) which is geometrically a long strip
and is entangled with rest of the system as shown in fig.(1). According to this prescription,
entanglement entropy(SA) for the subsystem(A) is given by the area of the extremal surface(γA)
which extends into the bulk and is anchored to the boundary of the subsystem(A) [32]. Following
the Ryu-Takayangi conjecture, in the general AdSd+1/CFTd setup the entanglement entropy
(SA) for the subsystem A may be given as

SA =
Area(γA)

4Gd+1
N

(1)

Figure 1: Schematic of extremal surface anchored on the subsystem that lives on the boundary

In a simpler setup the behavior of the entanglement entropy with temperature for a boundary
field theory dual to a Schwarschild black hole in the bulk AdSd+1 spacetime was first studied
in [40]. Here we review the method adopted in [40] for computation of entanglement entropy
when a black hole with planar horizon is present in the bulk. We will be working in the set up
of AdS4/CFT3 while restricting ourselves to the Poincaré patch of AdS − 4 as in the Poincaré
coordinates the black hole in the bulk has a planar horizon R(2,1) and the dual field theory lives
on the conformal boundary of AdS4 spacetime.

In Poincaré coordinates, the metric for a black hole with a planar horizon in AdS3+1 space-
time can be given as

ds2 = − r2

L2
f(r)dt2 +

L2dr2

r2f(r)
+
r2

L2
d~x2 (2)

Where L is the AdS length scale L and the components of the vector ~x corresponds to {x, y}.
In the boundary field theory side, we have chosen the subsystem (A) to be confined geometrically
by a long strip x ∈

[

− l
2 ,

l
2 ], y ∈

[

L
2 ,

L
2 ] as shown in fig.(1). The area of the surface anchored on

the boundary of the subsystem (A) may be given as

A = L

∫

dr r

√

r2x′2 +
1

r2f(r)
(3)

Extremizing the area functional given by eq.(3) leads to the Euler-Lagrange equation which
on integrating with respect to radial coordinate (r) yields following relation

dx

dr
= ± r2c

r4
√

f(r)(1− r4c
r4
)
, (4)
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here, rc is the constant of integration and represents the turning point of the extremal surface
in the higher dimensional AdS4 bulk spacetime. Integrating the above equation once again with
the boundary condition x(∞) = ± l

2 and (r = rc at x = 0), a relation between the parameters l
and rc can be written down as follows

l

2
=

∫ ∞

rc

r2cdr

r4
√

f(r)(1− r4c
r4 )

(5)

From eq.(3) it may be seen that the area integral becomes divergent as, r → rc and has to
be regularized by introducing an UV cutoff (a) of the boundary field theory. The holographic
dictionary relates the UV cutoff of the boundary field theory to an infrared cutoff (rb) in the

bulk AdS spacetime and both are inversely related through AdS length scale as, rb =
L2

a . Using
equations (3), (4) and (5), the modified form of area functional A for the extremal surface may
be obtained as follows

A = 2L

∫ ∞

rc�rb

dr
√

f(r)(1− r4c
r4 )

(6)

Furthermore the entanglement entropy can also be bifurcated into a divergent part and a
finite part as

SA = Sdivergent
A + Sfinite

A (7)

Sfinite
A =

Afinite

4G3+1
N

(8)

The explicit expressions for the finite and the divergent parts of the entanglement entropy
can be found in [40]. The divergent part of entanglement entropy is subtracted out by adding
appropriate counter terms which amounts to holographic renormalization of entanglement en-
tropy of the boundary field theory. The finite part of entanglement entropy can then be used
to study the high and low temperature behavior of entanglement entropy for the boundary field
theory which is dual to Schwarzschild-AdS planar black hole as covered in [40]. In the same
reference the authors use various approximations in order to get an analytic expression for the
entanglement entropy which is due to the fact that the integrals mentioned in equations (3),
(4) and (5) have no known analytic expression for the case of boundary field theory dual to
Schwarzschild-AdS black hole. In later section we will see that this holds true for the case of
boundary field theory dual to Reissner-Nordstrom black holes in higher dimensional bulk AdS
spacetime. To elucidate this further we would like to state that the authors in [40] have used an
expansion technique which involves the use of Gamma functions and thus simplifies the analytic
computation of the area integral in eq.(6). We will also be incorporating the same expansion
technique in order to derive an analytic expression of entanglement entropy for our case of
boundary field theory dual to Reissner-Nordstrom black holes in higher dimensional bulk AdS
spacetime. Given below is an useful relation that was used in [40] to express the analytic form
of entanglement entropy in the case of boundary field theory dual to Schwarzschild-AdS black
hole

1√
1− x

=
1√
π

∞
∑

n=0

Γ(n+ 1
2)

Γ(n+ 1)
xn (9)

As stated earlier in this section that although the authors in [40] have computed entanglement
entropy for a boundary field theory dual to Schwarzschild-AdS black hole in general (d + 1)-
dimensions, their results can also be summarized in the AdS4/CFT3 setup to which we address
next.
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Figure 2: Schematic of extremal surface when the horizon radius is small

It is to be noted that the state space of the boundary field theory dual to Schwarzschild black
hole in AdS4, is described only by its temperature which is related to Hawking temperature of
the black hole in the bulk. Thus the ground state of the boundary field theory will correspond
to pure AdS solution of Einstein equations in (3+1)-dimensional bulk whereas, an excited state
will correspond to Schwarzschild black hole in AdS4 bulk. Thus the low temperature limit of the
boundary field theory will correspond to a black hole with small radius of horizon which amounts
to working in the limit, rh ≪ rc where rc represents the turning point of the extremal surface in
the bulk as shown in fig.(2). In this limit the authors in [40] showed that the leading contribution
to entanglement entropy SA of the subsystem (A) comes from SAdS

A which corresponds to the
entanglement entropy of the subsystem (A) of the boundary field theory dual to pure AdS3+1

bulk. The explicit form of SA in low temperature approximation can be written down as follows

SA = SAdS
A + k(rhl)

3 (10)

The low temperature behavior for Schwarzschild case was also studied in [41] where the
authors derive a first law like relation for the dual boundary field theory which is also known
as “First law of entanglement thermodynamics”. This law states that for a subsystem A of the
boundary field theory, the difference between the entanglement entropy of an excited state at a
small non-zero temperature and the zero-temperature ground state is proportional to the change
in the internal energy of the subsystem (A) as

∆SA =
1

Tent
∆EA (11)

∆SA = STemp 6=0
A − STemp=0

A , ∆E =

∫

A
ddx (T Temp 6=0

tt − T Temp=0
tt ) (12)

where, Ttt is the time component of the stress-energy tensor of boundary field theory which
can be calculated in AdS4/CFT3 setup using the prescription given in [47]. The proportionality
constant Tent is known as entanglement temperature and was shown to be inversely related to
the subsystem length (l) as

Tent = c l−1 (13)
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Figure 3: Schematic of extremal surface when the horizon radius is large

In [41] it was also shown that this “First law of thermodynamics” like relation for entan-
glement entropy remains valid at low temperatures and for small subsystem length (l). On the
other hand in [40], the high temperature behavior (corresponding to the limit, rh→ rc as shown
in fig.(3)) of the entanglement entropy for boundary field theory dual to Schwarzschild-AdS
black hole was shown to follow the form given below

SA = c0LlT
2 + TL(c1 + c2ǫ) +O[ǫ2], ǫ ∝ exp(−

√
3T l) (14)

The first term in the expression of entanglement entropy at high temperature given by
eq.(14) corresponds to the extensive thermal entropy of the subsystem (A) as it scales with the
area of the subsystem in the (2 + 1)-dimensional conformal boundary and as volume in higher
dimensional AdS4 bulk spacetime. The ǫ corrections decrease exponentially with temperature
and they scale as the length of the boundary of subsystem (A) and therefore correspond to
entanglement between subsystem (A) and the rest of the system.

3 Entanglement entropy of charged planar black holes

In this section, using the Ryu-Takyanagi prescription we establish the framework for computing
the entanglement entropy of a strip like region (referred to as subsystem (A)) in the boundary
field theory which is dual to RN black holes in AdS4/CFT3 setup. The metric of Reissner
Nordstrom black hole in AdS4 spacetime with a planar horizon can be given as

ds2 = − r2

L2
f(r)dt2 +

L2

r2f(r)
dr2 +

r2

L2
(dx2 + dy2), (15)

f(r) = 1− M

r3
+
Q2

r4
(16)

whereas, the Hawking-temperature of planar RN black hole in AdSr may be given as

T =
f ′(r)

4π

∣

∣

∣

∣

r=rh

=
3rh
4π

(1− Q2

3r4h
) (17)

Now using equations (5), (6) with the lapse function (f(r)) and metric given by the equations
(16) and (15) the length and the area integral for the subsystem (A) of the boundary field theory
dual to RN black hole in AdS4 spacetime can be written down as
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l

2
=

∫ ∞

rc

r2cdr

r4
√

(1− r4c
r4 )

(

1− M

r3
+
Q2

r4

)− 1

2

, (18)

A = 2L

∫ ∞

rc

dr
√

(1− r4c
r4 )

(

1− M

r3
+
Q2

r4

)− 1

2

(19)

The equations (18) and (19) can then be used to determine analytically the entanglement
entropy of the subsystem (A) of the (2 + 1)-dimensional boundary field theory. It may be seen
from eq.(18) the subsystem length l can be obtained as a function of rc. We then invert the
relation between l and rc to obtain rc as a function of subsystem length l and substitute it in
expression for the area of the extremal surface given by the eq.(19). This procedure determines
the form of area of the extremal surface solely in terms of subsystem length l, black hole charge
Q and the black hole mass M . However, it is to be noted that in the bulk theory there are only
two parameters namely the charge Q and the mass M of the black hole which are related to
each other by the radius of horizon (rh) of the black hole as follows

f(rh) = 0 ⇒M =
r4h +Q2

rh
(20)

The condition f(rh) = 0, implies that the lapse function vanishes at the horizon (r = rh).
The using the relation (20) we re-express the lapse function (f(r)) in terms of the radius of
horizon rh and the charge Q of the black hole as follows

f(r) = 1− r3h
r3

− Q2

r3rh
+
Q2

r4
(21)

Thus with this reparametrization of the lapse function f(r) it can be said that the bulk
theory is now characterized effectively by the charge Q and the radius of horizon rh. Next, in
order to evaluate the integrals we make a change of variable from r to u = rc

r in expressions of
subsystem length l and area A given by equations (18) and (19) which gives us the following
modified forms of the integrals

l =
2

rc

∫ 1

0

u2
(

1− rh3u3

rc3
− Q2u3

rc3rh
+ Q2u4

rc4

)− 1

2

√
1− u4

du, (22)

A = 2Lrc

∫ 1

0

(

1− rh3u3

rc3
− Q2u3

rc3rh
+ Q2u4

rc4

)− 1

2

u2
√
1− u4

du (23)

The expression for subsystem length l and extremal area A given by equations (22) and
(23) can then be used to compute the entanglement entropy for the subsystem A and study
its behavior with temperature and charge of the RN black hole which we will address in later
sections. Furthermore, it is also important to note that for a boundary field theory which is
dual to charged black holes in bulk spacetime the state space depends on two parameters in
the bulk namely the temperature T (which is related to radius of horizon rh) and the charge
Q of the black hole. Thus it becomes vital to consider the bulk theory of gravity (which is
a charged black hole in AdS spacetime) in a particular ensemble. Here we choose to work in
the canonical ensemble for which the charge Q of the black hole remains fixed. Unlike the case
of boundary field theory dual to Schwarschild black hole in the AdS4 bulk where the low and
high temperature behavior of the entanglement entropy of subsystem A is controlled only by
the temperature (T ) of the black hole, here in the case of the boundary field theory dual to
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charged black hole in the AdS4 bulk the low and high temperature of the entanglement entropy
is also controlled by the charge Q of the black hole. This may be seen from the condition of
extremality for RN black holes in AdS4 space obtained from eq.(17) as

rh ≥
√
Q

3
1

4

(24)

Where the equality is satisfied when the black hole is at zero temperature (i.e extremal) and
non-equality stands for non zero temperature of the charged black hole. Therefore the second
factor in the expression for temperature given by eq.(17) decides whether the black hole is close
to extremality or not (at low or high temperatures). Hence this factor shows up at several
places in our calculations of finite temperature entanglement entropy as we will show in the
later sections. It is also to be noted that for the case of boundary field theory dual to charged
black holes the ground state is dual to extremal black holes. Thus in order to obtain a “first
law of entanglement thermodynamics” we also study the entanglement entropy of the boundary
field theory dual to extremal black holes.

From the inequality in eq.(24), it may be observed that the horizon radius (rh) is bounded
from below by a quantity which proportional to the charge Q of the black hole. Thus the range
of possible values for the horizon radius is decided by the value of charge Q. To say more
precisely, if the charge of the black hole is small the radius of horizon (rh) can assume both
small (Low temperature regime) and large values (High temperature regime). However, if the
charge of the black hole is large then rh can only assume large values (Only high temperature
regime can be explored). In contrast to the case of non-extremal black holes, the radius of
horizon (rh) for extremal black holes is directly related to the charge Q of the black hole which
may be seen from the equality condition in eq.(24). Thus in the case of extremal black holes
which are at zero temperature small or large charge will imply small or large radius of horizon
(rh) respectively. So, in the light of facts mentioned above in this section we will explore the
behavior of entanglement entropy in different regimes of the value of the charge of the planar RN
black hole in AdS4 spacetime. To elucidate this further we will first explore the entanglement
entropy of the subsystem A of the boundary field theory dual to extremal and the Non-extremal
(charged) black holes in the small charge regime and then we go on to the large charge regime
and do the same.

4 Small charge regime

In this section we explore the low and high temperature behavior of the entanglement entropy
for the boundary subsystem A in the small charge regime for the non-extremal RN black holes
in AdS4 bulk spacetime. However, in case of boundary field theory dual to charged black holes
the ground state is dual to the ”extremal black hole”. So, in the small charge regime we also
study the entanglement entropy of subsystem A of the boundary field theory dual to extremal
black holes. At low temperatures we show that it is possible to obtain a first law like relation
for the boundary field theory dual to RN black holes in AdS4 bulk using extremal black holes
as the ground state.

4.1 Extremal black hole (Zero temperature)

The gauge/gravity duality says that for boundary field theories dual to charged black holes in
the AdS bulk spacetime the ground state corresponds to “extremal black holes”. Thus here we
address the computation of entanglement entropy for the subsystem A of the boundary field
theory dual to extremal extremal black holes in AdS4 bulk spacetime. As pointed out earlier
through eq.(17) that by solving T = 0, the horizon radius for extremal black holes may be
obtained as

9



rh =

√
Q

3
1

4

(25)

Thus in the case of extremal black holes the small charge limit also means small horizon

radius (l
√
Q

3
1
4

≤ lrh << 1). If we put the extremality condition (25) in the expression of lapse

function given by eq.(21) then for extremal black holes f(r) takes the following form

f(r) = 1− 4r3h
r3

+
3r4h
r4

(26)

With the above form of lapse function the integral for the subsystem length l and the extremal
area A given by equations (22) and (23)becomes

l =
2

rc

∫ 1

0

u2
(

1− 4rh3

rc3
u3 + 3rh4

rc4
u4
)− 1

2

√
1− u4

du, (27)

A = 2Lrc

∫ 1

0

(

1− 4rh3

rc3
u3 + 3rh4

rc4
u4
)− 1

2

u2
√
1− u4

du. (28)

As horizon radius (rh) is small, the black hole remains deep inside the bulk and therefore far
away from the extremal surface i.e rh << rc. Thus in this limit, we Taylor expand the quantity
f(u)−1/2 around rh

rc
= 0 and keep the non-vanishing terms up to O[( rhrc )

3u3] as

f(u)−
1

2 ≈ 1 + 2
r3h
r3c
u3. (29)

Using this approximation we evaluate the integral in eq.(27) to be as follows

l ≈ 2

rc

∫ 1

0

(

u2√
1− u4

+
2u5( rhrc )

3

√
1− u4

)

du. (30)

The relation in eq.(30) can be inverted to obtained rc in terms of boundary subsystem length
l as follows

rc =
πrh

3

2lrc3
+

2
√
πΓ(34)

lΓ(14)
+O[

r4h
r4c

]. (31)

Solving the above equation perturbatively in terms of (rhl) we obtain

rc =
1

l

[

2
√
πΓ(34)

Γ(14 )
+
l3rh

3Γ(14)
3

16
√
πΓ(34)

3
+O[(rhl)

4]

]

(32)

Similarly, for obtaining an analytic expression for the extremal area we use the same approx-
imated form of the quantity f(u)−1/2 from eq.(29) in eq.(28) to obtain following form for the
extremal area

A ≈ 2Lrc

∫ 1

0

1 + 2u3( rhrc )
3

u2
√
1− u4

du

≈ 2Lrc

(

∫ 1

0

1

u2
√
1− u4

du+

∫ 1

0

2u3( rhrc )
3

u2
√
1− u4

du

)

(33)

From the expression of A in eq.(33) it is observed that the first term is same as the pure
AdS and is divergent. Therefore, we include the UV cutoff 1/rb in the integral for A and add a
counter term (−2Lrb) in order to obtain the finite part of the extremal area as
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Afinite ≈ 2Lrc

∫ 1

rc
rb

1

u2
√
1− u4

du− 2Lrb + 2Lrc

∫ 1

0

2u( rhrc )
3

√
1− u4

du

≈ Lrc

[
√
πΓ(−1

4)

Γ(14)
+
πrh

3

rc3

]

(34)

If we substitute for rc from eq.(32)in eq.(34) and keep terms up to O(r3hl
3) then we get the

following approximated form of the finite part of extremal area

Afinite =
L

l

[

πΓ(34)Γ(−1
4 )

Γ(14)
2

+
l3rh

3Γ(14)
2(8Γ(34 ) + Γ(−1

4))

32Γ(34 )
3

+O[(rhl)
4

]

(35)

Since the renormalized entanglement entropy (Sfinite
A ) is related to the finite part of the

extremal area as

Sfinite
A =

Afinite

4G
(3+1)
N

(36)

The explicit expression for the entanglement entropy of subsystem A in a boundary theory
dual to extremal black hole in small charge regime may be written down as follows

Sfinite
A =

1

4G3+1
N

L

l

[

− 4πΓ(34 )
2

Γ(14 )
2

+
l3rh

3Γ(14 )
2

8Γ(34 )
2

+O[(rhl)
4

]

(37)

For extremal black holes we also have, r3h = Mext

4 which follows from equations (20) and (25).
Thus replacing r3h byM ext (Mass of the extremal black hole) in eq.(37) we obtain following form
of renormalized entanglement entropy

Sfinite
A ≈ SAdS

A + kM extLl2, k =
1

4G3+1
N

Γ(14 )
2

32Γ(34 )
2
, (38)

where, SAdS
A is the entanglement entropy of the subsystem (A) when the bulk theory is pure

AdS [40]. We see that when charge is small, the leading contribution to entanglement entropy
of subsystem (A) in a boundary field theory dual to extremal black holes comes from AdS. We
will see in later subsections how this sub-leading correction term in the above equation becomes
important in defining the first law like relation.

4.2 Non-extremal black hole (low temperature)

We now consider the subsystem A of boundary field theory dual to non-extremal black hole in
AdS4 with small charge and at low temperature. One can see from the extremality bound in
(24) that when temperature and charge both are small, the horizon radius is small. This implies
that Q/r2h ∼ 1 and rh is small such that, rh << rc is satisfied. For a non-extremal black hole
the form of the lapse function f(u) may be given as

f(u) = 1− (
rh
rc

)3u3 − Q2

r4h

(

(
rh
rc

)3u3 − (
rh
rc

)4u4
)

(39)

We define a new parameter α = Q2

r4
h

to substitute for black hole charge Q in eq.(39) and then

Taylor expand the quantity f(u)−1/2 around rh
rc

= 0 while keeping the non vanishing terms up

to O[( rhrc )
3u3] as

f(u)−
1

2 ≈ 1 +
1 + α

2
(
rh
rc

)3u3 (40)

11



Using the approximated form of the lapse function given by eq.(40) in the integral (22) for
subsystem length l we obtain

l ≈ 2

rc

∫ 1

0

u2√
1− u4

(

1 +
1 + α

2
(
rh
rc

)3u3
)

(41)

The relation in eq.(41) can be inverted to obtained rc in terms of boundary subsystem length
l which is then solved perturbatively in terms of (rhl) to obtain the relation between rc and l as
follows

rc =
1

l

[

2
√
πΓ(34)

Γ(14)
+

(πα+ π)l3rh
3Γ(14)

3

64π3/2Γ(34)
3

+O[(rhl)
4]

]

. (42)

Similarly, Using the approximated form of the lapse function given by eq.(40)in eq.(22) we
obtain the following form for the extremal area

A ≈ 2Lrc

∫ 1

0

1

u2
√
1− u4

(

1 +
1

2
(
rh
rc

)3u3(1 + α)

)

≈ 2Lrc

[
∫ 1

0

1

u2
√
1− u4

+

∫ 1

0

1 + α

u2
√
1− u4

(

r3hu
3

2r3c

)]

(43)

The first term in the integral (43) for extremal area is divergent and is same as the entan-
glement entropy of subsystem A of the boundary field theory dual to bulk AdS4 space time.
Therefore, regularizing the integral for A in the same way as done for the extremal black hole
case in the previous subsection, we obtain the finite part of the extremal area as

Afinite ≈ L

[

rc
√
πΓ(−1

4)

2Γ(14)
+
πrh

3

4rc2
+
παrh

3

4rc2

]

(44)

Substituting the expression for rc from eq.(42) in eq.(44) and keeping terms up to O(r3h) the
finite part of the extremal area and the entanglement entropy may be written down as

Afinite = −4LπΓ(14)
2

lΓ(34 )
2

+
l2Lrh

3Γ(14)
2

32Γ(34 )
2

+
αl2Lrh

3Γ(14)
2

32Γ(34 )
2

+O(r4hl
3), (45)

Sfinite
A =

1

4G

L

l

[

− 4πΓ(14 )
2

Γ(34)
2

+
rh

3l3Γ(14)
2

32Γ(34 )
2

+
αrh

3l3Γ(14 )
2

32Γ(34 )
2

+O(r4hl
4)

]

(46)

For non-extremal RN black holes in AdS4 we also have a constraint relation between radius
of horizon (rh), black hole charge (Q) and mass (M) which follows from eq.(20) as

r3h(1 + α) = r3h(1 +
Q2

r4h
) =M (47)

Using the constraint relation given by eq.(47) in the expression of entanglement entropy in
eq.(46) we obtain

Sfinite
A ≈ SAdS

A + kMLl2, k =
1

4G

Γ(14 )
2

32Γ(34 )
2

(48)

We see that when charge and temperature both are small, the leading contribution in the
entanglement entropy for the case of non-extremal black holes comes from AdS just like for the
case of extremal black holes.

12



4.3 Entanglement thermodynamics of charged black holes

From AdS/CFT correspondence it may be observed that when there is a Reissner-Nordstrom
black hole present in the bulk then one has to consider extremal black hole as dual to the ground
state (zero temperature state) of the boundary field theory. Thus in order to obtain the “first
law of entanglement thermodynamics” we subtract equation (38) from (48) to obtain

∆SA =
1

Tent
∆EA, (49)

where,

∆SA = SA − Sext
A ,

∆EA =

∫

A
dxdy T Temp 6=0

tt −
∫

A
dxdy T Temp=0

tt =
Ll

8πGN
(M −M ext),

Tent = π
Γ(34 )

2

16Γ(14 )
2

1

l
, (50)

here, Tent is known as the entanglement temperature which matches with the Schwarzschild
case. This kind of first law of entaglement thermodynamics for boundary field theories dual to
charged black holes in the bulk was also derived in [45]. There the authors have considered the
grand canonical ensemble with the pure AdS as the ground-state. This differs from our results
as we have considered the canonical ensemble for which the ground state of the boundary field
theory is dual to the extremal AdS black hole in the bulk. Furthermore, the first law like relation
given by eq.(49) for the entanglement entropy may be extended to include a work term due to
pressure and volume as studied in [42]. However, here we are only interested in studying the
dependence of the quantity ∆SA on the quantity ∆EA as studied in [41]

4.4 Non-extremal black hole (high temperature)

In this section we explore the high temperature behavior of entanglement entropy when the
black hole in the bulk has small charge. From the extremality bound one can see that when the
temperature is high and charge is small, the horizon radius is very large (rhl >> 1). As a result

the quantity Q√
3r2

h

<< 1. We will call this quantity δ = Q√
3r2

h

and Taylor expand f(u)−
1

2 around

δ = 0.

f(u)−
1

2 ≈ 1
√

1− rh3u3

rc3

+
3

2
(
rh
rc

)3
δ2u3(1− rhu

rc
)

(1− rh3u3

rc3
)3/2)

(51)

Using the approximated form of the lapse function given by eq.(51) in the integral (22) for
subsystem length l we obtain

l =
2

rc

∫ 1

0

u2√
1− u4

(

1
√

1− rh3u3

rc3

+
3δ2

2
(
rh
rc

)3
u3(1− rhu

rc
)

(1− rh3u3

rc3
)3/2)

)

(52)

One can use the following expansions to simplify the above integral

1√
1− x

=

∞
∑

n=0

Γ(n+ 1
2)√

πΓ(n+ 1)
xn,

1

(1− x)
3

2

=

∞
∑

n=0

2Γ(n+ 3
2 )√

πΓ(n+ 1)
xn (53)

13



After using these two expansions eq.(52) becomes

lrc
2

=
∞
∑

n=0

Γ(n+ 1
2)√

πΓ(n+ 1)
(
rh
rc

)3n
∫ 1

0

u3n+2

√
1− u4

+ δ2
∞
∑

n=0

3Γ(n+ 3
2)√

πΓ(n+ 1)
(
rh
rc

)3n+3

∫ 1

0

u3n+5(1− rh
rc
u)

√
1− u4

(54)
These integrals can now be evaluated through well known identity in terms of Gamma functions

∫ 1

0
xµ−1(1− xλ)ν−1 =

B(µλ , ν)

λ
, where B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
(55)

Using this identity, we evaluate integrals in eq.(52)

lrc =

∞
∑

n=0

Γ(n+ 1
2)

2Γ(n + 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

(
rh
rc

)3n +
3δ2

2

∞
∑

n=0

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

(
rh
rc

)3n+3

− 3δ2

2

∞
∑

n=0

Γ(n+ 3
2 )

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

(
rh
rc

)3n+4 (56)

The first series goes as ∼ xn

n for large n and the other two series go as ∼ xn. Isolating the
divergent terms, we see that the divergences of the last two series cancel and we get

lrc =

√
π

2

Γ(34)

Γ(54)
+

∞
∑

n=1

(

Γ(n+ 1
2)

2Γ(n+ 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

− 1√
3n

)

(
rh
rc

)3n

+
3δ2

2

∞
∑

n=0

(

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

− 2√
3

)

(
rh
rc

)3n+3

− 3δ2

2

∞
∑

n=0

(

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

− 2√
3

)

(
rh
rc

)3n+4

+
√
3δ2

( rhrc )
3

(1 + rh
rc

+ ( rhrc )
2)

− 1√
3
log[1− (

rh
rc

)3]

(57)

As observed in [39] extremal surface can never penetrate horizon in an asymptomatically-AdS
static black hole background, which implies that rc is always greater than rh. As the horizon
radius is large for the case being studied, rh approaches very close to the extremal surface,
rh ∼ rc. Therefore substituting rc = rh(1 + ǫ), we expand the above equation in ǫ and isolate
the leading term in ǫ

lrh = − 1√
3
log[3ǫ] + c1 + δ2c2 +O[ǫ] (58)

c1 =

√
π

2

Γ(34 )

Γ(54 )
+

∞
∑

n=1

(

Γ(n+ 1
2)

2Γ(n + 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

− 1√
3n

)

c2 =
1√
3
− 3

2

∞
∑

n=0

(

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

− 2√
3

)

+
3

2

∞
∑

n=0

(

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

− 2√
3

)

Where

ǫ = εente
−
√
3(lrh−δ2c2), εent =

1

3
e
√
3c1 (59)
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Using the approximated form of the lapse function given by eq.(51) in the integral (23) for
extremal surface area A we obtain

A = 2Lrc

∫ 1

0

u2√
1− u4

(

1
√

1− rh3u3

rc3

+
3δ2

2
(
rh
rc

)3
u3(1− rhu

rc
)

(1− rh3u3

rc3
)3/2)

)

(60)

One can see in the above equation that only the first term has the divergence and it is same
as the Pure AdS divergence

Afinite = 2Lrc

∫ 1

rc
rb

u2√
1− u4

(

1
√

1− rh3u3

rc3

+
3δ2

2
(
rh
rc

)3
u3(1− rhu

rc
)

(1− rh3u3

rc3
)3/2)

)

− 2Lrb (61)

We can evaluate the above integrals after using the expansions given in (53)

Afinite = 2Lrc

[√
π
Γ(−1

4)

4Γ(14)
+

∞
∑

n=1

Γ(n+ 1
2)√

πΓ(n+ 1)
(
rh
rc

)3n
∫ 1

0

u3n−2

√
1− u4

+ δ2
∞
∑

n=0

3Γ(n + 3
2 )√

πΓ(n+ 1)
(
rh
rc

)3n+3

∫ 1

0

u3n+1(1− rh
rc
u)

√
1− u4

]

(62)

We can now evaluate the integrals using the identity in eq.(55) to obtain

Afinite = Lrc

[√
π
Γ(−1

4)

2Γ(14)
+

∞
∑

n=1

Γ(n+ 1
2 )

2Γ(n+ 1)

Γ(3n−1
4 )

Γ(3n+1
4 )

(
rh
rc

)3n

+
3δ2

2

∞
∑

n=0

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+2
4 )

Γ(3n+4
4 )

(
rh
rc

)3n+3 − 3δ2

2

∞
∑

n=0

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

(
rh
rc

)3n+4

]

(63)

We use the identity Γ(n+ 1) = nΓ(n) and write the above equation in the following form

Afinite = Lrc

[√
π
Γ(−1

4)

2Γ(14)
+

∞
∑

n=1

(

1 +
2

3n− 1

)

Γ(n+ 1
2)

2Γ(n + 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

(
rh
rc

)3n

+
3δ2

2

∞
∑

n=0

(

1 +
2

3n + 2

)

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

(
rh
rc

)3n+3

− 3δ2

2

∞
∑

n=0

(

1 +
2

3n + 3

)

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

(
rh
rc

)3n+4

]

(64)

We see that we can now use equation (54) and simplify the above equation

Afinite = Lrc

[√
π
Γ(−1

4)

Γ(14)
+ lrc +

∞
∑

n=1

(

2

3n− 1

)

Γ(n+ 1
2)

2Γ(n + 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

(
rh
rc

)3n

+
3δ2

2

∞
∑

n=0

(

2

3n+ 2

)

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

(
rh
rc

)3n+3 − 3δ2

2

∞
∑

n=0

(

2

3n+ 3

)

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

(
rh
rc

)3n+4

]

(65)
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We see that the first series in the above equation goes as ∼ xn

n2 for large n, where as the last

two go as ∼ xn

n . All of these series diverge at the O[ǫ]

Afinite = Lrc

[√
π
Γ(−1

4)

Γ(14)
+ lrc +

∞
∑

n=1

(

1

3n− 1

Γ(n+ 1
2)

Γ(n+ 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

− 2

3
√
3n2

)

(
rh
rc

)3n

+ 3δ2
∞
∑

n=1

(

1

3n+ 2

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

− 2

3
√
3n

)

(
rh
rc

)3n+3

− 3δ2
∞
∑

n=1

(

1

3n+ 3

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

− 2

3
√
3n

)

(
rh
rc

)3n+4

+ 3δ2
(

(
rh
rc

)3
(Γ(32 ))

2

2
− (

rh
rc

)4
Γ(32)Γ(

7
4 )

3Γ(94)

)

+
2

3
√
3
Li2[(

rh
rc

)3]− 2δ2√
3
(
rh
rc

)3(1− rh
rc

) log[1− (
rh
rc

)3]

]

(66)

If we now put rc = rh(1 + ǫ) and now expand up to O[ǫ]. Then we obtain

Afinite = Llr2h + Lrh(k1 + δ2k2) + Lrhǫ

[

k3 + δ2(k4 + k5 log[ǫ])

]

(67)

k1 =
π2

9
√
3
+

√
πΓ(−1

4)

Γ(14)
+

∞
∑

n=1

(

1

3n− 1

Γ(n+ 1
2)

Γ(n+ 1)

Γ(3n+3
4 )

Γ(3n+5
4 )

− 2

3
√
3n2

)

k3 =
π2

9
√
3
− 3

√
πΓ
(

3
4

)

Γ
(

1
4

)

k4 =
3
√
πΓ(74)

Γ(94)
− log(9)√

3

k5 =
4√
3
− 2

√
3 (68)

k2 =
3π

8
− 3

√
πΓ(74)

2Γ(94 )
+ 3

∞
∑

n=1

(

1

3n+ 2

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+6
4 )

Γ(3n+8
4 )

− 1

3
√
3n

)

− 3

∞
∑

n=1

(

2

3n+ 3

Γ(n+ 3
2)

Γ(n+ 1)

Γ(3n+7
4 )

Γ(3n+9
4 )

− 2

3
√
3n

)

Therefore the renormalized entanglement entropy(Sfinite
A = Afinite

4G ) of non-extremal black
hole at high temperature in the small charge regime is as follows

Sfinite
A ≈ LlSBH +

L

4G
rh(k1 + δ2k2) +

L

4G
rhǫ

[

k3 + δ2(k4 + k5 log[ǫ])

]

(69)

Where SBH =
r2
h

4GN
is the entropy density of the planar black hole.

ǫ ≈ εente
− 4π√

3
T l(1+δ2)

(70)

We observe that the first term in the eq(69) scales with the area of the subsystem in 2+1
dimensional CFT and increases with temperature. Therefore we deduce that it corresponds to
the thermal part. The second and latter terms are proportional to the length of the boundary
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separating subsystem(A) and its compliment. Therefore they contain the information about the
entanglement at high temperatures. The ǫ corrections decay exponentially with temperature
just as they did for Schwarschild case, except that there is a small δ2 term due to the presence
of charge.

5 Large charge regime

In this section we explore the behavior of entanglement entropy in the large charge regime of
the black hole in the bulk. The extremality bound given in (24) shows that when the charge
is large, horizon radius is large too (rhl >> 1). So we evaluate the leading contribution to the
extremal surface area by expanding f(u) near u0 = rc

rh
, which in terms of r coordinates means

a near horizon expansion. This kind of expansion was also done to evaluate the entanglement
entropy for charged black holes in [43].

5.1 Extremal black hole

Now we evaluate the entanglement entropy for the extremal black hole when the charge is large.
In order for the above discussed near horizon expansion to hold, we have to show that the term
u− u0 is small, so that we can neglect the higher order terms. In the integral for area, u goes
from rc

rb
to 1. For large charge case rc ∼ rh as a result u0 ∼ 1. Since rc and rb are both large, u is

close to u0 through out the integral and our near-horizon expansion is valid. Taylor expanding
f(u) around u0 =

rc
rh

gives the following form of the lapse function

f(u) = 6(
rh
rc

)2(u− u0)
2 +O[(u− u0)

3] (71)

f(u) ≈ 6(1 − rh
rc
u)2 (72)

Using the approximated form of the lapse function given by eq.(72) in the integral (22) for
subsystem length l, we obtain

l =
2

rc

∫ 1

0

u2√
1− u4

du√
6(1− rh

rc
u)

(73)

As already discussed in section 4.4, rc will always remain greater than rh and rh
rc
u < 1 . We

expand(1− rh
rc
u)−1 binomially to evaluate the integral .

lrc
2

=
1√
6
(
rh
rc

)n
∫ 1

0

u2+n

√
1− u4

du (74)

lrc =

∞
∑

n=0

√

π

6

Γ(n+3
4 )

2Γ(n+5
4 )

(
rh
rc

)n (75)

We see that the series goes like ∼ xn√
n
for large n and diverges as rc → rh. So we isolate the

divergent term.

lrc =

√

π

6

Γ(34)

2Γ(54 )
+

√

π

6

∞
∑

n=1

(

Γ(n+3
4 )

2Γ(n+5
4 )

− 1√
n

)

(
rh
rc

)n +

√

π

6
Li 1

2

[
rh
rc

] (76)

Where Li is the polylog function. We use rc = rh(1 + ǫ), do an expansion in ǫ keep the leading
term

lrh =

√

π

6

Γ(34)

2Γ(54 )
+

√

π

6

∞
∑

n=1

(

Γ(n+3
4 )

2Γ(n+5
4 )

− 1√
n

)

+

√

π

6
[ζ

(

1

2

)

+

√
π√
ǫ
] +O[ǫ

1

2 ] (77)
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Where ζ(x) is the zeta function

1√
ǫ
=

√
6

π
lrh −

1√
π

Γ(34)

2Γ(54 )
− 1√

π

∞
∑

n=1

(

Γ(n+3
4 )

2Γ(n+5
4 )

− 1√
n

)

− 1√
π
ζ(

1

2
) (78)

ǫ =
π2

6(lrh − kl)2
(79)

kl =

√

π

6

[

Γ(34)

2Γ(54 )
+

∞
∑

n=1

(

Γ(n+3
4 )

2Γ(n+5
4 )

− 1√
n

)

+ ζ(
1

2
)

]

Using the approximated form of the lapse function given by eq.(72) in the integral (23) for
extremal surface area A, we obtain

A = 2Lrc

∫ 1

0

1

u2
√
1− u4

1√
6(1− rh

rc
u)
du (80)

We expand(1− rh
rc
u)−1 binomially to evaluate the above integral using the identity in eq.(55)

A = 2Lrc

∞
∑

n=0

∫ 1

0

un−2

√
1− u4

(
rh
rc

)n (81)

The terms corresponding to n = 0 and n = 1 in the above equation seem to be divergent.
Both of them can be handled by introducing a cut-off (rb). Finite part of the n = 0 term is
given by

Afinite
0 =

2Lrc√
6

∫ 1

rc
rb

u−2

√
1− u4

− 2Lrb√
6

= 2Lrc

[

√

π
6Γ(−1

4)

4Γ(14)

]

(82)

The term corresponding to n = 1 in eq.(81) is

A1 = 2Lrh

∫ 1

0

u−1

√
1− u4

(83)

= 2Lrh

∞
∑

k=0

Γ(k + 1
2)√

πΓ(k + 1)

∫ 1

0
u−1+4k (84)

We see that k = 0 term has to be regulated.

A1 =
2Lrh√

6

∫ 1

rc
rb

1

u
+

2Lrh√
6

∞
∑

k=1

Γ(k + 1
2)√

πΓ(k + 1)

∫ 1

0
u−1+4k (85)

=
2Lrh√

6

[

− log[
rc
rb
] +

log[4]

4

]

(86)

We know that rc ∼ rh and rh is large. Since rc and rb both are large, the quantity − log[ rcrb ] ∼
0. Therefore this term can be ignored.

Afinite
1 ≈ 2Lrh√

6

[

log[4]

4

]

(87)

Substituting the finite parts of n = 0 and n = 1 terms given by eq.(82) and eq.(87) in eq.(81)
we get the finite part of the area of extremal surface

Afinite =
2Lrc√

6

[
√
πΓ(−1

4)

4Γ(14 )
+
rh
rc

log[4]

4
+

∞
∑

n=2

√
πΓ(n−1

4 )

4Γ(n+1
4 )

(
rh
rc

)n
]

(88)
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The series in the above expression goes as ∼ xn√
n
for large n and diverges as rc → rh. This

can be slightly re-arranged using the identity Γ(n+1) = nΓ(n) to avoid divergence and get the
leading contribution.

Afinite =
2Lrc√

6

[
√
πΓ(−1

4)

4Γ(14 )
+
rh
rc

log[4]

4
+

∞
∑

n=2

(1 +
2

n− 1
)

√
πΓ(n+3

4 )

4Γ(n+5
4 )

(
rh
rc

)n
]

(89)

We can now use eq.(75) for the first term in the series of the above equation and this gives us

Afinite =
2Lrc√

6

[

−2

√
πΓ(34)

Γ(14)
+
rh
rc

log[4]

4
+
√
6
lrc
2
−
√
π

1

4Γ(32 )
+

∞
∑

n=2

(
1

n− 1
)

√
πΓ(n+3

4 )

2Γ(n+5
4 )

(
rh
rc

)n
]

(90)

The series is now convergent as it goes as ∼ xn

n
√
n
for large n. So the leading term is given

by just putting rc = rh

Afinite = Llr2h + LrhC (91)

Where

C =
2√
6

[

− 2

√
πΓ(34)

Γ(14 )
+

log[4]

4
− 1

2
+

∞
∑

n=2

(
1

n− 1
)

√
πΓ(n+3

4 )

2Γ(n+5
4 )

]

(92)

To find the sub-leading term we put rc = rh(1 + ǫ) and expand the finite part of the area in
ǫ, keeping the terms up to O[ǫ]. Even though the series in equation(90) is finite at the leading
order, it is divergent at the sub-leading order and hence we have to isolate the divergent term.

Afinite =
2L√
6

[

− 2

√
πΓ(34)rc

Γ(14 )
+ rh(

log[4]

4
) +

√
6
lr2c
2

−
√
π

rc

4Γ(32 )
+

√
πrc
2

∞
∑

n=2

(
1

n− 1

Γ(n+3
4 )

Γ(n+5
4 )

− 2

n
√
n
)(
rh
rc

)n −
√
πrh +

√
πrcLi 3

2

[
rh
rc

]

]

Expanding the above equation in ǫ and simplifying, we obtain

Afinite = Llr2h + Lrh(K1 +K2

√
ǫ+K3ǫ+O[ǫ

3

2 ]) (93)

K1 =
2√
6

[

− 2

√
πΓ(34)

Γ(14 )
+

log[4]

4
− 1 + 2

√
π

2
+

√
πζ

(

3

2

)

+

√
π

2

∞
∑

n=2

(
1

n− 1

Γ(n+3
4 )

Γ(n+5
4 )

− 2

n
√
n
)

]

K2 = − 2π√
6

K3 =
2√
6

[

1

2
−

√
π +

√
πζ

(

3

2

)]

ǫ =
π2

6(lrh − kl)2
=

√
3π2

6(l
√
Q− 3

1

4kl)2
(94)

Therefore the renormalized entanglement entropy of the extremal charged black hole in the large
charge regime is given by

Sfinite
A = LlSBH +

Lrh
4G

(K1 +K2

√
ǫ+K3ǫ+O[ǫ

3

2 ]) (95)

The first term in the above equation scales with area of the subsystem and is extensive.
Since the black hole is at zero temperature the entire contribution comes from charge.The ǫ
corrections does not decrease exponentially with charge in this case but in a power law form as
given by (94) .
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5.2 Non-extremal black hole

In this section we explore the large charge regime of the non-extremal black hole. Extremality

condition puts a bound on horizon radius[rh >
√
Q

3
1
4

]. Therefore when charge is large horizon

radius is large too (rhl >> 1). The entire argument done in previous section for the extremal
black hole with large charge goes through for non-extremal case also. So we again do the near
horizon expansion for f(u) i.e around u0 =

rc
rh

and calculate the leading contribution for the area
integral.

f(u) = (−3 +
Q2

r4h
)
rh
rc

(u− u0) +O[(u− u0)
2] (96)

f(u) ≈ (3− Q2

r4h
)(1− rh

rc
u) (97)

Note that the prefactor appearing in the above equation is the same that comes in temperature.

We call this factor δ = (3− Q2

r4
h

). When δ → 0 temperature is low and when δ → 3 temperature

is high. Using the approximated form of the lapse function given by eq.(97) in the integral (22)
for subsystem length l, we obtain

l =
2

rc
√
δ

∫ 1

0

u2√
1− u4

1
√

1− rh
rc
u

(98)

Using the expansion given in eq.(53) with x = rh
rc
u, the integral can be evaluated

lrc =
1

2
√
δ

∞
∑

n=0

Γ(n+ 1
2)

Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

(
rh
rc

)n (99)

The series in the above equation goes as ∼ xn

n and therefore diverges as rc → rh . We
isolate the divergent term. As the horizon radius is large because of the large charge, we put
rc = rh(1 + ǫ), expand in ǫ to obtain the leading term. We get

√
δlrh = − log[ǫ] + k +O[ǫ]

ǫ = εente
−
√
δlrh (100)

Where

εent = ek, k =

√
πΓ(34 )

2Γ(54 )
+

∞
∑

n=1

(

Γ(n+ 1
2)

2Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

− 1

n

)

Using the approximated form of the lapse function given by eq.(97) in the integral (23) for
extremal surface area A, we obtain

A =
2Lrc√
δ

∫ 1

0

1

u2
√
1− u4

1
√

1− rh
rc
u

(101)

Using the expansion for 1√
1−x

given in eq.(53) with x = rh
rc
u

A =
2Lrc√
δ

∞
∑

n=0

Γ(n+ 1
2)√

πΓ(n+ 1)

∫ 1

0

un−2

√
1− u4

(
rh
rc

)n (102)

We see that terms corresponding to n = 0 and n = 1 are divergent. We isolate the divergences
of these terms and regulate them with the cutoff (rb). First the n = 0 term

20



A0 =
2Lrc√
δ

∫ 1

0

1

u2
√
1− u4

du (103)

A0 =
2Lrc√
δ

∞
∑

k=0

Γ(k + 1
2)√

πΓ(k + 1)

∫ 1

0
u−2+4kdu

Divergence is in the term corresponding to k = 0 and has to be regulated with cutoff rb .

A0 =
2Lrc√
δ

∫ 1

rc
rb

u−2du+
2Lrc√
δ

∞
∑

k=1

Γ(k + 1
2 )√

πΓ(k + 1)

1

4k − 1
(104)

The finite part of the above expression is given by

Afinite
0 = A0 −

2Lrb√
δ

=
2Lrc√
δ

[

−
√
πΓ(34)

Γ(14)

]

(105)

Now consider the term corresponding to n=1 in eq.(102)

A1 =
Lrh√
δ

∫ 1

0

u−1

√
1− u4

du (106)

=
Lrh√
δ

[
∫ 1

rc
rb

1

u
+

∞
∑

k=1

Γ(k + 1
2√

πΓ(k + 1)

1

4k

]

=
Lrh√
δ

[

log[
rb
rc
] +

log[4]

4

]

Just like large charge case of extremal black hole, the quantity log[ rbrc ] ∼ 0. This is because
both rb and rc are both large. Therefore we ignore it.

Afinite
1 =

Lrh√
δ

[

log[4]

4

]

(107)

Substituting the finite parts of the terms corresponding to n = 0 and n = 1 as given by (105)
and eq.(107) in eq.(102) we obtain the finite part of the area to be

Afinite = Afinite
0 +Afinite

1 +
2Lrc√
δ

∞
∑

n=2

Γ(n+ 1
2 )√

πΓ(n+ 1)

∫ 1

0

un−2

√
1− u4

(
rh
rc

)n (108)

=
2Lrc√
δ

[

−
√
πΓ(34 )

Γ(14)
+

rh
2rc

(
log[4]

4
) +

1

4

∞
∑

n=2

Γ(n+ 1
2)

Γ(n+ 1)

Γ(n−1
4 )

Γ(n+1
4 )

(
rh
rc

)n
]

(109)

Using Γ(n+ 1) = nΓ(n), we can write the above equation as follows

Afinite =
2Lrc√
δ

[

−
√
πΓ(34 )

Γ(14)
+

rh
2rc

(
log[4]

4
) +

1

4

∞
∑

n=2

(1 +
2

n− 1
)
Γ(n+ 1

2)

Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

(
rh
rc

)n
]

(110)

We can now use eq.(99) for the first term of the series in the above equation and simplify to
get

Afinite =
2Lrc√
δ

[

−
√
πΓ(34)

Γ(14 )
+
rh
2rc

(
log[4]

4
) +

lrc
√
δ

2
−

√
πΓ(34

4Γ(54 )
− 1

4
(111)

+
1

2

∞
∑

n=2

1

n− 1

Γ(n+ 1
2)

Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

(
rh
rc

)n
]

(112)
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The series in the above equation goes as ∼ xn

n2 for large n and hence converges as rc → rh.
Therefore the leading term can be found just by putting rc = rh.

Afinite = Llr2h +
Lrh√
δ
C (113)

Where

C = −4
√
πΓ(34)

Γ(14)
+

log[4]− 2

4
+

∞
∑

n=2

1

n− 1
)
Γ(n+ 1

2)

Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

(114)

The series in eq.(112) is convergent up to the leading term but diverges if we consider O[ǫ]
terms. In order to obtain the area up to O[ǫ], we isolate the divergent part in eq.(112) .

Afinite =
2L√
δ

[

− 2rc
√
πΓ(34)

Γ(14)
+ rh

log[4]

8
+
lr2c

√
δ

2
− rc

4
+ (115)

rc
2

∞
∑

n=2

(

1

n− 1

Γ(n+ 1
2)

Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

− 2

n2

)

(
rh
rc

)n − rh + rc Li2[
rh
rc

]

]

(116)

Now we put rc = rh(1 + ǫ), expand in ǫ and keep the terms up to O[ǫ]. The finite part of
the area is given by

Afinite = Llr2h +
2Lrh√
δ

[

K1 +K2ǫ+O[ǫ2]

]

K1 = −2
√
πΓ(34 )

Γ(14)
+

log[4]− 10

8
+

1

2

∞
∑

n=2

(

1

n− 1

Γ(n+ 1
2)

Γ(n+ 1)

Γ(n+3
4 )

Γ(n+5
4 )

− 2

n2

)

+
π2

6

K2 =
π2

6
− 7

4

The renormalized entanglement entropy(Sfinite
A = Afinite

4G ) for the nonextremal black hole in
the large charge regime, therefore comes out to be as follows

Sfinite
A = LlSBH +

Lrh

2G
√
δ

[

K1 +K2ǫ+O[ǫ2]

]

(117)

ǫ = εente
−
√
δlrh = εente

− 4πTl√
δ (118)

The first term scales with the area of the subsystem and is extensive. δ < 3 as the quantity
Q2

r4
h

is always positive. Therefore ǫ corrections are high when the temperature is low and they

decay exponentially with temperature when the temperature is high.

6 Summary and Conclusions

In summary we have studied the entanglement entropy of a strip like region denoted by subsystem
A in the boundary field theory dual to charged black holes in AdS4/CFT3 setup. Here, we have
focused mainly on two aspects of the holographic entanglement entropy: first is the behavior of
the entanglement entropy with the charge of the black hole and then its temperature dependence.
For this we have obtained an analytic expression for the holographic entanglement entropy using
the analytic techniques adopted in [40]. In the small charge regime we have obtained the low
and high temperature behavior of the holographic entanglement entropy in the case of Reissner-
Nordstrom black hole in the AdS4 bulk spacetime. As stated earlier that when there is a
Reissner-Nordstrom black hole present in the bulk then one has to consider extremal black
hole as dual to the ground state (zero temperature state) of the boundary field theory. Thus
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in the small charge and low temperature regime we have obtained “First law of entanglement
thermodynamics” in the canonical ensemble with extremal AdS black hole as the ground state
of the boundary field theory. This differs from the work in [45] where the authors established
the first law of entanglement thermodynamics for boundary field theory dual to charged black
holes in the grand canonical ensemble with the pure AdS as the ground state. We have also
studied the holographic entanglement entropy in the large charge regime in the case of both non-
extremal and extremal black holes in the AdS4 bulk spacetime. Specifically, the large charge
of the black hole in the bulk forces the boundary field theory to have a high temperature in
the case of non-extremal black hole whereas, in the case of extremal black hole large charge
of the black hole implies large radius of horizon. We also establish that at high temperatures
the holographic entanglement entropy shows a characteristic exponential dependence on the
temperature T and the extremality parameter δ = Q/

√
3r2h both in the small and the large charge

regimes. This exponential dependence of holographic entanglement entropy on temperature was
also established in [40] for the case of Schwarschild black hole in the the AdS bulk spacetime.

Our work leads to extremely interesting future directions for investigations. One possible
avenues for this is to to investigate the holographic entanglement entropy for the boundary field
theories dual to rotating and charged rotating black holes in four or higher dimensions in the
bulk. It would be also interesting to extend the analytic approach adopted here for the case of
boundary field theories dual to charged “Gauss-Bonnet” black holes in the bulk and study the
temperature dependence of holographic entanglement entropy.
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